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ON RESTRICTION THEOREMS OF MAXIMAL-TYPE

CHRISTOPHER D. SOGGE

In this paper we prove a vector-valued restriction theorem for the
Fourier transform. This result allows us to establish certain sharp "maxi-
mal-type" restriction theorems and a partial generalization of the Rie-
mann-Lebesgue lemma for certain p > 1.

1. Introduction. Vector-valued inequalities for Bochner-Riesz mul-
tipliers have been known for some time in two dimensions and for certain
exponents in higher dimensions (cf. [2], [3], [4]). In this note our main
result is the corresponding vector-valued restriction theorem for the
Fourier transform which is valid everywhere the restriction problem is
now known to be true. In two dimensions the result is proved by using the
techniques of oscillatory integrals while in higher dimensions our inequali-
ties follow trivially from known ones. Finally, using these results we then
obtain a lacunary restriction theorem of maximal-type for the Fourier
transform.

2. Vector-valued inequalities. Our main results for this section will
be the following sharp vector-valued restriction theorems. By do we will
mean Lebesgue measure on the unit sphere S"1"1 c R".

THEOREM 1. Ifn = 2,1 < p < 4/3, q = p'/3, R, > 0, j = 1,2,3,...

1/2

\\LP(R2)

whenever fj e if.

THEOREM 2. //

n > 3, 1 < /? < 2(π + l)/(n 4- 3),

0,

whenever fj
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We start out by proving Theorem 1. For this purpose we define for
x e R2, Rj > 0,

Tjg(x)= f exp[iRj(x -y)]g(y)dσ(y).

It then follows from duality that Theorem 1 is equivalent to the
following:

THEOREM V.Ifl<p<4,q = 3p'

\1/2||

To prove this we will make use of the following lemma which follows
trivially from Minkowski's integral inequality (cf. [8], p. 19).

LEMMA. // (X, dx) is a measure space and 1 < r < 2 then

(i)

and,

We now come to the proof of Theorem Γ. It is based on a modifica-
tion of the arguments of Zygmund [9] using inequalities (1) and (2).

Proof of Theorem Γ. Fix p and q as in the statement and put
r = q/2. Then r > 2 and so by (2) we have

<3) ||(: ~'"" 2

However,

\\TjgjTkgk\\r

= ί ί ί exp[/x (Rjcoss — Rkcost,RjSins — Rksint)]

Xgj(s)gk(t)dsdt rdx
\/r

Therefore, we put for a fixed pair j \ k

u = (Rjcoss — Rkcost,RjSins — Rksint)
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and since \du/d(s9t)\ = RjRk\sin(s - t)\ we see that the last integral

equals

ί ί eιu%(s)gk(t)\RJRksin(s-t)\'1du dx

l/r

(4) du
l/r'

- t) I ώώj .

The last inequality comes from the Hausdorff-Young Theorem.

Since rf < 2 we now see from inequalities (1), (3), (4) that

x | s i n ( s - t)\ r + dsdt)
l/r' 1/2

X — t) dsdt
l/r'

If now as in [9] we use the classical inequality or Hardy-Littlewood

for fractional integrals we find that this last expression is dominated by

VP 1/2 1

This completes the proof of Theorem V.

Theorem 2 follows easily from the ZΛrestriction theorem of Stein-

Tomas [7] and our lemma. In fact if, as before, we define

= f λ &φ[iRj(x y)] g(y) dσ(y)

then the restriction theorem of Stein-Tomas implies that for each 1 < p <

< r\\R~n/q2 II
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Therefore, since q > 2 and p < 2 this inequality and the lemma show
that

2\l/2|l

Rjn/%\) I
As before, Theorem 2 follows by duality from this last inequality.

3. Restriction theorems of maximal-type. In this section we indi-

cate how the above results imply the following sharp lacunary restriction
theorems of maximal-type.

We define the lacunary maximal restriction operators:

Mpf(y) = sup \f(2jy)2nj/p'\, y e Sn~ι, fey.

THEOREM 3. Let n = 2,1 < p < 4/3, q = p'/3. Then

THEOREM 4. Let n > 3,

1 < p < 2(n + \)/{n + 3), 9 = p'{n - l)/(n + 1).

Then

\\Mpf\\LP{sn-ι)<cp\\f\\LP{R^ fey.

Proofs. Fix n > 2 and /? and q as above. Clearly, to prove these
results it suffices to show that whenever {Ej,}, j e Z, is a collection of
disjoint measureable subsets of Sn~ι there is an absolute constant C for
which

(5) | |Σx£ y( )/(2^)2«^'[L ί ( s π. 1 )<C||/|U

Now let b G Q° be a bump function with the properties that

b{\) = 1, supp(ό) c (1/4,2) and Σb{Vt) = l , ί G R + . If we define f} by

^ = 6(2~7|y\)f(y) then the left hand side of (5) is majorized by

The inequality follows from Theorems 1 and 2. Our desired result now

follows via Littlewood-Paley theory from the inequality I K Σ l / ) ^

C\\f\\pif p > 1. The case p = 1 is the Riemann-Lebesgue lemma.

This finishes the proofs.
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If now n > 2 and p is as in Theorem 1 or 2 it follows that f(2jξ) can
be defined as an element of Lq(Sn~~ι), q = p\n — l)/(n + 1). Elements
of Lq(Sn~ι) of course are only defined almost everywhere so in what
follows to avoid ambiguity we assume that for each / e Lp(Rn) and
j e Z w e have fixed a function /(27£) which represents this element. If we
now define Mpf as before, it follows from a simple limiting argument that
the a priori inequalities of Theorems 3 and 4 now hold for general
/ ^ Lp(Rn). With these things in mind we now come to the following
partial generalizations of the classical Riemann-Lebesuge lemma.

COROLLARY 1. // 1 < p < 4/3, / e LP(R2) then for almost every
direction £ e S1 we have:

22J/p'f{Vξ) -> 0 as\j\-+ao.

COROLLARY 2. // n > 3, 1 < p < (2n + 2)/(n + 3) and f e LP{W)

then for almost every every direction £ e Sn~λ we have:

Proofs. Fix n > 2 and p and q as above. Define

7-00

We must show that Ω/= 0 for almost every direction ξ e Sn~ι. Clearly,
2Mpf(ξ) and so by Theorems 3 and 4

It is also clear that if h e Sf then ΩΛ = 0 almost everyone. Further-
more, / e Lp(Rn) can be written as / = g + h with K ^ and \\g\\p

arbitrarily small. Consequently, as Ω/ < Ωg + ΩA we get that

Finally, since the size of \\g\\p is at our disposal, we see that Ω/= 0
almost everywhere as desired.

REMARKS. We now show that how the results of this section are of the
best possible nature in the sense that in Rw, n > 2, no inequality of the
kind

/ sup \f(rO\dσ<Ap\\f\\L,{RΊ
^S"'1 Kr<2

can hold for any p > 1.
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In fact consider/ = fι(x')f2(xn) where fλ{x') = e~ | x |2

? and

A ί O ί
10, otherwise.

Then f(ξ',ξn) = Cn\i» - l\-ι/2p'e-^2 for (ξ',ξn) near (0, . . . ,0, l ) , and
hence s u p 1 < Γ < 2 | / ( r ξ ) | = oo ξ e Sn~λ in a neighborhood of (0,, . . ,0, l)
even though / £ L*(RΛ).

This counterexample was kindly pointed out to the author by E. M.

Stein.

Finally, we also remark that one would expect that Theorems 2 and 4

should also hold for {In + 2)/(n + 3) < p < 2n/(n + 1), since this is the

conjectured range for the restriction problem for the Fourier transform

(cf. [5]).
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