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AVERAGING PROPERTIES OF PLURIHARMONIC
BOUNDARY VALUES

WADE C. RAMEY

Suppose D c Cn is a smoothly bounded domain and u is bounded
and pluriharmonic in D. Let u* denote the boundary function of w, and
let f0 e 3D. It is shown that if u* has good averaging behavior on one
curve in dD through f0, then w* has good averaging behavior on all
curves in ΘZ) through f0, provided the curves in question satisfy a certain
directional condition. These results fail if the directional condition on the
curve is violated.

I. Introduction. Let D be a domain in Cn with C^-boundary, and
for ξ G 3D, let TfD(ξ) denote the complex tangent space of dD at ξ. If /
is a complex valued function defined in D, we denote by /*(£) the
nontangential limit of / at ξ9 provided this limit exists.

Fix a point £0 G dD. We will be interested in C3-curves γ: (-1,1) ->
dD such that

(1)

Note that since T£D(ζ0) is of (real) codimension 1 within the full tangent
space of dD at ξ09 the "typical" smooth curve in dD through f0 will
satisfy the last condition in (1).

The results of this paper are concerned with averaging properties of
pluriharmonic boundary values along such curves. The main thrust of
these results is that if good averaging behavior occurs on one curve
satisfying (1), then the same must be true of every curve satisfying (1). We
first take up the case of i/°°-boundary values.

THEOREM 1. /// G i/°°(Z)), and if

(2) Xιm\ (h f*{y{x))dx = L

for one curve γ satisfying (1), then (2) is true for every curve γ satisfying

Note that Theorem 1 also tells us that if (2) is true, then

lim \ [° f*(y(x))dx = L
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as well, since the curve γ, defined by y(x) = γ(-x), satisfies (1) if and
only if γ satisfies (1).

An easy corollary of Theorem 1 generalizes the familiar one variable
fact that the boundary values of an i/°°-function cannot have a jump
discontinuity.

COROLLARY. // yτ and y2 are two curves satisfying (1), iff e H°°(D),
and if

then Lx = L2.

1.2. The first thing one might wonder about in Theorem 1 is the
existence of the boundary values /*(γ(x)). It turns out that with γ as in
(1), /*(γ(x)) is guaranteed to exist for a.e. x in in a sufficiently small
neighborhood of 0, by the following result of Nagel and Rudin [7]:

THEOREM A. Suppose ε > 0, and that γ: [-ε, ε] -» dD is a C3-curve
satisfying (γ'(jc), v(y(x))) Φ 0 for all x e [-ε, ε], where v(ζ) denotes the
outward unit normal to dD at ξ, and ( , ) is the usual complex inner
product. Iff G H°°(D), thenf*(y(x)) exists for a.e. x e [-ε, ε].

To see how Theorem A applies to our situation with γ as in (1), define
«(*) = <Y'(*)>KY(*))>- Then α(0) Φ 0, for this is precisely the last
condition in (1). The continuity of a then shows <x(x) Φ 0 in [-ε, ε] for
some ε > 0, so that /*(γ(x)) exists a.e. in [-ε, ε] by Theorem A.

REMARK. Theorem A is true for curves with less than C3-smoothness;
see [8] for the strongest result. We are assuming γ is C3 to keep the
exposition as simple as possible. (Later, in Part IV, it will be convenient to
assume γ is C6.)

II. Proof of Theorem 1 and related results.

2.1. One variable preliminaries: For ε > 0, set Qε = ( —ε, ε) X (0, ε).
Theorem 1 hinges on the following one variable result:

THEOREM B. If f ^ H°°(Qε), then the following statements are equiva-
lent:
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Theorem B for the upper half plane follows from Corollaries 3.5, 3.6,
and 3.7 in [14]; very similar results for the unit disc appear in [1]. Of
course, conformal maps transfer Theorem B from one region to another,
and in particular to our region Qε.

LEMMA 2.1. Let φ <Ξ Cι Π L°°(Qe). For z e C set

Then ψ G C 1 ( β ε ) , 3ψ/3z = φ in ζ)ε, and ψ is continuous on all of C.

Proof. We are using the notation 3/3z = 1/2(3/3* 4- id/dy). That
ψ e C\Qε) and 3ψ/3z = φ in Qε is well known; see [11], p. 339. The
continuity of ψ on all of C follows since ψ is the convolution of
φ G L°°(Qε) with l/ξ £ L\

2.2. Proof of Theorem 1. The first part of this argument comes from
[7], where we refer the reader for details. (The details are even easier here
since we are dealing with C3-curves.)

If γ satisfies (1), then one of the vectors ±/γ'(0) points transversally
into D from fo; suppose it is /γ'(0) which does so. For JC + iy e (-1,1) X
R, define Γ(Λ: + iy) = γ(*) + iyy\x). Since /γr(0) points transversally
into D and Γ(JC) = γ(x) for x e (-1,1), there exists an ε > 0 such that
T(Qε) c D, and such that d(T(x + iy\ΰD) is on the order of \y\ for
X + / > G Qε. Here d(w,dD) denotes the Euclidean distance from w e C"
to 3D.

For / e H°°(D), the chain rule gives

(3) ^ r ^ ( * + iy) = ί: ^ ( Γ ( X + iy))^(x + iy)

(x + iy e β ε ) , where we have written Γ = (Γ x , . . . ,Γ Π ) . Just as in [7],
Cauchy's estimates show there is a constant C such that

\df/dwk(T(x + iy))\<C/\y\ forx + />Gβ ε ,

and we easily compute 3Γ/3Z(JC + iy) = l/2iyy"(x). Thus by (3),

Note that if instead it is -ιγ'(0) which points into Z>, everything said
so far holds verbatim with -Qε in place of Qε.
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Now suppose γ l9 γ2 satisfy (1), and that (2) holds for yλ and
/ G H°°(D). We assume that both /γί(0) and ιγ^(0) point transversally
into D, the argument for the other cases being exactly the same. Associate
Tj to jj on Qε, 7 = 1,2, as described above. Since d(f°Tj)/dz (Ξ Cι Γ\
L°°(Qε), we can define

as in Lemma 2.1. We then have / <> I\ — ψ7 e H°°(Q€). By the continuity
of ψx on C,

By Theorem B this implies

which gives

lim foTAiy) = L.

But the curves y -» Γy(/y) approach ξ0 nontangentially as y -> 0+. From
Cirka's Lindelhόf theorem ([11], p. 168), we conclude

lim /°

The above argument in reverse can now be applied to / ° Γ2 — ψ2 to
obtain

REMARK. With some extra work, one can push the proof of Theorem 1
through to the case where γ is C1 and γ' e Lipα for some a > 1/2, but
it seems substantially more difficult to treat the case where γ is merely C1.

2.3. Weakly admissible limits. The notion of a weakly admissible limit
was introduced in [3]; see also [9]. This coincides with the definition of
hypoadmissible limit given in [2] and [5] and with the definition of
restricted K-limit in [11]. Cirka's Lindelόf theorem ([3], and [11], p. 171),
which we needed in the proof of Theorem 1, asserts that if / e H°°(D)
and / has a limit L along a nontangential curve in D terminating at
£0 G 3Z>, then / has a weakly admissible limit L at ξ0.
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THEOREM 2. If fe H°°(D), and dD is C3, then the following state-
ments are equivalent:

(i) limΛ _ 0̂+ h~ιf£ /*(γ(x)) dx = Lfor one curve γ satisfying (1).
(ii) fhas a weakly admissible limit Lat ζ0.

(iii) limΛ_>0+ h~ιf£ /*(γ(*)) d* = Z//0Γ ez ery cw/w γ satisfying (1).

Proof. Examining the proof of Theorem 1, we see that if γ satisfies
(1), and Γ is associated with γ as before, then

(4) ]im±ff*(y(x))dx = L iff lim+/(Γ(/») = L.

(More precisely, (4) is true if /γ'(0) points transversally into D from £0;
we assume without loss of generality that this is true of every γ under
consideration here.) As noted earlier, the curve y -> T(iy) tends to ξ0

nontangentially as y -> 0+. The implication (i) => (ii) thus follows from
Cirka's Lindelόf theorem.

If (ii) holds, then

for every γ as above, since a weakly admissible limit implies a nontangen-
tial limit. Thus (ii) => (iϋ) by (4).

Since dD is C3, there exist C3-curves γ in 3D satisfying (1), so that
(iii) trivially implies (i).

2.4. Other averaging properties. Let Bn denote the open unit ball in
Cπ, and let σn denote the usual rotation invariant Lebesgue measure on
dBn. If μ is a complex Borel measure on dBn, we denote by Dμ(ξ0) and
Q}μ{ζ0) the symmetric derivatives of μ at ξ0 e 3 ^ defined in [10].

Specializing to the case D = Bn, we obtain

THEOREM 3. Let f e H°°(Bn), and put dμ=f* dσn. Then each of the
statements Dμ(ξ0) = L, @μ(ζ0) = L is equivalent to each statement of
Theorem 2.

Proof. As shown in [10], the statements Dμ(ξ0) = L and @μ(ξ0) = L
are each equivalent to the assertion

lim/(rf0) = L,

which is equivalent to (ii) of Theorem 2 for the case D = Bn by Cirka's
Lindelof theorem.
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III. Examples.

3.1. Theorems 1 and 2 can fail in a variety of ways if the directional
condition in (1) is violated. In the first place, the boundary values
/*(γ(x)) may not even exist. Suppose for example that dD is C 2 and
strictly pseudoconvex, and that y'(x) ^ T£D(y(x)) for every χ e ( - l , l ) .
Then as is well known, γ([ —1/2,1/2]) is a peak set for A(D), the algebra
of functions continuous on D and holomorphic in D (see, e.g., [11] p.
216). If g e A(D) peaks on γ([-1/2,1/2]), then / = exp[ι log(l - g)] e
#°°(Z)), and /*(γ(jc)) fails to exist for every x e [-1/2,1/2]. (Any
logarithms, powers, or arguments appearing in this paper will always
denote the usual principal branches.)

But even if /*(γ(x)) exists for every x e (-1,1), Theorems 1 and 2
can fail rather badly if (1) is not satisfied. For convenience, we work in the
unit ball B in C 2, with ζ0 = eλ = (1,0). Suppose γ: (-1,1) -> dB is a
C2-curve such that

(5) γ(0) = e1 ? γ'(0) e T & ί e J , and γ'(0) Φ 0.

(Note that (5) can be true while at the same time there exists an ε > 0
such that f*(y(x)) exists a.e. in (-ε, ε) for every / e H°°(D). This will
happen if γ'(.x) £ ^ab(Y(*)) in a deleted neighborhood of 0, by Thm. A.)
From (5) it follows that y(x) = (1 4- ax2 + o(x2), bx + o(x)) as JC -* 0,
where a, b G C and Z> # 0. The fact that |γ(jc)| = 1 for every x e (-1,1)
implies Re α < 0. Define/(z,w) = w(l - z)~l/1. Since |w(l - z ) " 1 / 2 | 2 <
|w| 2 (l - |z |)- χ < 2 f o r ( z , w ) e £ , / G / / 0 0 ( J B ) G C ( 5 - {ex}). One easily
computes

1 / 2 )) = -b(-a)-ι/2.

Thus / * has a jump discontinuity along every curve satisfying (5); i.e.,
the corollary to Theorem 1 fails for all of these curves. Also note that this
jump discontinuity depends on a and b, i.e., the jump discontinuity varies
from curve to curve. Finally, observe that / has a weakly admissible limit
0 at ev

3.2. Here we give an example of an / e H°°(B) with weakly admissi-
ble limit at el9 but such that

lim j-f f*(y(x))dx

fails to exist for every γ satisfying (5).
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For z e t / , the open unit disc in C, define g(z) = exp[Πog(l - z)].
Clearly g e H°°{U) Π C(Ό- {1}). For (z,w) e B, define f{z,w) =
w2(\ - z)-xg{z). As in 3.1 one verifes / e H°°(B) Π C(5 - {ej), and
clearly / has a weakly admissible limit 0 at ev We claim that for every
γ as in (5),

(6) ]im+-rjhf*{y(x))dx fails to exist.

Writing out the components of γ as in 3.1, and noting

km (bx + o(x))2(-ax2 + oix2))'1 = b^-a)'1 Φ 0,
x->0

it is clear that to prove (6) we need only look at

h

Since g e HX(U), |g ' (z)P - \z\) is bounded in U, hence

Urn [g(l + ax2 + o(x2)) - g(l + ax2)] = 0.

(As x -» 0,1 + ax2 approaches 1 nontangentially since Reα < 0.) Thus it
is enough to consider

hJ0 Jo
2x2)

This latter integral equals

og(-ax*)dχ = r 1

 eilo

Jo

Since arg( — ah2x2) is constant, (7) is equal to

(8) e-aig(-a)ei\og\ah2\ f e

The integral in (8) is not zero since (7) clearly does not vanish for all h.
Thus (8) has no limit as h -> 0^, proving (6).

3.3. In the other direction, we give an example of an / e H^iB) and
a γ satisfying (5), such that / * is constant a.e. on γ(-l, 1), but such that
/*(^ x ) fails to exist. To do this we use the following theorem of Saerens
[13]: if K is a peak set for A(B), μ is a finite positive Borel measure on
K, and b e L°°(μ), then there exists g e i/°°(5) such that

\\g\\H«(B)<\\b\\L"(μ)

and g* = b μ-a.e. on K.
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If γ: (-1,1) -» 35 is any C^curve such that γ(0) = ex and 0 Φ y'(x)
e TξB(y(x)) for every x e (-1,1) (the curve y(x) = (cosx, sin x) will
do), then as was mentioned earlier, γ([-l/2,1/2]) is a peak set for A(B).
Define μ = s + δ, where s denotes arclength measure on γ([-l/2,1/2]),
and δ is the unit point mass at ev Set b(y(x)) = 0, x e [ — 1/2,1/2] —
{0}, and 6(βx) = 1. By Saerens's theorem, there exists a

such that g* = b μ-a.e. on γ([-l/2,1/2]). Thus g*(y(x)) = 0 for a.e.
x e [-1/2,1/2] and g*(ex) = 1. Setting / = exp[Πog(l - g)], we see
f*(y(x)) = 1 a.e. in [-1/2,1/2], while lim r_1-/(re1) does not exist.

IV. The pluriharmonic case.

4.1. Theorems 1 and 2 fail for bounded pluriharmonic functions, and
for a simple reason: Theorem B is false for bounded harmonic functions.
(Example: u(z) = argz). There is, however, a substitute for Theorem B
(Theorem C below), involving symmetric averages, which will enable us to
prove the following theorem.

THEOREM 4. If u is bounded and pluriharmonic in D, and dD is C6,
then the following statements are equivalent:

(i) limΛ_>0+ (l/2h)f\ u*(y(x)) dx = Lfor one C6-curve y satisfying

(ii) l i m ^ 0 + u(ξ0 - yv(ξ0)) = L.
(iii) lim^0+(l/2/*)/_\i/*(y(.x)) dx = L for every C6-curve y satisfy-

ing (1).

REMARKS. 1. The existence of the boundary values w*(γ(x)) for a.e. x
in a small enough interval about 0 follows easily from Theorem A. Fix a
curve γ satisfying (1) and assume without loss of generality that u is real.
Since there exists a neighborhood Fof ξ0 (open in C") such that V Π D is
simply connected, there exists a pluriharmonic v in V Π D such that
u + iv is holomorphic in V Π D. The function / = eu+iv then belongs to
H°°(V Π Z>), which implies /*(γ(x)) exists a.e. in [-ε, ε] for some ε > 0
as in 1.2. Clearly w*(γ(;c)) exists wherever/*(γ(x)) exists.

2. In proving Theorem 4 we will need to deal with the operator
Δ = d2/dx2 + d2/dy2 rather than 3/3z. Thus twice as many derivatives
will be involved here, accounting for the assumption γ G C 6 rather than
γ e C3.
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4.2. Theorem C and Lemma 4.2 below will play the same roles in
proving Theorem 4, respectively, as Theorem B and Lemma 2.1 did in
proving Theorems 1 and 2.

THEOREM C. If u is bounded and harmonic in Qε, then the following
statements are equivalent:

(i)]imh_0+(l/2h)f_h

hu*(x)dx = L

Theorem C for the upper half plane is due to Loomis [6]; again, a
conformal map transfers this to Qε. (For generalizations of Theorem C to
the upper half space of RΛ, see [12]. Versions of Theorem C for the unit
ball in Cn were obtained in [10]. All of these results hold under the weaker
hypothesis that u is positive.)

LEMMA 4.2. Suppose φ e C2 Π JL°°(βε). For z e C, define

Then \p e C2(Qε)9 Δψ = φ in Qε, and ψ is continuous on all of C.

Proof. The first two assertions are well known; see [5], pp. 29-30.
That ψ is continuous on all of C follows as in Lemma 2.1: ψ is the
convolution of φ e L°°(Qε) with log|£| e Lι

loc(C).

4.3. It will be convenient in the rest of the paper to suppose f0 = 0
and v(ζ0) = (-/,0,...,0); recall that v(ζQ) is the outward unit normal to
dD at f0. We let Cn

+ denote the half space {z = (zl9...,zn) e Cn:
Im zλ > 0}. Note that with these conventions, C^ can be thought of as the
set of vectors pointing into D transversally from £0 = 0.

Define Y = {(/>, z')\ y > 0, z' e C""1}. In Lemma 4.3, which is an
analogue of Cirka's Lindelόf theorem, we consider Cx-curves η such that

(9) η : [ 0 , l ] - > 5 , η(0) = 0, i,'(0) e Y.

LEMMA 4.3. Ifu is bounded andpluriharmonic in D, and if

\imu(η(y)) = L

for one curve η satisfying (9), then

lim u(η(y)) = L

for every curve η satisfying (9).
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Proof. The proof is very much like the proof of Cirka's Lindelδf
theorem, and rests on two well known properties of Vw. First, the
boundedness of u implies the boundedness of |Vw(z)|d(z, dD) for z e D.
Second, there is a better estimate on the derivatives of u in certain
directions: if Vτu denotes the gradient of u with respect to the variables
JC2, yl9.--9xn9 yn (i e., the gradient of u in the complex tangential
directions), then \vτu(z)\d(z,dD) -> 0 as z -» 0 in D nontangentially.
(See, e.g., inequality (20) of [9].)

From the first property it follows that

u(η(y)) = L

if and only if

limu(yη'(0)) = L,

for any curve η as in (9). Thus we need only consider limits along rays
contained in Y.

Suppose vv v2 e 7, and that hmy_>0+ uiyv^ = L; we wish to show
lim>;_^0+ u(yv2) = L. The definition of Y shows there exist y0 > 0 and
z0 e {0} X Cn~ι such that v2 = yovι 4- z0, and we have the standard
estimate

(10) \u(yΌ2)-u(yy(pι)\£ sup

For small y > 0, the points j^o^! + z satisfying \z\ < y\zo\ lie within a
nontangential approach region, and d{yyovx + z, 3Z>) is on the order of y.
Thus the right hand side of (10) -> 0 as y -» 0+ by the second property
mentioned above, so that lim>;_>0+ w(^ 2) = ^ as desired.

4.4. Proo/ o/ Theorem 4. If γ is any C6-curve satisfying (1), we may
assume that /γr(0) points transversally into D from 0, since the symmetric
averages in (i) and (in) are unaffected if y(x) is replaced by y(-x). For
any such γ, define

T(x + iy) = y(χ) + iyy'(χ) -{y2/2)y"(x) (x + iy e (-1,1) X R).

Then for some ε > 0, Γ has the same properties on Qε as did the earlier Γ
in the proof of Theorem 1, except this time 3Γ/3z(x 4- iy) =

If u is bounded and pluriharmonic in D, we claim

(li) Δ ( W o Γ ) G C 2 n i ° ° ( ρ ε ) .
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To calculate Δ ( M ° Γ ) it is best to write Δ = 492/9z9z, and use the 9/9z
version of the chain rule. This slightly tedious computation was carried
out in the proof of Theorem 1 in [9], and we spare the reader the details
here. Once Δ(w°Γ) has been computed, (11) follows from Cauchy-type
estimates on the derivatives of «, the vanishing of d2u/dzidzJ for all / and
j , and the second order vanishing of 9Γ/9z on (-ε, ε). (Note that second
order derivatives of Γ appear in the expression for Δ(w°Γ). Since the
definition of Γ already involves two derivatives of γ, we see that to assert
Δ(w o Γ) e C2(Qε) requires that γ be C6.)

Suppose now that (i) holds for u and γ. With Γ defined as above, we
see by (11) that ψ can be defined as in Lemma 4.2, taking φ = Δ(w ° Γ).
The function u ° Γ — ψ is then bounded and harmonic in Qe, and by
Theorem C we conclude, since ψ is continuous in C, that

(12) limw(Γ(/>)) = L iff lim+ - j /* u*(γ(x))dx = L.

Setting η(y) = Γ(/», it is easily verified that η satisfies (9). Since the
curve y -> ξ0 - yv(ξ0) = (/>, 0,..., 0) obviously satisfies (9), Lemma 4.3
shows that (ii) must hold.

A similar argument based on (12) and Lemma 4.3 shows that (ii) =>
(iii), and the implication (iii) => (i) is obvious since 9D is C6.

4.5. Specializing to the ball, we have the following analogue of
Theorem 3.

THEOREM 5. Suppose u is bounded and pluriharmonic in Bn, and put
dμ — u*dσn. Then each of the statements Dμ(ζ0) — L, 2μ(ζ0) = L is
equivalent to each statement of Theorem 4.

Proof. Again, each of the statements Dμ(ξ0) = L, @μ(ξ0) = L is
shown in [10] to be equivalent to the statement limr_^1-w(rf0) = L.

4.6. Differentiability along γ and weakly admissible limits. Unlike the
case for an //^-function, the equivalent statements of Theorem 4 do not
imply a weakly admissible limit for a bounded pluriharmonic function.
The simple example u(zvz2) = arg(l - zτ) in B2 (take ξ0 = eλ) shows
this. What is needed is a stronger differentiability assumption on u* along

γ
First we give some definitions. If γ is a curve satisfying (1), if ε is

chosen as in 1.2, and if u is bounded and pluriharmonic in D, define

Uγ(t) = f u*(y(x))dx (/e(-ε,β)).
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For z = (zv..., zn) G C+, define a(z) = argzx; clearly 0 < a(z) < π for
all z e C£.

THEOREM 6. // w is bounded and pluriharmonic in D, and 3D is C 6,

then the following statements are equivalent:

(i) there exists a C6-curve γ satisfying (1) si/c/i /A<z/ t/γ'(0) = L.

(ii) ίAere ejcwί υl9 v2 e C+, w//λ tf(tΊ) =£ a(v2), such that

l im r ^ 0 + wiri;^ = L = l im r ^ 0 + u(rυ2).

(iii) w Λα5 α weakly admissible limit L at 0.

(iv) t/γ'(0) = L/or ^ery C6-curve γ satisfying (1).

As was the case earlier, the proof of Theorem 6 strongly depends on a
one variable result:

THEOREM D. Ifu is bounded and harmonic in Qv put

t / ( 0 = Γ «*(*)<** ( ί e ( - ε , ε ) ) .

ΓΛeπ the following statements are equivalent.

(i) ί/'(0) = L.
(ii) ΓΛ^r^ exwί θv θ2, 0 < θλ < Θ2< π, such that l i m r _ 0 + u{reιθj) =

L9j = 1,2.
(iii) u has a nontangential limit L at 0.

Theorem D, proved for the upper half plane, is due to Loomis [6]. See
also Gehring [4].

Proof of Theorem 6. As usual, we assume without loss of generality
that if γ satisfies (1), then /γ'(0) points transversally into D from 0. Since
the reader by now is familiar with our strategy of proof, we will be brief
about certain details.

Suppose (i) holds for u and γ. Associating Γ with γ as in the proof of
Theorem 4, and using our usual argument together with Theorem D, we
see that u ° Γ has a nontangential limit L at 0. So certainly there exist θl9

02, 0 < θλ < θ2 < 77, such that

]im+u(T(reiθή) = L, j = 1,2.

The fact that 3Γ/3z(O) = 0 implies the curves r -> T(reιθj) arc tangent to
the rays re'^γ'(O), j = 1,2, respectively. Thus

lim κ(re'V(0)) = L, j= 1,2.
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Since

we see that (ϋ) holds.
In proving (ii) => (iii) we need some preliminaries. For 0 < θ < π, set

γθ = {(rei\ zγ r > 0, z G C""1}. (The Y defined in §4.3 is Yw/2 in the
new notation.). If ηι and τj2 are C^-curves satisfying 7 :̂ [0,1] -> Z>,
τ?,(0) = 0, î .(0) e y,, then

lim w(τh(f)) = L if and only if lim u(η2(r)) = L.

The proof of this is exactly the same as the proof of Lemma 4.3.
Now suppose (ϋ) holds, and put θj = α(ι>y), j = 1,2. Let N be the

complex line {(λ,0,...,0): λ e C}, and set DN = D D N. The vectors
(e'*1,0), ^ are both in Yθi, and similarly (eiθ\ 0), y2 e Y^. We conclude

lim ι ι ( r^ ,0) = L, 7 = 1,2.

Since Z>̂  can be thought of as a domain in C1, and since Theorem D is
true for any domain with smooth boundary, we conclude that u has a
nontangential limit within DN at 0. Estimates on vτu like the one
mentioned in proving Lemma 4.3 now show that u has a weakly admissi-
ble limit L at 0. (We omit the proof of this last statement; the argument is
essentially the same as in the proof of Lemma 4.3. Again, see [3] or [9] for
the definition of a weakly admissible limit.)

If (iii) holds, let γ be a C6-curve satisfying (1), and associate Γ with γ
as before. If AT is a nontangential approach region in Qε of small enough
height, T(K) will be contained in a nontangential approach region in D
with vertex 0. Since a weakly admissible limit implies a nontangential
limit, (iii) implies u ° Γ has a nontangential limit L at 0 within Qε. Our
usual argument, together with Theorem D, then gives (iv).

Finally, since 3D is C6, (iv) implies (i).
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