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ON THE KATO-ROSENBLUM THEOREM

JAMES S. HOWLAND

The Kato-Rosenblum Theorem has no straightforward generaliza-
tion to operators with non-absolutely continuous spectra. For example, if
A is a bounded selfadjoint operator such that the singular continuous
parts of H and H + A are unitarily equivalent for every selfadjoint
operator H, then A = 0.

1. Introduction. The classical theorem of Kato and Rosenblum (1957)

asserts the invariance of absolutely continuous parts under tracse class

perturbations. [5, p. 540; 6, p. 26]

THEOREM (Kato-Rosenblum). If H and A are selfadjoint, and A is trace

class, then the absolutely continuous parts of H and H + A are unitarily

equivalent.

It is notable that the theorem gives a unitarily invariant condition on

the perturbation A alone, and that Lebesgue measure plays a dis-

tinguished role.

That the trace condition cannot be radically improved, follows from

the Weyl-von Neumann theorem [5, p. 523], which states that given any

selfadjoint operator H, there is a selfadjoint perturbation A of arbitrarily

small Hilbert-Schmidt norm, such that H + A has pure point spectrum—a

phenomenon often termed curdling. Moreover, according to Kuroda, the

Hilbert-Schmidt norm may be replaced by any cross-norm except the

trace norm. [5, p. 525]

For singular measures, there are a few, largely negative, results.

Donoghue [2], following earlier work of Aronszajn, gave examples in

which a purely singular continuous spectrum is curdled by a perturbation

of rank one. He also obtained the following result, which we shall use [2,

p. 565; 4, Cor. 1].

THEOREM. (Donoghue). Let H be selfadjoint and A = c( - 9φ)φ where

φ if cyclic for H and c is real and non-zero. Then the singular parts of H and

H -h A are supported on disjoint sets (i.e. are mutually singular).

A generalization was proved in [4].
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Following Donoghue's approach, Carey and Pincus [1] proved that
the spectrum of any operator with purely singular spectrum can be
curdled by a perturbation of arbitrarily small trace norm. A proof of this
fact following the Weyl-von Neumann construction has recently been
given by Eugene Wayne [6].

These results leave it difficult to imagine a unitarily invariant condi-
tion on A alone which might guarantee that A preserves singular continu-
ous parts. Indeed, as we shall prove, there is no such condition: if H and
H + A have unitarily equivalent singular parts for every H, then A = 0.

We shall, in fact, prove that it is impossible to generalize the Kato-
Rosenblum theorem to other measures in the following sense. Let μ be a
non-zero Borel measure, and A Φ 0 a bounded operator. If the parts of H
and H + A which are absolutely continuous with respect to μ are unitarily
equivalent for all selfadjoint H, then μ is absolutely continuous with
respect to Lebesgue measure, and, moreover, the entire absolutely con-
tinuous parts of Hand H + A are unitarily equivalent.

We shall also prove that A is necessarily compact. The Weyl-von
Neumann-Kuroda result strongly suggests that A is trace class, but we
know of no proof.

The author wishes to thank Ira Herbst and Eugene Wayne for
valuable conversations. He has, however, resisted Professor Herbst's rather
gratuitous suggestion that this paper be entitled "A New Characterization
of Lebesgue Measure."

2. Preservation of measures. Let Jf be a separable Hubert space,
and H = / λE(dλ) a selfadjoint operator on Jίf. We shall assume
throughout that all operators are bounded. For Borel measures m and μ on
R, write u <^ μ if m is absolutely continuous with respect to μ. For
x e jff*, let mx be the Borel measure

mx(dλ)=(E(dλ)x,x).

The set

Jίfμ(H) = {x tΞJίf: mx<^ μ)

is a closed reducing subspace of H9 called the absolutely continuous
subspace of H with respect to μ. Its orthogonal complement is

Jίfμ

s(H) = {xGJf : m I and μ are mutually singular}.

(See [5, p. 516.] The proof is given for Lebesgue measure, but holds in
general without change.)
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For any Borel measure μ, define H to be the restriction of H to

jeμ(H).U v <§; μ, then

(2-1) (Hμ)v = Hp.

For real t, define the translated measure

(2.2) μ,{S) = μ(S-t).

Then

(H+t)μ, = Hμ + t.

Write A = B to mean that A and B are unitarily equivalent.

2.1 DEFINITION. Let μ be a Bore! measure on R. A self adjoint operator

A preserves μ iff

(H + A)μ^Hμ

for every self adjoint operator H.

The trivial zero measure is preserved by every A, because the space Jίfμ

is then always zero-dimensional. The Kato-Rosenblum theorem says that

trace class operators preserve Lebesgue measure.

2.2 PROPOSITION. Let A and Bpreserve μ. Then:

(a) A 4- B and cA also preserves μ, if c is real:

(b) if v <£: μ, then A preserves v\

(c) A preserves μt for all t;

(d) ifW = A9 then Wpreserves μ; and

(e) If P is an orthogonal reducing projection for A, then AP preserves μ

Proof.

(a) We have

and similarly

(H + cA)μ = c(c-χH + A)μ = c{c'ιH)μ = Hμ.

(b) By (2.1),

(H + A ) V = [ ( H + A ) μ ] v = {Hμ)v = Hv.

(c) By (2.2),

( H + A ) μ ι = ( H + t + A ) μ - t = ( H + t ) μ - t = H μ
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(d) If W = UA U*, with U unitary, then

(H + W)μ = (H + UAU*)μ = [U(U*HU + A)U*]μ

s (U*HAU + A)μ & (U*HU)μ = Hμ

(e) Let A be the restriction of A of PJf. Writing operator matices for
the decomposition Jίf= PJίTΦ (I - P)Jίf gives

Λ-<A> °

If H is defined on Jf by

0 A2

h 0"
) 0,

then (H + A)μ = Hμ says that

UHι + Aι)μ 0 \ = ((Hι)μ 0

\ 0 (A2)μf-\ 0 0μ

which gives (Hι 4- >4X) = (Hλ) 9 by equating the first components.

THEOREM 1. J/^ί preserves a non-zero measure μ, ί/ze« ̂ 4 ώ compact.

Proof. If yl is not compact, then, possibly replacing A by -A, there is
an infinite dimensional reducing projection P of A such that Ax = AP >
δP for some δ > 0. By restriction and translation (2.2(b) and (c)), we can
assume that [0,1] supports μ, and that μ[0, ε] > 0 for every ε > 0.
Choosing Hτ to be an operator on PJί? unitarily equivalent to multiplica-
tion by λ on oS?2([0,1], dμ(λ)), we see that H1 > 0 and that the spectrum
of Hγ = (Hι)μ contains 0. By (e),

(Hι+Aι)μ=(Hι)μ.

But Hx + Ax > δP > 0, so 0 is not in the spectrum of Hι + Av a
contradiction. Hence, A is compact.

THEOREM 2. If A preserves μ and A Φ 0, then μ is absolutely continu-
ous with respect to Lebesgue measure.

Proof. Choose a vector φ of norm one, which is not an eigenvector of
A, but for which Aφ Φ 0. The operator

U=l-2-( ,φ)φ

is unitary, and we compute that

,Aφ)φ + 2( ,φ)A - 4(Aφ,φ)( • ,Φ)Φ
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Since φ and Aφ are independent, B has rank exactly two. By 2.2(a) and

(d), B also preserves μ.

Let φλ and φ2 be the two eigenvectors of B with non-zero eigenval-

ues. Let Jί^ be the orthogonal complement of φ 1 ? which reduces 2?. By

2.1(e), the restriction 2^ of B to ^ must preserve μ on ^ . But

i?x = c( , φ 2 ) Φ 2 has rank one. Since Hμ depends only on a class of

mutually absolutely continuous measures, we can assume that μ is finite,

with total mass one. Identify J^τ with L2(μ) and φ 2 with the constant

function 1, and let Hx be multiplication by λ. Since φ 2 is cyclic for Hl9

Donoghue's theorem says that the singular parts of Hλ and Hλ + Bλ = Hλ

+ c( ' 5 ^2)^2 a r e disjointly supported. Thus, if μ had a singular part, JBX

could not preserve μ, so μ must be absolutely continuous.

THEOREM 3. If A preserves a non-zero absolutely continuous measure,

then A preserves Lebesgue measure.

Denote by χs(λ) the characteristic function of the Borel set S, by \S\

its Lebesgue measure, and by μs> the measure

Write Hs for Hμs. Let

36 = {S: A preserves μs, S Borel}.

2.3 LEMMA, (i) 3& contains every set of measure zero.

(ii) £# contains a set of positive measure.

(iii) IfS&gg, then S + / e 9i for every t

(iv) If S <Ξ gg and F c S, then F ε ί . ίfe/ice, Λ w cteeJ
wwJβr intersection and difference.

(v) ^ is closed under countable unions.

Proof, (i) If | S | = 0, μs is the zero measure, which is always preserved,

(ii) If A preserves the measure f(λ)dλ, with density / (λ) , then

S = {λ: / (λ) > 0} is in ^ and has positive measure,

(iii) follows from 2.2(c), and (iv) from 2.2(b).

(v) Let S = Sλ U Sλ U , with Sj G # .

Writing

S = 5 Ί U ( 5 2 U 5 J ϋ ( S 2 - [ S Ί U S 2 ] ) U •••
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and noting (iv) permits us to assume that Sl9 S2... are disjoint. In that

case

so that S ^ 3S.

Proof of Theorem 3. We wish to show that (% contains the whole line

R. By (iii) and (v), it suffices that 3S contain [0,1]. Let

« 0 = { S G I : K [0,1]}.

If we can prove that

(2.3) sup{ |S | : S^3SQ} = 1

then (cf. [3, p. 75]) the union F of a sequence of sets Fn e 38 Q with

\F\ —> 1, is in 38 Q and has measure 1. Hence [0,1], which is the union of F

with a null set, is also in 38 Q.

It remains to prove (2.3). Let ε > 0 and 0 < a < 1 be arbitrary. Use

(i), (ii) and (iii) to find an S G J o with 0 < |SΊ < ε, and then an interval

/ with

\ I Π S \ > a\I\

[3, p. 68]. Note that |/ | < ε/α.

Lay off on [0,1] consecutive intervals Il9 I29... of the same length as

/, starting at 0 and continuing until Il9...9In+ι just cover [0,1]. Each /.

is a translate I} = I + t} of /. If F} = (/ Π S) + tj9 and F = Fλ

U \JFn9 then F,FJ<Ξ $#0 and

\F\ = \FιU - ΌFn\ = N\I Π S\> Na\I\

= a\Iλ U U/n I > (l - |/π + 11) > α(l - ε/α).

The right side can be made arbitrarily close to 1 by choosing ε small and

a close to 1.
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