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POWER CANCELLATION OF MODULES

ROBERT M. GURALNICK

It is shown that for R an integrally closed domain then M θ X = N
θ X implies M{t) = N(t) for some positive integer / for all finitely
generated S-modules M, N, X whenever S is a module finite algebra if
and only if one is in the stable range of the integral closure of R in the
algebraic closure of its quotient field. In particular, this holds whenever
R is a Dedekind domain with all residue fields torsion. This extends
work of Goodearl, who showed this holds for module finite (and more
generally, finite rank) algebras over the integers.

0. Introduction. If R is a ring, let Modi? (Modfi?) denote the
category of unital right (finitely generated) R-modules. Let us say X e
Mod f R satisfies power cancellation if for all M9 N e Modf i?, M Θ X =
N θ X implies M(t) s N{t) for some positive integer /. (Here M{ί) de-
notes the direct sum of t copies of M.) Power cancellation can hold for
various reasons. For example, if D is a Dedekind domain, any finitely
generated module satisfies cancellation (that is, t = 1). If R is a Z-order
in a separable Q-algebra, it follows from [12] that power cancellation
holds for i?-lattices. The author [10, 11] extended this to module finite
algebras over Dedekind domains satisfying the Jordan-Zassenhaus Theo-
rem (without the lattice assumption). See also [14, 15, 16, 21] for relevant
examples as to when power cancellation does and does not hold.

The goal of this article to find necessary and sufficient conditions on
an integrally closed commutative integral domain D such that for any X
in Mod f S with S a module finite D-algebra, X satisfies power cancella-
tion. It turns out that the relevant property to study is power substitution:
X e Mod R satisfiesl power substitution if whenever M e Mod R (not
necessarily finitely generated) has a decomposition M = A(BX1 = B(b
X2 with Xγ = X, then there exists a positive integer / such that A{t) and
B(t) have a common complement in M ( r ). Goodearl [8] showed that this
stronger property depends only on E = EndΛ X and is equivalent to a
stable range condition on E. He used this idea to extend [12] and prove
that any X e Mod f S satisfies power substitution for S a finite rank
Z-algebra (see §4).

Recall that one is in the stable range of a ring R if whenever
ax + b = 1 in i?, there exists y e R such that a + by is a unit in R.
(This definition is left-right symmetric).
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132 ROBERT M. GURALNICK

If D is an integral domain, let D denote the integral closure of D in
the algebraic closure of its quotient field. The main result is:

THEOREM A (Power Cancellation). Let D be an integrally closed

domain. The following are equivalent:

(1) One is in the stable range of D.

(2) // S is a module finite D-algebra, then every X e Mod f S satisfies

power cancellation.

(3) If S is a module finite D-algebra, then every X e Mod f S satisfies

power substitution.

It is worth noting that (2) need only be checked for S SL commutative
order in a semisimple algebra and for X an ideal of S.

Following Goodearl [8], we say a D-module M has finite rank if there
is a bound on the number of generators required for all finitely generated
submodules. Note this is equivalent to the usual definition for torsionfree
modules (where rank n means K ®D M is ^-dimensional over the quotient
field K of D).

If D is a Dedekind domain such that the unit group of D/bD is
torsion for all b Φ 0, then it follows (see Theorem 3.5) that D satisfies
Theorem A(l). This allows us to extend [8, Theorem 4.12] and answer [8,
question 6E] in the affirmative.

THEOREM B. Let D be a Dedekind domain such that one is in the stable

range of D. If S is a finite rank D-algebra and X e Mod f S, then X

satisfies power substitution.

Let D be a commutative ring and S & module finite D-algebra. If
M,N G ModfS, we say M and N are in the same genus (and write
M V N) if MP = M ®DDP = NP for all maximal ideals P of R as
S>modules. Note that by local cancellation ([3] or [9]), if M ® X = N Θ X
for some X e Mod f S, then M V N. We can ask when M V N implies
M ( / ) s N(t) for some t > 0. The answer is similar to that in Theorem A
except the stable range condition must be strengthened. A commutative
ring D satisfies the primitive criterion if every primitive polynomial
/( JC) e D[x] represents a unit in D (/ = Σ ^ JC' is primitive if D = Σa^).
See [4, 17, 20]. Let PicZ) denote the group of projective rank one modules
(under tensor product).

THEOREM C (Torsion Genus). Let D be an integrally closed domain.

The following are equivalent:
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(1) D satisfies the primitive criterion.

(2) One is in the stable range of D and PicZ) = {D}.

(3) If S is a module finite D-algebra and M, N are finitely presented

S-modules, then M V N implies M{t) = N(t) for some t > 0.

In fact, it suffices to check condition (3) for S a commutative order in
a semisimple algebra and M V S. Note that any Dedekind domain
satisfying the Jordan-Zassenhaus Theorem also satisfies condition (1) [11,
Theorem 2.4]. Also one can replace the isomorphism condition in (3) by
M is locally isomorphic to a summand of N. The conclusion would then
be that M(t)\N(ί) for some t.

The article is organized as follows. In §2, we give an example to show
power cancellation implies a stable range condition. The proofs of the
main theorems and some consequences are given. Finally we consider
when cancellation holds and some connections with the Jordan-Zas-
senhaus Theorem.

All rings have 1 and, unless stated otherwise, all modules are unital
right modules.

I would like to thank D. Estes and L. Levy for several helpful
discussions and the referee for his careful detailed comments.

2. An example. Let S[x] denote the ring of polynomials over S,
where x commutes with S. Any square matrix A over S defines an
5[x]-module M(A) by taking M(A) to be the set of column vectors over
S and defining υx = Av for any υ e M(A). Moreover, M{A) = M(B) if
and only if A and B are similar. Now fix α e S , and set

A - ( l - 1 ) and B - l ° ~β

for some β e S. Denote M(B) = M{β). For the rest of this section, we
will assume that ab = 1 in S implies ba = 1 (in particular, this holds if S
is a module finite algebra over a commutative ring). A straightforward
computation now yields:

LEMMA 2.1. (a) M(β) = M{\) «=> β + xa is a unit for some x in S.

(b) Ifyβ + a = 1, then (£ g) and (ξ g) are similar.

The desired similarity in
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Note

' -y 1 1 )
0 - 1 0 .

[l-βy β βj

If 5 is a module finite i?-algebra, then a satisfies some monic
polynomial f(x) e R[x]. Thus M(β) is in fact a T = S[x](xf(x))-
module, and T is a module finite i?-algebra. In particular, if R = S, then
M(β) is an R[x]/(x2 - αjc)-module.

LEMMA 2.2. Suppose β, y e S and zy + a = yβ + a = I in S.
(a) M(β) Θ S = M(l) Θ S as S[x]-modules (here we identify S with

S[x]/(x)).
(b) // S is commutative, and T = S[x]/(x2 - ax), then M(β) is a

projective rank one T-module and M(β) <8>τM(y) = M(βy).

Proof, (a) is just a restatement of Lemma 2.1(b). The first statement
of (b) is determined locally in which case it follows from Lemma 2.1(a)
and the observation that M(\) = T.

Now let eγ,e2 and fvf2 denote the standard bases for M(β) and
M(γ), respectively. Set gλ = (eλ + ye2) ®/x and g2 = e2 <S> f2. Then it
can be verified locally that gx, g2 is an i?-basis for M(β) ®τM(y) and
with respect to this basis x acts via the matrix ({J ~^γ). Thus (b) holds.

PROPOSITION 2.3. Assume S is a module finite extension of a commuta-
tive ring R and yβ + a = 1 in S. Let f(x) be a monic polynomial in R[x] of
minimal degree with f(a) = 0. Set T = S[x]/(xf(x)).

(a) If S (considered as a T-module) satisfies cancellation, then β + za
is a unit in S for some z in S.

Now assume R = S (andso f(x) = x — a).
(b) // R (considered a T-module) satisfies power cancellation, then

β* + za is a unit for some t > 0 and some z.
(c) IfM(β)(n = T(t), then βr -f za is a unit for some z.

Proof, (a) follows Lemmas 2.1(a) and 2.2(a). If S satisfies power
cancellation, then M(β){t) = T(t) for some / > 0. Now by taking exterior
powers, it follows that M(βι) = T = M(l). Hence by Lemma 2.1, βι + za
is a unit. Thus (b) and (c) hold.

3. Power substitution. We shall need the basic result about power
substitution.
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LEMMA 3.1. (Goodearl [8, Theorem 2.1].) Let X e Mod S. The follow-

ing are equivalent:

(1) X satisfies power substitution.

(2) // a, b e E = E n d s X with ax + b = 1, /Aeπ /Λere exists a positive

integer t and a matrix Q e Mt{E) such that al + 6<2 ^ α ww** *w Mt(E).

Van der Kallen [20] introduced a stronger version of the stable range

one condition. A commutative ring R is called [/-irreducible if the set of

polynomials in R[x] which represents units in R is closed under multipli-

cation.

PROPOSITION 3.2. Let S be a module finite R-algebra.

(1) If R is JJ-irreducible, then one is in the stable range of S.

(2) // R is an integrally closed domain and R is U-irreducible, then

every X G Mod f S satisfies power substitution.

Proof. (1) Since S is the homomorphic image of a module finite

Λ-subalgebra T of Mn(R) and the stable range condition is preserved by

homomorphic images, we can assume S = T. Let a,b,c e S with ac + b

= 1. Let f(x) = det(«c + ax(\ - c) + b) and g(x) = det(c + x(l - c))
e JR[x]. Since /(0) = 1 = g(l) and /? is [/-irreducible, there exists r G i?

with f(r)g(r) a unit. Hence J = c + r(l — c) is a unit in 7", and so

a + fed"1 is a unit in Γ (since d~ι is a polynomial in d). Thus (1) holds.

(2) Let E = End 5 X Then E is a homomorphic image of an i?-subal-

gebra T of Mn(R). Thus it suffices to show Lemma 3.1(2) holds for T.

The proof of (1) shows that if α, b e Γ with ac + b = 1, then there exists

0 e Λ and </ e T[θ] such that 0 4- bd is a unit in Γ[0]. However Γ[0]

embeds in Mt{T) where / is the degree of m(x), the minimal polynomial

of θ over R (since R is integrally closed, m(x) is monic) via the map φ

which sends α G Γ to α/ and θ to the companion matrix of m(x). Hence

al + bQ is a unit for β = φ( J ) e Afr(Γ), as desired.

We can now prove Theorem A which is included in:

THEOREM 3.3. Let D be an integrally closed domain. The following are

equivalent:

(1) One is the stable range of D.

(Γ) ~D is JJ-irreducible.

(2) // S is a module finite D-algebra, then every X e Mod f S satisfies

power cancellation.
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(2') If S is a commutative D-order in a semisimple algebra, then every
ideal ofS satisfies power cancellation.

(3) // S is a module finite D-algebra, then every X e Modf S satisfies
power substitution.

Proof. Clearly (3) => (2) => (2'). Now assume (2') and ax 4- b = 1
with α, b, and x in D. Set S = D[a, b, x]. It follows from Proposition 2.3
that a1 Ξ= u mod 65 for some positive integer t and some unit u in S.
Hence by [4, Theorem 3.2], a + by is a, unit for some j> in S = D. Thus
(1) holds. Now (1) -> (1') by [4, Theorem 4.4]. Finally, (1') => (3) by
Proposition 3.2.

It is perhaps worth noting that the proof of Proposition 3.2 actually
gives a bit more than Theorem A.

PROPOSITION 3.4. Let D be an integrally closed domain with one in the
stable range of D. If S is a module finite D-algebra and M, N e Mod S and
X G Modf S with M Θ X = N Θ X, there exists ί e ΰ such that M ΘD

D[θ] = N ®D D[θ] as S ®D D[θ] modules. Moreover, M(t) = N{t\ where
t is the degree of the minimal polynomial for θ over D.

Proof. The proof of Proposition 3.2 showed that if T is an D-subalge-
bra of Mn(D), then δε + β = 1 in T implies 8 + βλ is a unit in T[θ] for
some θ e T> and λ e T[θ]. Note T[θ] = T®D D[θ]. So this also holds
for any homomorphic image of T. In particular, we shall apply this to

Suppose σ = (" g) is an isomorphism from M Θ X to N Θ X. Then
δδ' + γβ' = 1 in E where σ"1 = ("' £'). By the preceding paragraph,
u = δ 4- γβ'λ is a unit in E[θ] = £ ®D D[θ]. Also since D is integrally
closed, D[θ] has 1,0,..., θ*~ι as a D-basis, where t is the degree of the
minimal polynomial of θ over D. It follows easily that E[θ] =
End^^A^tf]). Now consider σ = σ ® 1 as an isomorphism from M[0]
θ X[0] to N[θ] φ X[0]. Define y e Aut s [ f f ](M[ί] θ X[0]) by

Ί β'λ\(l 0 \/ 1 0̂

Then

0 1

is an isomorphism, and so α* is the desired isomorphism from M[θ] to
N[θ].

\0 1 )U
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Some examples of domains D satisfying Theorem A are given in [4,
Section 5]. For example, if the residue fields of a Dedekind domain D are
finite, D will satisfy Theorem A. This can be extended.

THEOREM 3.5. Let D be a Dedekind domain such that the group of units
in D/dD is torsion for all d Φ 0. Then one is in the stable range of D.

Proof. Let a,b e D with ax + b = 1. Let E be the integral closure
of D[a, x] in its quotient field. Then E is also a Dedekind domain [22,
Theorem 30]. Let (b) = Pf1 P/% where the P, are primes of E. Since
E/Pi is an algebraic extension of D/Pi Π D, by the hypothesis, E/P( is
an algebraic extension of a finite field. Thus there exists a positive integer
/ such that a1 = lmodP x Pr. Moreover, as E/Pt has nonzero char-
acteristic there exists a positive integer m e Pλ Pr. Then atnχe =
1 mod bE, where e > er By [4, Theorem 3.2] (applied to D = E), one is in
the stable range of D.

4. Finite rank algebras. In this section, we extend Theorem A for
D a Dedekind domain to finite rank D-algebras. A D-module M has
finite rank if there is a positive integer t such that every finitely generated
submodule can be generated by / elements. This extends [8, Theorem 4.12]
and answers [8, Question 6E] affirmatively. Our proof follows that in [8]
for D = Z except in the case of a prime torsionfree algebra; in this case,
even for Z, the proof given here is shorter. The main idea of the proof is
to reduce to the case of a module finite algebra over a larger Dedekind
domain. We need two preliminary results.

LEMMA 4.1. Let D be a Dedekind domain with quotient field K. If E is

a subring of K containing D, then E is also Dedekind. Moreover, if D is

TJ-irreducible, so is E.

Proof. The first assertion is well known. (It follows easily from [22,
Theorem 28]). Suppose ax + b = 1 for a, 0 Φ b e Έ. Let C be the
integral closure of D in K[a,x]. Then C is also a Dedekind domain.
Then C c V = C[a, x] c K[a, x]. We claim V = C + bV\ this can be
checked locally. So let P be a prime ideal of C. If Vp = CP, it is certainly
true. If VPΦ CP, then VP is a field and so VP = bVP. Hence a = c
mod bV and x = y mod bV for some c, y e C. Now cy + z = 1 for some
z ^ bV Π C. Since D = C is tZ-irreducible, c = u mod zC for some unit u
in C Thus a = c = u mod feE. Hence one is in the stable range of E, and
so E is [/-irreducible by [4, Theorem 4.4].
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LEMMA 4.2. Let D be a Dedekind domain with quotient field K. Suppose

S is a finitely generated prime D-subalgebra of a finite-dimensional K-alge-

bra A. Then

(1) Z = Z(S) is a finitely generated D-algebra.

(2) S is a module finite Z-algebra.

(3) There exists a finitely generated D-subalgebra C of Z such that Z is

module finite over C, and the quotient field L of C is a finite-dimensional

separable extension of K.

Proof. We can assume A = S ® D K. Since S is prime, A is simple.

Let Z ' be the integral closure of Z in its quotient field F = Z(A). Now

Z ' contains Df the integral closure of D in the finite-dimensional exten-

sion F of K. Hence Df and Z' are both Dedekind. By [6, Theorem 1],

SZf is a finitely generated Z'-module. Hence SZ' = Y,Zfai for some

av ... ,at ^ S. Now SZ" = ΣZ"at for Z " a finitely generated Z-subalge-

bra of Z " . Thus SZ" is a finitely generated Z "-module and hence is a

finitely generated Z-module. Since S is a finitely generated Z-subalgebra

of SZ", S is also a finitely generated Z-module (cf [4, Lemma 2.1]).

Now (1) follows by the Artin-Tate Lemma (cf. [11]). Let C = {x e Z\

z is separable over K}. Then Zq c C for some power q of the characteris-

tic K. Since Z is finitely generated over D, Z is module finite over C.

Moreover, C is a finitely generated D-algebra by another application of

the Artin-Tate Lemma.

We can prove Theorem B in the prime torsionfree case.

THEOREM 4.3. Let D be a Dedekind domain such that one is in the

stable range of D. If S is a prime torsionfree finite rank D-algebra, then S

(considered as an S-module) satisfies power substitution.

Proof. By the hypotheses, S embeds in A = S <2>D K, a finite-dimen-

sional simple AΓ-algebra (K is the quotient field of D). Let C be as in

Lemma 4.2. Let V = CE9 where E is the integral closure of D in L, the

quotient field of C. Since L is separable over K, V is a finitely generated

C-module. Moreover, as £ c F c L, F is a Dedekind domain and by

Lemma 4.1, V is i/-irreducible. Thus SV satisfies power substitution by

Theorem A. Since V is finitely generated as a C-module, t F c C for

some 0 Φ b <= C. Thus bSV c S c SV. Since SV/bSV is artinian, it now

follows by [8, Lemma 4.4] that S satisfies power substitution.

We can now prove Theorem B. Let notation be as in the theorem. Set

E = E n d s X. Since E is also a finite rank Z)-algebra (see the proof of [8,
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Lemma 5.2]), it suffices to take S = E = X. (Recall from 3.1 that power
substitution depends only on the endomorphism ring.) As in the proof of
[8, Theorem 4.12], one reduces to the semiprime torsionfree case. Then
S <8>D K = A is a semisimple /f-algebra. So A = ®Ae^ where the eι are
primitive central idempotents. Let T= ®Se, and / = Θ(S Π Aef).
Then Γ D S D / and T/J is artinian. Since each Sei is a prime torsionfree
finite rank D-algebra, T satisfies power substitution by the previous
result. Hence by [8, Lemma 4.4], S does also.

5. The genus. In order to prove Theorem C, we need to char-
acterize the primitive criterion (for D). If f(x) e D[x], define the content
of /, C(/), as the ideal generated by the coefficients of / (note this differs
from the usual definition when D is a UFD). Recall / is primitive in
D[x]iΐ C(f) = D.

LEMMA 5.1. Let D be an integrally closed integral domain. If f(x) e
D[x] is primitive, then there exists 0 Φ s e D such that sf= gλ gr,
where each gi e D[x] is irreducible over the quotient field and (s) =

' C(gr). In particular, C(g() is an invertible ideal of D.

Proof. Certainly there exists 0 Φ s in D with sf = gλ gr where
each gi G D[X] is irreducible over the quotient field. We need only prove
that (s) = C ( g l ) C(gr). Since C(/) = D, s ^ C ( g l ) - C(gr). Con-
versely, let J E C(gx) - C(gr). Since D is integrally closed, it is the
intersection of valuation rings Dv (cf. [22], vol. II, p. 15); thus it suffices to
show s\d in Dυ for each valuation v. This is obvious as now each C(gt) is
a principal ideal.

LEMMA 5.2. Let D be an integral domain. Then D satisfies the primitive
criterion if and only if one is in the stable range of D and PicD is trivial.

Proof. If D satisfies the primitive criterion, then clearly one is in the
stable range. Moreover, PicD is trivial by [4, 2.6 and 3.5].

Conversely, if PicD is trivial, then in the factorization of Lemma 5.1
each C{gι) is principal. Thus it follows that any primitive polynomial
f(x) is of the form TΓ^X - bf) where D = a{D + Z>7D. Since one is in the
stable range, D is {/-irreducible by [4, Theorem 4.4] and so / represents a
unit.

The next result shows that Pic D is trivial whenever it is torsion.
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PROPOSITION 5.3. Let D be an integrally closed integral domain with

quotient field K. Let G be the group of inυertible fractional ideals of D, and

let H be the subgroup of principal ideals.

(a) G is a torsionfree group.

(b) // K has no nontriυial separable algebraic extensions {e.g. if K is

algebraically closed), then H is divisible, and so G = H Θ Piciλ In

particular, Pic D is torsionfree.

Proof, (a) The identity of G is D. Suppose / e G and Γ = D. We

claim / = D. It suffices to prove this locally. If D is local, then I = aD

for some a e K and so a1 is a unit in D. Since D is integrally closed, it

follows that a is a unit in D as desired.

(b) Let / = aD be an element of H. Let /? be a prime. We need to

show I = Jp for some bD = J in //. If /? is different from the characteris-

tic of K, then AT contains Z> with bp = a. Now assume /? is the character-

istic of K. By multiplying a by an appropriate cp, we can assume a is in

Zλ Consider f(x) = xp — ax + linD[x]. Since / is separable, / has a

solution u in /). Moreover, since u(up~ι — a) = - 1 , w is a unit in D.

Thus a/) = auD = (M* + 1)2) = (u + 1)PD, as desired.

THEOREM 5.4. Le/ D be an integrally closed integral domain. The

following are equivalent:

(1) D satisfies the primitive criterion.

(2) One is in the stable range of D and Pic/) is trivial.

(3) // S is a module finite D-algebra and M and N are finitely presented

S-modules with M V N, then M(t) = N(t) for some t > 0.

(4) // S is a module finite D-algebra and M and N are finitely presented

S-modules with MVN, then M <S>D D[θ) = N ®D D[θ] as S ®D D[θ]-

modules for some θ e D.

Proof. (1) and (2) are equivalent by Lemma 5.2. Since D is integrally

closed, fleΰ implies D[θ] is a free rank / D-module, where t is the

degree of the minimal polynomial of θ over D. Hence (4) implies (3).

Note (3) implies one is in the stable range by Proposition 2.3 and [4,

Theorem 3.2]. Moreover, if / = ΣatD is an invertible ideal of D then

J = I Γ) E = Σa(E is &n invertible ideal of some module finite extension

E of D. Hence (3) implies / ( / ) = E(ΐ\ whence Jt is a principal ideal of E.

Hence V is principal in D. Since PicZ> is torsionfree by Proposition 5.3,

this implies / is principal. Thus (3) implies (2).

Finally, let us show (1) implies (4). So assume M and N are finitely

presented 5-modules with Λf V N. Let V be the localization of D[x] at
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the set of primitive polynomials. Then V satisfies the primitive criterion
[20]. Since M ®D V and N ®D V are in the same genus (as S ®D V-
modules where S ®D V is considered as a module finite V-algebra), it
follows by [4, 2.6 and 3.5] that they are in fact isomorphic. Set M[x] =
M <8>D D[x]. Since M and N are finitely presented S-modules, M[x] and
N[x] are finitely presented ^[xj-modules. Since V is a localization of
D[x], this implies there exists a e. HomD[x](M[x], N[x]) and ] 8 G
HomD[x](N[x], M[x]) such that aβ and βα are multiplication by a
primitive polynomial f(x). Choose flEΰ such that f(θ) is a unit. Then
M ®D Z>[0] = N ®D D[θ] as desired.

Examples of Z) satisfying Theorem C include D = Z, /:[x], /: an
algebraic extension of a finite field, or any Dedekind domain satisfying
the Jordan-Zassenhaus theorem (see [11]). Other examples include D local
and integrally closed or D = R[x] localized at the set of primitive
polynomials for R integrally closed. There are examples of Dedekind
domains which satisfy the conclusions of Theorems A and B but not those
of Theorem C (see [4]). In fact, such examples exist with all residue fields
finite (see [7]).

6. The Jordan-Zassenhaus theorem. Let D be a Dedekind domain
with quotient field K. One says D satisfies the Jordan-Zassenhaus theo-
rem if for every D-order S in a finite-dimensional semisimple AΓ-algebra,
there are only a finite number of isomorphism classes of S lattices of
bounded D-rank. The problem can be split into two parts:

(1) Determine when the number of distinct genera of S'-lattices of
bounded rank is finite.

(2) Determine when every genus is finite.

Problem (1) is quite easy to solve.

LEMMA 6.1. The number of genera of S-lattices of bounded rank is finite

for all orders S in a semisimple K-algebra A if and only if all residue fields of

D are finite and each S is contained in a maximal order.

Proof. If D/P is infinite, then consider S = D + M2(PD). Let M be
the natural module for M2(D). Then there are infinitely many S-sub-
lattices Λf with PM c i V c M , and no two are locally isomorphic.

If S is not contained in a maximal order, then there is an infinite
chain of orders S = So c S\ c S 2... in A. Clearly, St and Sj are not
locally isomorphic for / Φ j .
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For the converse, see the proofs of the Jordan-Zassenhaus theorem
for Z and k[x], k a, finite field in [2, 18, 19].

Of course, if A is a separable X-algebra, then the second condition is
guaranteed. There are examples of local principal ideal domains, U c F,
such that υ e V implies v2 e U but V is not module finite over U [13,
Theorem 100]. Thus any ίZ-order S with the same quotient field as V is
not contained in a maximal order (recall orders are module finite).
Moreover, this can be arranged so that the residue field of U contains 2
elements. Since U is local, the genus of any {/-lattice is trivial. Thus U will
satisfy a weak version of the Jordan-Zassenhaus theorem; it will hold for
all {/-orders in a separable Λ>algebra.

Problem (2) seems a bit harder. If D is semilocal (or more generally
an LG-ring, see [4]), then in fact the genus will always be trivial. Unlike
(1), in Problem (2), one need not be restricted to Z)-orders and lattices. In
fact by [11, Proposition 3.5], the condition

(2') The genus of S is finite for every D-order S in a semisimple
jK-algebra is equivalent to

(2") The genus of M is finite for every M e Modf S for all module
finite S-algebras.

Moreover, if we also assume the conditions of Lemma 6.1, it suffices
to determine (cf. [18] or [19]) whether

(2'") The genus of S is finite for S a maximal order in a division
algebra.

We close this section with two questions. Can (2//;) be weakened by
considering only maximal orders in fields? If the residue fields of D are
finite and D is Bezout, is every genus finite? (Note if every genus is finite,
then D is Bezout by Theorem C.)

7. Cancellation. One can ask when cancellation (rather than power
cancellation) holds for all module finite Z>-algebras. There is an answer,
albeit not totally satisfactory.

PROPOSITION 7.1. Let Rbeα commutative ring. Then every X e Modf S
for every module finite algebra S satisfies cancellation if and only if one is in
the stable range of each S.

Proof. The forward implication follows from Proposition 2.3(a). Set
E = End^Λ"). Then E is a direct limit of module finite i?-algebras [4,
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Lemma 2.1]. Thus the reverse implication follows by [3]. Indeed, the fact

that one is in the stable range of E actually implies that X satisfies

substitution.

COROLLARY 7.2. The conditions of Proposition 7.1 hold if R is U-irre-

ducible.

Proof. Apply Proposition 3.2.

Note that if R is [/-irreducible all residue fields of R for are infinite

(since π(x — a} must represent a unit in R for any at e i?, see [20]).

Since any finite field satisfies the conditions of Proposition 7.1, fAirre-

ducibility is not necessary. We close by posing the problem of characteriz-

ing those commutative rings satisfying the criterion in Proposition 7.1.
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