
PACIFIC JOURNAL OF MATHEMATICS
Vol 124, No. 1, 1986

ANALYTIC MULTIFUNCTIONS, THE 3-EQUATΪON,
AND A PROOF OF THE CORONA THEOREM

B. BERNDTSSON AND T. J. RANSFORD

The purpose of this article is to give some applications of a recent
theorem by Alexander-Wermer and Slodkowski on the structure of
certain polynomial hulls. We want to show that this theorem gives a
useful method of constructing analytic functions with prescribed proper-
ties in the disc. In particular it yields a rather easy proof of the Corona
Theorem for two generators, and also implies Wolff's Theorem on the
d-equation.

1. Background on hulls and analytic multifunctions. We begin by

formulating the theorem on polynomial hulls proved by Alexander and

Wermer ([1]), and independently by Slodkowski [16]. In what follows, Δ

denotes the open unit disc { λ e C : | λ | < l } , and T denotes the unit circle

THEOREM 1.1. Let X be a compact subset of T X C, and assume that

for each f e T the fibre

Xξ= { z E C : ( ί , z ) e I }

is convex. Suppose moreover that X, the polynomial hull of X, contains the

point (0, z 0 ) for some z0 e C. Then there exists h e i/°°(Δ) such that for

almost all ζ G T

where h* denotes the radial boundary values ofh.

Sketch proof (see [1] for further details). Let μ be a probability

measure on X which represents (0, z 0), in the sense that for any poly-

nomial p,

(1) p(09z0)=fp(ζ9z)dμ(ζ9z).
Jx

Then for λ e Δ define

(2 ) h ( λ ) = ί l ~ l λ l

2 - z
Jχ | i - λξI
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The proof consists of a verification that h has the required properties.
First we observe that if λ G Δ and f ε T then

2 \ i _
f

and the second term gives a constant contribution in (2), because of (1). It
follows that h is analytic on Δ. Now for ξ G T let

α(f) = sup{Rez: z E ^ } .

From (2) we have

Reh(λ)<[ - ^ ^ • a ( n - ^ a ^ ) ,
^ | i - λξI

and it follows easily from (1), plus the fact that a is upper semicontinuous
on T, that for each f ε T

limsup Reλ(λ) < α(f).

λeΔ

Repeating the argument with /z replaced by eιθh, and using the fact that
each Xζ is convex, we deduce that for all ξ G T

dist(λ(λ), Xξ)-+0 a s λ - ^ U ^ Δ .

Consequently /z is bounded on Δ, and A*(f) G ̂  a.e. on T. D

In general it is not easy to decide when the hypothesis that X should
contain some (0, z0) is satisfied (in fact is is equivalent to the assumption
X Φ X). However, one way of ensuring that it is fulfilled comes from the
theory of analytic multifunctions, to which we now turn our attention.

We shall consider a mapping K which associates to each λ G Δ a
non-empty compact subset ^(λ) of C, and shall also assume that its
graph, defined by

T(K)= { ( λ , z ) e Δ x C : z e i ί ( λ ) } 9

is a compact set. The multifunction K is said to be analytic on Δ if

U= (Δ X C)\Γ(*:)

is a pseudoconvex set. We shall need the following important property of

K which was first proved in [13] (see also [4]).

PROPOSITION 1.2. If K is analytic on Δ, then T(K) is contained in the
polynomial hull of T(K) Π (T X C).
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Sketch proof. We shall assume that (Δ X C) \ T(K) is strictly pseudo-
convex (which it always will be in our applications); the general case may
be deduced via a standard approximation argument.

Take any point q0 = (λ0, z0) in Γ(K) Π ( A x C ) and let p(λ, z) be
any polynomial. We are done if we can show that f or ε > 0 the function

u=\p(λ,z)\+ε{\λ\2+\zή

cannot have a maximum on T(K) at q0. But the assumption of strict
pseudoconvexity means that we can find a piece of an analytic manifold
M passing through q0 and lying entirely inside T(K), so the desired
conclusion follows from the maximum principle applied to the restriction
of u to M, which is a strictly subharmonic function on M. D

We have now collected all the facts we need, and refer to [2-5, 9-15]
for further information on analytic multifunctions, including the justifica-
tion for their nomenclature.

Combining Theorem 1.1 and Proposition 1.2, we obtain the result
which is the key to all that follows.

THEOREM 1.3. Let K be a nowhere-empty multifunction on Δ such that
T(K) is compact and K is analytic on Δ. Assume moreover that K(ξ) is
convex for each f e T . Then there exists h e i/°°(Δ) such that

Λ*(£)GϋΓ(£) a.e. onΊ. Π

Let us call such a function h on analytic selector. It is a natural
question to ask whether one can always find an analytic h such that
h{\) G K(λ) for all λ in the disc Δ: we shall see in §3 that this may not
be possible. Nevertheless, Theorem 1.3 gives a powerful way of construct-
ing analytic functions on the disc with control over their boundary values:
all one has to do is set up an appropriate multifunction. We now proceed
to illustrate this idea by using it to prove the Corona Theorem.

2. The Corona Theorem. Let fl9...,fN e i/°°(Δ). The Corona
Theorem says that if

2 2

1

everywhere on Δ, then there exist gv..., gN e if°°(Δ) such that

N

(3)
1
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For background material on the Corona Theorem, we refer to Garnett's
book [7, §VIII].

For simplicity we treat only the case N = 2. In the proof we shall
assume that the functions fl9 f2 extend analytically to a neighbourhood of
Δ, and shall end up by obtaining solutions gl9 g2 whose sup-norms
depend only on δ. A passage to the limit via normal families then gives the
theorem.

To start with, take any two functions hl9 h2 analytic on a neighbour-
hood of Δ, such that

/Λ+/2A2 = 1,
without a priori control on the sup-norms. Then it is easy to see that the
general solution to (3) is

(4) g l - K - hf2

g2 = h2 + hfl9

where h is analytic on Δ. Thus our problem is to choose h so that gλ and
g2 satisfy an a priori estimate depending only on δ. This function h will
be obtained from Theorem 1.3 as a selector to the following analytic
multifunction whose definition almost suggests itself. For λ E Δ set

(5) K(λ) = (z e C: ^ ( λ ) - z/2(λ) | 2 + |Λ2(λ) + z/x(λ) | 2 < r(λ)}.

Here r(λ) is a smooth positive function which has yet to be determined:
indeed the crux of the proof lies in making a suitable choice. If we can
choose r(λ) to make K analytic on Δ and moreover so that r(λ) satisfies
an L°°-estimate on T depending only on δ, then we are done, because any
analytic selector h will give a solution (4) to (3).

The simplest choice would be to take r(λ) equal to a large constant;
however, this does not work. We shall explain where the difficulty lies. As
mentioned in the proof of Proposition 1.2, to demand that K be analytic
means essentially that for any point q0 = (λ o ,z o ) in Γ ( ί ) Π ( A x C )
there should be a local analytic manifold lying inside T(K) that passes
through q0. In our setting, any point q = (λ, z) in Γ(K) corresponds to a
pointwise solution of the corona problem, i.e. to numbers βv β2 such that

/i(λ)j8 1+/ 2(λ)j8 2 = l .

In the same way, a local analytic manifold in T(K) corresponds to a local
analytic solution to the corona problem. Thus we want to have a situation
where any pointwise solution with norm
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at λ = λ 0 can be extended to a local analytic solution whilst maintaining
this inequality. Clearly this would violate the maximum principle if r(λ)
were constant. The problem is therefore to choose r(λ) "subharmonic
enough", while at the same time keeping it bounded.

To determine which functions r make K analytic, we use the follow-
ing lemma whose proof is deferred until the end of the section.

LEMMA 2.1. Assume that the multifunction K defined in (5) is nowhere
empty on Δ. Then it is analytic if and only ifu = logr satisfies the
differential inequality

(6)

where v =

In particular one should observe that the condition (6) does not
depend on the choice of the "arbitrary" functions hx and A2, but only on
fλ and /2. This condition also makes it plain that the "second simplest
candidate" for r(λ), namely r = A\f\2 for some constant A, also fails,
because it corresponds to taking u = v + constant. So instead we try u of
the form

(7) u = v + F(v) ( - γ < ι ; < 0 )

where υ = log|/|2, γ = log(l/δ2), and F is a function defined on [-γ,0]
satisfying

(8) F'(Ό)>09 F"(V)>0 (-Ύ<U<0),

(9) F ( - γ ) > 2 γ .

Here (8) has been assumed for convenience in subsequent calculations,
and (9) then guarantees that r(λ) > 1/δ2 on Δ, which implies in particu-
lar that the multifunction K takes non-empty values there. Adding ]j(vλχ)
to both sides of (6), squaring up, and substituting for uλ and uλχ in terms
of vλ and vλχ (computed via (7)), we obtain

(10) F'(v)υχl, + F"(v)\ϋχ\
2>y

where

.. (2 + F'(v))2\vλ\

* e2υeF{v) - 1

Now

F'(v)υλl+y/F'(v),
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so for (10) to hold, it suffices that

or equivalently,

Note that (8) and (11) together automatically imply (9). To sum up: in
order to find u satisfying (6), it is enough to take u = υ + F(v), where F:
[ - γ, 0] -» R obeys (8) and (11).

There are many examples of such functions F; a convenient one is

F(υ) = (1 + v/y)V2 + 2γ + 31ogγ + B,

where B is numerical constant independent of γ. Working backwards, we
deduce the existence of a solution (g l 9 g2) to (3) such that

Igil +|g 2 l < sup(r(ί): S ^ Tj < — ,

o

where C is a constant independent of δ. The proof of the Corona

Theorem (for N = 2) is complete.

REMARK. The particular function F above was selected because it had
the convenient property that F\υ) F"(υ) = constant. However, bearing
(11) in mind, a more efficient choice of F can be made by solving the
differential equation F\υ) F"(υ) = e~2υ. This leads to the function

F(υ) = ( l /γ)J /(I ~ ^" 2 5) ώ + 2γ + 21ogγ + 5,

which indeed satisfies (8) and (11), and yields a solution (g1? g2) with the
improved estimate

Computation of a Leυi form and the proof of Lemma 2.1. We are

considering a domain of the form

U = { ( λ , z) e Δ X C: |Λx(λ) - z/ 2(λ) |2 + |A 2 (λ) + zΛ(λ) f > r (λ )}

and want to know whether it is pseudoconvex. Now a domain in C" of the
kind
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where p e C2(D) and dp Φ 0 on 9Z>, is pseudoconvex iff the hessian of
the defining function p satisfies

Σ 7Γ"j"k 0

on 32), for all a e C" satisfying

It is easy to see, and of course well known, that this condition is invariant
under biholomorphic transformations. To facilitate computations we shall
first apply such a transformation. Define the manifold

M = {(λ9wl9w2) e C3: |λ| < 1, wJM + w2f2(λ) = l},

and consider the subdomain of M given by

The transformation

(λ,z)~(λ,h1(λ)-zf2(λ),h2(λ)

is biholomorphic from U onto V, so it is enough to determine when V is
pseudoconvex in M. Now our function p is

p y λ 9 w l 9 w 2 ) — r { λ ) —\w

so the hessian of p is

rλ-λ 0 0

0 - 1 0
0 0 - 1

We want to apply the hessian to vectors (av a2, a3) tangent both to M
and to 3F. This is a complex one-dimensional space generated by the
vector product of the normals to M and dV respectively, so we can take

e3

fi

w {wf) +f2rλ, -Wl{ w
(here w •/' = wλf{ + H>2/2'). Thus the condition for pseudoconvexity
becomes

(12) r^w^-wJtfφΛwf
at all (λ,wvw2) e W.
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To simplify the left hand side, write

(13) (w1,w2)

Then on dV

and 1 = w1f1 + w2f2 = £|/ | 2 . Hence

(14) £ 2 2

Moreover

so the left hand side of (12) becomes

Ά * ( Ί / I 2 -
For the right hand side, we expand and obtain

where once again we have used wιf1 + w2f2 = 1. Now substitute r = eu,
and note that \w\2 = r = eu on dV; the right hand side of (12) then
becomes

f' + uλ\
2+\f\2e2u\uλ\

2-\uλ\
2e"

Observing that

we see that (12) reduces to

(15) uλl(\f\2e«-l)>\wf' + uλ\
2 on8K.

For the final step, we again exploit the decomposition (13): setting
v = log|/|2, we have

w /' = ί(Λ'Λ + Λ'Λ) + u(Λ72 - /2'Λ)

the value of ξ having been determined using (14). Now the only restriction
on η is also from (14); hence

/ \2sup|w •/' + «λ| = |«λ + vλ\ + /(H/l'-ijlΛ'Λ-Λ'Λ \/\f\2
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So finally the inequality (15) is equivalent to

which is the same as (6). This completes the proof of Lemma 2.1. D

3. The 3-equation. The standard proofs of the Corona Theorem go

via the 9-equation. In particular, not long ago, Wolff found a condition

for the existence of bounded solutions of the 3-equation which greatly

simplified the proof of the Corona Theorem. In this section we shall see

how the selection theorem (1.3) applied to disc-valued multif unctions is

equivalent to an existence theorem for the 3-equation, and that this

theorem is essentially the same as Wollf s.

Consider a disc-valued multifunction on Δ which is analytic on Δ,

with variable centre c ( λ ) e C and radius r(λ) > 0; thus

(16) K(λ) = { Z G C : | Z - c(λ)\< r(λ)}.

Set

3c
a = -zr

3λ
and let h be an analytic selector to K in the sense of Theorem 1.3. Then

b = c — h

solves

(17) ^r = a(λ) ( λ e Δ ) ,
3λ

and satisfies the boundary estimate

(18) \b*(ζ)\<r(ξ) a.e.onT.

Conversely, say we want to solve (17) with (18) satisfied on T: then we can

define an analytic multifunction K by (16), where c is an arbitrary

solution to the 3-equation, and our problem becomes equivalent to

finding an analytic selector to K. To see what this means concretely, we

need to know when a disc-valued multifunction is analytic. The answer is

given by the following analogue of Lemma 2.1, whose proof is likewise

deferred to the end of the section.

LEMMA 3.1.1 Let c: Δ -» C and r: Δ -> (0, oo) be C2-functions. Then

the disc-valued multifunction K defined by (16) is analytic on Δ if and only if

(19) uλ-λ>e-u\aλ-2auλ\+e-2»\a\\

where again a = Cχ and u = log r.

lemma was obtained by Z. Slodkowski (unpublished). See [9, p. 58].
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From our previous remarks and Theorem 1.3 we immediately deduce

the following consequence.

THEOREM 3.2. Suppose u e C 2 (Δ) and a e Cι(K) satisfy (19) on Δ.

Then there is a solution b to

such that

\b*(ζ)\e-"^ < 1 a.e.onΊ. Π

Incidentally, this theorem has some formal similarities to Hormander's

ZAtheorem for the 3-equation ([8, §4]). In the one-variable case, this

theorem ways that if

then there is a solution b to (17) such that

Thus Theorem 3.2 is an L°°-analogue of this result, and the price one has

paid to pass from L2 to L°° is an extra condition on the first derivative of

a.

Let us now recall Wolffs Theorem.

THEOREM 3.3. ([7]). Suppose that a e CX(Δ) satisfies the two condi-

tions:

(i) (1 — |λ|2)|<z|2 is a Carleson measure',

(ii) (1 — | λ | 2 ) | α λ | is a Carleson measure.

Then there is a solution b to

( λ e Δ )

such that 6* e L°°(T).

(For the definition of Carleson measure, see [7, p. 238]). The link with

Theorem 3.2 is given by the following lemma.

LEMMA 3.4. (a) Suppose that u is subharmonic and bounded on Δ. Then

M = (l-|λ|V*
is a Carleson measure.
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(b) Conversely, suppose that μ is a Carleson measure which is absolutely
continuous with respect to Lebesgue measure m on Δ,

dμ = k dm,

where for some constant C

Then there exists a bounded subharmonic function u on Δ such that

(l-\λ\2)uλl = μ.

Proof. According to a lemma of Garnett ([7, p. 239]), a positive
measure μ on Δ is a Carleson measure if and only if the potential

p(w)=f - 1

is bounded on Δ. On the other hand, a positive measure v is the Laplacian
of a bounded function precisely when the Green potential

1 - wλ 2

G(w) = [ log
w — λ

dv(λ)

is bounded on Δ. Now use the identity

w — λ

and the estimate

1 - wλ

log
1 -x

| l - w λ | 2

> x for x < 1,

with approximate equality if x stays away from 1. These give

(20)

and

(21) G{w) » ( log
1 - λ w
w — λ

^ \ F λΓ
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where

w — λ
F= λ<ΞΔ:

101 - wλ

Now (20) shows that the Laplacian of a bounded function, multiplied by

(1 — |λ | 2 ), is a Carleson measure; and (21) shows that the converse also

holds, provided we can estimate the first term in the decomposition of G.

This requires an extra condition, but it is easy to see that the one we have

assumed is more than enough. D

Thus Wolffs Theorem says that if

(22) \a\2<uλ-λ and \aλ\<uλ-λ

for some bounded function u on Δ, then the 3-equation with right hand

side a has a bounded solution. It is not difficult to see that this follows

from Theorem 3.2, but actually Theorem 3.2 gives a more precise, point-

wise conclusion. The price we pay for this is to replace Wolffs clean

hypothesis by the slightly messier one (19).

REMARK. The Carleson measures that are relevant to Wolffs proof of

the Corona Theorem are

and are thus a priori of the form

μ = ( l - | λ | 2 ) M λ - λ

where u = | / | 2 is bounded and subharmonic on Δ. Lemma 3.4 is there-

fore not necessary for the proof, but rather shows that the notion of

Carleson measures can be dispensed with in the context. This has already

been noted by Gamelin [6].

We conclude our remarks on disc-valued multifunctions by fulfilling

the promise made in §1, namely to show that Theorem 1.3 cannot be

extended to guarantee the existence of analytic functions h which are

selectors in the whole disc Δ. To this end we shall prove the following

interpolation lemma.

LEMMA 3.5. Let E be a compact polar subset of Δ and let f be any

function analytic on a neighbourhood of E. Then there exists a disc-valued

multifunction K on Δ, analytic on Δ, such that

K(λ)={f(λ)} forλ^E.
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Before proving the lemma, let us indicate how to deduce the promised
counterexample. Recall that E is polar means that there exists a sub-
harmonic function w on C such that

(23) £ c { Z G C : W(Z) = -oo}.

Now take E = Eo U El9 where

Eλ = {-1/2} U{-«/(2« + 1): n > 1}.

This E is certainly polar: for example, it satisfies (23) with w equal to
w0 + wv where

wo(z) = log z - τ
1

1

\ ? 1

2 ~ " l o g

M ^ 1

Z

Z

n
2n +

n
2n +

1

1
wx(z) = log z + -

Now if we take disjoint open neighbourhoods Λ̂ o of Eo and Nx of El9 and
define / to be 0 on No and 1 on iVl5 then the hypotheses of the Lemma
are fulfilled, and we deduce there exists a disc-valued analytic multifunc-
tion K on Δ such that

K(λ)-
{0},

{1},

But then any selector h of AΌn Δ has to satisfy

0' λ S £ °
l,

which is clearly impossible if h is to be analytic, because Eo and Eλ both
possess limit points within Δ.

Proof of Lemma 3.5. Choose open sets V and W with

such that / is analytic on a neighbourhood of W. Let c G C2(Δ) be any
function which agrees with / on W. As E is polar, there exists a
subharmonic function w on C satisfying (23); moreover because E is
compact we may take w to be harmonic on C \ £ (this follows from
standard potential theory, but is true in any case for the specific w we
used above). Define K on Δ by

K(λ) = - c(λ) I < exp(π;(λ) + | λ | 2 + A)},
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where A is a constant yet to be chosen. That K is analytic on W is
straightforward, since if we express the subharmonic function u = w +
|λ|2 + A as the limit of a decreasing sequence of smooth subharmonic
functions ww, then for each m the multifunction

Km(λ) = { Z E C : | Z - c(λ) I < exp(κm(λ))}

is plainly analytic on W by Lemma 3.1 (because c-χ = fχ = 0 there), and it
follows easily that K itself must also be. On Δ\V, we check analyticity
directly using Lemma 3.1: the condition that needs to be satisfied is

C λ λ -

Now the terms in curly brackets are both uniformly bounded on Δ \ F,
say by B, and also wλχ > 0 because w is subharmonic. Consequently K
will be analytic on Δ \ V provided A is chosen large enough so that

l>e~A B + e~1A - B.

Finally, note that if λ G E then w ( λ ) - f | λ | 2 - f ^ = - o c , so that, as

desired,

- - - - - - D

Computation of a second Leυi form and the proof of Lemma 3.1 This

time we are considering a domain

u= { ( λ , z ) G Δ x C : | z - c ( λ ) | > r ( λ ) }

to determine whether it is pseudoconvex. Since U has the form

u= { ( λ , z ) G A X C : ρ(λ,z) < 0}

with

|2
,z) = 2 W ( λ ) - l o g | z - c ( λ ) |

(where we have set u = logr), the condition that needs to be checked is

zλ Pz-Z)\d2

on dU Π (Δ X C), for all a G C2 satisfying

In other words, we need

(-Pz>Pλ)
Pλλ Pλz

Pzλ Pz'z Px
>0 on9ί7n(ΔxC).
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Now pz = -1/(2 - c) and pz2 = 0, so this condition can be restated as

(24) pλ-λ + 2 R e { ( z - c ) P λ P Γ λ } > 0 o n 9 ί / n ( Δ x C ) .

Computation of the derivatives yields

Pλ = 2"λ + cλ/(^ - c) + <*/(* - c),

cλ-λ/(z -c) + cλc-λ/(z - c)2},

Hence (24) becomes

R e + ^ + _ £ £ L ^ _ _£*_ 2 l / λ + _£*_ + _£L_ >o
^ λ λ z - c ( z _ c \ 2 z - c \ λ z - c z - c j j

on3ί/n(Δ X C).

This simplifies to

~ c)\2 + Re{(cλ I - 2^ι/ λ)/(z - c)} > 0

o n θ ί / n ( Δ X C).

Now the only restriction on (z - c(λ)) is that (λ, z) e 3ί7 n (Δ X C), or
in other words, that \z — c\ = eu. Thus the last inequality is equivalent to

"λλ " *~ 2 1<*| 2 " e-u\cxli - 2c^uλ\ > 0,

which is the same as (19). This completes the proof. D

We should like to thank UCLA for its hospitality and support while
this paper was written.

Note: After we had derived Wolff's theorem from the selection
theorem, but before we had completed our proof of the Corona theorem
without the 3-equation, Z. Slodkowski informed one of us that the Corona
theorem for two generators follows directly from merging his version of
the selection theorem, with his Th. 4.3 of [13]. Unfortunately, we failed to
fully realize the impact of his comment, and for this reason developed the
alternate proof in §2. As it turns out the two proofs are quite similar.
Slodkowski's proof is spelled out in [17], where it is also shown how his
argument can be generalized to an arbitrary number of generators.

Finally, we would also like to express our thanks to T. Wolff, who
was the first to suggest to us that we try to get rid of the 3-operator in the
proof.
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