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THE SPACING OF THE MINIMA
IN CERTAIN CUBIC LATTICES

H. C WILLIAMS

Let Jf be a cubic field with negative discriminant; let μ, v e j f
and let 01 be a lattice with basis {l,μ,v} such that 1 is a minimum of ^ .
If

1 — β1, θ2, θ3,..., θn,...

is a chain of adjacent minima of 3t with0/ + 1 > 0, (i = 1,2,3,...), then

This result can be used to prove that if p is the period of Voronoi's
continued fraction algorithm for finding the fundamental unit ε0 of Jf,
then

where r = (1 + /5 )/2. It is also shown that

1. Introduction. In order to discuss the problems considered in this
paper, it is necessary to give a brief description of the properties of cubic
lattices. For a more extensive and more general treatment of these topics
we refer the reader to Delone and Faddeev [1].

Let f(x) EL Z[X] be a cubic polynomial, irreducible over the rationals
M and having a negative discriminant. Let 8 be the real zero of f(x) and
denote by JΓ= £(δ) the complex cubic field formed by adjoining 8 to J .
If <ί3 denotes Euclidean 3-space, we can associate with each α G J f a
point ^ G ^ , where

A = (a,(a' - a")/2i,(a' + a")/2)9

i2 4- 1 = 0, and α', α" are the conjugates of a. Since f(x) has a negative
discriminant, all three components of A must be real. If λ, μ, v e Jf and
λ, μ, v are rationally independent, we define the cubic lattice JS? by

JS?= {WΛ 4- υM+ wN\(u,υ,w) e Z 3 } .

We say that JS? has a basis {λ, μ, v) and denote JSP by (λ, μ, *>). For the
sake of convenience we will often use the expression a e Se to denote that
it is the corresponding point A e S\ that is actually in «£?. Also, if
Jδ?= (λ, μ, P ) , we define a££ (a e Jf) to be the lattice (αλ, αμ, α*>).
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If A is any point of Jΐf, we define the normed body of A to be

= {(x,y,z)\(x,y,z) e^ 3 , \x\ < \a\, y2 + z2 <: \a'\2}.

This is a semi-open right circular cylinder, symmetric about the origin O
of <f3, with axis the x-axis of Sy It should be mentioned at this point that
if α,β<ΞJT and |α'| = \β% then a = ±β (see [1], p. 274). Thus, if
|β ' | = |α'|, then B £ Jir(a).

We say that φ (Φ 0) e Jf or the point Φ corresponding to φ is a
minimum of ££ if ^Γ(φ) ΠJS?= {0}. If ψ and φ are minima of JS? and
ψ > φ, we say that ψ and φ are adjacent minima when there does not
exist a non-zero χ e Jδ? such that

φ < χ < ψ and |χΊ < |φ'|.

If

(1.1) ^ , ^ , ^ 3 , . . . , ^ , . . .

is a sequence of minima of JSf such that 0/ + 1 > θt and β i+1, β, are
adjacent (i = 1,2,3,..., w,...), we call (1.1) a chain of minima of JSP. By
using Minkowski's theorem (see [1]) we can prove that such chains always
exist in JSP.

If &t = (1, μ, v) and 1 is a minimum of 9t, we say that 0t is a reduced
lattice. In this paper we shall be concerned with the problem of how
closely spaced the minima of 0t can be. We will show that if θx = 1 and
θ4 < θ2 + 1, then #2 + 03 — 0 4 + 1 . We can use this result to prove that if
ε0 is the fundamental unit of Jf, then

where p is the period of Voronoi's continued fraction algorithm for
finding ε0 and r = (1 + yf5 )/2. We will also show that 05 > 03 + 1 > 2
and 08 > 4. The methods used to prove these results are completely
elementary.

2. Preliminary results. From [1] or Williams and Dueck [3] we see
that if 3tx = & (a reduced lattice), θ^m) is the minimum of Stm adjacent to
1 and ^ w + 1 is defined to be ( l /0 g

( w ) )^ w , then Qn0tn = &l9 where &n is a
reduced lattice and

en - π



SPACING OF THE MINIMA IN CERTAIN CUBIC LATTICES 485

We shall need to make use of these results together with several others
established in [3]; however, we first give some simple lemmas concerning
points of St. Throughout this work we will use θ to denote the minimum
of 3t adjacent to 1, ω to denote the minimum of 9t adjacent to 0, and χ
to denote the minimum of 31 adjacent to ω. That is, θ = θ2, ω = 03,
χ = θ4. Note that if γ e 31, |γ| < 0, and |γ'| < 1, we must have γ = 0 or
γ = ± 1. We also have

LEMMA 2.1. If a<z3l and 0 < a < θ + 1, then either a = 1, 2 or
\a' — 1| > 1. Further, if a,β <=3l, aΦβ, and θ < α, β < θ + 1, then
\a' - jβ'| > 1.

Proof. We have -1 < a - 1 < θ; thus, if \a' - 1| < 1, we get a - 1
= 0,1. Since 0 < α, β < θ 4- 1, we have \a - β\ < 1. It follows that if
\a' - β'\ < 1, then a = 0. If \a' - β'\ * 1, then a = β ± 1, which is also
impossible. D

From this result we see that \θ' — 1| > 1 and if χ < θ + 1, then
\ω' - 1| > 1 and |χ' - 1| > 1.

In order to develop further results we define

(2.2) ηa - (α' - α")

for any α e JΓ. Note that

(2.3) | α f - |«"|2 = « V - i,2

n + ζ2

a.

Also, if o e ί ? and η a e i , then α e Z and ηβ = 0 (see [3]). Hence,
ηα # 0 if a = β, (/ > 1).

LEMMA 2.2. Ifa,β(= 01, \a'\ < 1, |j8'| < 1, |α' - 1J > 1, |>S' - «' +
1| > 1, then \β' - a' + 2| > 1.

Froo/. Since |i8'| < 1, we have ζβ > -1 by (2.3). Further, since |α'| < 1
and |α' - 1| > 1, we must have ξa < 1/2; thus, ξβ - ζa + 1 > -1/2 and

|j8' - α' + 2|2 - |j8' - «' + 1|2 + l(ζβ - ξa + l) + 1 > 1. D

LEMMA 2.3. Ifa,β e &, \eΐ - 1| > 1, \a' + 1| > 1, |α'| < 1, |j8'| < 1,
> 0, and \β' - a'\ > 1, then \ηa\ > \ηβ\.

Proof. Suppose |ijΛ| ^ lη l̂ and consider Figure 1.
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Here P = (|τjj, ξa), Q = (\ηβ\, ξβ). Let the chord through P parallel to AC
meet the circle ABCD (radius 1, centre 0) at L and M. Since |α' + 1| > 1,
we have PL < 1; also, since \af — 1| > 1, we have PM < 1. Since PQ <
max(PL,PM), we get ~PQ = | β ' - α'| < 1, a contradiction. D

In the next sequence of lemmas we prove a number of results
concerning points a e ^ such that \af\ < 1. We first define κ(a) for

(2.4) κ(α) = (ζa - 1/2)2 + {β/2 - |ηα|)2

LEMMA 2.4. / / α e ^ , |α'| < 1, αwί/ /c(α) > 1, fβ < 0, |ijΛ|

Proo/. Since |α'| < 1, we have |τjj < 1 and |fj < 1; thus,

-τ/3/2 < V3/2 - 1 < i/3/2 - |ije | < i/3/2,

and (fβ - 1/2)2 > 1/4 by (2.4). If 0 < ζa < 1, this latter result is not
possible; hence, fβ < 0. If |η α | > i/3"/2, then |fβ| < 1/2 by (2.3) and the
fact that \a'\ < 1; thus, by (2.4)

jc(α) < -1/2 + ζ2

a + r|2α - ζa < 1/2 - fβ < 1,
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which is also not possible. Since | η j < /3/2, we have |τjj <
3(i/3 - 1/1/3 )/4 and

It follows that since κ(α) > 1, we must have \ξa\ > | η j / ]/J by (2.4). Q

COROLLARY 2.4.1. If a e @, \a'\ < 1, andκ(a) > 1, ίλen |α' + 1| < 1.

Proof. By the lemma, 1 - | T J J / / 3 > 0 and 0 < fβ + 1 <
l - | η β | / i / 3 . T h u s ,

K + II2 = ( L + I ) ' + Vl Z (1 " |iJβ|/V3 ) 2 + η2

α ̂  1

as |η β | < y/ϊ/2. Ώ

LEMMA 2.5. If a,β(= @, \a'\ < 1, |j8'| < 1, \a' - 1| > 1, η ^ > 0,

|α' - β'\ > 1, /Λe/i κ(β) > 1.

Proo/. The point (ηa,ζa) must lie in the Reuleaux triangle (see [3])
with vertices O (the origin), (σ/3/2,1/2), (σv/J/2,-1/2), where σ =
sgn(ηβ). If κ(β) < 1, then (ηβ,ζβ) is in the same Reuleaux triangle as
(Va, O ; hence, \a' - β'\ < 1, which is impossible. G

LEMMA 2.6. //α,jSe 3?, \a'\ < 1, |iβ'| < 1, \a' - 1| > 1, |α' + 1| > 1,
> 1, then |1 - a' - β'\ > 1.

Proof. Since |α'| < 1, |o' + 1| > 1, and |α' - 1| > 1, we have \ζa\ <
1/2 and 1 - 2ξa > 0. Since \a' - 1| > 1 and κ(/δ) ̂  1, we also have

(2.5) | i - α ' - j β ' | 2

= 1 + ζj - 2ζβ + r,} + 2ξjβ + 2ηjiβ + ζ2

a - 2ζa + vl

> 1 + ζβ{-\ + 2ξa) + 2ηaηβ + v̂ " )ηβ\

by (2.4) and the fact that \a' - 1| > 1. By Lemma 2.4, we have ξa < 0;
hence, if ηaηβ > 0, we get |1 - α' - β'\ > 1. If ηaηβ < 0, then from (2.5)
and Lemma 2.4 we get

|1 - «' - βf > 1

Since ξa < /l - η2

a, we have

(1 - 2U/V3 + v̂ " - 2|ηJ > (l - 2 ί/l-τ,2

α)/v/3 + ̂ 3 - 2|r,α|.
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But 2/ v/3 > 1 > \ηa\ and / l - ^ / ,/J < 2/ & - \ηa\; hence,

(l - 2^1-7,1)/^ + yj - 2|ηJ > 0. D

COROLLARY 2.6.1. // a,β e <#, |α'| < 1, |j8'| < 1, |α' - 1| > 1,
|α' + 1| > 1, |j8' - a'\ > 1, αnrf |jβ' - α' + 1| < 1, then κ(γ) < 1, where
γ = β- a + 1.

Proof. We have |γ' | < 1; thus, if κ(γ) > 1, then |1 - a' - γ'| = \β'\
> 1, which is not so. D

We will also require some lemmas whose proofs have already ap-
peared in [3]. We will only give the statements of these results here;
however, we mention that the proofs of these lemmas are elementary and
require, for the most part, only results from simple plane geometry.

LEMMA 2.7 (Lemma 6.1 of [3]). // a,β<=&, \a'\ < 1, \β'\ < 1, and
2a = β + 1, then \a' - 1| £ 1. D

LEMMA 2.8 (Lemma 5.4 of [3]). // a,β^0t, \a'\ < 1, \β'\ < 1,
\a' - 1| > 1, \β' - 1| > 1, ηaηβ > 0, \a' - β'\ > 1, and \a' + 1| > 1 (<
1), then\β' + 1|< 1 ( > 1). D

LEMMA 2.9 (Lemma 6.2 o/ [3]). Le/ α,β,γ <= @, where a,β,y are
distinct, \a'\ < 1, \β'\ < 1, |γ' | < 1, and \a' - 1| > 1, 1/3' - 1| > 1, |γ' -
1| > 1. If ηjjβ > 0 and r\βi\a > 0, there cannot exist any b such that

b < a,β,γ < b + 1. D

LEMMA 2.10 (Lemma 6.3 of [3]). Let a,β<E@ such that |α'| < 1,
|j8'| < 1, β > a > 1, and \β'\ < \a'\. If ηa-ηβ > 0 and \a' + 1| < 1, then
β>a + I. Ώ

LEMMA 2.11 (Lemma 6.5 of [3]). Let a,β,γ e 3? SHCA /Aαί |α' | < 1,
\β'\ < 1, |γ ' | < 1, |α' - 1| > 1, |i8' - 1| > 1, |γ' - 1| > 1, |j3' + 1| < 1,
ί?«^ < 0, r\βi\y > 0. // |/5' - α'| > 1 am/ |)8' - γ' + 1| > 1, then either
\a' - β'\ <, 1 or |a' - β' + y' - 1| < 1. G

3. The main results. We are now able to use the lemmas of §2 to
prove our main results. We first prove an extension of Lemma 2.11.

THEOREM3.1. Ifa,β,y e SI, \a'\ < 1, \β'\ < 1, |γ' | < 1, \a' - 1| > 1,
\β' - 1| > 1, |γ ' - 1| > 1, \β' + 1| < 1, vaηβ < 0, i , ^ > 0, and \β' -
γ'| > 1, then either \a' - β'\ < 1 or \a' - γ'| < 1, where λ = β - y + 1.
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Proof. If |λ'| > 1, the result follows from Lemma 2.11. Note that

since ηjjβ < 0, we cannot have \a' — β'\ = 1, for this would imply that

α = β ± 1 and ηa = ηβ. Similarly \a' - γ ' | Φ 1. If |λ'| = 1, then β = γ or

β = γ - 2. Since \β' - γ ' | > 0 and |j3'| < 1, |γ ' | < 1, neither of these is

possible.

If |λ' | < 1, we will consider two cases; however, we first notice that

| γ ' + 1| > 1 by Lemma 2.8 and ηγτjλ - ηγ(ηβ - ηγ) - \ηyt\ηβ\ - |η γ |) < 0

by Lemma 2.3. Also κ(λ) < 1 by Corollary 2.6.1.

Case 1 (κ(a) < 1). In this case we see from Lemma 2.5 that |α ' - λ'|

< 1.

Case 2 (κ(a) > 1). In this case we have \a' + 1| < 1 by Corollary

2.4.1. Suppose \a' - γ ' | > 1 and \a' - λ'| > 1. Since \β' - γ ' | > 1, we

have |λ' — 1| > 1; thus, |λ' + 1| > 1 by Lemma 2.8. I f p = α - λ + l

and |ρ ' | > 1, then either |γ ' - ρ'| < 1 or | γ ' - a'\ < 1 by Lemma 2.11.

Since γ - p = β - α, we get \β' - α ; | < 1. If |p ' | = 1, then a = λ or

α = λ — 2 and, as above, neither of these is possible. If |p ' | < 1, then

κ(p) < 1 and also ηpηγ > 0 (Corollary 2.6.1 and Lemma 2.3). Since

κ(γ) < 1 by Corollary 2.4.1, we get | γ ' - ρ'| < 1 by Lemma 2.5. D

We are now able to show that if θ4 < θ2 + 1, then θ4 + 1 = θ2 + ̂ 3.

THEOREM 3.2. // χ < θ + 1, rAe« η^ηω < 0, |χ ' + 1| < 1, ιc(^) < 1,

κ(ω) < 1, and χ + 1 = θ + ω.

Proof. We first note that |0' | < 1, |ω' | < 1, |χ ' | < 1, and \θ' - 1| > 1,

\ω' - 1| > 1, |χ 7 - 1| > 1. Also, if ρ 1 ? ρ 2 e {^,ω,χ} and ρx # ρ2, then

IPΊ "" P2I > 1 t>y Lemma 2.1.

1 (VθVω > ^) By Lemma 2.4 we must have η^η χ < 0. Further,

by Lemma 2.10, we must also have \θ' + 1| > 1. By Theorem 3.1, we get

|ρ' | < 1, where p = χ — ω + 0 - l . Now 0 < p < θ; thus, p = 1 and

χ = ω - θ + 2. Since ω ~ 0 + l = χ - l , we have |ω' - 0' + l | > 1;

consequently, |χ ' | = \ω' - θ' -f 2| > 1 by Lemma 2.2. It follows that we

must have

Case 2 {t]β^ω < 0). Here we have ηχηθ > 0 or ηxηω > 0. In either

case, by Lemma 2.10 we get |χ ' + 1| < 1. If ηχηω > 0, then |ω' + 1| > 1

by Lemma 2.8 and κ(ω) < 1 by Corollary 2.4.1. Also, by Theorem 3.1

|ρ' | < 1, where ρ = 0-~ χ + ω — 1. Since - 1 < p < 0, we get p = 0 or 1.
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As before, we cannot have p = 1; hence, p = 0 and χ + 1 = θ + ω. Since
θ = x — ω + 1, we get κ(θ) < 1 from Corollary 2.6.1. Similarly, if ηχηθ

> 0, then κ(θ) < 1, κ(ω) < 1, and χ + 1 = 0 + ω. D

By using the remarks at the beginning of §2, we can extend this result
to show that if

θn

in (1.1), then

We can also improve two of the results of Theorem 3.2 in

LEMMA 3.3. / / χ < θ + 1, /λew |0' + 1| > 1 am/ lω' + 1| > 1.

Proof. If |0' + 1| < 1, then ξ9 < 0 and

-2f# > ?,2 + η2

θ >ξ2

ω + ηl > 2ξω (\ω' - 1| > l ) .

It follows that ξθ + fω < 0 and, as a consequence, |χ r | = \θ' + ω' — 1| > 1,
which is impossible.

If |ωr + 1| < 1, then fω < 0 and

2\ζω\ > l - ( l - - ( i - ILI)2)-

(3.1)

Since

(3.2)

we get

(3.3)

Also, since

we see, using (3.2), that

and

by (3.3). Now fβ < ]/l - ηl; hence from (3.1) we get

- ILI < i/2jΰ - ILI * 1/2.
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Since ξω < 0 and ηjηθ < 0, we find that

~2L + 2Uf, + 2 η ω η , > - l .

But

| χ Ί 2 - \ωf = \φ> + «' - 1|2 - |ω'|2

thus, since |0 ' — 1| > 1, we have |χ ' | > |ω'| when \ω' 4- 1| < 1 and this is
impossible. D

We will also need to make use of the following result and its
corollaries.

T H E O R E M 3 . 4 . If χ < θ + 1 a n d t h e r e e x i s t s s o m e p e l s u c h t h a t

p « {0,ω,χ}, |p'| < 1, |p' - l | > 1, /Λβw |p' - ψ'| < 1 for some ψ e

/. Suppose that there exists some p € ^ such that p £ {0, ω, χ } ,
Ip'l < 1, |p' - 1| > 1, and \p' - ψ'| > 1 for each ψ G {^,ω,χ}. We first
note that if \ρ' - ψ'| = 1, then p = ψ + 1. If p = ψ - 1, then 0 < p < 0,
which contradicts the definition of θ. If p = ψ + 1, then |p' - 1| = |ψ'| <
1, which is also impossible. Thus, |ρ" — ψ'| > 1 for all ψ G { ί , ω , χ } .
Since η^ηω < 0, \θ' 4- lj > 1, |ωr + 1| > 1, we must have |ρ' + 1| < 1
(Lemma 2.8). Put a equal to that one of θ or ω such that η α η p < 0 and let
β be the other one. We have α + j8 = 0 + ω = χ + l . Further, |ρ' - α r |
> 1 and |α ' 4- 1| > 1; thus, by Theorem 3.1, we get |/Γ - λ'| < 1, where
λ = p — α -f 1. Since j8 — λ = j8 — p + αt — l = χ — p, this is impossi-
ble. D

COROLLARY 3.4.1. // χ < θ + 1 0«<i /Λere exwtt p e l Λ WCΛ that

p e {tf,ω,χ}, |pΊ < 1, am/ |p | < θ + 1, */IOT p = 0.

Proof. Since |-ρ ' | = |ρ'|, we may assume with no loss of generality that
if p Φ 0, then p > 0. Since |ρ ; | < 1, we must have θ < p < θ + 1. Thus,
by Lemma 2.1, \p' — ψ'| > 1 for all ψ e {̂ , ω, χ } , which is impossible by
the theorem. D

COROLLARY 3.4.2. // χ < θ + 1, there does not exist any p e
|ρΊ < 1 α«rf χ < p < χ 4- 1.
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Proof. Suppose such a p does exist. If |ρ' - 1| < 1, then, since
\ρ — 1| < 0 + 1, we can only have p - l € { ί , ω , χ } by the previous
result. Since p Φ χ + 1, |0' + 1| > 1, |ω' + 1| > 1, we must have |p' - 1|
> 1 and, as a consequence, |ρ' - ψ'| < 1 for some ψ ̂  {0,ω,χ}. Since
0 < p - χ < χ 4 - l - χ < ω , we find by the previous corollary that p -
ψ = ί. If ψ = ω or χ, then p > χ + 1; thus, ψ = 0 and p = 20. If
p = 20, then |ω'| < |0'| < 1/2 and |ω' - θ'\ < 1, which is impossible. D

Let p = 05, the minimum adjacent to χ = 04. We can now show the
following unconditional result concerning p.

THEOREM 3.5. p > 1 + ω or θn+5 > 0M+3 + θn in (1.1).

Proof. Suppose p < 1 + ω and let ^ * = (1/0)^?. If 0* = ω/0,
ω * = X/θy X* = P/̂ > Λen 0* is the minimum adjacent to 1 in ̂ * , ω* is
the minimum adjacent to 0*, and χ* is the minimum adjacent to ω*.
Since p < 1 + ω, we have χ* < (1 + ω)/0 < ω/0 + 1 = 0* + 1. By
Theorem 3.2, we have 0 * - f ω * = χ * + l and

ω + χ = p 4- 0.

If χ > 0 + 1, then p > ω + 1. If χ < 0 + 1, then ρ > χ + l > ω + l b y
Corollary 3.4.2. D

In fact, we actually get cases in which p = 1 + ω. For example,
consider D = 239, δ 3 = /), 9tx = (1, δ, δ2>. In 9t = # 3 1 2 , we get

0 = (6 + 17δ + 7δ2)/247,

to = (74 4- 45δ + 4δ2)/247,

χ = (253 + 17δ 4- 7δ2)/247 = 0 + 1 ,

p = (321 + 45δ + 4δ2)/247 = ω + 1.

Note also that if ^ = ̂ 3 1 3 here, we have 0 = (191 - 3δ + 7δ2)/332,
ω = (217 + 47δ + δ2)/332, χ = (76 + 44δ + 8δ2)/332. In this case χ <
0 + 1 and χ = 0 + ω - 1. Also, p = (408 + 44δ 4- 8δ2)/332 = χ + 1.

If we let Stλ = (l,μ,*>), where {1,/x, v) is a basis of the algebraic
integers of Jf, then 9tλ is a reduced lattice and there exists an integer p
such that &p+ι= @ι> In this case ε0 (> 1), the fundamental unit of JΓ, is
given by the formula

(3.4) ε0 = θp+1 = Π *?.
1
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The value p is called the period of Voronoi's continued fraction algorithm
for finding ε0. By using the reasoning similar to that of Pen and Skubenko
[2], we can prove

THEOREM 3.6. If p is the period of VoronoVs continued fraction
algorithm for finding ε0, then ε0 > τp/2, where r = (1 + ^

Proof. If ^ = Λif then p > ω + 1 and

0 0 0 > J + $β
Since <Xp+ι = Λlt 9tp+2 = Λ 2 , Λp+3 - Λ3, we get

f ) ^ + 3 > = (?f; thus, we get

«o = f Π *j°) = Π

> Π (l +
' l

- (i + β^'

If we put η = ε ^ > 1, then η2 > η + 1. It follows that e ^ > T. D

Thus, if R is the regulator of Jf, we have R > />(log τ)/2.

4. Further results. In this section we will obtain some results on
the spacing of the first few minima of έ%. We first require the following
technical lemma.

LEMMA 4.1. // χ < θ + 1, then

(i) m |ω'| > 1/2;
(ii) |2ω' + χ'| > |ω'|, |20' + χ'\ > \θ'\, \2Θ' + ω'| > |0'|;

(iii) |<?' + χ'| > |χ'|;
(iv) |2χ' + θ'\ > |χ'|.

Proof, (i) The method of proof of (i) is given in the proof of Corollary
3.4.2.

(ii) Since |ω'| > |χ'|, we have

|2ω'+ χ'| > 2|ω'| - |χ'| > |ω'|.

Similarly, \2Θ' + χ'| > \θ'\ and \2Θ' + ω'| > \θ'\.
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(iii) We note that

(4.1) 2ξχζ$ + 2ηχηθ = |χ' + 1|2 - |χ' + 1 - 0'|2 + |0' - 1|2 - 1.

Since ω = χ + 1 — 0, we get

I*' + x Ί 2 = I*Ί2 + Ix'l2 + Ix' + i | 2 - |ω'|2 + I*' - i | 2 - l .
Since \θ'\ > |ω'| and \θ' - 1| > 1, we have

\θ' + χ'| > |χ'|.

(iv) From (4.1) we get

|2χ' + θf - Ixf - |χf + 2|χf + 2|χ' + 1|2 - |ω'|2

+ \θ'\2 - |ω' | 2 + 2\θ' - 1|2 - 2.

Since

w e get

Px' + «Ί ~ IxΊ > o. •

We are now able to find possible candidates for further minima when

L E M M A 4.2. / / χ < 0 + l , χ + l < p < χ + 2, and | p ' | < 1,

. Since χ < p - l < χ + l, we cannot have \ρ' - 1| < 1, by

Corollary 3.4.2. Since |p' - 1| > 1, by Theorem 3.4, we must have some

ψ E {0, ω, χ } such that |p' - χ' | < 1. If ψ = 0, then

ω = χ + l - 0 < p - ψ < χ + 2 - 0 = ω + l < χ + l ;

hence, p — 0 = χ by Corollary 3.4.1 and 3.4.2. If ψ = ω, then 0 < p — χ

< 0 + 1. By Corollary 3.4.1, we can only have p = 2ω, which is impossi-

ble by Lemma 4.1, or p = ω + χ. If ψ = χ, then l < ρ — ψ < l + 0 and

p - X e {0,to,χ}. D

COROLLARY 4.2.1. If p satisfies the conditions of the lemma and p is

also a minimum of ^ , then p = χ + ω.

. If p = 2χ or p = 0 + χ, then \ρ'\ > \χ'\y which is not possi-

ble. D
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LEMMA 4.3. // χ < 0 4 1, χ 4 2 < p < χ + 3, and |p' | < 1, then

p e {0 + χ , ω + χ , 2 χ , χ + 0 4 1, χ + ω + 1, χ + 20,

χ + 2ω, 2χ + 1, 2χ + 0, 2χ + <o, 3χ}.

Proof. Since χ 4 1 < p — 1 < x 4 2, we see by Lemma 4.2 that if
|p' - 1| < 1, then p = χ + 0 4 1, χ + ω + 1, 2χ + 1. If |p' - 1| > 1,
then \ρ' - ψ'| < 1 for some ψ e {0, ω, χ } . If ψ = 0, then

χ < ω + l < χ 4 2 - 0 < p - ψ < χ 4 3 - 0 = ω + 2 < χ + 2.

Thus, p - 0 e {χ 4- 1, χ + 0, χ + ω, 2χ} . (Note that 0 4 ω 4- χ = 2χ
4- 1.) If ψ = ω, then χ < p - χ < χ + 2 a n d p - ω e { χ + l , X + #,
χ + ω, 2χ} . I f ψ = χ, then 2 < p < χ + 2 a n d p - χ € Ξ {0,χ,co, χ + 1,
χ + 0, X 4 - c o , 2 χ } . D

COROLLARY 4.3.1. If p satisfies the conditions of the lemma and p is a
minimum of ^ , then

Proof. We have 2|χΊ, 3|x'| > |χ'|; the other possibilities are ruled out
by Lemma 4.1. D

THEOREM 4.4. // x < 0 + 1, there does not exist a set of minima

{μ1,/i2,μ3,]u4} of @ such that

X + 1 < μλ < μ2 < μ3 < μ4 < X + 3.

Proof. Put ^ * = (1/μOΛ, 0* = μ2/μλ, ω* = μ3/μl9 χ* = μ 4 / M l .
Since χ* < (χ + 3)/(χ + 1) < 1 + 0*, we must have

(4.2) μ4 + μx = μ2 + μ4 (Theorem 3.2),

and μ 1 , μ 2 , μ 3 ) μ 4

G {X + 1, X + <*>> χ + ω + 1, 2χ + 1, 2χ + ω} by
Corollaries 4.2.1 and 4.3.1. If μλ Φ χ + 1, then (4.2) cannot hold. If
μλ = χ 4- 1 and μ 2 # χ + ω + l, then (4.2) again cannot hold. Thus, we
must have ωλ = χ + 1 and μ2 = x + ω + 1. It follows that μ2 — μx = ω
— 1 and we can only have μ3 = 2χ + 1, μ4 = 2χ + ω.

Since χ + 1 is a minimum, we have |χ' + 1| < |χ'|, and therefore
ζχ < -1/2. Since fω < 1/2, we get 2ζχ + ζω < -1/2 and |2χ' + ω' + 1|
< |ωr + χ'|. Thus, if μ5 is the minimum adjacent to μ4 = 2χ 4- ω, then
μ5 < 2χ + ω + 1. Since p* = μ5/μl9 the minimum adjacent to χ* in 3t*>
must satisfy p* > x* -f 1, we get μ5 > μ4 4- μλ = 3χ 4- ω + 1 > 2χ + ω
4- 1, a contradiction. D
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COROLLARY 4.4.1. // 0 t = 1 in (2.1), then θs > 4.

Proof. If θ4 > θx + 1, put ®* - (1/Θ4)@, θ* = Θ5/Θ4, ω* = 06/04,

χ * = ΘΊ/Θ4, p* = 0g/^4 B y Theorem 3.5, we have p* > ω* + 1; hence,

08 = 04ρ* > (θ1 + l)(ω* + 1) > 4. If θ4 < θι + 1, then 08 > «5 + 3 > 4

by the theorem. D

It follows from Corollary 4.4.1 that in ^ , we have

Π *Γ7) > 4 '
hence, from (2.1), we get

$ > 4l(i-i)/7j
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