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REGULARITY OF CAPILLARY SURFACES OVER
DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM

Consider the solutions of capillary surface equation with contact
angle boundary condition over domains with corners. It is known that if
the corner angle 2a satisfies 0 < 2a <« and a + y > 7/2 where
0 < y < w/2 is the contact angle, then solutions are regular. It is also
known that no regularity holds in case a + y < 7/2. In this paper we
show that solutions are still regular for the borderline case a + y = 7/2
at the corner.

It was proved by Concus and Finn in [1] that the behavior of a
capillary surface near a corner over a wedge can change discontinuously.
They proved that if the contact angle is y > 0 and the interior angle at the
corner is 2a, then all solutions for which a + y > #/2 are bounded near
the corner, while all solutions are unbounded if a + y < 7 /2. Later in [9],
Simon went further and investigated the regularity near the corner.

Let Q be a domain contained in B, = {x € R?||x| < R} for some
R > 0, such that 9Q consists of a circular arc of 9B, and two smooth
Jordan arcs intersecting at the origin. Each arc makes an angle a with the
positive x!-axis, so that the interior angle at the origin is 2a. See Figure 1.
Let u be a bounded function satisfying

divTu = H(x,u(x)) inQ

Tu = Du
0.1 -
(01) V1 +|Dul’
Tu - v = cosy on T = (32 —{0}) N B,

where H(x,t) is a locally bounded function in & XR, 7/2 >y > 0isa
constant angle and » is the unit outward normal of T'. If u is smooth in
(% —{0}) and if 7/2>a > 7/2 — v, then Simon [9] proved that u
actually extends to be a C! function in §. It is known that no regularity
holds if @ + y < /2. Our aim is to examine the borderline case a + y =
7/2. In this case, one cannot expect Du to be continuous or even
bounded in , as one can easily construct counterexamples. Note also that
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if 2a > o, then there are examples which show that 1 may be discontinu-
ous at the corner, see [S]. In this paper we want to prove the following
theorem:

THEOREM. Let u € C*( —{0}) N L®(R) be a solution of (0.1). If
o+ vy =m/2, then u and (Tu, =1/y1 + |Du|?) extend to be continuous
functions in Q with values in R and R® respectively.

Since H(x, t) is locally bounded in € XR and u € L®(Q), so we may
assume that u satisfies:
divTu=H in Q

(02) {Tu -v=cosy onT
for some bounded continuous function H = H(x) in .
1. Continuity of u at the corner. Let (0,a) € R X R = R® be any

point lying in the closure of the graph of u over 2.
Define v(x) = u(x) — a.

THEOREM 1.1. Under the above assumptions, we have

(1.1) lirr}) @ = —c0 wherex = (x!,x%) € R%.
x— X
xeQ
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Note that if x is close enough to the origin, we have x' > 0.
Therefore without loss of generality, we may assume that x' > 0 for all
x € Q.

Proof. Suppose that (1.1) is not true, then there exists a real number
M and a sequence of points x; € Q such that lim x;=0and

Jjooo )
v(x;)

Xj

(1.2) > M.

We want to get a contradiction from this. For this purpose we need
several lemmas.

With minor modifications, the proofs of Lemma 1.2-1.6 in the
following can be found in the literature. So we shall not prove them, but
only give the references. We state them here for the convenience of the
reader.

Let &= xj, then lim;_, ¢, = 0. Define v;(x)= v(e;x)/e;. Then
v,(x) satisfies:

1.3) divIy,=¢H inQ = {xeRzlejxeﬂ},
. Tv; - v; = cosy onI‘j={xER2{ejer“},

where v, is the unit outward normal of T;. Notice that v; € C*(Q, — {0})
N L*(Q;) for all j.

Let @, = lim,_ @ = {x € R}|x?| < (tana)x'}.

As shown in [9] (see also [3] and [10]), noting that ¢;H tend to zero
everywhere in Q_, and ¢, H are uniformly bounded, using the terminology

in [3] we have:

LEMMA 1.2. We can find a subsequence of v; which converges locally to a
generalized solution v in Q. of

(1.4) F(w) Efg V1 +|Dw|’ - cosyfaQ wdH,

where H, is the k-dimensional Hausdorff measure in R", k < n. That is to
say, if V. = {(x,t) € @, X R|t < v_(x)} is the subgraph of v, then for
any compact set K C R, and for any Caccioppoli set (set of locally finite
perimeter) E, such that sp(p, — @g) C K, we have

(1.5) Fe(V,,) < Fx(E)

where

(1.6) Fe(w)= ] | Doy | — cosy [ @ dH;,
(Q, XR)NK (3Q, XR)NK
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and where @, denotes the characteristic function of W.

A sequence of functions f; is said to converge locally to a function f
in a domain D, if the characteristic functions of the subgraphs of f;
converge almost everywhere to the characteristic function of the subgraph
of fin D X R.

Note that v, may take the value oo or — co.

Define
(1.7) P={xeQ,u(x)= oo}
(1.8) N={xeQ,v,(x)=—oo}.

As in [3] (see also [9, 10]), we know that P minimizes
(1.9) G(4)= [ 1Dg,| = cosy / g P

for Caccioppoli set 4 C Q. That is, for any compact set K C R?, and
any Caccioppoli set with spt(¢, — ¢,) C K, we have

(1.10) Gx(P)=[  |Dgp|—cosy[  @pdH, < Gi(4).
2,NK 3, NK
Similarly, N minimizes
(1.11) G'(4)= [ |De,|+cosy[ ¢,dH,.
2. 32,

We want to know the structure of P and N, and we have:

LemMA 1.3. If L € Q_ minimizes G(A) defined in (1.9), then L equals
to Q,, @ or some AOAB bounded by 3Q,, and x' = a for some a > 0. (See
Figure 2.)

The proof of the lemma is similar to the proof of Theorem 2.4 for the
case a + y > 7/2 in [10]. In that case, the conclusion is that L = Q_ or
@ . In our case, it is possible to have L = AOAB described in the lemma
because 2a + 2y = «. We shall omit the proof. Similarly we have:

LEMMA 1.4. If L minimizes G’( A) defined by (1.11), then L equals to
Q,, Bor Q, — AOAB for some AOAB described in Lemma 1.3.

Since P minimizes G(A) and N minimizes G’( 4), we conclude that
(1.12) P=9Q_, & or AOAB which is bounded by 32, and x' = a
for some a > 0.
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(113) N=Q_, & or Q, — AOA’B’ for some A0OA’B’ which is
bounded by 92, and x! = a’ for some a’ > 0.

It is not hard to see from the proof of Lemma 3.1 in [11] that the
following estimates are true. (See also [3].) Let V; be the subgraph of v;.

LEMMA 1.5. There exists r, > 0, C > 0 not depending on j such that for
all t € R, the following is true:
if |V;,(0,1)| > 0 for all r > O then |V/'(0,t)| > Cr? for
(1.14) all 0 < r < ry, where C,(x4, tp) = {(x,1) € R*||x — x|
<rand|t—t)<r}and V/(0,8) = C(0,2) — V.

LEMMA 1.6. For any 0 < 7, < 7, < 00, there exist positive integer j,
and positive numbers r, and C, such that for all j > j, and (x,t) € ;N
{x € R}7, < x' <)}, the following are true:
if WV, (x,0)]>0 forallr>0, then |V, (x,1)| = C,r?,
foral 0 <r<r;
ifV.(x,t)> 0 forallr > 0, then |V (x,1)| = C,r* for
al0<r<r,

where V, (x,1) = C(x,t) NV, and V/ (x, 1) = C,(x,1) — V..

(1.15)

(1.16)
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Notice that even though we do not have a similar result as (1.15) at
the corner (because of the fact that a + y = 7/2), we still have (1.14)
since cosy > 0, as one can see from the proof of Lemma 3.1 in [11].

Using the above lemmas, we can prove:

LEMMA 1.7. P = {x € Q_|v(x) = oo} is empty.

Proof. If P # @, then by Lemma 1.3, P = Q_ or some AOAB which
is bounded by 392, and x! = a for some a > 0. In any case, there is
7 > 0 such that
(117)  |¥.,(0,0)|=]|C(0,0) = ¥, |=0 forall0<r<F.

By Lemma 1.5 and the fact that (0,0) € R3 lies in the closure of the
graph of v; and that v, is regular in ©; — {0}, we have:

|V/,(0,0)|>0 forall 7 >0, andso
|V/,(0,0)|> Cr* forall0 <r < r,.

In particular, if we take r = min(7, 7,) > 0, then

|V/,0,0)| > Cre.

Let j — oo, noting that @y, converges to @, almost everywhere in
Q.. X R, we have

|V .(0,0)|> cr* > 0.

This contradicts (1.17). Therefore P must be empty and the lemma is
proved. O

LEMMA 18. IfN = {x € Q_|v,, = — o0}, then N = Q_.

Proof. By (1.13) and Lemma 1.7, if N # Q_, then there exists 7 > 0
such that v, is finite almost everywhere in {x € € |0 < x' < 7}. We
claim that there is a positive integer j, such that
(1.18) sup sup  |v,(x)]< 0.

JZJh xeg;
T/4<x'<37/4

Let j,, r;, and C; be the constants in Lemma 1.6 corresponding to
7, =7/4,and 1, = 37/4.

Since each v; is bounded in @ » if (1.18) is not true, then we can finda
subsequence of v;, which we also call v, and X, € @, 7/4 < X; < 371/4,
such that

}HEO |9(%) | = 0.
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Passing to a subsequence if necessary, we may assume that lim ,_, _ X,

j— o0 .I
= z = (Z}, z%) which is in Q_, with 7/4 < z! < 37/4, and such that
lim v;(x;) = o0, or
jmoo

lim v,(X;) = — 0.
j=oo

(1.19)

Suppose that lim;_, , v,(X;) = co. Then for any ¢ > 0, if j is large
enough, we have

|V,..(%;,¢)|> 0 forall r > 0.
Hence by (1.15), if j is large enough, we have
|V, (x,,t)|= Cr® forall0 <r<r.
Let j — oo, we get
[V (2,8)| = Cr? forall0<r<r.

Since ¢ can be arbitrarily large, this contradicts the fact that P = &.
Suppose that lim; , , v;(X;) = — co, then for any # <0, if j is large
enough, we have

|V (%;,t)|>0 forallr> 0.
By (1.16), we have
|V (%;,t)| = C,r® forall0 <r<r.
Take 7 = min(47,r,) > O and let j —> o0, we get
[V, (z,t)| = C7* forallz <O.

Since ¢ can be arbitrarily small, this contradicts the fact that v, is
finite almost everywherein {x € Q_ |0 < x! < 7}.

In any case, we have a contradiction. Therefore (1.18) is true.
By Theorem 3 in [7], v, is regular in D= {x € Q_|7/4 <x' <

3r/4} after modification by a set of measure zero. By the results of [6], we
have

111’1210 v;(x) = v(x)

1.20
(120 lim Dv,(x) = Dv(x)

j—o0

for x € D. Integrating divTy; = ¢,H over D, = {x € ,]0 < x' < 7/2},
using (1.3) and let n = (—1,0,0), we have, for j large enough:

To, - v;dH, = [ e;Hdx + f To, - ndH,.
D,

frjn{0<x‘<1/2} DN {x'=1/2}
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Since Tv; - »; = cosy on I}, and lim,_, , ¢,H = 0, if we let j —> oo,
we get

cosy - Hy(00, n{o<x' < 7}) = [ To,, - ndH,.
2 DN{x'=1/2}
But

. 1T = 1T

cosy Hl(aﬂmn{0<x < 2}) Hl(D ﬂ{x 2})
Since |Tv,, - ] < 1, we conclude that Tv, - 7 = 1 H,-almost everywhere
on D N {x' = 1/2}. This contradicts the fact that v is regular in D.
Hence we must have N = Q. a

REMARK. We may simplify the proof by using the fact that V_ is a
cone with vertex at the origin. But in the next section we shall use a
similar argument, so we do it this way.

Conclusion of the proof of Theorem 1.1. Using the fact that N = Q
and using (1.15) and similar method of proof of (1.18), we can conclude
that

lim sup o(x)= —oo.
J— o x€Q;
1<x'<3/2

In particular, we have

U\ X;
lim ( 1’)

J

x2
= lim v.(l, -il) = —o0.
This contradicts (1.2), and the proof of Theorem 1.1 is complete. O
Now we can prove the continuity of u.
THEOREM 1.9. u extends to be a continuous function in Q.

Proof. If this is not true, then there exist real numbers b > a, such
that (0,a) and (0,b) are both in the closure of the graph of u. Let
v = u — a. By Theorem 1.1, we have

limv—(—)f—)=—oo

x—0
x€ X
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In particular, there exists » > 0, such that if x € Q and |x| < r, then
v(x)/x! < 0. Therefore u(x) < a for such x. Since (0, b) also lies in the
closure of the graph of u, we can always find x € Q with 0 < |x| < r and
u(x) > a. This leads to contradiction and the theorem follows. O

2. Continuity of the normal. Let us proceed and examine the
continuity of the normal of the graph of u over . Since u is continuous
at the origin, by adding a constant to u, we may assume that #(0) = 0. u
still satisfies (0.2). We want to prove:

. -1
lim (Tu, ——) = (~-1,0,0).
28\ V1 +|Duf

Since u € C*(Q ~{0}), it is sufficient to prove that for any sequence
x; € @, converging to 0, we have

-1

y1 +IDu(xj)|2

First, we shall establish (2.1) for any sequence x; tending to the origin
non-tangentially to 9§2. More precisely, we assume that there is ¢ with
0 < ¢ < tana, such that x; = (x},x?) lies between the straight lines
x? = t(tana — €)x'.

(2.1) lim

j— oo

Tu(xj),

)= (-1,0,0).

THEOREM 2.1. Let x; = (x}, xf) € Q be a sequence of points approach-
ing the origin such that |x}| < (tana — €)x; for all j for some ¢ with
0 < ¢ < tana. Then (2.1) holds.

Proof. 1f we can prove that for any subsequence of x;, we can find a
subsequence of the subsequence such that (2.1) is true for that subse-
quence, then we are done.

Since every subsequence of x; also satisfies the assumptions of the
theorem, so we may assume that the subsequence is { x;} itself.

Since x} > 0 for all j, if we set ¢; = x] and define

1 1
u;(x) = ;;“(ij) - e—ju(xj),
then asin §1, u; satisfies:
divTuj =gH in Qj

(2.2) Tu;-v;=cosy onT,.
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Also if
%= (L x}/¢;) = (1, x}/x]),
then
(2.3) u;(x;) = 0.

We may also assume that

(24) lim ¥, =z=(1,22) € Q, with|z?| < tana —&.
J—

As in §1, we can find a subsequence of u s which we also call u,
converging locally to a generalized solution u,, of % (w) defined by (1.4).
Let

P={x€Q|u,(x)=+o0}
and
N={x€Qlu,(x)=—oo}.

As in §1, we know that P = Q_, @ or some AOA4B bounded by 9Q_
and x' = a for some a > 0; and N = Q_, & or @, — AOA’B’ for some
AOA’B’ bounded by 39, and x' = a’ for some a’ > 0.

Note that Lemma 1.6 is still true for the subgraph U, of u;. That is to
say for any 0 < 7, < 1, < oo, there exist a positive integer j, and positive
numbers r; and C; not depending on j such that for j > j, and for any
(x,1) € ;N {x € R*|7, < x' < 1,},(1.15) and (1.16) are still true if we
replace V; by U..

Suppose that @ — (P U N) # @, because of the structures of P
and N, there exist 0 < a < b < oo such that u is finite almost every-
wherein {x € @_|a < x! < b}. Using (1.15) and (1.16) as in the proof of
Lemma 1.8, we shall arrive at a contradiction.

Hence we must have @, = P U N.

Let U,, be the subgraph of u,. Since u;(x;) = 0 so (x;,0) belongs to
the boundary of U, Using (1. 15) (1.16), the fact that hm X, =2,
u, € C*(Q —{0}), and that ¢, converge to ¢, almost everywhere in
Q X R, we have:

(2.5) U, ,(2,0)] > C,r®, and |U.,(2,0)| = C;7?

forall0 <r <r. Hence P # @ and N # Q_. Combining this with the
fact that £ = P U N, we conclude that there is an a > 0 such that if
OAB is the triangle bounded by 92 and x' = g, then P = AOAB and
N=Q_— A04B.So U, = AOAB X R.
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In fact, we must have a = 1. Otherwise, as z = (1, z%), a < 1 will give
a contradiction to the first inequality of (2.5), while a > 1 will give a
contradiction to the second inequality of (2.5).

The inward normal of 3U,, at (z,0) € R® is (—1,0,0), and the inward
normal of 3U; at (X, u(X,)) is (Tu,(X;), -1/ ‘/1 + |Du,(X;)|?). Since
lim; , (X}, u;(X,)) = (2,0), so by Theorem 3 in [6], we have:

lim Tuj(k‘j), -1 -
j—)w( \/1 +|Duy(%,)|

From the definitions of u; and X » we conclude that

)= (~1,0,0).

-1

y1 +IDu(xj)|2

Finally, we consider the case when x; approaches the origin tangen-
tially along 9. We want to prove:

ind s

lim (Tu(xj), ) = (-1,0,0). m]

THEOREM 2.2. Under the above assumptions, (2.1) is still true, namely:

-1

V1 +|Du(x)|

Proof. As in Theorem 2.1, it is sufficient to prove that (2.1) is true for
a subsequence of x;.

Define u; and x; as in Theorem 2.1. We also assume that lim
= z = (1, z?) which lies in ©_, with z> = +tana.

We can extract a subsequence of u s which we also denote by u s such
that u; converges locally to a generalized solution of % (w) in Q.

Using similar method as in Theorem 2.1, we can prove that the
subgraph U, of u_ is AOAB X R for some AOAB bounded by 9 and
x! = 1. Up to this point, the proof is exactly the same as the proof in
Theorem 2.1. However, in this case z € 3, and we cannot apply the
results of [6]. So we need some modifications. Before we proceed further,
let us prove the following lemma.

lim
Jj— oo

Tu(xj)a

)= (1,00

j—*ooxj

LeEMMA 2.3. (a) Forany 0 < 7 < 7, < 1, we have
(2.6) lim inf u;(x)=oc0; and
jmw  xel,

n<xl<s
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(b) Foranyl < 7, < 1, < 00, we have

(2.7) lim sup u;(x)= —oo.
Jjooo xEﬂj
1'3<x'<'r4

Proof. We shall prove (a) only, because the proof of (b) is similar.

Suppose that (2.6) is not true. Since u; € c*(Q ; — {0}), therefore we
can find a real number M, a subsequence of u; (which we also call u))
and a sequence of points y; € ;, 1, < y; < 1, such that

u(y)< M.

We may also assume that lim =y e, Note that 7, <y’ <7,

By (1.16) as before, we have
U (3, M)| = Cyr?

joe Y

for all 0 <r<nr if j is large enough, where C,, and r; are positive
constants not depending on j. Now let j — oo, we have

UL (y.M)| > Cr® forall0 <r<r,.

This contradicts the fact that U, = AOAB X Rand that0 <1 <17, <1,
bearing in mind the definition of AOAB. The lemma is then proved. a

We now continue our proof of Theorem 2.2. By Lemma 2.3, since u;
is continuous in £; — {0}, there exists j, such that for every j > j, we can
find y; € 9Q; with u;(y;) =0 and lim, _, , y; = z.

Let Y, = (y;, u;(y)) = ();,0) € R3. By the results of [12], there exist
r,>0,C,>0and 1> a> 0 not depending on j such that if 5,(X) is
the unit inward normal of 3U; at the point X € 9U; N ; we have

(2.8) [, (X) = n,(D)| < Clx - X"

for any X, X belong to 3U; N @, and B (Y)) = { X € R||X - Y| <r,).

For any r,/2 > r > 0, use Lemma 2.3 again, we can find z, € &, and
€ with tana > & > 0 not depending on j such that if j is large enough, we
have

|22| < (tana - &)z}
u(z;)=0

lz;,—z| <r

lim z; = 1.

ind s

(2.9)
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=0 ?t4=uﬂ4wpq%m,z=um)md2ﬁ4@%um=
X

Thenlim; Y, = Z = lim, Xj If j is large enough, then we have

joo
X, - [ <n,
and
Z,- Y| <|Z,- | +|Z- Y| <r + Z <.
By (2.8) we obtain
(2.10) |nz—.X¢<QZ—iﬁ
Since lim; ,, z; = 1, and |z?| < (tana — €)z}, so by Theorem 3 of

[6], for any subsequence Z of Z;, we can always fmd a subsequence Z . of
Z such that hmj_,w‘nj(Z ) =(-1,0,0).

Thereforelim;_, ,1,(Z;) = (—1,0,0) =

Also, it is easy to see from (2.9) that

limsup | Z, - X’jl <r.
J—> 0
Let j — oo in (2.10), we then have
hmsupln -0 X)‘ < Gr-.
J— 0

Now let r — 0, we conclude that lim; _, |7 — nj()_(j)l = (. The proof

of Theorem 2.2 is then completed. a

Combining Theorems 2.1 and 2.2, we get

THEOREM. The unit normal vector (Tu, —1/ 1 + |Du|*) extends to be
continuous on Q. More precisely,

lim | Tu(x) 1

xexﬁ—:O{O} V1 +|Du(x)|2

Acknowledgment. 1 wish to thank Robert Finn and Brian White for
useful discussions.

= (~1,0,0).

REFERENCES

[1] P. Concus and R. Finn, Capillary free surfaces in a gravitational field, Acta Math.,
132 (1974), 207-223.

[2]1 R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ.
Math. J., 32 (1983), 439-460.



482

3]
[4]
(3]
(6]
(7
(8]
9
(10]
(11]

(12]

LUEN-FAI TAM

E. Giusti, Generalized solutions of mean curvature equations, Pacific J. Math., 88
(1980), 297-321.

, Minimal surfaces and functions of bounded variation. Notes on pure mathe-
matics. Australian National Univ., Canberra (1977).

N. J. Korevaar, On the behavior of a capillary surface at a re-entrant corner, Pacific J.
Math., 88 (1980), 379-385.

U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media
assegnata, Rend. Sem. Mat. Padova, 53 (1975), 53-68.

M. Miranda, Un principio di massimo forte per le frontiere minimali ecc., Rend. Sem.
Mat. Padova, 45 (1971), 355-366.

, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977),
313-322.

L. Simon, Regularity of capillary surfaces over domains with corners, Pacific J. Math.,
88 (1980), 363-377.

L.-F. Tam. The behavior of capillary surfaces as gravity tends to zero, to appear in
Comm. in Partial Differential Equations.

__, Existence criteria for capillary free surfaces without gravity, to appear in
Pacific J. Math.

1. Taylor, Boundary regularity for solutions to various capillarity and free boundary
problems, Comm. in Partial Differential Equations, 2 (1977), 323-357.

Received February 7, 1984.

PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907





