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FUNCTIONAL HILBERTIAN SUMS

HASKELL ROSENTHAL

A real Banach space is called a Functional Hilbertian Sum (FHS) if
it is isometric to the direct sum of Hilbert spaces of dimension at least
two via a one-unconditional basis. Various isometric permanence proper-
ties of Functional Hilbertian Sums are proved. Many of these results are
the real analogues of (and also imply) known theorems concerning
complex Banach spaces with one-unconditional (or "hyperorthogonal")
bases. For example, it is proved that a space is FHS if and only if it
equals the closed linear span of the ranges of its rank-two skew-Hermi-
tian operators. The complex analogue due to Kalton and Wood is as
follows: a complex Banach space has a one-unconditional basis provided
it equals the closed linear span of the ranges of its rank-one skew-Hermi-
tian operators. The isometries and skew-Hermitian operators on FHS
spaces are completely determined and FHS spaces are isometrically
classified. Skew-Hermitian operators on general real spaces with a
one-unconditional basis are also completely determined, using FHS
spaces in an essential manner. Various complementation results are
established, insuring that under certain circumstances, one-comple-
mented subspaces of spaces with one-unconditional bases are FHS
spaces. One of these yields the real analogue of (and also implies) the
theorem of Kalton and Wood that the family of complex Banach spaces
with one-unconditional bases is closed under contractive projections. In
the course of this investigation, several isometric invariants for real
Banach spaces are introduced. Many of these are natural analogues of
known invariants for complex spaces and include orthogonal projections,
well-embedded spaces, Hilbert components and B. Lie algebras.
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0. Introduction. Let Γ be a nonempty set and (Xa)aGγ a family of
nonzero Banach spaces. A Banach space B is said to be a functional
unconditional sum of the Xa

9s if there exists a normalized one-uncondi-
tional basis u = (wα)α<=r f°Γ s o m e Banach space U so that B is (linearly
isometric to) (ΣΓ Θ Xa)u\ the latter refers to the Banach space consisting
of all x = (x α ) Λ € Ξ Γ in UaeTXa with Σα€ΞΓll*Jlw« i n u u n d e r t h e n o r m

11*11 — l|Σ«erllxαllwαllί/ I n c a s e B *s r e a l a n ( l e a c h %a *s a r e a * Hubert
space of dimension at least equal to two, we call B a Functional
Hilbertian Sum and denote the class of such spaces by FHS. We shall
abuse English at times by using the terminology "B is FHS" to mean that
B belongs to FHS. (For complex spaces, one-unconditional bases are
called " hyperorthogonal bases" by some authors and, if normalized,
"orthonormal systems" by others. Also note that a separable Banach
space has a one-unconditional basis if and only if it is isometric to a
Banach sequence space with an absolute norm.) Throughout, "2?" shall
always refer to some real or complex nonzero Banach space. The Lie
algebra of B, denoted by 31(5), refers to the set of all operators T on B
with 3tef(Tb) = 0 for all b e B and / e δ * with f(b) = | |/ | | | |6 | | . We
refer to the members of 2ί(2?) as skew-Hermitian operators. "Operator"
means "bounded linear map" and "subspace" means "closed linear
submanifold."

If B is complex, we may define T e J?(B) to be Hermitian if iT is
skew-Hermitian. Many of our results are known for complex Banach
spaces and follow from the rather well developed theory of Hermitian
operators. Our focus is on the structure of real Banach spaces; hence we
emphasize the Lie algebra of skew-Hermitian operators. In section one, we
revew various equivalences and properties of 21(2?), including the fact
that this is indeed the Lie algebra of the group of isometries of B. The Lie
algebra of a Banach space was first formally introduced in [10], and
several basic properties were established there. (For basic results about Lie
groups and Lie algebras, see [5] or [15].)

We prove the following result in section three below:

THEOREM 1. Let B be real. The following are equivalent:
(a) B is a Functional Hilbertian Sum.
(b) B equals the closed linear span of its rank-two skew-Hermitian

operators.

This result is the real analogue of a theorem of Kalton and Wood [6]
concerning complex Banach spaces. Indeed, they show that a complex
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Banach space has a one-unconditional basis if (and only if) it is the closed
linear span of its rank-one skew-Hermitian operators. The relationship
between these two results is discussed in section three; note that a real
Banach space X equals BR for some complex space B with a one-uncon-
ditional basis if and only X is a functional unconditional sum of even-di-
mensional Hilbert spaces. (BR denotes B regarded as a real Banach
space.)

In section three, we completely classify the spaces in FHS up to
isometry and give a number of their isometric properties. To formulate
this classification, we present the following concept: Let U be a real
Banach space with a one-unconditional basis ( w α ) α e Γ Say that U is pure
if U has no rank-two skew-Hermitian operators; otherwise say that U is
impure. We show in Corollary 3.4 that U is impure if and only if there
exist a Φ β so that [ua, uβ] is the range of a skew-Hermitian operator T
on U; the kernel of T necessarily equals [K/ΪΓ-{<*,£}• We a * s o P r o v e *n

Theorem 3.11 that if U is pure, then U has no nonzero skew-Hermitian
operators. (Throughout, [A] denotes the closed linear span of the set A;
also if A = {aa: a e Γ}, we let [aa]τ = [A] = [aa] if Γ is understood.)
We may formulate the classification for separable spaces as follows: (for
this result only, let Γ = (1,2,..., n) for some positive integer n or

THEOREM 2. Let B be a separable FHS. There exists a pure separable U
with a normalized one-unconditional basis u = (Uj) and separable non-one-
dimensional Hilbert spaces (Hj) so that B is (isometric to) (ΣΓ Θ Hj)y.
The basis (Uj) and the Hfs are isometrically uniquely determined (up to
permutation). That is, if B is also isometric to (ΣΓ Θ Hj)B with (Vj) a
normalized one-unconditional basis for F, then Γ = Γ' and there exists a
one-one onto map σ: Γ -> Γ with (#σ(,)) isometrically equivalent to (Uj)
and H'a{j) isometric to Hj for allj.

Evidently this result yields in particular that FHS spaces have isomet-
rically unique unconditional bases, up to permutation. We also show in
section three that every one-unconditional basis splits into two pieces,
such that one spans an FHS space which "generates" the Lie algebra of
the space. That is, given (ua)aGT a one-unconditional basis for some real B,
there exist unique disjoint subsets I\ and Γ2 of Γ so that FH(i?) = [ w α ] α e Γ l

is FHS, and such that an operator T on B is skew-Hermitian if and only if
T\FH(B) is skew-Hermitian and T\Θ(FH(B)) = 0 where Φ(FH(B)) =
[ M α ] α e Γ , Moreover every skew-Hermitian operator on FH(2?) extends to
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one on B. We also give a complete description of the skew-Hermitian
operators and the group of isometries of an arbitrary FHS space. In
particular, we thus obtain a detailed description of the component of the
identity of the group of isometries of a finite-dimensional Banach space
with a one-unconditional basis.

It is evident that if B is complex with a one-unconditional basis, then
BR is a functional unconditional sum of two-dimensional Hubert spaces,
where BR denotes B regarded as a real Banach space. Our results then
yield the isometric classification of such complex spaces, as well as the
characterizations of their groups of isometries and Lie algebras. For
example, Theorem 2 holds as stated for arbitrary separable complex
spaces B with a one-unconditional basis, except that one simply deletes
the requirement that the Hubert spaces (Hj) be non-one-dimensional. The
characterizations of the isometries and Lie algebras of complex Banach
spaces with one-unconditional basis are known. They were established by
Schneider and Turner [11] for finite-dimensional complex spaces, and by
Fleming and Jameson in [3] and [4], for the separable infinite-dimensional
ones. (The generalization to spaces of arbitrary cardinality presents no
essential difficulties, and we present this in section three also.) Suppose B
is complex with a one-unconditional basis (u a ) v and let U denote the real
closed linear span of the wα's. An equivalence relation on the basis (ua)
was introduced in [11], for finite-dimensional spaces. It turns out that ua

is equivalent to uβ in B if and only if [ua, uβ] is the range of a rank-two
skew-Hermitian operator on U. We also note that functional uncondi-
tional decompositions of complex Hubert spaces are introduced in [3] and
termed there "//-decompositions." We mention these results for their
historical importance and to provide a guide for those familiar with them.
Our presentation below is however self-contained and formally indepen-
dent of these earlier results.

One of the open problems which motivated our work is the following
one: Suppose B has an unconditional basis and X is complemented in B.
Does X have an unconditional basis? It is easily seen that one may
assume B has a one-unconditional basis. For real spaces, the problem is
open even if it is assumed X is one-complemented; i.e., the range of a
contractive projection. It follows from the results in [6] (see [9]) that if X
is one-complemented in such a B with B complex, then X indeed has a
one-unconditional basis (over the complex numbers). We recover this
result here by proving a suitable analogue for FHS spaces B (see Theorem
3.15). We also prove that a real Banach space X has a one-unconditional
basis if (and only if) X is (isometric to) an orthogonally complemented
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subspace of an FHS space. (The concept of orthogonal complementation
is developed in section two; this has been previously studied for complex
spaces, but apparently not for real ones.)

We also complete here some investigations begun in [10]. A Banach
space is called Euclidean if it is isometric to a Hubert space. A real
Banach space B is called a rotation space if dim B > 3 and B is a
functional unconditional sum of a Hubert space and a one-dimensional
space.

THEOREM 3. Let B be real n-dimensional with n > 2.
(a) B is Euclidean if dim 21(5) > (n - \){n - 2)/2 {and then

dim2ί(£) = n(n - l)/2).
(b) B is a non-Euclidean rotation space if and only i f n > 3 and

dim 91(5) = (n - \){n - 2)/2.

Theorem 3(a) as well as the easy "only i f assertion in 3(b) were
established in [10]. We give a self-contained proof of Theorem 3 in section
two, as well as completing the classification of the Lie algebras of
four-dimensional spaces stated in [10].

The remainder of this work is divided in three sections. In section one
we introduce all the relevant concepts and recall results from [10]. We also
prove simple things about the concepts, which include orthogonality in
real Banach spaces, compatible norms, well-embedded Hubert spaces, and
Hubert components. (The latter notion was introduced for complex spaces
in [6] by Kalton and Wood; our development is substantially different.)
Section two contains deeper results characterizing well-embedded Hubert

. spaces and Hubert components. In particular, we establish the following
fundamental result in Theorem 2.3: distinct Hilbert components are orthog-
onal provided one of them is at least two-dimensional. Section three is
devoted to establishing various isometric properties of FHS spaces. For
example, the general version of Theorem 2 is given as Theorem 3.7; an
explicit description of the isometric classification of FHS spaces is given
in Theorem 3.14. The Lie algebra of an arbitrary space with one-uncondi-
tional basis is described in Theorem 3.8 and Corollary 3.11, while the
group of isometries of an FHS space is given by Theorem 3.12.

1. Preliminaries.
B. Lie algebras and compatible norms.
We begin by recalling some facts concerning the Lie algebra of a

general space B. Recall, 2ί(l?) denotes the (real linear) space of skew-
Hermitian operators on B; we let J(B) denote the set of linear surjective



422 HASKELL ROSENTHAL

isometries of B. J(B) is of course a topological group under the norm-
operator topology; if B is finite-dimensional, S(B) is a Lie group. <&(B)
denotes the space of operators on B.

THEOREM 1.1. Let T be an operator on B. The following are equivalent:
(a) T is skew-Hermitian.
(b) \\exT\\ < \ for all real x.
(c) exT is in S(B) for all real x.
(d) Tbelongs to the tangent space of J(B) at I.

For a proof, see Theorem 1.4 of [10]. If B is finite-dimensional, notice
that (d) shows that 21(2?) is precisely the Lie algebra of the Lie group
J{B). We recall also the following result ("projection" means "idempo-
tent operator"):

PROPOSITION 1.2. Let S and T be skew-Hermitian operators on B and
U in S(B). Let X be a subspace of B and P: B -» X a norm-one projection
from B onto X.

{2L)U~1TU is skew-Hermitian.
(b) 2ί(i?) is a weak-operator-closed real linear space.
(c) TS — ST is skew-Hermitian.
(d) PT\Xisin

This is Proposition 1.5 of [10]. In general, for an operator Ton B and
P as above, the operator PT\X is called the compression of T to X (via
P). Thus (d) asserts that if T is skew-Hermitian on B, the compression of
T to X is skew-Hermitian on X. For operators S and T on 2?, we define
the Lie bracket of S and Γ, [S, Γ], by [5, T] = ST - TS.. Thus (c) shows
91 (B) is closed under Lie-brackets.

We recall now the concept of a compatible norm. Let B with norm
|| || be isomorphic to Hubert space and || \\H be an equivalent norm on
B. || || and || | |^ are called compatible (|| \\H is a compatible norm on
B) if

(a) H is Euclidean (where H = (B, || \\H))
and

Note that if B is already Euclidean, then for any x and y in B with
||x| | = ||j>|| there i s a Γ G / ( ΰ ) with Tx = Ty. Hence if || || and || \\H

are compatible, || \\H is a nonzero multiple of || || (and so \\ - \\H and
|| || are compatible since then J(B) =
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We let En denote the standard real Euclidean space Rn endowed with
the norm | |JC| |^ = (Σ^xf)^2 for x = (xv...,xn) in RM. We identify
&(En) with all n X n matrices of real numbers. Thus S(En) = Θn, the
real orthogonal group. We also let SΘn denote the special orthogonal
group, that is, the members of Θn of determinant one. son denotes the
family of all n X n skew-symmetric real matrices; of course son = 2l(isw),
the Lie algebra of SΘn. Subsets A and B of R" are called orthogonally
equivalent if there is a U e Θn with U*A U= B. The following result is
established in Propositions 3.3 and 3.4 of [10] (most of the assertions
follow easily from 1.1 and 1.2).

PROPOSITION 1.3. Let B be given.
(a) Suppose \\-\\H is a compatible norm on B and ( , ) is an inner

product on B inducing || ||^. Then 21(5) c 2 ί ( # ) ; T e 2 ί ( # ) if and only
if T* = -T (where "Γ*" denotes the Hubert space adjoint of T.)

(b) If B is finite-dimensional, B has a compatible norm.
(c) Suppose || ||x and \\ ||2 are norms on Rw, each compatible with

II ' II εn

 s u c h that Bι and B2 are isometric, where Bt = (Rπ, || H,.) for i = 1,
2. Then 2ί(J5x) and %(B2) are orthogonally equivalent.

We now introduce some concepts and recall Robbin's elegant char-
acterization of the Lie algebra of a finite-dimensional Banach space.

Let B be given and 3ί a subset of J?(B). 21 is said to be saturated if
wherever T ^Se(B) is such that Tx e 3lx for all x e β , then T e ST.
(Six = [Ax: A e 2ί}.) 31 is said to be a Lie algebra if 21 is a real linear
space closed under Lie brackets; i.e., [S, T] is in 2ί whenever 5 and T are
in 2ί. 21 is said to be a 2?. L/e algebra if there is an equivalent norm || ||'
on 5 so that 2ί = 2ί(J?') where B' = (5, || |Γ). ("B." stands for"Banach."
We don't explictly use the terminology "Banach Lie algebra" since this is
already commonly employed in a more general context.) It is evident that
any B. Lie algebra is a saturated Lie algebra. The following result yields
the appropriate converse for finite-dimensional spaces.

THEOREM 1.4. Le* n be a positive integer, B an n-dimensional real space
and 21 a subset of ^(B). Then the following are equivalent:

(a) 2ί is a B. Lie algebra.
(b) 2ί is a saturated Lie algebra such that {eA: A e 21} is a compact

group.
(c) 21 is saturated and the Lie algebra of a compact group of automor-

phisms of B.
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Moreover if B = Rn and 91 is a B. Lie algebra with 91 c son, there is a

norm \\ ||' on Rn with || ||' and \\ \\E compatible so that 9t = 91(5') with

B' = (R", || IΓ).

Notice that if G is a compact group of automorphisms of 5, then
defining \\b\\' = supgeG | |g6||, G is a compact group of isometries of
Br = (5, || II'); since there is then a compatible norm on 5', we have that
G is isomorphic to a closed subgroup of Θn and is hence a Lie group; we
may define the Lie algebra of G to be the tangent space to G at /. We
also observe that Robbin's result easily generalizes to the complex case as
noted in [8]: Suppose B is a complex ^-dimensional space and 91 c JS?(5).
Then 9ί is a B. Lie algebra if and only if 9t is a B. Lie algebra of BR such
that il e 9ί.

The equivalences (a) <=> (c) are due to Robbin [8] ((a) => (b) follows
from rather deep results in the classical theory of Lie groups). The final
statement is somewhat of an improvement of the result stated as Theorem
3.9 in [10], so we sketch its proof here.

We first recall the following elementary fact: If R is a positive
definite matrix and U and V are orthogonal matrices with R~ιUR = V,
then [ί/, R] = 0 so U = V. (For a proof, see the argument for Theorem
3.4(b) in [10].) It then follows immediately that the same is true for
skew-symmetric matrices; that is,

(1) RιSR= T and S,T<ΞS0n,

R positive definite implies [S, R] = 0 so S = T.

Indeed, simply apply the result to Ux = exS and Vx = exT for all real JC,
then differentiate and set x = 0.

Now suppose 91 c sΘn is a B. Lie algebra and let || || be a norm on
R" with 9ί = 9ί(5) with B = (R", || ||). Choose || ||r a norm on R" with
|| 11^ and || ||' compatible and B' isometric to B where B' = (Rw, || ||').
Let T: B -> Br be a linear isometry. Then evidently

(2) 21(5) = Γ-^ί^OΓ.

Now choose U orthogonal and R positive definite with T = UR. Then (1)
and (2) yield that

(3) 91(5) = U*%(B')U.

Finally define || - ||" on R" by ||JC||" = \\Ux\\' for all J C E R " and set
B" = (Rw, || |Γ). Then || ||" and || | | ^ are compatible and (3) yields that
91 = 91(5"), completing the proof.
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Let us say that Banach spaces B and B' are Lie-equivalent if there

exists a surjective isomorphism T: B -> B' with 2ί(5) = T~ι%{B')T. If B

and 5 ' are each R" with respective norms compatible with || H^, the

above proof shows that B and B' are Lie-equivalent if and only if %(B)

and 91(1?') are orthogonally equivalent. Evidently this equivalence relation

is thus an isometric classifying invariant and the problem thus presents

itself: classify all n-dimensional Banach spaces up to Lie-equivalence. We

discuss the solution for dimensions up to four at the end of section two.

Orthogonal decompositions.

We pass now to the concept of orthogonal complements in Banach

spaces.

DEFINITION. Let B be real or complex with X and Y subspaces of B. Y

is said to be an orthogonal complement of X if X Λ Y = B and if for all

x <Ξ X, y e Y and scalars a and β with \a\ = \β\ = 1, ||JC + j ; | | = ||αjc +

βy\l

Now suppose Y is an orthogonal complement of X. It follows easily

from the definition that then both X and Y must be closed. We shall

prove momentarily that Y is then unique; hence we may refer to Y as the

orthogonal complement of X. We shall also refer to the projection P with

range X and kernel Y as the orthogonal projection onto X. Note that

| | P | | = 1, and | |/ - P | | < 1. We shall denote Y by Θ(X). Evidently then

X = 0 (Θ( X)). We also note in passing that in the definition of orthogonal

complement, it suffices to take a = 1, β arbitrary. We say that X is

orthogonally complemented if X has an orthogonal complement. It is evident

that if B is a Hubert space and Y is an orthogonal complement of X, then

Y is the Hilbert-space orthogonal complement of X.

PROPOSITION 1.5. Suppose B has a compatible Euclidean norm \\ \\H

and X is a subspace with an orthogonal complement Y. Then Y is the

orthogonal complement ofXin the Hilbert space (B, || | |^) = H.

Proof. For each scalar β with | β | = 1, define Uβ: B -* B by

Uβ(x + y) = x + βy for all x e X and y <= Y. Evidently Uβ e J(B) for

all such /?, hence Uβ e J(H). The conclusion now follows immediately.

Our next result yields the uniqueness of orthogonal complements.

PROPOSITION 1.6. Let Xv X,, Yl9 Y2 be subspaces of B so that Yt is an

orthogonal complement for Xi for i = 1, 2 and Xλ c X2. Then YλΏ Y2.
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Proof. It suffices to prove this for real Banach spaces, since if Y is a
"complex" orthogonal complement for X, Y is a "real" orthogonal
complement. Define then isometries Uf. B -> B by Ut{x + j>) = x — j ; for
all JC e JST,. and y e Y); also define P, = (l^ + /)/2 for i = 1, 2. It is
evident that P, is a projection onto Xt with null space Yj; also Lf2 = / for
i = l, 2. It is also noteworthy that our assertion is equivalent to the
assertion that Pλ and P2 commute (or that Uλ and U2 commute). Suppose
it were false that Yλ D Y2. We could then choose a b e Y2 with P^ό) Φ 0.
Now let Z = [b,Px(b)]. Then Z is invariant under both Px and P2;
indeed, P^Z) = [Pχ(&)] = P2(Z) Since Z is (at most) two-dimensional,
it has a compatible Euclidean norm, whence it follows that since Z is
invariant under both Ux and U2, UX\Z and U2\Z commute. Or put another
way, P,|Z is simply the orthogonal projection of Z onto [Pι(b)] in the
Euclidean norm for i = 1, 2. Hence PX |Z = P 2 |Z which is absurd since
Pxb Φ 0 while P2b = 0.

It is evident that if X c Y are subspaces of B with X orthogonally
complemented in 2?, then X is orthogonally complemented in Y and then
its orthogonal complement relative to Y is simply Θ(X) Π Y. Moreover
&(X) Π Y is orthogonally complemented in B, by X + (9(7). It is not
true in general that X orthogonally complemented in Y and Y orthogo-
nally complemented in B implies X orthogonally complemented in B\ we
shall note certain special cases later, where this occurs. A final bit of
terminology: say that subspaces X and Y of B are orthogonal if Θ( X) and
Θ(Y) both exist with X c Θ(Y) (equivalently, Y c Θ(X)). More generally,
a family of subspaces is called orthogonal if distinct subspaces in the
family are orthogonal. We note that if Xv..., Xn are orthogonal sub-
spaces of B, then Xλ + + Xn is orthogonally complemented with

We pass now to the concepts of unconditional and functional uncon-
ditional decompositions.

DEFINITION. Let (Xa)a€=A be a family of nonzero closed linear
subspaces of a real or complex Banach space X such that [Xa]a^A = X.
(Xa) is called a one-unconditional (resp. functional unconditional) decom-
position of X if for all «, al9..., an distinct members of Λ and x/? x\ in
Xa so that there are scalars ai with lαj = 1 and JC = aixi (resp. so that
IKII = IK II) for all i, ||Σ*=1xz |l = lP7-i*il|. K W . E A are given elements
of X, (xa)a<=A 1S a one-unconditional basis of ^ if ([*J)α«=Λ ^s a

one-unconditional decomposition of X
Evidently ( I J α e Λ is a functional unconditional decomposition of X

precisely when for any x = ΣaGAxa, the norm of x is a function of the



FUNCTIONAL HILBERTIAN SUMS 427

norms of the xa's. We recall that [ΛΓJ α e Λ is called an unconditional
decomposition of X if for all x in X, there is a unique family ( x α ) α € Ξ Λ

with xa e Xa for all a and Σa(=τxa converging unconditionally to x.

(This means, l iπi φ Σ α G F Λ: α = x, where © is the set of all finite subsets of
Γ directed by inclusion. Equivalently, countably many of the xa% say JCΛI,

x f t 2 , . . . are nonzero and for all permutations σ of N9 Σxaa converges to
x.) It is well known that if [Xa]a€ΞA is a n unconditional decomposition of
X, then X can be renormed so that (Xa)a<=A is a one-unconditional
decomposition.

We omit the proof of the following simple but basic result.

PROPOSITION 1.7. Let X, ( X a ) a e A be nonzero Banach spaces.

(a) Suppose Xa c X for all a and [Xa]aGA = X. Then (Xa) is a

one-unconditional decomposition of X if and only if Xa is orthogonal to Xβ

for all a Φ β (and then for all a, Θ(Xa) = [Xβ]βΦa\
(b) X is a functional unconditional sum of (Xa) α e Λ if and only if there

exists a functional unconditional decomposition (X'a)a(ΞA °f X w*th Xa

isometric to X'a for all a.

Functional unconditional sums are defined in the introduction. In
view of 1.7(a), we also term one-unconditional decompositions orthogonal

decompositions. It is worth pointing out that if (Xa)a^A is a functional
unconditional decomposition of X, we may take arbitrary ua e Xa with
| |κ α | | = 1 for all a and set u = (wα)α<=Λ> U = [ w J α e Λ ; then X is canoni-
cally isometric to ( Σ Λ Θ Xa) u.

We next present a criterion which insures that a family of orthogo-
nally complemented subspaces have an orthogonally complemented closed
linear span. Recall that c0 denotes the Banach space of sequences vanish-
ing at infinity.

PROPOSITION 1.8. Let (Xa)a^D be a family of orthogonally comple-

mented subspaces of B, directed by inclusion. (That is, D is a directed set,

where for α, β in D, a < β if and only if Xa c Xβ.) Let X = [Xa]a&D and

assume c0 does not embed in X. Then X is orthogonally complemented with

We first draw an easy consequence.

COROLLARY 1.9. Let (Ya)aξzγbe an orthogonal family of subspaces of B

so that c0 does not embed in Y = [ y j α e Γ . Then Y is orthogonally comple-

mented with Θ(Y) = l \ e
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Proof. Let D be the family of all finite nonempty subsets of Γ,
directed by inclusion. For each F in D, let XF = Σa e F Ya\ now apply
Proposition 1.8.

Proof of 1.8. Let W = ΓiaeDΘ(Xa) and Z = X + JF. It is easily seen
that X is orthogonally complemented in Z with orthogonal complement
W. We must show Z = X. For each α in D, let PΛ be the orthogonal
projection onto Xa. Note that if a < /?, then PaPβ = P^Pα = Pa.

We prove the following claim:

(4) lim Pab exists for all bin B.

Once this is established, define P by Pb = limΛeDPαZ> for all b ^ B.
Then P is a projection with range X and W is clearly contained in its null
space. Suppose Pb = 0 yet ftί W. Choose a0 with b £ 0( XaQ)- Hence
Pab Φ 0. Now choose a > a0 with \\Pab\\ < \\Pab\\. But Pab = PαoPαZ>,
and | |PαJ| = 1, so ||Pαoό|| < ||Pβ6||, a contradiction.

To establish (4), we need only prove, fixing b in B, that (Pab)a<ΞD is
a Cauchy net. Were this false, we could choose 8 > 0 and aλ < a2 <
in D with ||(P - Pβ )b\\ > 8 for all j . For each j , let Yj =
(Pa - Pα ^ 5 (where P^ = 0 by definition). It follows that (Yj) is a
one-unconditional decomposition for its closed linear span, since in fact
the Yj's are orthogonal subspaces of B. Now setting ^ = (Pa - Pa _i)6
for all y, we have that Σ ^ = 1 ^ = Pαπ6, hence | | Σ ; = 1 ^ | | < ||6|ίfor all n.
Since c0 does not embed in X, the series converges (i.e., (Yj) is boundedly
complete), hence ||JΛ|| -> 0, a contradiction.

REMARK. Corollary 1.9 may be strengthened as follows: suppose
( 7 J α e Γ is an orthogonal family of subspaces of B with Y = ( Ύ J α e Γ

Suppose for any family (ya)aGΓ

 w ^ h ya e Ya for all α, c0 does not
embed in [ j α ] α e r Again Y is orthogonally complemented. However 1.8
and 1.9 fail in general, if no " c 0 " assumption is made. Indeed, let B = /°°
(the space of all bounded sequences of scalars) and let Xn= {g ^ l°°:
g(j) = 0 for all j > n). Then Xn is orthogonally complemented for all n.
If X = U ^ and 7 = ^ 4 - [1], then X = c0 is not orthogonally comple-
mented in Y and X is not complemented in B.

We conclude our discussion of orthogonality in establishing a result
connecting this with the Lie algebra of a Banach space. We call this result
the "Diagonalization Theorem." (This is a straightforward analogue of the
known result for complex Banach spaces [6].)
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THEOREM 1.10. Let (Xa)a€=A be a one-unconditional decomposition of
B with corresponding orthogonal projections (Pa)a<=A> an^ ^et T t>e skew-
Hermitian on B. Then Σa e Λ PaTPa converges unconditionally in the strong
operator topology to a skew-Hermitian operator S with \\S\\ < \\T\\.

It suffices to prove this for a real space B, for the real case implies the
complex one. We first prove the result when Λ has two elements. In other
words, if P is an orthogonal projection on B and Q = I — P, then
PTP 4- QTQ is skew-Hermitian. Since P is an orthogonal projection,
the operator U = P - Q belongs to J{B) and (P - Q)1 = P - Q;

hence (P - Q)T(P - Q) is skew-Hermitian (Proposition 1.2(a)). Also
T = (P + Q)T(P 4 Q) is skew-Hermitian. Hence PTP 4 QTQ =

\[T 4- (P - Q)T(P - Q)] is skew-Hermitian. (This case was done for
motivation only.)

Next, suppose Λ has n elements, say Λ = (1 , . . . , « } . Let εl9..., en be
given with ε, = 4 1 for all i. Thus Pλ 4 +Pn = I and ελPλ

4- +εnPn is a self-inverse isometry of X, so again by Proposition

(5) ( β x Λ + + ε n P n ) T ( ε 1 P 1 +••• + ε n P n )

is skew-Hermitian. Expanding (5), we obtain

(6) PιTPι 4 - +PnTPn 4 Σ £iεjpiτpj

Since 2ί(2?) is a linear space, the average S of all operators of the form

(6), over all choices of signs ε = ( ε 1 ? . . . , εΛ), is skew-Hermitian. We have

that

S = PλTPλ 4 . . +PnTPn 4 Σ γn Σ WjPiTPj
iΦj Δ ε

where the second sum extends over all choices of signs. But for i Φ j ,

1 V z i

2" ε

 ι J h J

where rl9...9rn denote the first n Rademacher functions. Hence S =
PιTP1 4 . " +PnTPn is skew-Hermitian. This proof also showed that
||SΊ| < | |Γ| | . It thus follows incidentally that

P TP II < II Til

n-lirn-l\\ S IIi II •
Indeed, if Q = / - (Px 4 4P / ί _ 1 ) , then P1TP1 4 - +Pn_ιTPn_ι =
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Now to obtain Theorem 1.10, let D be the family of all finite
nonempty subsets of Λ, directed by inclusion. For each F ^ Z>, define
QF = / - Σa(ΞFPa, SF = Σa£FPaTPa + QFTQF, and TF = ΣasFPaTPa.

It follows that QFB U {Xa: a e F) is a one-unconditional decomposi-
tion of B and hence we have that SF is skew-Hermitian with

(8)

Now let X denote the linear span of the Xa's. We have easily that for any

(9) lim SF(b) = Urn TF(b)

exists. Since X is dense in 2?, (8) and (9) yield the existence of a unique
S e J£?(£) with | |S| | < | |Γ||and

Sb = Urn SF(b) = lim 7>(Z>) for all ftGί.
Fe/) FeZ)

Since 2ί(5) is closed in the strong operator topology, S is skew-Hermi-
tian, completing the proof.

REMARK. The argument for 1.10 also shows that if T is an arbitrary
operator on B, so is S = Σa^APaTPa and | |S| | < ||Γ||. This result, for the
case of one-unconditional bases, is due to A. E. Tong [13].

Well-embedded Hubert spaces and Hubert components.
Let X be a subspace of B. X is said to be well-embedded in B if there

is a subspace Y of B so that B = X + Y and for all x G X, y e 7, and
U e J^(JB), ||JC + j>|| = ||ί/x + j>||. It follows immediately that X is orthog-
onally complemented with Y = 0( X); thus y is uniquely determined. It
also follows that if Y is well-embedded in B and X is a subspace of 7
with X orthogonally complemented in Y, then X is orthogonally comple-
mented in B. X is said to be a well-embedded Hubert space if Jf is
Euclidean and well-embedded. Evidently any one-dimensional orthogo-
nally complemented subspace is thus a well-embedded Hubert space.
Finally, X is said to be a Hubert component of B if X is a maximal
nonzero well-embedded Hubert subspace.

REMARK. The concept of a well-embedded Hubert subspace is intro-
duced for complex spaces in [14]; that of a Hubert component in [6]. Our
definition is quite different from that in [6]; we will show the desired
equivalence later.

Our next result gives some simple equivalences to this concept.
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PROPOSITION 1.11. Let Xbe a nonzero Euclidean subspace ofB and Z a

subspace such that X Θ Z = B. Also assume dim X > 1 if B is real. The

following are equivalent:

(1) X is a well-embedded Hilbert subspace with Θ(X) = Z.

(2) For all JC, JC' in X and z in Z, if \\x\\ = ||x'|| then \\x + z\\ =

II*' + *ll-
(3) For all Γ e %{X\ Γ θ ϋ E %(B).

REMARK. B = X φ Z means 5 = X + Z and I Π Z = {0}. When
U = I Θ Z and ΓejS?(X), S e ^ Z ) , Γ Θ 5 is defined by Γ θ
5(x Φ z) = 7JC + Sz for all JC in AT and z in Z.

(1) ==> (3): Let Γ e 21 (X) and JC be a real number. Then
e*Γ e J{ X\ hence e*Γ θ J e */(J?). But of course exT Φ / = e*Γ where
f = T Φ 0, hence we obtain t e 2ί(B).

(3) => (2). Let JC and JC' in X with ||x|| = ||JC'|| and z G Z . W e may
assume of course that ||JC|| = 1. Now if dim X > 2, choose a two-dimen-
sional subspace Y of X with JC, x' e y. Then it follows that there is a
rank-two Te 2t(X) with Γ l c y such that Λ = x'. Since f = Γ θ 0
G 3t(5), ef e >( J ) , hence | |^ f(x + z)\\ = ||JC7 + z\\ and ^f(jc + z) = JC'
+ z. If J8 is complex and X is one-dimensional, let Ty = /> for ^ e X
Then Γ e 21(7). Choose 0, 0 < θ < 2π so that JC' = (cos0 + isinθ)x;
then έ?*Γjc = x' and so as before, ||JC + z\\ = ||x' + z\\.

(2) => (1). Let ί / G / ( I ) and fix x G I and z e Z. Then setting
JC' = ί/jc, we have that (U θ /)(x + z) = JC' 4- z and ||JC|| = ||JC'||, whence
\\(U Φ /)(x + z)| | = ||JC' + z||, so U θ / e

We may now easily prove the existence of Hilbert components.

THEOREM 1.12. Let X be a well-embedded Hilbert subspace of B. Then

there exists a Hilbert component ofB containing X.

Proof. If there does not exist a well-embedded Hilbert space Y D X
with dim Y > 2, the result is trivial. Otherwise, let % denote the family of
all well-embedded Hilbert subspaces Y of B with Y D X and dim Y > 2.
We order © by inclusion and apply Zorn's Lemma to show that % has a
maximal element. Let 9Ϊ be a nest in @. Thus, we may set 9ΐ = {Xa:
a G Λ} where for all a and β e Λ, 7α c 7̂  or Yβ c Ya and Ya is a
well-embedded Hilbert subspace of B containing X. Now let Y = Uα G Λ 7a.
Since the parallelogram identity holds on Y (or the polarization identity if
B is complex), we have that Y is Euclidean. In particular, c0 does not
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embed in Y. Then setting Z = C\a€£A&(Y), we have that Y is orthogonally
complemented by Z, by Proposition 1.8. Finally, we have that if x9 xf are
in Y and z is in Z, there is an a so that x9 x' are in 7α. Assuming
llxll = ||JC'||, since z e 0(Γα), we have that ||JC + z|| = ||JC' + z\\. It now
follows easily that the same conclusion holds for x9 x' in Y with
11*11 = II*ΊI> proving that Y is indeed a well-embedded Hubert subspace of
2?, by Proposition 1.11.

REMARK. Our proof is valid over both real and complex spaces.
However the complex-case is easily deduced from the real one alone.
Indeed, suppose B is a complex Banach space and if is a Hubert
component of BR. We claim that then H is a Hubert component of B.
Evidently it suffices to prove that H is well-embedded in B. In fact it is
enough to show that Θ(H) is a complex orthogonal complement for H.
Define T on BR by Tb = ib for all ί ) £ ί . Then T is skew-Hermitian on
2?R; hence (as we show in Proposition 3.2), TH c H. Thus H is a
subspace of B. Since Γ G / ( 5 R ) , we have that TΘ{H) = O{TH) =
Θ(H) by uniqueness of orthogonal complements. Thus both H
and Θ(H) are complex linear and of course H is a complex Hubert
space. Finally, if a and β are real numbers with a2 + β 2 = 1,
then (α/ + βT)\H eS(H) and hence for all AGff and y e 0 ( # ) ,
||(α/ + βΓ)A + j>|| = ||A + j>|| since i/ is well-embedded; but this shows
H is orthogonally complemented by Θ(H) in B, completing the argu-
ment.

2. Characterizations of well-embedded Hubert subspaces and the struc-
ture of Hubert components. To first summarize the main results of this
section, we introduce the following natural isometric invariant:

DEFINITION. Let X be a subspace ofB and set

: TB C χ}9

W(X9B)}.

Evidently Ψ(X,B) is a Lie subalgebra of St(5) and by the Hahn-
Banach theorem, %\X) is a Lie subalgebra of %{X). Moreover the
natural map Γ-> T\X from Ψ(X9 B) to W(X) is clearly real-linear,
norm-contractive and suqective. We claim that this map is one-one (hence
W(X) and W(X, B) are isomorphic vector spaces). Indeed, suppose
T e 31 \X9 B) and T\X = 0. Then T2 = 0. Hence for any real x, exT =
/ + xT. But He^ll = 1 since T is skew-Hermitian. Were T Φ 0,

+ x7| | = oo, a contradiction.
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The next three theorems constitute the main results of section two.

THEOREM 2.1. Let B be real, n > 2 and X an n-dimensional subspace
ofB.

(a) // dim2ί'(X) > (n - l)(n - 2)/2, then X is a well-embedded
Hilbert subspace of B (and then dim W(X) = n(n - l)/2).

(b) dim 91'(X) = (n - l)(n - 2)/2 if and only if X contains an n - 1-
dimensional well-embedded Hilbert subspace but X is not itself a well-em-
bedded Hilbert space.

Theorem 3 of the introduction follows easily from this result, upon
setting B = X. Indeed, (a) is immediate. To see (b), suppose dim 21 (X) =
(n - \)(n — 2)/2. Then 2.1(b) implies X is non-Euclidean, yet has a
codimension-one well-embedded Hilbert subspace Y. Hence the orthogo-
nal complement Z of Y is one-dimensional; it follows from Proposition
1.11 that X is a functional unconditional sum of Y and Z, hence X is a
non-Euclidean rotation space. It follows immediately from the Diago-
nalization Theorem 1.10 that if X is a non-Euclidean rotation
space, dim2ί(X) > (n - l)(n - 2)/2; hence by part (a), dim2ί(X) =
(n — \)(n — 2)/2. (However we shall find it more convenient to
establish Theorem 3 of the Introduction first.)

Evidently if X is a well-embedded Hilbert subspace of J?, then every
subspace Y of X is also a well-embedded Hilbert subspace of B. In
particular, every one-dimensional subspace of X is orthogonally comple-
mented in B. The next result shows the converse is true.

THEOREM 2.2. Suppose X is a subspace of B and every one-dimensional
subspace of X is orthogonally complemented in B. Then X is a well-embedded
Hilbert subspace ofB.

REMARKS. 1. If X = B itself, this gives a (known) isometric characteri-
zation of Hilbert space. (For real B, this is due to Saint-Raymond; for
complex 2?, to Berkson.)

2. The result is known for complex B (although not stated in this
way) and due to Kalton and Wood [6]. Indeed, assuming B is complex,
suppose P is a projection on B. It follows from the equivalences in
Theorem 1.1 that P is an orthogonal projection if and only if P is
Hermitian (this result is due to Berkson [1]). It follows that if b is a
nonzero element of B, [b] is orthogonally complemented if and only if b is
in the range of a rank-one Hermitian operator on B; such elements
(together with 0) are termed Hermitian elements of B. Kalton and Wood
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term X a Hubert component provided X is a maximal linear subspace of
the Hermitian elements. It is then proved in [6] that Hubert components
are well-embedded Hubert subspaces; hence our definition is equivalent
to that in [6] for complex Banach spaces, taking Theorem 1.12 into
account. Notice that we may also phrase 2.2 for complex B as: X is a
well-embedded Hubert subspace provided every nonzero element is in the
range of a rank-one skew-Hermitian operator on B.

3. Suppose B is real and X is a well-embedded Hubert subspace of B
of dimension at least 2. We then have that &(X)= W, where W =
Π{kerT:TB c X, r a n k Γ = 2 and Γ €=»(£)}. (Throughout, kerΓ =
{b: Tb = 0} = null space T.) Indeed, suppose first T e 3ί( B\ rank T = 2,
TB c X. Since TB is well-embedded, it is orthogonally complemented,
and Θ(TB) D Θ(X) since TB c X. But Θ(TB) = kerΓ; this proves that
&( X) c W. Next let w G ί f , and choose ^ G l , z G ί ) ( I ) with w = x Θ
z. If x # 0, choose a rank-two member T of 91(5) with X G Γ 5 C I

(possible since X is well-embedded). It follows of course that Tx Φ 0.
Since Θ(X) c Θ{TB) = kerΓ as already shown, Tz = 0, whence Tw Φ 0,
contradicting the definition of W. Moreover suppose Y is a subspace of B
with dim Y > 2. ΓAe# Y «• Λ well-embedded Hubert space if (and only if)

every element of Y is in the range of a rank-two member of the Lie algebra of

B. Indeed, suppose x e TB with Γ e $L(B) and T rank-two. Theorem
2.1(a) applied to TB itself shows that TB is a well-embedded Hubert
space, hence [x] is orthogonally complemented, so this result follows from
Theorem 2.2.

THEOREM 2.3. Let Hx and H2 be distinct Hilbert components of a real B

with Hλ of dimension at least two. Then Hλ and H2 are orthogonal.

It follows immediately from our remark at the end of section one that
Hilbert components of a complex Banach space are orthogonal. This
result is proved in [6].

The classification under Lie-equivalence of real Banach spaces of
dimension up to four is easily completed using Theorem 3 of the Introduc-
tion and standard results in the theory of Lie groups; this is given at the
end of this section.

Lie algebra characterizations of rotation spaces and well-embedded

Euclidean spaces.

We now begin the detailed work of establishing the three theorems
stated above. We first give the proof of the simplest possible case of
Theorem 2.1(a). This allows us to set up notation and intuition for the
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following arguments (although we won't use this simplest case explicitly in
the sequel). Thus, suppose B is real and Γ G 21(2?) is rank-two; set
X = TB and Z = ker T. We claim that X is a well-embedded Hubert space
with orthogonal complement Z.

L e t u s i n t r o d u c e t h e fo l lowing n o t a t i o n : D e f i n e 2 x 2 m a t r i c e s R o

a n d i ? ( 0 ) f o r r e a l 0 b y

- 1 ] and

Of course i? oG.so 2; 1?(0) e S02 and !?(#) is simply the operation of
rotating counter-clockwise by 0-radians. A computation yields that

(11) eΘR» = R(θ)

(cf. Lemma 2.2 of [10] for a more general result). Now let T be as above
and choose a compatible Euclidean norm || | | £ on X. Since then T\X e
%(X, || || E), we have that the matrix for T with respect to an orthonor-
mal basis for X equals cR0 for some c Φ 0. Assume without loss of
generality that c = 1. Since e*Γ e ,/(£) for all 0, we obtain by (11) that
|| | |^ and || || are proportional on X, so X is Euclidean. Since T\X is
invertible, we have that B = ^ Φ Z. It then follows by Proposition 1.11
that X is well-embedded.

The next somewhat technical result allows us to generalize the above
reasoning to arbitrary finite-dimensional spaces. It establishes the rela-
tionship between 21 '(X) and %'{X,B) for finite-dimensional X<z B. (If
X and Z are subspaces of B, we write Y = X Θ Z if Y is a subspace; (i.e.,
a closed linear submanifold,) a n d l Π Z = { 0 } 5 X + Z = 7.)

LEMMA 2.4. Let X be a finite-dimensional subspace of B. There exists a
subspace Z with X Θ Z = B so that for all S e %(X), S e 9ί'(X) */αm/
only if S® 0 e 2Γ(*,5).

Before giving the proof, let us see how this yields the natural char-
acterization of well-embedded Euclidean spaces of finite dimension.

COROLLARY 2.5. Let X be an n-dimensional subspace of B with n > 2
and assume B is real. X is a well-embedded Hubert subspace if and only if

= n(n-

Proof. One direction is trivial in virtue of the fact that dimso^ =
n(n - l)/2. Now suppose dim 9ί'(X) = n(n - l)/2 and choose Z as in
Lemma 2.4; also let || | | £ be a compatible Euclidean norm on X. Fix x0

in X with ||xo | | = 1 and assume without loss of generality that also
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\\xo\\E = 1. Now Ψ(X) c 9ί(£) by Proposition 1.3, where E =
(X,\\ \\E). Since dim %(E) = n(n - l)/2, 9Γ( X) = 9t(£). Suppose x e
£> 11*11 E = l By Λe argument preceding Lemma 2.4, we may choose a
rank-2 T in 9l(£) with Λ o = x. But e Γ e ./(£), hence ||JC|| = 1, proving
that Jf is Euclidean. Now Proposition 1.11 yields that X is well-em-
bedded.

We pass now to the proof of Lemma 2.4. Of course it suffices to prove
the "only i f assertion, the other one being trivial. For each T in
%'(X, B% kerΓ is of finite co-dimension, hence Z" = Π{kerΓ: T <Ξ
91'(X, B)} is a subspace of finite co-dimension in B. (Recall that 91'(X9 B)
is isomoφhic to 9ί'(Λr) a finite-dimensional space.) It follows that we may
choose a finite-dimensional space X' Ώ X and a subspace Z' of Z" with
Γ θ Z ' = 5. (Let Z' be a complementary subspace to X Π Z" in Z";
A" θ Z' is then of finite co-dimension, so choose X' appropriately.) We
thus have that

(12) ker T D Z' for all Γ G 9l'(X, B).

Now choose || \\E a compatible norm on X\ let y be the orthogonal
complement to X in X' with respect to || | | £ and finally set Z = 7 θ Z'.
Now suppose TtΞψ{X,B). Then 7 Ί * ' e 9l(*, X'). Since Γ|X' e
2ί(^'> II II E)» it follows by properties of skew-Hermitian operators on
Hubert space that T\X' = T\X Θ 0 (with respect to the decomposition
Γ = I Θ y). Thus by (12), T= T\X θ 0 (with respect to the decom-
position B = X Φ Z).

For the concepts involved in the next result, see Theorem 1.4 and the
preceding discussion.

PROPOSITION 2.6. Let X be a finite-dimensional subspace of B. Then

91'(X) is a B. Lie algebra.

Proof. Choose Z as in Lemma 2.4 and let G' = {U e >(J f ) : t/ θ /

e J(B)} (direct sums refer to the decomposition B = X θ Z). Then G'

is a closed subgroup of J(X\ hence is a compact Lie group; it follows

moreover from Lemma 2.4 that 9Γ(Λr) equals the tangent space to G' at

/, hence 9ί'(Λr) is the Lie algebra of G'. By Theorem 1.4, we now need

only show that 9Γ = 91'(X) is saturated. (If B is complex, it's trivial that

U\X e 91'.) Let T e &(X), and suppose Tx e 9ί'x for all J C G I NOW

let b e i? with 6 = Λ: + z, x e X, z e Z. Then ( Γ Φ 0)6 = Ax for some

>4 e 9Γ; that is, (Γ φ 0)(Z>) = (yl θ 0)(6). By Lemma 2.4, i Φ O e 91(5).

Since 9ί(5) is saturated, Γ θ O e 9t(5), whence T e 91'.
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We pass now to the proof of Theorem 2.1. In fact, it suffices to prove
this for the case where X = B itself. Suppose we have done this. Again, let
X and B as in the statement of 2.1. For part (a), suppose dim 3Γ( X) >
(n - \)(n - 2)/2. Since Ψ(X) is a B. Lie algebra, we have that
dim 3t'(X) = n(n - l)/2 and hence X is a well-embedded Hubert space
by Corollary 2.5. For part (b), suppose dim3l'(*) = (n - \){n - 2)/2.
Now choose Z as in Lemma 2.4 and choose 7 a well-embedded Hubert
subspace of X of dimension n - 1 (again using the fact that 31 \X) is a
5. Lie algebra). But then if W is the orthogonal complement of 7 in X,
we have that for any T e 31(7), f e 31(5), where 7?> = Ty if Z> = y + w
+ z with y & Y, w & W and z e Z. Indeed, the set of such t 's equals
3Γ(X). We have thus shown 31(7) = 3ί'(7), so 7 is well-embedded by
Corollary 2.5. (The converse assertion in 2.1(b) is trivial by part (a) and
2.5.)

We are thus reduced to proving Theorem 3 of the Introduction. Part
(a) was established in Theorem 3.2 of [10]. We prefer to give a new proof,
making use of basic results in Lie groups. Both parts are proved by
induction; part (a) is already established for n = 2 while part (b) follows
easily for n = 3 from our observations preceding Lemma 2.4 (this case is
also established in [6]). We first consider part (a); assume n > 3 and the
assertion proved for spaces of smaller dimension. We may of course
assume that B = (Rπ, || ||) with || || and || \\En compatible (recall that
|| || E denotes the usual Euclidean norm and En = (Rw, || \\En)). Let G be
the component of the identity of J(B).

We thus have that G is a compact subgroup of S0n and our
assumptions yield that

(13) dimG = άim%{B) > (* ~ *)(» ~ 2 ) .

Now fix x0 in Sn_x = {x e Rn. \\χ\\En = 1} and let H = {g <Ξ G: g(x0)
= x0). Let Y = x£ (i.e., 7 is the orthogonal complement of [JC0] with
respect to the Euclidean norm). Since H is a set of orthogonal matrices, 7
is invariant under H. Hence if h e H and y e 7, h(x0 + y) = x0 + h(y).
It follows that the Lie algebra to H at / equals 3Γ(7, B) = 3ί'(7) Θ 0
with respect to the decomposition B = 7 θ [JC0]. Now set W = Gx0. It
follows that W is a compact connected submanifold of Sn_v We then
claim:

(14) άimW=n - 1.

(Here as in (13), "dim" refers to topological dimension.) Once (14) is
established, we complete the argument as follows: W must have non-
empty interior (relative to Sn_λ) by a standard result in topology. But if



438 HASKELL ROSENTHAL

U c W is a nonempty open set, so is G U = W, whence W is an open
and closed subset of Sn_v Since Sn_λ is connected, W = Sn_v It follows
that || || is a multiple of |) | | ^ and hence B is Euclidean.

Thus to complete the proof, we may assume that dimGx0 Φ n - 1 for
all x0 in Sn_1 and argue to a contradiction. Now since W c Sn_v

dimW < n - 2. But by the theory of Lie groups (cf. [5] or [15]),

(15) dim W = dimG - dim H.

Hence we deduce that

Since dim// = dim31'(Γ) and 31 \Y) is a B. Lie algebra, we have by
induction hypothesis that Y is a well-embedded Hubert subspace of B.
This proves that any codimension-one subspace of B is a well-embedded
Euclidean subspace. Then if (ev..., en) is the usual basis, Y = [e2, •••,£„]
is well-embedded and so is X = [ev e2]. We may assume without loss of
generality that Hê l = 1. Let Z = [e 3 , . . . , eJ, z & Z and x = aex + fte2

for some scalars α and 6. Then

|| JC + z || = I II x \eλ + z I since X is well-embedded

= II II * Iki + IIz 11̂ 2 II s i n c e ^ i s well-embedded

= (||x|| + ||z| | ) since X is Euclidean.

Evidently we have proved B is Euclidean (so of course (14) holds after
all).

We prove (b) of Theorem 3 by the same method. The case n = 3
follows easily from our discussion of the simplest case of 2.1(a). Now
assume n > 3 and the result proved for spaces of smaller dimension;
assume then B is w-dimensional and dim 31(2?) = (H — l)(n — 2)/2. (The
same assumptions regarding En and B are in force.) Let G be as above
and for each x0 in Sn_v let Hx0 = { g e G:g(x0) = x0}. If Yx0 = XQ"1 >
the argument in part (a) showed that

(16) dim 3I'(yjc0) = dim Hx0 = dimG - dimWx0

where Wx0 = Gx0; also dimG = (n — l)(n — 2)/2 by assumption.
We now claim that

(17) ( w 2 ) ( w 3 )



FUNCTIONAL HILBERTIAN SUMS 439

Indeed, were this false, we obtain by (16) that

.. „, (n - l)(n - 2 ) (n - 2){n - 3 )
άιmWx0 > - ^ - - ^ ~ L = /? - 2.

Hence dimM ĵc0 = w - 1, so W3c0 = S ^ by our argument above. Thus
we obtain || || is a multiple of || \\E as before, so B is Euclidean. But
then dim %{B) = w(/ι - l)/2, a contradiction.

Now suppose dim Hx^ > (Λ — 2)(/z - 3)/2. Since 7x0 is an n - 1-
dimensional space, we thus obtain by (16) that Yx0 is a well-embedded
Euclidean subspace by part (a) of Theorem 2.3 (which is now established)
and hence in particular dim %'(Yx0) = (n - \)(n — 2)/2. Then of course
W{Yx0) = %(B) and (b) is estabUshed.

We are now reduced to proving that there exists an x 0 with dim Hx0

> (n — 2)(n — 3)/2. If this were false, then by (17), we would have that
dim Hx0 = (n - 2)(n - 3)/2 for all x0 in Sn_v This is equivalent to

(is) ( 2 ) ( 3 )

for all n — 1-dimensional subspaces 7 of B.
But now it follows by induction hypothesis that any such 7 contains a

Hubert subspace of dimension n - 2, well-embedded in 7, since W(Y) is
a B. Lie algebra. Fix 7 and suppose Z is such a subspace. Then if
Xx = Yx and X2=

z 7 Π Z x , ^ and Jf2 are one-dimensional spaces
with Xx θ X2 φ Z = B and for any Γ J G 217(7) if and only if there is
a n S e 9ί(Z) so that T(x2 + z) = S(z) for all JC2 G X, and z <E Z. But
ΓXi = {0} if T G 2ί'(7). Hence 9ί'(7) = {0} θ 3ί(Z) with respect to the
decomposition X Φ Z of J5, where X = Zx φ X2. Hence 2t(Z) = %\Z)
and so Z is well-embedded in B itself. (Put another way, 2Γ(7)|7 =
2Γ(Z, 7), hence 2ί'(Z, 5) = 9ί'(7, B) has dimension (« - 2)(Λ - 3)/2.)
Since « > 4 is assumed, dim Z > 2, so in fact B has a well-embedded
2'dimensional Hubert subspace as well. Thus we may choose an orthonor-
mal basis (el9 e2,.. -, en) for B so that [e1? e2] is a well-embedded Hubert
subspace. Let To G 2ί(5) with [eve2] = range Γo (so [e3^..,en] =
ker Γo). Let 7 =* (β2 + e 3 ) x . Let Z be a well-embedded Hubert subspace
of 7 of dimension « - 2. Evidently ex G Z. Hence if T = Z + [e2], Yf is
of dimension Λ - 1 and Γo G W(Y\ B\ TO £ 2ίr(Z, B). But since

(/i - 2)(n - 3) ^ d i m 2 ί ( z ) ^ d i m 3 ί , ( Z ) Λ ) >

we obtain

dim « ' ( r ) = dim 3ί ' ( r , 5) > - ^ " " 2 ^ " 3 ) ,
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a contradiction. (Note that in fact this argument is "constructive;" the last
part actually produces the desired n — 1-dimensional well-embedded Hu-
bert subspace as either Y'or Y = (e2 + e3) -1.)

We now begin the proof of Theorem 2.2. The following simple result
proves useful.

LEMMA 2.7. Let X be a finite-dimensional subspace of B and let
% x = [B' :B' is a finite-dimensional subspace of B with X a B'}.

(a) Suppose X is orthogonally complemented in all B' in g x . Then X is
orthogonally complemented in B.

(b) Suppose X is Euclidean and well-embedded in all B' in %x. Then X
is well-embedded in B.

Proof. Assume B is infinite-dimensional. For each Br in g^, let
0(X\Br) denote the orthogonal complement of X in Bf. Then by unique-
ness of orthogonal complements, we have that if Bγ c B2 belong to %X9

Θ(X\Bλ) = Θ(X\B2) Π Bv Now define Z by

(19) Z = \J{0(X\B'):B'G%x}.

It follows that Z is a linear submanifold of B with X Π Z = {0} and
X + Z dense in B. But in fact X + Z = B, for if b e 5, then b e X +
0( Λ]ΛΓ + [6]). I f j c G l a n d z e Z , we have that ||JC + az\\ = \\x + z|| for
any scalar a with |α| = 1. But then the same is true for z e Z and X G I
Hence Z = Z is the orthogonal complement of X. Part (b) of Lemma 2.7
now follows immediately upon using criterion (2) of Proposition 1.11.

We are now prepared for the proof of Theorem 2.2. The complex case
is proved in [6], so we restrict to the real case. (Actually the complex case
follows, with some elementary reasoning, from the real case.) We also note
the following simple consequence of Proposition 1.8: If every finite-dimen-
sional subspace ofXis a well-embedded Hilbert subspace, so is X.

Indeed, if Z = {\{Θ{X')\ X' is a finite-dimensional subspace of X},
then Z = Θ( X); X is Euclidean by the parallelogram identity and hence
well-embedded by Proposition 1.11. To prove Theorem 2.2, by Lemma 2.7
and the above it suffices to prove the special case of finite-dimensional B.
Thus, fix B finite-dimensional and assume X is a subspace with every
one-dimensional subspace of X orthogonally complemented in B. We
may then assume B = (Rπ, || ||) with || H^ compatible. Suppose dimX
= k > 2. Let us first show that every 2-dimensional subspace of X is
well-embedded. Let Xo be a 2-dimensional subspace; for each x e Xo

with ||JC|| = 1, let Px be the orthogonal projection onto [x] and set
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Ux = 2PX - 1. Then UX^J(B) and UXXO c Jf0. Thus ( / ^ G ^ f F e
,/(!?): Fĵ o"1- = I\X<f}. (Here ^ is the orthogonal complement of Xo.)
Thus G' is an infinite closed group, since UXΦ Ux, if x Φ x'. In fact,
G'\X0 is an infinite closed subgroup of S(X0, || \\En) whence G'\X0 D JO

where ./0 denotes the component of the identity of J{X0, || | | £ n ) . It
follows that there is a nonzero T in the tangent space to G' at /, and of
course this T is rank-two Hermitian with range Xo, so Xo is a well-em-
bedded Hubert subspace. (Of course this argument is quite elementary; no
general ideas from Lie groups are really used.) Let {ev...,en} be an
orthonormal basis for En so that X = [el9..., ek]. For each 1 < i Φ j < ky

let Rέj be the operator such that RiJei = ej9 R^ej = -et and RiJeι = 0
for all / Φ i or / Then Ri} G 91'(^X hence

dim 8Γ(*) > fc^2"" ^ = dim[i?/7:1 < i <j < k]

(cf. (22) of [10]). Thus X is well-embedded by Corollary 2.5.

Orthogonality of Hubert components.
We now present the proof of Theorem 2.3. The main step is given by

the following result:

LEMMA 2.8. Let B be a real Banach space, X a nonzero well-embedded
Hilbert subspace of B, and T a rank-two member of 91 (JS). Then either
TB c X, TB c Θ{X\ or there exists a well-embedded Hilbert subspace Y
with XC.Y.

Proof. Suppose the first two possibilities don't occur. We must exhibit
Y.

Let Z = Θ(X) and P be the natural orthogonal projection onto X;
that is, X= PBy Z = kerP = QB where Q = / - P.

Suppose first X is one-dimensional. If X c TB, the result is trivial, so
suppose X <t TB. We now claim that Y = TB + X is a well-embedded
three-dimensional Hilbert space. Let || | |^ be a compatible norm on Y
and {eve2,e3} an orthonormal basis for Y with respect to || \\H, with
TB = [eve2]. Thus Te3 = 0. Let x0 be a nonzero element of X; letting
V = Θ(X), define 1/ on B by C/(x + *;) = x - ϋ for x G JT and ϋ G F.
Thus ί/ G J(B\ hence ί/Fί/ G 9ί(B). Now if Z o = V Π 7, then Z o is
orthogonal to X relative to Y and we have Y — X Θ Zo. It follows that Y
is invariant under U and since TB c 7, we have that UTU(B) = UT(B)
c y. Evidently Γ |7 and UTU\Y both belong to %'(Y). We claim these
operators are linearly independent. To see this, we merely need to see that
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UTUe3 Φ 0. Since Te3 = 0, the linear independence follows. Let Ue3 =
aex + be2 + ce3 for some scalars a, b and c. We claim that aeλ + be2 Φ 0.
Were this false, we would have Ue3 = ce3. Now the only eigenvalues of
U\Y are ± 1 , and X equals the eigenspace for + 1 , Z o the eigenspace for
- 1 . Were c = 1, e3 e X, but we assumed that X £ 0(Γ£). Were c = - 1 ,
then e3 e Z o , but since x 0 is in the orthogonal complement of Zo, x 0 is
in the orthgonal complement of [e3]; i.e., x0 is in [eve2] = range Γ, a
contradiction. Thus TUe3 = T(aeι + be2) Φ 0, so UTUe3 Φ 0. Hence
since dim 9Γ(y) > 2, y is a 3-dimensional well-embedded Hubert space
by Theorem 2.1.

We now assume dim X > 2 and set

Zo = QTB.

Evidently we have that 1 < dim Z o < 2.

Case 1. Dim Z o = 1.
We shall prove that Y = X Θ Z o is a well-embedded Hubert space.

Choose Λ: in Λ̂  and z nonzero in Z o so that w = z + JC is in the range of
T. Then if w' is in the range of Γ, w' = αz + x' for some scalar # and JC'
in X It follows that we may choose a nonzero x' in the range of T with
x' in X. Thus, ΓB = [x',w]. Suppose now that x' and x are linearly
independent. Then choose S e 91(2?) with [JC', X] = range 5, which is
possible since X is well-embedded. It follows that S and T are linearly
independent members of 3Γ([x, x', z], 2?), whence [x, x', z] is well-em-
bedded; hence there is a Γ' e 9ί(£) of rank two with T'B = [x\ z]. If x
and x' are dependent, this is also true, for then T works. Now choose v in
X with x' and Ϊ; independent (possible since dim X > 2). Choose S ^
91(1?) with [x', t;] = S(B); we again obtain that [x\ v, z] is well-embedded
since S and T" are linearly independent members of 9ί'([x', υ9 x], B). But
obviously any one-dimensional subspace of Y is a subspace of [x\ υ, z]
for some choice of υ, so by Theorem 2.2, Y is well-embedded.

2. dim Z o = 2.
Choose z, z' linearly independent members of Z o and x, x' in X so

that x # 0 and ΓJ5 = [w,w'] where w = x + z and M/ = x' + z'. (We
cannot have both x and x1 zero, for then 77? c Θ(X) contradicting our
assumptions.) Then [x] is orthogonally complemented in B since X is a
well-embedded Hubert subspace. It follows that since z e 0([x]), w = x
+ z ί 0([JC]); hence Γ5 <£ Θ([x]). Thus by our proof for the case "dim X
= 1," we obtain that [w,w', x] is a well-embedded Hubert subspace.
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Hence there is a V in 2ί(£) with T{B) = [w, x] = [x, z\ Thus dimQT'B
= 1 so we have reduced to case 1 and the proof is complete.

We are now prepared for the proof of Theorem 2.3. Let Hx and H2

be as in its statement. It suffices to show that H2 c Θ(HX). Our work so
far shows that Θ(HX) = Γ^kerΓ: T e 2ί(£), T is rank 2 and TB c Hx).
(See the third remark following the statement of Theorem 2.2 above.)
Thus if H2 <£ &(HX), we could choose a rank-2 skew-Hermitian operator
T on B with TB c Hx yet H2 <£ ker Γ. This shows TB <£ Θ(H2). Indeed,
TB c Φ(H2) implies 0(7Ή) D H2 but 0(ΓJ3) = kerΓ. Hence by Lemma
2.8, TB c H2. Of course this shows Hx Π # 2 is nonempty (in fact
dim Hx Π H2> 2). Now choose x nonzero in Hx Π H2 and y & H2 ~ Hv

(There must be such a j> since Hx and # 2

 a r e distinct, so H2 <£ Hv)
Choose S e %(B) with [x, y] = range 5 (possible since [x, j ] is well-em-
bedded in H2 and hence in B). Now evidently SB <£ Hv But in fact S is
invertible on [x, y], hence SJC # 0, so Hx <t ker55 that is SB <£ ΘiHJ.
Thus by Lemma 2.8, Hx could not be a Hubert component. This con-
tradiction completes the proof of 2.3.

Lie-classification of spaces of low dimension.

We conclude this section with some remarks concerning the Lie-clas-
sification problem. Theorem 2.1 and standard results about Lie groups
lead easily to the Lie-classification of real Banach spaces of dimension up
to four. Indeed, the only case not covered by Theorem 2.1 is where B is
four-dimensional and dim 21(2?) = 2. We then claim that there is a
complex two-dimensional non-Euclidean space Z with a normalized one-
unconditional basis (uvu2) so that B is isometric to Z R (where Z R

denotes Z regarded as a real Banach space). Assuming B = (R4, || ||)
with || ||£4 and || || compatible, we obtain that 21 (B) is orthogonally
equivalent to 5 0 2 θ 5 0 2 . To prove the claim, let B have the above
representation and let G denote the component of the identity oi J>(B).
Then G is a two-dimensional compact connected Lie group. By the known
structure of such objects, G must be commutative and in fact isomorphic
to SΘ2 X SΘ2 = T 2, the two-dimensional torus. Moreover the isomor-
phism from T 2 onto G is then a representation of T 2 in SO4 and hence
must be reducible. We thus in fact obtain two-dimensional orthogonal
subspaces X and Y with G = G\X θ G\Y. It follows that both X and Y
are Euclidean and in fact </( B) =S(X)Φ J{ 7). Thus, X and Y are each
well-embedded; it now follows easily that B has the stated structure, since
we obtain that B is a functional unconditional sum of X and Y. Moreover
we have that 2ί(£) = 2l(JT) φ %(Y) and of course %{X) and 2t(Y) are
both orthogonally equivalent to so 2.
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In fact, we see that such a B gives the simplest possible example of a
non-Euclidean FHS, for X and Y are the Hubert components of B. It is
moreover easily seen that the basis (w1? u2) for the corresponding complex
space Z is essentially unique. Indeed, we shall in fact show in the next
section that if U is an isometry of Z, there exist complex numbers αz of
modulus 1 and a permutation σ of (1,2) so that U{ut) = α,Mσ(/). (This also
follows immediately from the results in [6].)

It is possible to give an elementary proof of the above structural
result, without passing through the theory of Lie groups. Here is the
argument.

It is easily seen that if A is a nonzero 2 x 2 matrix, then

(20) A and R0A are linearly independent.

Indeed, otherwise R0A = cA for some c implies R\A = -A = cR0A =
c2A so c2 = - 1 , a contradiction.

Now assume 2ί(l?) is two-dimensional. Once it is proved that 21(2?)
has a rank-two element, we may choose an orthonormal basis so that

Ro 01

o oί
is (the matrix of) a member of 2t (with respect to this basis). It follows
that we may choose a second nonzero element T in 21 (B) with

T~*-A* <xR0

for some real a. Then

[G'T] U*R0 0 J
belongs to %(B): were A nonzero, G, T and [G, T] would be linearly
independent by (20), contradicting dim%(B) = 2. Thus Λ = 0, a Φ 0
and we have proved in fact 9l(B) = so2® so2, which easily implies the
existence of the desired complex Z.

Now suppose 21(5) has no rank-2 elements. We then reason to a
contradiction as follows. Again, we may choose one element

r \R° ° 1
in 21(5) with c > 0 say (with respect to a suitable basis). Next it follows
there is no element T in 21 with

τ-\
1 - \-A*
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For then A Φ 0, and again

r r τ i f ° ~R°A
[G>T] = [A*RQ o

implies G, T and [G, Γ] are linearly independent, by (21). It then follows
there is a second nonzero element T in 2t with

A* or
Then also A is invertible, since T cannot be rank-2. We now obtain

[ ( o o ) . 0
Hence there must be a real number t so that

(22) R0A - cAR0 = L4

(or else dim %{B) > 3). This implies AιR0A = cR0 + tl so

(23) -/ = (A'ιRQA)2 = (-c2 + t2)l + 2tcR0.

Now (23) implies t = 0 and c = 1 (since c > 0 was assumed). Thus
[G, T] = 0; that is, G and T commute. It follows there is an orthogonal
matrix U so that U*GU = G and

\ 0 1

for some real numbers α and 6. (This is the real-version of the fact that
commuting normal complex matrices can be simultaneously unitarily
diagonalized.) Since T Φ G, a Φ b, so in fact we deduce

Ro 0"

0 Oj

is in 31 after all, a contradiction.

REMARK. The following result follows from complexification and a
result of Vidav [14];1 alternatively, it would appear to follow from the
natural "Lie-group" generalization of the above argument:

Let B be a real In-dimensional Banach space. Then B is isometric to XR

for some complex n-dimensional space X with a one unconditional basis if
and only if 9ί( B) has a commutative n-dimensional subspace.

3. The isometric structure of FHS. Many of our results here follow in
a straightforward way from the machinery developed in the first two
sections. We organize the presentation as follows: we first prove Theorem
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1 of the introduction, and also give the structure of the span of the Hubert
components of a general Banach space. This leads to a natural splitting of
arbitrary one-unconditional bases with one part spanning the "FHS-part"
of the space. We next give the detailed isometric classification of FHS
spaces of arbitrary cardinality, as well as the characterizations of their
groups of isometries and Lie algebras. We proceed then to give some
complementation-permanence properties of FHS spaces and general spaces
with a one-unconditional basis. Unless explicitly stated otherwise, we shall
assume that B is a real nonzero Banach space. (Later on, we discuss the
relationship with our work and the previously known analogues for
complex Banach spaces.)

The Functional Hilbertian part of a Banach space and the structure of
spaces with a one-unconditional basis.

We first introduce some notation. Let J f= Jίf(B) denote the set of
Hubert components H of B with dim H > 2. (For any Banach space X,
dimX denotes the least cardinal corresponding to a subset of X ~ {0}
with linear span dense in X) When we set J^= { ί ί λ } λ e Γ we shall
assume that Hλ Φ Hx, if λ Φ λ'; i.e., this is simply a "distinct" indexing
of J>f. We set FH(£) = [H: H<ΞJίf] and call FH(B) the Functional
Hilbertian part of B. We set Θr(B) = { JC: [JC] is a Hubert component of B
OΓJC = 0}.

THEOREM 3.1. Let X = FH(JB). Then J(? is a functional unconditional

decomposition of X. X = [TB: T e %(B) with rankΓ = 2]. [JC] is orthogo-
nal to H for all H in Jtf* and x in Θr(B). If X is orthogonally complemented
in .β, then &(X) = f){Θ(H): H e JP}. X is orthogonally complemented in
B if either of the following occur:

(a) c 0 does not embed in X
or

(b) B = [JC: [JC] is orthogonally complemented in B].

REMARKS. (1) Notice that if B has a one-unconditional basis, then (b)
holds so X= FH(2?) is orthogonally complemented. Moreover if (b)
holds, then Θ(X) = [Θr{B)\. Indeed, if [x] is orthogonally complemented
in B, then either JC e Θr(B) OΓJCE FH(£) by the existence of Hubert
components. If (b) holds, then Theorem 3.1 yields that Θr(B) c Θ(X).

(2) Suppose {Hλ: λ e Γ ) = J(?(B). Then by Proposition 1.7 and
Theorem 3.1, we have that FH(B) is a functional unconditional sum of
{Hλ: A G Γ ) and hence we obtain Theorem 1 of the Introduction (the
implication (a) => (b) of Theorem 1 is trivial).
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Proof of Theorem 3.1. Let n > 1 and Hl9 ...,Hn be distinct members
of Jf. By Theorem 2.3, we have that the i//s are orthogonal; that is,
Hg c 0 ( # . ) for all i Φj. Let xl9 * ' , . . . , x n , x'n be given with ||xf.|| = \\x\\\
and xi9 x\ e if, for all i. For each /, since H{ is well-embedded, we may
choose U; e > ( £ ) with i^(j>) = 7 for all y e 0(# z ) and t^xf. = xf'. Let
U = ϋx C/2 . . . Un. Then evidently U^J(B) and U(Lxt) = ΣJC;.
Hence ||ΣΛ: || = ||Σx, ||, proving that Jf is a functional unconditional
decomposition of X If JC e // for some Jϊ e J^, since dim // > 2, there is
a Γ e 91(5) with rank T = 2 and x e Γΰ. If conversely Γ e 2t(J5) with
rank Γ = 2, Γ5 is a well-embedded 2-dimensional Hubert subspace of B,
hence by Theorem 1.12, there is an H e Jf7 with 7J5 C if. The second
assertion of 3.1 is thus established; the third one follows immediately
from Theorem 2.3. The fourth assertion and the first part of the fifth one
follow immediately from the preceding parts of 3.1 and Corollary 1.9. For
the final assertion, let Y = Π{ Φ(H): H e Jf}. If Z = X Θ 7, then X is
orthogonally complemented in Z with 7 the orthogonal complement, as
noted in our proof of Proposition 1.8. Now Θr{B) c 7 while if [x] is
orthogonally complemented in B and JC £ Θr(B), then there is an H e Jf
with x e i / a n d s o j c E l . Hence if (b) of 3.1 holds, Z = J5.

Our next result leads to a description of the group of isometries of an
FHS space as well as a simple characterization of its Lie algebra. It is
again a natural analogue of a known result for complex spaces [6].

PROPOSITION 3.2. Let H be a Hilberί component of B, T e 3ί(jB) and
U e «/(£). Then UH is a Hubert component. If dim H > 1, TH c H.

Proof. The first assertion is evident. To see the second one, let b e H.
We first show there is a δ > 0 so that exTb e // for all x with |JC| < δ.
Assume \\b\\ == 1 for convenience and define / by f(x) = \\b - exΓ&||.
Evidently / is continuous. Now by the first assertion and Theorem 2.3,
if exTb <£ //, then exTb e Θ(H\ whence /(JC) > ||6(| = 1. Since
Yιmx_+Of(x) = 0, the existence of 8 follows. But then it follows that
d(exTb)/dx e H for |JC| < δ; of course this equals TexTb, whence setting
x = 0, Tb e H.

REMARKS. (1) We do not know if this assertion remains true if one
assumes dim H = 1. Notice the assertion is then equivalent to: H c ker T.

(2) Actually, if dimH > 1, H is a Hubert component, and J0{B) is
the component of the identity of J(B\ then UH c H for all C/ e Λ ( 5 )
(so in particular e*7!/ c i/ for all real x and Γ e 21 (JS)). (We work with
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the norm-topology on S(B)) Indeed, let G = {U e S0(B): UH c H}.G
is evidently a closed subgroup of */0( J9). To see that G is open, fixb&H
with ||6|| = 1, let U e G and F e </0(5) with | | F - U\\ < 1. Then were
Vb £ H, Vb e ΘH; hence | | ( F - !/)(&) || > ||IΛ|| = 1. But \\{V - U){b)\\
< 1; hence V e G, so (? = *

COROLLARY 3.3. Le/ X = i Ή ( £ ) wu/ y = Π{Θ(H): H e
y are ZwfΛ invariant under J(B) and 21(5). Moreover if

then J^= {£/#: #

Proof. Let C/ e J^(J9) and T e 2ί(5). If H e j r , then UH (ΞJf since
dim IZff = dim H >2 and l/iϊ is a Hubert component. Thus evidently
ί/Jf c X. Hence also incidentally U~ιX c Jί, which shows that UX = X
Notice this also shows in fact ^f= {UH: H e Jί?}. Now suppose J / G 7 .
Then since U is a surjective isometry, we have that Uy e Θ(UH) for any
H ^3^\ hence again ί/y G y. (This also shows incidentally that UY = Y.)
Now let T e 2ί(5) and J G 7 . Then <>x7> e y for all real x. Thus
d(exTy)/dx\χ!=0=

: Ty belongs to y, since Y is closed. It follows im-
mediately from Proposition 3.2 that TX c X

REMARK. Suppose X = FH(B) is orthogonally complemented and
y = Θ{X). We obtain that */(£) = J{X) θ / ( y ) precisely when X and
y are well-embedded in B. Then also 31 (J5) = 31 (X) Φ %(Y). In particu-
lar, this occurs if B is a functional unconditional sum of X and y. (We
prove later that in any case, 3ί(£) = 3t(X) θ 3Γ(y).)

Recall from the Introduction that if U is a real Banach space with
normalized one-unconditional basis ( w γ ) γ e Γ , then U is said to be pure if
there are no rank-two skew-Hermitian operators on U. Otherwise, U is
called impure. We show in Theorem 3.6 that if U is pure, U has a trivial
Lie algebra. Our next result gives on the other hand a useful criterion
testing the impurity of a space 17.

COROLLARY 3.4. Let (w γ ) γ e r ^e a normalized one-unconditional basis
for U. Then U is impure if and only if there exist a Φ β in Γ so that
(ua, Uβ) is isometrically equivalent to the usual basis for Euclidean 2-dimen-
sional space and for all x and x' in [ua, uβ] with \\x\\ = ||JC'|| and all
y e [{uy: γ Φaorβ}}, \\x + y\\ = \\x'+ y\\.

Proof. If there exist such a and /?, [ua, uβ] is a well-embedded Hubert
subspace of U and hence the range of a rank-two skew-Hermitian
operator on U. Suppose that U is impure. Then there exists an H e Jίf(U);
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that is, H is a Hubert component with dim H > 2. If α G Γ , either
ua e Or{U) in which case [uj is orthogonal to H by Theorem 3.1, or
there exists an H' in Jtf with ua in if' (since [ua] is an orthogonally
complemented subspace). If H* = # , ua e //, otherwise [wα] is again
orthogonal to H. It follows that there exist a Φ β in Γ with ua, uβ both
in i/. Otherwise Θ( H) = ί/ or 0(i/) is of codimension one in U> both of
which are absurd. Then [wα, uβ] is a well-embedded Hubert subspace of
U. Since 0([wα,t^]) = [{uγ: y Φ a or β, γGΓ}] , α and β have the
desired properties.

Our argument for Corollary 3.4 easily yields the following result,
which in turn leads to a description of unconditional bases for FHS
spaces:

LEMMA 3.5. Let U have a normalized one-unconditional basis (wα)«er
and let H €= Jίf(U). Then H = [ua: aeΓandua<Ξ H].

Proof. Our argument for Corollary 3.4 showed that for every α, either
ua e H or [ua] is orthogonal to H. Hence if Hr = [ua: α G Γ and
ua e tf 1, then β?(H') = [M^: Ŵ  « H and β e Γ] c Θ(H); hence //' D # ,
so /f' = /f.

We may now describe the structure of a one-unconditional basis for a
general B. The basis splits into two pieces, one spanning FH(2?), the other
being the part in Θr(B). The FH-part is naturally partioned by the
Hubert components of FH(2Ϊ), i.e., by J(?(B). If one selects one basis
element out of each member of Jf (B) and combines these elements with
the Θr part, the result spans a pure space. Here is the precise result.

THEOREM 3.6. Assume Λ and Γ are disjoint {index) sets. Let (wa)«<=r
be a normalized one-unconditional basis for B9 {Hλ: λ e Λ} = J^(JB),

TΘr = {a: ua e Φr(B)}9 ΓFH = Γ ~ VΘn and for each λ e Λ , let Γλ = {a:
ua & Hλ) and α(λ) 6e a chosen element of Γλ.

(a) FH(B) = [ιιβ: α e ΓFH] ô ^(FH(5)) = [«β: α e Γ^].
(b) For each λ e Λ, //λ = [wα: α e Γλ]. The Tλ

9s are a partition of
ΓFH. That is, ΓF H = U λ e Λ Γ λ and Γλ n Γλ, = 0 z/ λ # V.

(c) I e / Γ = ΛU I V De/me ϋ γ /or γ e Γ &y yγ = iιβ ( γ ) i/ γ e A
andυγ = uy if y & TΘr; set F = [ ϋ y : y G Γ']. 7%^w Vis pure.

Proof. Set JΓ = [«α: α e ΓF H]. It follows by the preceding Lemma
and Theorem 3.1 that if H £ 3tf(B\ then H c X. For # = [wα: wα e i ϊ ]
but if a e Γ r̂, ua$ H since [wj is orthogonal to H. Hence we obtain
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that FH(JS) c X. But if a e ΓFH, there must be an H ^JίT(B) with
ua e H by the existence of Hubert components and the fact that [ua] is
not a Hubert component. Hence X a FH(B) so (a) follows, (b) follows
immediately from the preceding Lemma and the orthogonality of the
Hλ's. It remains to prove (c). For convenience, let Hy = [vγ] = [wα(γ)] for
all γ e Tφr. Then we have that {Hy: γ e Γ'} are orthogonal Hubert
components of B and of course B = [Hγ: γ e Γ']. Suppose (c) is false. By
Corollary 3.4 we may choose a Φ β in Γ' so that [va, vβ] is Euclidean and
well-embedded in V. We shall show that Ha + Hβ is a well-embedded
Hubert subspace of B, contradicting the fact that Ha and Hβ are Hubert
components. Let Γ = Γ' ~ {α, /?}. Let x, x' G i/α and y, yf G /ί^ with
||x 4- j | | = ||JC' + j 'H and let z e [// γ ] γ e Γ . First we have that there is an
isometry Uof B with £/JC = \\x\\υa and t/y = | | j | | ^ , hence

(24) l|χ + y|| = | | l l ^ l k 2 2 1 / 2

showing Ha + Hβ is Euclidean. Next, we may choose unique zλ G /fλ for
all λ e Γ so that z = Σ λ e Γ

z λ (the series converging unconditionally);
then we have that

H*+j> + z|| = || 11̂ 11̂  + 11̂ 11̂ + Σ Ik lk l

(since the i/γ's are a functional unconditional decomposition of B)

λeΛ

(since [υa, vβ] is well-embedded in U and ||JC + _y|| = \\x' + j^'ll)

Hl*'+/ + z||.
Thus ifα + i/^ is well-embedded, a contradiction. This completes the
proof of Theorem 3.6.

Our preceding results easily yield a complete isometric description of
FHS spaces. To give this, we introduce some notation: suppose B is a
functional unconditional sum of (Ya)aeT. Then formally, B <zT\a(ΞTYa.
For each a e Γ, let Y'a = [b e B: bβ = 0 for all β Φ α}. We refer to the
F^'s as the canonical images of the YJs in B. We say that B has an
isometrically unique one-unconditional basis if B has a normalized one-
unconditional basis (wα)« e Γ so that if {va}a(ΞA is a normalized one-un-
conditional basis for B, there is a bijection σ: Γ -> Λ with (yσ(α))
isometrically equivalent to ( t/ α ) α G Γ ; that is, there is a T ^J{B) with
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Tua = vσ(a) for all α e Γ , (Recall that for Hubert spaces X and X\
dim X = dim Xr if and only if X is isometric to X'.)

THEOREM 3.7. Lei B be FHS. Then B has an isometrically unique
one-unconditional basis. There exists a one-unconditional basis u = ( w α ) α e Γ

for a pure space U and Hubert spaces (Ha)a(=T with dimH a > 2 for all a
so that B is isometric to (ΣΓ Θ Ha)u. The H'a's are then the Hubert
components of B, where the H^s are the canonical images of the HJs in B,
The representation is unique in the following sense: if B is isometric to
(Σ Λ θ Hβ)u where υ = ( ϋ λ ) λ e Λ is a normalized one-unconditional basis for
some pure space and Hβ are Hilbert spaces for all β, then there is a bijection
σ: Γ -> Λ with (vσM) isometrically equivalent to (uy) and dim//σ ( γ ) =
dim Hy for all y e Γ .

Proof, The argument is a routine application of our preceding results.
However the generality of the result renders the notation somewhat
cumbersome.

Let (Ha)aGT be the Hilbert components of B and for each α e Γ , let
ua^Ha with | K | | = 1; set U=[ua]aGT and u = ( κ β ) β e Γ

 τ h e n

by Lemma 3.5, Theorem 3.1 and Theorem 3.6, B is isometric to
( Σ α e Γ θ Ha)u and U is pure. For each a e Γ, let (uaβ)β(ΞTa be a
complete orthonormal basis for Ha, where Ta == dim Ha, Then setting
Γ = U α G Γ {α} X Γα, (w γ ) γ e f is a normalized one-unconditional basis for
B. Suppose {vr)r^w is a normalized one-unconditional basis for B. For
each a e Γ, let Wa = {T: vr G Ha}. Since Hilbert spaces have isometri-
cally unique unconditional bases, it follows by Theorem 3.6 that there
exists a bijection σΛ: {α} X ΓΛ-> Wa with (vσ(aβ))β(EΓa isometrically
equivalent to (uaβ)βiΞTa. Since {Wa: α G Γ} is a disjoint partition of W,
σ = U α e Γ σ α is a bijection from Γ onto W. To see that ( w γ ) γ e Γ is
isometrically equivalent to ( # σ ( γ ) ) γ e Γ > let n be a positive integer, with
n < cardΓ, al9...9an distinct elements of Γ, and for each /, (βj)Jιi1

distinct elements of Ta (with mi < cardΓα). Let then scalars (c/y) be
given. We must show that

(25)

For each /, let

Σ Σ <«,#) Σ Σ cuua
/-I j -

hι = Σ cuuaβ; and hi =
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Then

for all i.

Since A, e Ha, there is an isometry U of B with Uhi = hi for all i, hence
(25) holds.

Finally set X = (ΣΛ φ Hβ)v and suppose T: B -> X is a surjective
isometry. Then it is evident that Γ induces a bijection 71 between Jίf(B)
and JP(Jf), where f ( # ) = TH for all H^Jf(B). Consequently for
each a e Γ there is a unique σ(α) in Λ with 7ΉΛ = H'σ{a) (where the Hjfs
are the canonical images of the Hβ's in X). The map σ thus defined is a
bijection from Γ onto Λ. Since T is an isometry, dim # σ ( α ) = dim Hf

a^ =
dim Ha for all a. Let us use the notation " ~ " to mean "is isometrically
equivalent to." We then have

since Γ is an isometry, X is a functional unconditional sum of [Hσ{a):
a e Γ} and 7wα is a normalized member of //£ ( β ) for all α e Γ. This
completes the proof.

Theorem 3.7 easily yields the corresponding classification theorem for
complex Banach spaces with a one-unconditional basis. The statement of
the result is precisely that of Theorem 3.7, except that "FHS" is replaced
by "complex with a one-unconditional basis," the words "with dim ifα >
2," are deleted, and the word "real" is inserted before "pure space CΛ"
Indeed, suppose B is a complex Banach space with a one-unconditional
basis and let X = BR. Then X and B have the same Hubert components
(see the discussion at the end of section one). Hence all Hubert compo-
nents of X are at least two-dimensional so X is FHS and Theorem 3.7
easily yieldds the complex result. Similar comments apply to our results
later on.

Our next result characterizes in particular the Lie algebras of FHS
spaces.

THEOREM 3.8. Assume that X = FH(2ϊ) is orthogonally complemented
with Y = Θ(FH(B)) and let JT(B)={Hy: y e Γ ) . Suppose for each
γ e Γ J y G 2t(#γ) andM = supγ||Γγ|| < oo. There is a unique T e 2t(J5)
with T\Hγ = Ty for all γ e Γ and Ty = 0 for ally e 7; moreover \\T\\ =
M. If conversely Γ G 3I(Λr), then THa c Ha for all α e Γ αwrf there is a
t e 3l( J?) wίώ f| JIT = Tand f\Y = 0.
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REMARK. Theorem 3.8 and Corollary 3.3 thus imply that δί(jB) ==
%{X) θ %'(Y). {%\X) is defined at the beginning of section two.) They
also show that if B = X, then %(B) = ( Σ φ »(#«)) r ( Γ ) .

Proof of 3.8. Suppose without loss of generality that M = 1. Since X
is a functional unconditional sum of the //α's, and X Φ Y = 5, it follows
easily that there is a T&J?(B) with the desired properties and also
| |Γ|X|| = 1. But then if x e X and j ; €= Y, ||Γ(JC + j ) | | = ||7JC|| < ||JC|| <
||JC 4- y\\ since JΓ θ Y is an orthogonal decomposition of B, hence ||Γ|| = 1.
To show that T e 2l(#), let x be a real number. We shall show that exT

is an isometry of B. Let n be a positive integer and α x , . . . , an distinct
members of Γ. Let 7] = Ta and i/, = Ha for all /. Since exT' G

i T /there is a ί̂  G J{B) with ti; - exT< on ///and t^ = / on Φ(fl"f.) for all /,
1 < i; < n. Then letting U = ί/i . . . Un, hi <= Hi for all / and y e F, we
have that

hence e x Γ is an isometry since U is an isometry. For the converse, we
have that if Γ G 21 (X), then Γ# α c # α for all a by Proposition 3.2.
Hence by the first part, we obtain the desired f. The remark follows from
Corollary 3.3 and the fact that 2ί(jB) is a linear space. Indeed, suppose
T €Ξ 3t(5). Then T\X e %{X) and T\Y €E 2ί'(7). But Γ|X Φ 0 G 9ί(J?)
by the theorem. Hence since Γ = Γ|ΛΓΘ Γ|7, 0 θ T\Y e 3l(β). Evi-
dently this shows also if S <= 3ί'(7), then O θ S e 2l(£); that is, 9ί(5)
- 21(^)0 9ί'(F).

We pass next to the proof that pure spaces have a trivial Lie algebra.
Together with the preceding result and Theorem 3.6 we then easily obtain
a complete description of the Lie algebra of a space with a one-uncondi-
tional basis. We first require a simple result characterizing those Lie
algebras with rank-two operators.

LEMMA 3.9. Let X and Y be orthogonally complemented one-dimen-

sional subspaces of B with X and Y orthogonal. Let P be the orthogonal

projection onto Z = X' + Y and T a skew-Hermitian operator on B. Then

PTP is skew-Hermitian.

REMARK. Thus if PTP is nonzero, Z is a two-dimensional well-em-
bedded Hubert space, so the lemma characterizes the existence of such a
Z.

Proof of 3.9. Let Pι be the orthogonal projection onto X and P2 the
orthogonal projection onto Y. Then PXP2 = P2PX = 0 and P = Px + P2.
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Since T is skew-Hermitian and the P,'s are rank-one, PiTPi = 0 for z = 1,
2. Letting Q = I - P, then QTQ = PXTPX + P2TP2 + β Γ β is skew-
Hermitian by the Diagonalization Theorem 1.10. But also PTP + QTQ is
skew-Hermitian by Theorem 1.10. Hence PTP is skew-Hermitian since
%{B) is a linear space.

REMARK. It is worth pointing out that the conclusion of 3.9 fails if the
first hypothesis is deleted. Indeed, as we observed in [10], Robbin's
theorem (see Theorem 1.4 above) yields that there is a four-dimensional
Banach space (R4, || ||) with a one-dimensional Lie algebra spanned by
T = Ro θ 2R0 (with respect to the usual orthonormal basis (el9...9e4)
for R4; the operators Ro and R(θ) are defined preceding Lemma 2.4 in
(10)). Then eπT = R(π) θ R(2π) = -/ Φ / is an isometry. This shows
that X is orthogonally complemented by Y in 2?, where X = [eλ,e2] and
Y = [e3, e 4 ] . Nevertheless if P is the orthogonal projection on X, PTP =
Ro θ 0 is not skew-Hermitian since £ has no rank-two skew-Hermitian
operators. (Notice also that X and Y are Euclidean; thus [eλ] is orthogo-
nally complemented in X and X is orthogonally complemented in 2?, but
[ e j is not orthogonally complemented in B, else [e2] would also be, and
then Lemma 3.10 would apply, yielding PTP skew-Hermitian.)

We are now prepared for the proof that pure spaces have trivial Lie
algebras. The proof also gives an alternate proof of Corollary 3.4.

THEOREM 3.10. Let U be a real Banach space with a one-unconditional
basis and suppose U is pure; i.e., there are no rank-two operators in 3ί(ί/).
Then %(U) = {0}.

Proof. Let ( t / J α G Γ be a normalized one-unconditional basis for U9. let
(w*)α € Ξ Γ be the functionals in U* biorthogonal to the wα's and suppose
T e 21 (ί/) with T Φ 0. Choose then a e Γ with Tua Φ 0. Now w* (ua)
= ||w*|| = 1. Since T is skew-Hermitian, u*aTua = 0. Since Tua =
ΣβGTUβ(Tua)Uβ, there must then be a /? # α with UβTua Φ 0. Also we
have that i^Γt^ = 0. Now X = [ua] and Y = [w^] satisfy the hypotheses
of Lemma 3.9. Thus PTP is skew-Hermitian, where P is the orthogonal
projection onto [ua9uβ]. Of course Pb = u^(b)ua + u$(b)uβ for all b e
ίΛ It follows that

for all b e 5. In particular, PTP(ua) = (u%Tua)uβ Φ 0, hence PΓP is
nonzero. Evidently rank PΓP < 2, so rank PΓP = 2 and t/ is not pure.
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(We also obtain that in fact [ua, uβ] = range PTP is thus a two-dimen-
sional well-embedded Hubert space, reproving Corollary 3.4.)

Our next result follows immediately from Theorem 3.6, 3.8 and 3.10.
It yields the complete description of the Lie algebra of a Banach space
with a one-unconditional basis.

COROLLARY 3.11. Let B have a normalized one-unconditional basis,
X=FH(B) and Y = Θ(X). Then W(Y) = {0} and %{B) = 9l(X) θ
{0}. If moreover Γ G 9 1 ( 5 ) , then \\T\\ = \\T\X\\. The skewΉermitian
operators on B are thus described by Theorems 3.6 and 3.8.

REMARK. It follows that if B is finite-dimensional, ^(B) = c/0( X) Θ /
(where as usual, J0{Y) denotes the component of the identity of */(#))•

The following simple example illustrates some of these results. Define
a norm || || on R3 by

Wxeγ + ye2 -f ze3\\ = max|(jc + y ) , (y + z ) , (JC + z ) >,

where (^1,^2^3) *s Λe usual orthonormal basis. Setting [/ = (R3, || ||),
we have that (eve2,e3) = u is a one-unconditional normalized basis for
J7; for i Φ j , [ei9 ej] is an orthogonally complemented Euclidean subspace.
However this space is not well-embedded. Indeed, it suffices to see that
[el9 e2] is not well-embedded. Since Θ[eve2] = [e3], we simply observe
that

= y j

while

Thus ί/ is pure, so has a trivial Lie algebra. Now define a norm || ||' on
R 4 by

and set B = (R4, || ||'). Evidently (ev..., e4) is a one-unconditional basis
for B. Then setting X= [eve2]9 F = [e3,e4], we have that X= FK(B)
and Y = Θ( X). Indeed, it is clear that X is a well-embedded Euclidean
subspace of B. To see that X is a Hubert component, by Theorem 3.6 it
suffices to show that [ev e2, e j is not well-embedded for / = 3 or 4. This
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is easily done as in the discussion of U (however again, [eve2,e3] is
Euclidean and of course orthogonally complemented in B). Also, we
easily verify that [e3], [e4] are Hubert components. The pure-space V of
Theorem 3.6 is then [eve3,e4] which is of course isometric to U. Y is of
course Euclidean and orthogonally complemented; thus although W(Y)
= 0, %(Y)Φ0.

Detailed structure ofFHS spaces and their isometry groups.
We may easily describe the isometries of an FHS space, using

Theorem 3.7.

THEOREM 3.12. Let (Ha)aGT be Hubert spaces all of dimension at least
two, u = ( « J α e Γ a one-unconditional basis for a pure space U, and
B = (Σ Γ Θ Ha)u. Let S(B) denote the set of all bijections σ: Γ -> Γ so
that

(a) (w σ ( α ) ) Γ is isometrically equivalent to (ua)τand
(b) Hσ{a) is isometric to Ha for all a.

Let σ in S(B). For each α E Γ , let Ta: Ha -> Hσ{a) be a surjective linear
isometry. There is then a unique T in J(B) so that for all x = ( * α ) α e r I#Λ

B> (Tχ)a(a) = τaxa for al1 « in Γ Conversely, every T in J{B) is of this
form.

Proof. For ease in notation, let us identify the Ha

9s with their
canonical images in B. Let then x e B, x = ΣaGTxa with xa e Ha for
all a. We shall show first that given σ and the Ta's then Σ α e Γ Γ α ( jcJ
converges to something in B with the same norm as x. For any finite
F c Γ,

= Σ ll*J|a

Hence Σα e Γ | |Γα(jcα)| |wσ ( α ) converges to an element of ί/, so Tx =
Σa€=τTaxa is a well-defined member of B with ||7x|| = \\x\\. It is evident
that then T'1 corresponds to the maps σ"1 e S(B) and T'1: Hβ -• Hσ-i(β)

for all β e Γ, so T ε >(JB). Conversely, let T e ^ ( 5 ) . Since ^T(JS) =
{ //α: α G Γ}, for each α G Γ , there is a unique σ(α) in Γ with THa =
^σ(α) by Corollary 3.3. Thus setting Ta = 7Ί# α , Γα is a surjective isome-
try mapping Ha onto //σ(α), so /ία and Hσ{a) are isometric; moreover the
map σ thus defined is a bijection. For each a e Γ, let Λα be a normalized
member of /ία. Then by Theorem 3.7, we have that (Λα)«er *s isometri-
cally equivalent to ( w α ) α e Γ and ( 7 7 ι J α € Γ is isometrically equivalent to

(wσ(«))«€=r s i n c e 2Γ is an isometry, ( A J α G Γ

 a n d ( Γ Λ «)« e r a r e t h u s

isometrically equivalent, completing the proof.



FUNCTIONAL HILBERTIAN SUMS 457

REMARKS. (1) This result easily extends to the complex case. The
statement is exactly the same, except that we drop the requirement that
the HJs are of dimension at least two. This result is essentially known; for
finite-dimensional complex 2?, see [11] and for separable complex J3, see
[3].

(2) Let B be a separable FHS space with Hubert components
( / f λ ) λ e Γ . It follows from known results and Remark 2 following Proposi-
tion 3.2 that then J0{B) is an arc-wise connected open subgroup of J{B)
and T e JQ{B) if and only if T e J{B) and T\Hλ e Λ ( # λ ) for all λ. (If
H is the /ί-dimensional Hubert space En, J0{H) = SΘn, while by the
results of [7], if H is separable infinite-dimensional, J0(H) ~ J{H) is
arc-wise connected.)

(3) A one-unconditional normalized basis u = (wα)«er for a real or
complex space U is called symmetric if for every bijection σ: Γ -* Γ, there
is an isometry Tσ of U with Tσua = uσ(a) for all α. It follows immediately
from Corollary 3.4 and Theorem 3.6 below that if u is symmetric and U is
real and non-Euclidean, then U is pure. Theorem 3.12 thus yields a
complete description of the isometries of FHS spaces B = (ΣΓHa)u for
such u. If the Ha

9s are all two-dimensional, then B is isometric to VR

where V is a complex non-Euclidean space with a symmetric basis
( ϋ J f l e Γ , say. We thus obtain the result that J{V) and %(V) are
characterized as follows: Given T e «/(F), there is a bijection σ: Γ -> Γ
and a φ: Γ -> C with |φ(γ)| = 1 for all γ so that Tva = φ(y)vσ(y) for all
γ. Given S e 2l(F), there is a bounded φ: Γ -> {at a e R} with
Stty == φ(γ)yγ for all γ. This result is known (for countable Γ) and due to
Tarn [12].

Let X be a real or complex Banach space. Say that X has an
essentially unique one-unconditional basis if X has a normalized one-un-
conditional basis (ua)aGT so that if (va)a€ΞA *s another normalized
one-unconditional basis, there exists a bijection σ: Γ -> Λ and for each α,
a scalar λα with |λ J = 1 so that vσ{a) = λaua for all a. It follows easily
that no FHS space has an essentially unique one-unconditional basis. We
observed at the end of section two that if X is a non-Euclidean complex
2-dimensional space, then if X has a one-unconditional basis, this basis is
essentially unique. Our next result generalizes this fact. Its proof follows
easily from the preceding results and shall be omitted.

COROLLARY 3.13. Let X be a complex Banach space with a normalized

one-unconditional basis [ua]aGT. The following are equivalent:

(a) The basis is essentially unique.
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(b) The Hilbert components of X are one-dimensional.
(c) U is pure, where U denotes the closed linear span of the ua

9s over the
real numbers.

Theorem 3.7 classifies FHS spaces isometrically. We now make this
classification explicit; we present the results for spaces of arbitrary
cardinality. Thus, we present a complete set of isometric invariants for
arbitrary FHS spaces.

Let Γ be a fixed nonzero cardinal number (which we identify with an
initial ordinal, say; that is, Γ is the least ordinal number η such that
cardΓ = cardη (where also η = {β: β < η})). Let PU(Γ) (for "Pure
Unconditional of cardinality Γ) be the family of all normalized one-un-
conditional bases w = ( w γ ) γ e Γ f°Γ s o m e Banach space U such that U is
pure. Let m be an infinite cardinal number with Γ < m. Let G(m) denote
the set of cardinal numbers α with 1 < α < m. For each α in G(m), let
Ha = I2(a). Thus Ha is a real Hilbert space of dimension α. Now given
u e PU(Γ) and φ: Γ ^ G(m), define

(26)

Define an equivalence relation R on G(m)Γ X PU(Γ) as follows:
(φ,u)R(\p,υ) if and only if there exists a map σ: Γ -> Γ which is one-one
and onto so that (vσ{a)) is isometrically equivalent to (ua) and ψ ° σ = φ.
Given (φ, w), let ((φ, u)) denote the equivalence class to which (φ, u)
belongs. Denote this set of equivalence classes by (G(m)Γ X PU(Γ))/i?.
Our next result shows that the FHS spaces of cardinahty at most m are in
one-one correspondence (isometrically) with

U{(G(m)Γ X PU(Γ))/Λ: 0 < Γ < m}.

THEOREM 3.14. Let m be an infinite cardinal number and B in FHS
with dim B < m. There exists a unique nonzero cardinal Γ < m and a
unique w in (G(m)Γ X PU(Γ))/i? so that B is isometric to B(φ, u) where

Proof. If H is a Hilbert component of B, then dim H < dim B < m;
moreover since the components are orthogonal, it follows that card Jf< m,
where Jf equals the set of Hilbert components of B. Thus since every
Hilbert space is isometric to Ha for some cardinal α, we obtain by
Theorem 3.7 that there exists a nonzero cardinal Γ < m, a φ in G(m)Γ,
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and a w in PU(Γ) with B isometric to B(φ,u) as defined in (26). It
follows moreover from Theorem 3.7 that the cardinal Γ is uniquely
determined. Suppose then B is also isometric to B(ψ,v) for some ψ in
G(m) Γ and υ in PU(Γ). Thus by Theorem 3.7, there exists a bijection σ:
Γ -» Γ so that ( t / α ) Λ e Γ is isometrically equivalent to (va{a))aGT and
dim #ψ ( σ ( Λ )) = dim Hφ(a) for all a e Γ. But for cardinals α and ί>,
dim//α = diτnHh implies a = b. Hence ψ°σ = φ and (φ, w)i?(ψ, *;),
showing the uniqueness of w. (Also, ι/ conversely (φ, w)i?(ψ, *;)> it is
easily proved by the argument for Theorem 3.12 that B(φ,u) is isometric
to J5(ψ, v); thus the isometric-type is "well-defined" by w.)

REMARKS. (1) Call B a Generalized Functional Hilbertian Sum if B is
a functional unconditional sum of Hubert spaces, all but at most one of
dimension at least two. It is evident that B is GFHS if either B is FHS or
dim B/FH(B) = 1 and FH(B) is well-embedded in B. The theory that
we have presented above easily generalizes to GFHS spaces. For example
they have isometrically unique unconditional bases; the appropriate ana-
logues of Theorems 3.7, 3.12, and 3.14 hold. The essential new point is
that if B is GFHS but not FHS, B has one one-dimensional component
[x] say; then if T ^J{B\ Tx = ±x. We mention this class of spaces
mainly because they include the rotation spaces discussed in section two.

(2) The complex version of Theorem 3.14 follows easily from 3.14.
The formulation is almost the same, except that one replaces G(m) by
G(m) U {1}, denoted by G(m), say. Then simply let Ha denote the
complex Hubert space /2(α). For φ in G{m)τ, the space B(φ,u) is
defined exactly as in (26). Now one obtains the classification of complex
Banach spaces B with a one-unconditional basis by replacing G(xn) by
G( m) in the statement of Theorem 3.14.

(3) It is possible to deduce some of our results from their complex
analogues. We indicate here the connection between the real and complex
versions. Suppose u = (««)α Gr *s a normalized one-unconditional basis
for a real Banach space U. Let t/(C, u) denote the complex Banach space
consisting of all x e CΓ with ΣaGΓ\xa\ua e [/, under the norm \\x\\ =
lE β e Γ l*« |κJI L e t Wβ -OiίβΦa, (u'a)a = 1. Then of course (u'a)τ is
a one-unconditional basis for t/(C, u). We may assume without loss of
generality that ua = u'a for all α. Given ΓGjS?(ί/), define f e
<&(U(Qu)) as follows: Given x = (aa + iba)a(£Γ in C/(C,w), let tx =
ΆΣaGΓaaua) + iT(LaeTbaua). In fact, we have that ||f|| < 2||Γ||. It is
evident that if f e J{u(C, u)\ T e J(U). The converse is of course false
in general. Nevertheless it can be shown that for T e Se{JJ\ T e 2l([/) if
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and only if f e 3ί(ί/(C, w)). (This can be proved directly; however it does
follow from our results above.) Assuming the complex form of the
decomposition given in Theorem 3.6, the "real parts" of the Hubert
components of ί/(C, u) may then be used to obtain Theorem 3.6 itself.
Suppose v = (va)aGT is a, normalized one-unconditional basis for a real
space V. If ί/(C, u) and V(Cy v) are isometric, it follows by the complex
version of Theorem 3.7 that u and υ are isometrically equivalent. It is
false, in general, that U and V isometric implies £/(C, u) and V(C,y)
isometric since u and v need not be isometrically equivalent. However it
follows by our results that this is true if U and V are FHS spaces. In this
case, we thus obtain that U is isometric to V if and only if ί/(C, u) is
isometric to F(C, v), and hence Theorems 3.7 and 3.12 may be deduced
from their complex versions.

Complementation results.
We conclude this section with some results dealing with one-comple-

mented subspaces of spaces with a one-unconditional basis. Our first
result in this direction gives a certain characterization of those one-com-
plemented subspaces of FHS spaces which are again FHS. (Recall that for
X c B, X is one-complemented if there is a norm-one projection mapping
B onto X.) To motivate it, suppose B is FHS. B has the following
property:

(27) For all beB, there isaT<=%(B) with T2b = -b.

(We note in passing that if B is an arbitrary Banach space satisfying (27),
then T can be chosen independently of y in (27) if and only if B is
isometric to a complex Banach space, by Theorem 2.1 of [10]. For B in
FHS, this evidently occurs if and only if the Hubert components of B are
either infinite or of even finite dimension.) To see that (27) holds, let
( / / λ ) λ e Λ be the Hubert components of B. Let y e 2?, choose yλ e Hλ

with y = Σλ e Λ>>χ. For each λ e Λ, choose Γλ a rank-2 member of
9ί(ifλ) with | |Γλ | | = 1 and T&x = - Λ . Then evidently T = Σ λ e Λ Θ Tλ

has the desired properties. (T is well defined by Theorem 3.8.)
The above discussion and our next result show in particular that B is

FHS if and only if B has a one-unconditional basis and the property
given in (27). We prove a stronger result later.

THEOREM 3.15. Let B have a one-unconditional basis and X be a
one-complemented subspace of B. Suppose for all x e X, there is a T e 2ί(2?)
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with Tx e X and T2x = -x. Then X is FHS (so of course has a one-uncon-
ditional basis).

Proof. We shall show that X is the closed linear span of the ranges of
the rank-two members of its Lie algebra; hence X is FHS by Theorem 3.1.
We first show that we may assume B is FHS. Indeed, by Corollary 3.11
we may write B = Bλ Θ B2 where Bx = FH(5), B2 = &(Bλ) and 21(5)
= %{Bλ) Φ {0}. Our hypotheses then imply I c Bv For let x & X,
x = &! + b2 with bj e J3, for i = 1, 2. Choose T e 9Ϊ(J5) with Γ2JC = -x.
But 7x = ΓZ>X since Γ|J?2 = 0. Since J?x is invariant under Γ, we have that
Tx e 5 ^ hence so is -JC = T2x.

Now assume 2? is FHS. Let ( i f λ ) λ G Λ be the Hubert components of
B. Let P: B -* X be a norm-one projection and let J C G I . Finally,
choose xλ e ifλ for all λ with x = Σ λ e Axλ. Now choose Γ e 9ί( JB) as in
the hypothesis of 3.15. For each λ, THλ c JiΓλ by Proposition 3.2 and
hence [xλ> Txλ] is orthogonally complemented in B since it is a subspace
of Hλ; let Qλ be the corresponding orthogonal projection. (Of course
Qλ\Hλ is in fact the Hilbert-space orthogonal projection and Qλ(b) = 0
for all be Hβ for all β Φ λ.)

We have that

(28) x = -Γ 2 x = Σ -T2xx*
λeΛ

Since Hλ is invariant under Γ, -Γ2jcλ e Jϊλ for all λ. It follows from (28)
by uniqueness of decompositions with respect to (Hλ)λ € Λ that

(29) -Γ 2 x λ = x λ for all λ.

Now let y = -Tx = Σ λ e Λ -Γ.x λ . Fixing λ e Λ , we have demon-
strated that [jcλ, Txλ] is invariant under T\ since this space is the range of
β λ , we have that -Txλ = Qλy and hence QλTQλy == β λ (-Γ 2 x λ ) = xλ by
(29). Thus x = Σx^Λδλ^βλ^, so

(30) Px = x = Σ
λeΛ

Again fixing λ e Λ, βλΓ(2λ e 21(5) by Theorem 3.8 (since ρ λ Γ β λ | i ϊ λ e
3ί(iϊλ)). Thus by Proposition 1.2, the compression of QλTQλ to X
via P, namely Pζ)λΓρλ |X, belongs to 3ί(X). Since Qλ is rank 2,
rank PQλTQλ\X = 2 or P ρ λ Γ ρ λ | J ί r = 0 . (30) thus shows that Jί is
in the closed linear span of the ranges of the rank-two members of
9ί (X), completing the proof.
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Theorem 3.1 and the preceding result yield the following known result
for complex spaces (cf. [9] for a relatively short complex-scalars proof):

COROLLARY 3.16. (Kalton and Wood [6].) Let B be a complex Banach
space. Assume B = [TB: rank T =\andT e 31(5)]. Then B has a one-un-
conditional basis {and conversely). If X is a one-complemented subspace of
B, X has a one-unconditional basis.

Proof. Let Y = BR; i.e., B regarded as a real Banach space. Now
assuming the first hypothesis, Y is FHS. Indeed, if T e %{B) and T is
rank-one as a complex linear operator, then Γ G %{Y) and T is rank-two
over the reals. Now if H is a Hubert component of Y, then as pointed out
at the end of section one, H is a complex linear subspace and in fact a
Hubert component of B\ in particular, H is orthogonally complemented.
Thus if { ί f λ } λ e Λ are the Hubert components of Y, then the Hλ's are
orthogonal in B. If for each λ, (eλβ)β(Ξrλ *s a one-unconditional normal-
ized basis for the complex space Hλ (i.e., a complete orthonormal system
for Hλ), then we obtain that {eλβ: β e Γλ, λ e i / λ } is a one-uncondi-
tional basis for B.

Now suppose X is one-complemented in B. Then XR trivially satis-
fies the assumptions of Theorem 3.15. Thus XR is FHS. Our argument
above showed that B has a complex one-unconditional basis just assum-
ing BR is FHS, so we obtain that X has a one-unconditional basis.

Our next result shows in particular that if B is a complex Banach
space so that BR has a one-unconditional basis, then B has a one-uncon-
ditional basis. (This could also be deduced from Theorem 3.1.) It provides
yet another characterization of FHS spaces.

PROPOSITION 3.17. Let B be a real Banach space satisfying (27).
(a) Every Hubert component of B is at least two-dimensional.
(b) Suppose B is the closed linear span of its one-dimensional orthogo-

nally complemented subspaces. Then B is FHS.

Proof. Let b e B with \\b\\ = 1 and choose T e »(Jϊ) with T2b = -b.
Let X = [b, Tb]. Then * is invariant under T and (T\X)2 = -I\X. Now
suppose [b] is orthogonally complemented in 5 and let Z be a one-di-
mensional subspace of X We may choose a and β with a2 + β2 = I and
Z = [JC] where x = ab + βTb = (al + jβΓ)6. Now choose θ with α =
cos0 and β = sin0. Then eθτ\X = (α/ + j8Γ)|X, hence eθτb = x. Since
eθτ ^ J'(B), [x] is orthogonally complemented in B. Thus every one-di-
mensional subspace of X is orthogonally complemented in 2?, so I is a
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well-embedded Euclidean subspace of B by Theorem 2.2. This proves (a).
If we assume (b) holds, then we obtain B is the closed linear span of its
two-dimensional well-embedded Euclidean subspaces. Thus, B = [TB:
T e 2ί(£), rank T = 2], so B is FHS by Theorem 3.1.

REMARK. Suppose B satisfies the hypothesis (b) of Proposition 3.17.
Does B have an unconditional basis? We are able to exhibit examples of
finite dimensional B satisfying (b) with no one-unconditional basis (for
dimJ5 > 3).

We end this section with a result concerning orthogonally comple-
mented spaces.

THEOREM 3.18. Let X be an orthogonally complemented subspace of B.
(a) If B is real and an FHS space, Xhas a one-unconditional basis.
(b) // B is complex, X has a one-unconditional basis which can be

extended to a one-unconditional basis for B.

REMARKS.

(1) It is trivial that conversely any space with one-unconditional basis
is orthogonally complemented in some FHS space. Also, the converse of
(b) is trivial.

(2) Our proof for (a) easily generalizes to GFHS spaces (as defined
after Theorem 3.14).

(3) The conclusion of (b) does not hold for general FHS spaces.
Indeed, suppose B = (ΣΓ Θ Ha)u and S(B) are as in Theorem 3.12. We
shall show below that the conclusion of (b) holds for all orthogonally
complemented subspaces of B precisely when σ2 = JΓ and σ e S(B)
implies σ = /Γ. It can also happen that B is complex with a one-uncondi-
tional basis and I is a complex subspace which is real-orthogonally
complemented in B, yet XR has no one-unconditional basis which can be
extended to a one-unconditional basis for BR. (Of course then X is not
complex-orthogonally complemented in B.)

The proof of 3.18 follows in a straightforward way from the descrip-
tion of isometries of FHS spaces given by Theorem 3.12. In fact, we can
give the explicit description of an arbitrary orthogonal projection on such
a space.

Proof of 3.18. Assume B is real and let (Ha)a€=τ be the Hubert
components of B\ for each a e Γ, let ua be a normalized member of Ha

and set U = [ua]a€ΞT. Let P: B -» X be an orthogonal projection onto X
and T = IP - /. Then T e J(B) and I = { χ e δ : Tx = x}. We now
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use Theorem 3.12 to obtain the structure of T. By 3.12, we may choose a
bijection σ: Γ -> Γ with (uσ(a))a€ΞT isometrically equivalent to (wα)«er
with THa = Hσ(a) for all α e Γ . Since T2 = J, we thus obtain

(31) σ2 = /Γ .

Now let I\ = {a e Γ: σ(α) = a} and Γ2 = Γ ~ I\. It follows from
(31) that we may choose a subset Λ of Γ2 so that

(32) Γ2 = Λ U σ(A) and Λ n σ(Λ) = 0 .

Set Γ = I\ U Λ. For each a e I\, let Xa = Pi/Λ. Note that Ha is
invariant under P and thus Xa is Euclidean. Moreover Xa = X Π Ha. For
each λ e Λ, let Xx = (Λ + ΓΛ: h EL Hλ). We shall prove momentarily
that Xx is also Euclidean; then we shall establish that (Xa)a^r ^s a

functional unconditional decomposition of X, showing that X has a
one-unconditional basis (and also incidentally that X is FHS provided the
nonzero Xa

9s all have dimension at least equal to two).
For each λ e A , define vλ and α(λ) by

||wλ + wσ(λ)|| and vλ

For Λ ^ /fλ, we have that

(33) ||Λ + 7Λ||

using that T is an isometry and the fact that the Ha's are a functional
unconditional decomposition of B. (33) shows that Xλ is Euclidean. Now
let υa = ua for all a e Γx; (32) yields that (va)a(ΞΓ is a one-unconditional
basis for its closed linear span. (33) yields that

(34) ||Λ||iιλ + ||77ι||wσ(λ) = | | * K if x = h + Th with h e # λ .

We next show that (Xa)aeγ> is a functional unconditional decomposi-
tion of its closed linear span. Let xa e Xα for all a e Γ' with only finitely
many α's nonzero. For each λ e A , choose hλ^ Hλ with xλ = Λλ 4- 7%λ.
Since (Ha)a<=r is a functional unconditional decomposition of 5, we
obtain that

" Σ ll*.lk + Σ II*
GΓ, λ €E Λ

by (34).
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Since T2 = /, we obtain by (31) that Xac X for all a e Γ\ To
complete the proof that X has a one-unconditional basis, we need only
establish that X = [ XJ. Now we have that for all λ e Λ and α e Γ p

(35) Hλ + Hσ(λ) is invariant under T and also Ha is invariant under T.

Moreover, we have that

(36) Xλ={y<ΞHλ + Hσ{λ):Ty=y} forallλeΛ.

Indeed, if λ e Λ and if y = yx + y2 with yx in Hλ and y2 in # σ ( λ ) , then
since THσ(λ) = # λ , if 7> = j , since Ty « 7>2 + 7χ, 7>2 - j x and y2 =
7)^ because /ί λ 4~ i ί σ ( λ ) is a direct sum.

Now let J C G X Choose for all a e I\ and λ e Λ , elements /α e i/α,
A G #λ and yσ(λ) e /ί σ ( λ ) so that

(37) ^ = Σ Λ + Σ Λ + Λ<λ)>
λeΛ

the indexed families converging unconditionally to x. It follows, since (37)
holds and Tx = x, that

(38) x - Σ !>.+ Σ
λeΛ

Since (Ha)aGT is an unconditional decomposition of Jf, we obtain by
(35), (37) and (38) that ya = Tya and T(yλ + j σ ( λ ) ) - Λ + Λ ( λ ) for all
α G Γx and A G Λ . Finally, we obtain by (36) and the definition of the
Xa's for a G Γx that >>α G Xα and >>λ + yσ{λ) e Xλ for a & Γx and λ e Λ ,
completing the proof of part (a).

The above argument is of course reversible: that is, suppose σ e S(B)
with σ2 = / r . Choose Γx and Λ as above. For each a e Γ1? let Xa be a
subspace of Ha and for each λ e Λ, let Γλ: Hλ -» AΓσ(λ) be a suqective
isometry; then let Xλ=* {h+ Tλh: h& Hλ). We obtain that X =
[^J«er ' ί s orthogonally complemented, where Γ' = Γt U Λ. Indeed, since
the Ha'$ are Hubert spaces, for each a e Γ\ we may choose Γα e *?{Ha)
with Γα

2 = / and Jία = {x e /ία: Γαχ = x). For each λ e Λ , let Tσ(λ) =
Γλ"

x. We then obtain a unique Γ e J{B) with Γ|AΓα = Ta for all α G Γ; it
is easily seen that T2 = / and X = {b e 5: Γέ = 6}.

We next observe that JSΓ has a one-unconditional basis extendable to
a one-unconditional basis of B if and only if σ = JΓ, σ as defined above.
Indeed, let Γx and Λ be as defined above. Suppose X has an extendable
one-unconditional basis. Then by Lemma 3.5, every element of the basis
must belong to a Hubert component of B. We thus obtain that

(39) X = [XΓ\Ha: α e Γ ] .
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But it follows easily that X Π i/λ = XΠ Hσ(λ) = {0} for all λ e Λ , and
l Π / / α = I α f o r α E Tv Thus by (39), X = [ * J α e Γ l , hence Λ = 0,
Tx = Γ and σ = 7Γ. The converse assertion is straightforward. Thus
assume σ = 7Γ and let the Xa's be as above. For each a e Γ, let (Xβ)β€Ξri
be a normalized one-unconditional basis for Xa and (Xβ)β<=τϊ ^>e a

normalized one-unconditional basis for the orthogonal complement of Xa

in Ha. (If Xa = 0, let Γ* = 0;iίXa = Ha, let Γα

2 = 0.) Assume Γ̂  n TJ
= 0 if i Φ j or a Φ β. Then simply let I\ = U α e Γ Γ2 and Γ2 = Uα G ΓΓα

2;
{jcα} a e Γ i is then a one-unconditional basis for X and {xα}αGr2 *s a

one-unconditional basis for Y while {*α}α<EΓlur2 *s a one-unconditional
basis for B.

If we assume 5 is a complex space and still define our maps as above,
we then obtain the conclusion of (b) once we establish that σ = JΓ. (For
instance, the argument of the preceding paragraph yields a (complex)
extendable unconditional basis for X.) Let then P: B -> X be an orthogo-
nal projection and T = 2P - I. We shall show that T is in the component
of the identity of «/(£), i.e., in JQ(B). It then follows from Remark 2
following Proposition 3.2 that THa c Ha for all α, where (Ha)aGΓ are the
Hubert components of B, so σ = 7Γ and hence (b) is established. For each
complex a with |α| = 1, define Ua by

(40) Ua = P + α(7 - P) = (1 - α)P + al.

By the definition of orthogonal complementation, Ua ̂ J(B) for all a
and evidently (40) yields that Uλ = I and t/_x = Γ. Now let /(0) =
Ucosθ+ιήnθ for 0 < θ < m. Then / is a continuous path in J(B) joining /
to Γ, so Γ £ J*o{B) a n d the proof is complete.

REMARK. It is possible to give an "elementary" proof of Theorem
3.18(b); that is, a proof which does not pass through the structure theorem
characterizing the group of isometries of complex Banach spaces with a
one-unconditional basis, and which deals purely with complex spaces. The
proof can be given in the same spirit as the streamlined-argument given in
[9].
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