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ON INCLUSION RELATIONS
FOR ABSOLUTE NORLUND SUMMABILITY

IKUKO MIYAMOTO

Recently Das gives sufficient conditions for (N,rn)G(N,pn)(N, qn)
or (NtPn)(N,qn) c (tf,rM), and for \N,Pn\ ~ |(JV,/>„)(<:, 1)|. The pur-
pose of this paper is to give sufficient conditions for \N, rn\Q
\(N9pn)(N9qn)\ or ^N9pn)(N9qn)\ £ \N9rΛ\. The results obtained here
are also absolute summability analogues of Das' theorems.

1. Let {ρn} and {qn} be real or complex sequences such that
Pn = Σn

ks=oρk Φ 0 and Qn = Σn

k=oqk Φ 0. A sequence {sn} is said to be
summable (N,pn) to s, if tξ = Σ"k=oPn-ksk/Pn ~* s(n -* °°)> a n d s u m "
mable (N,pn)(N,qn) to s, if tζ« = ΣUoPn_kq/Pn -> j(n ^ oo). It
is said to be absolutely summable (N,pn), or summable |7V, pn\, if

Given two summability methods A and B, we write A Q B if each
sequence summable A is summable 5. If each includes the other, we write
A - B.

We define the sequence {rn} by rn = Σn

k=opn_kqk and define the
sequence {cM} formally by 1/Σ^U P**" = Σ^=OCMJC

 w. We write { p J e J B
if ^r t > 0, pn+ι/ρn ^pn+2/Pn+i ^ 1» a n d a l s o w r i t e ' f o r anY sequence
{/*}> Λ(1) = Σ ^ o Λ , λ(2) = Σ2«oΛ(1) A n d ^ denotes an absolute con-
stant, not necessarily the same at each occurrence.

On inclusion relations between two summability methods Das gives
the following theorems.

THEOREM A [1, Theorem 2]. If {pn} e Wl and {qn} is positive, then
(N,rn)Q(N,pn)(N,qn).

THEOREM B [1, Theorem 5]. // {pn} e W and {qn} is positive and
(n + l)qn = O{Qn\ then (N,pn)(N,qn) c (N9rΛ).

THEOREM C [2, Theorem 5]. // {/?„} e SK, /^n |JV, PJ -
A)(C,1)|.

The puφose of this paper is to prove the following theorems.

365



366 IKUKO MIYAMOTO

THEOREM 1. If {pn} e Wl and if {qn} is positive and nonincreasing^

This is an absolute summability analogue of Theorem A.

THEOREM 2. If { pn} e ffll and if {qn} is positive and nonincreasing
andifRn = ΣUork -> oo(« -> oo), then VtN,pΛ)(N,qH)\ c \N9rΛ\.

This is an absolute summability analogue of Theorem B. Combining
Theorem 1 and Theorem 2, we have the following

THEOREM 3. Under the assumptions of Theorem 2, the relation
\(N,pn)(N,qn)\~\N,rn\ holds.

In this Theorem, if we put qn == 1, then we obtain Theorem C.

The author takes this opportunity of expressing her heartfelt thanks
to Professor H. Hirokawa for his kind encouragement and valuable
suggestions in the preparation of this paper. I must also express my
heartfelt thanks to the referee who gave valuable comments.

2. We require the following lemmas.

LEMMA 1. Letyn = Σn

v^
anvxv V

Σ (*,,,- an-l9w < c < oo for all p,

then Σ * . 0 | Δ Λ I < °° whenever Σ™=0\Δxn\ < oo.

This is due to F. M. Mears ([3, p. 595]).

LEMMA 2. Let {pn] e 271. Then

(i) ΣP, Σ
p=0

,

(2) { c^X)} is nonnegative and nonincreasing and

(3) c ® A £ l .

This is Lemmas 3 and 4 in [2].
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LEMMA 3. If {pn} and {qn} arenonnegatiυe, then

(4) P™ < K(n + ΐ)Pn and

(5) Rn ^ PnQn-

Further, if {pn} and {qn} are nonincreasing, then

(6) (n + l)Pn < KPV and

(7) Rn > KPnQn.

Proof. The inequalities (4) and (6) are Lemma 5 in [2]. The inequality
(5) is easily established. So we shall prove the inequality (7). Since the
sequence {Pn/(n + 1)} is nonincreasing, and KQ^ > (« + l)Qn,

= Poqn + 2^qn^

= PnQ
(Mn + 1) ^ PnQn/K.

LEMMA 4. If {ρn} ^ 2R and if {qn} is positive and nonincreasing,
then

V

(8) 0 < Σ Pn-pcp-μ ^ Pn-A1-* (μ<v<n),
p = μ

n-l

(9) 0 < Σ (Qn - β,)Λ-Λ-μ ^ 4*>
v = μ

(10) 7Γ ^ —?)—P*-,cw-μ£Pn-μL -fΓn—

and uniformly in v < p,

. The inequality (8) is Lemma 6(11) in [2].
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The inequality (9); Using Abel's transformation, from (3) and (8), we
have

Σ(Qn ~ O f t - A - , = ^ qp + ι Σ Pn_pCp_μ
v—μ v—μ p—μ

n-l n-\

v=μ v—μ

The inequality (10); Using Abel's transformation, from (8), we get

β Z-/ r\ Pn — v^v — μ

1 n~~

+ Q "Q Σ Pn-rCr-μ

n — \ v Π — \ Q rSX)

Σ Ί i/4-l V^» V^1 "v+1 v — μ

^ y + 1 > v c < Ό > -T: - .
f\ f\ JLmJ irn — rr—μ—rn — μ ί-* ζ\ /Λ

The inequality (11); Since {qn) is nonincreasing, we have

Qn 1 , Qn~ Qv . Λ , ( " - y ) g . _ Λ
= 1 H -r < 1 Λ = — .

Qv Qv vciv v

Hence, (Qn - Qv)/Qn < (n - v)/n. Therefore using Das' Lemma 7 in
[2], we obtain the inequality (11).

LEMMA 6. // { pn} is positive and nonincreasing, then uniformly in
0 < μ < v,

(12) Σ Wr = °[τT\\

This is Lemma 8 in [2].

3. Proof of Theorem 1. Let us write

1 n

tί = -τr' Σ rvt_Ί,sΈI and
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Then, following Das' [1, pp. 32-33], we have

369

where

Σ

(0

By Lemma 1, it is sufficient to show that

Σ iλnμ ~ λ

W-l fμ = 0(1) (p = 0,l,2,...)

Noting that

(13)

for n > μ, we get

and for n > μ 4- 1,

R n-l Q _ s

^ ^ QnQv

R n-1

Pn-v-\Cv-μ'

Also it is easily seen that Σ£= o λnμ = 1. Hence, for n > p,

\Anμ ~~ Λ«-l,μj = 2^ VΛ«-l,/t ~ Λ«μj

_ V n V Qn~~ Qv( Pn-r-1 Pn-
Q Q

Lv-μ

Thus
P - 1

Σ (λ«-l,μ ~ λ

Λ /i

Pn

*-* o P P
n — v v — μ

p - 1

say.

^ β B - β,
'»-r-l ~ Pn-v)Cv-μ
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From (5),

By Lemma 4(10),

IKUKO MIYAMOTO

oo p-l « - l

Σ Pn Y Ώ n V

~Έ~ΊB Z* KμPn-μ Zu

,(1)

PnPn_1 ^ '

p - l oo
y PnPn-μ

*^μ Is p p
n = p + l Γ n Γ n - l

, say.

' p - l n-l

Σ + Σ
v + V-v-μ

Using the identity

(5), (12) and the monotonicity of {/?„},{ qn} and { Qn}, we have

r(2) < Y rnFn-p y /̂iz-H y p (1)

Lii y Pc(i)
p p 4-^ Γ) /I *-* μ v — μ

PnPn-p Py (v + l)ffy + l

00 Z7 P -

" 1 ) ^ + 1 t s = 0 ( 1 ) -
Using (2), (5), (12) and (13), since { qn} and {Qn} are monotone, we get

j(2) ^ y J? y ^ y + 1 v~μ }
J

P2 L* ^μ L, n n I
= Ϊ̂  + 1 ΛΛ-i

p - l oo

p - l
1

Σ τ i
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Next,

Σ
« = p + l

p —1 oo

• Σ * , Σ
μ=0 «=p+l

p - l p - l

μ = 0 v — μ

'-{Pn-v-l ~ Pn-v)Cv-[

1 "

rt-l

2~, n \Pn-v-l Pn-v

say.

By Lemma 4(11), we obtain

1_ y»
« = p + l

Σ % v-μ\

p - l00 -i p—X

= Σ -Q-p- Σ (Qn~ QMPn-v-l-Pn-v)
n = p + l τ£nΓn-\ V = Q

Z £
Next, using (5), we get

p —1 oo

μ = 0 n Qn*n-l v=p

p - l oo

Q flπΛ-l

p — 1 oo

^ Σ RβΣ
c -

by Lemma 4(11) and Lemma 2(1).
This completes the proof of Theorem 1.

4. Proof of Theorem 2. First, we have, following Das' [1, p. 37],

1 " / "
v-μ

lX
nμ"μ
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where
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P n

) ΊΓ Σ Pn-vQvcv-

0

By Lemma 1, it is sufficient to show that

Λ = Σ Σ K - an_Uμ
= 0(1)

By (13), we get for n > μ,

n-lp
anμ = —D5- Σ (Qn ~

» v = μ
n — v v — μ

and for n > μ + 1,

n — \

Hence, for n > p,

n

Lm^ V nμ n — 1,/u

p - 1

Σ /
μ = 0

p - 1 w - 1

= Σ^Σi

Thus,

00 -.

y —

J + J

Using (7),

p 1 « l

Σ μ̂ Σ

p - 1 w - 1

Σ pμ Σ (0« - e,)A-

say.

v v — μ
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By Lemma 4(9), we have

Next,

00

jo) < y
JP ^ JL,

~ P p Q p

00 -i

= p + l w~i

oo i

w=p+l w~

1

fn

Ό Ό
n

00

n Σ + χ

P - 1

μ = 0

1

p - 1

Σ
μ = 0

p - 1

1 1 \ . ^βp

p - 1

^ ( β . β,)(A-,_

Λ2 — 1

^.Σ(δ»-δJ(Λ-
v = p

- o ( 1 )

, say.

Since Σ ; = o Pμcy_ = 1, using (7) and (11), we get

ι

Jpl

P - 1

oo -i p - 1

= Σ ^ Σ (Qn ~ Qv){Pn-v-l ~ Pn-,

Lastly, using (1), (7) and (11), we obtain

This completes the proof of Theorem 2.



374 IKUKO MIYAMOTO

REFERENCES

[1] G. Das, Products of Nόrlund methods, Indian J. Math., 10 (1968), 25-43.
[2] , Tauberian theorems for absolute Nόrlund summability, Proc. London Math.

Soc, (3), 19 (1969), 357-384.
[3] F. M. Mears, Absolute regularity and the Nόrlund mean, Ann. of Math., 38 (1937),

594-601.

Received March 15,1985.

CHIBA UNIVERSITY

CHIBA 260, JAPAN




