# MODULAR INVARIANT THEORY AND COHOMOLOGY ALGEBRAS OF EXTRA-SPECIAL *p*-GROUPS

# Pham Anh Minh

Let  $W_n$  be the group of all translations on the vector space  $\mathbb{Z}_p^{n-1}$ . Every element of  $W_n$  is considered as a linear transformation on  $\mathbb{Z}_p^n$ , i.e.  $W_n$  is identified to a subgroup of  $GL(n, \mathbb{Z}_p)$ . We have then a natural action of  $W_n$  on  $E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2)$ . The purpose of this paper is to determine a full system of invariants of  $W_n$  in this algebra. Using this result, we determine the image  $\operatorname{Im} \operatorname{Res}(A, G)$ , for every maximal elementary abelian *p*-subgroup A of an extra-special *p*-group G.

**Introduction.** Let G be a finite group and  $\mathbb{Z}_p$  be the prime field of p elements. Let us write  $H^*(G) = H^*(G, \mathbb{Z}_p)$  (the mod p cohomology algebra of G).

If p = 2, the cohomology algebras of all extra-special *p*-groups were determined by Quillen [7]. We are interested in the case p > 2. So from now on, we shall assume this condition through the paper. For the extra-special *p*-groups of order  $p^3$ , their integral cohomology rings have been computed by Lewis in [3], and their mod *p* cohomology algebras are determined recently in Pham Anh Minh-Huỳnh Mùi [4] and Huỳnh Mùi [6]. For an arbitrary extra-special *p*-group, Tezuka and Yagita had computed  $H^*(G)/\sqrt{0}$  in [9]. As observed in [6], the ideal  $\sqrt{0}$  of the nilpotents in this algebra is quite complicated, so it seems difficult to determine their nilpotent elements.

Let A be a maximal elementary abelian p-subgroup of an extra-special p-group G. The inclusion map  $A \hookrightarrow G$  induces the restriction homomorphism  $\operatorname{Res}(A, G)$ :  $H^*(G) \to H^*(A)^{W_G(A)}$ , where  $W_G(A) = N_G(A)/C_G(A)$ , the quotient of the normalizer by the centralizer of A in G. The purpose of this paper is to determine the image Im  $\operatorname{Res}(A, G)$  for every A. We shall see that the nilideal of Im  $\operatorname{Res}(A, G)$  is complicated, so our results will be needed in the study of the ideal  $\sqrt{0}$  of  $H^*(G)$ .

This paper contains 3 sections. In \$1, we consider maximal elementary abelian *p*-subgroups of an extra-special *p*-group following Quillen [7] and Tezuka-Yagita [9]. By means of the modular invariant theory developed by Huỳnh Mùi [5], we determine in \$2 a full system for the

invariants of  $W_G(A)$  in  $H^*(A)$ . Using the results in §2, we determine Im Res(A, G) in §3. The main results of this paper are Theorem 2.4 and Theorem 3.1.

I would like to acknowledge my sincere gratitude to Prof. Huỳnh Mùi for his generous and inspiring guidance. I am also deeply grateful to Prof. Ngô Thê Phiệt for many valuable discussions.

1. Extra-special *p*-groups and maximal elementary abelian *p*-subgroups. Let G be a *p*-group. As usual, let [G,G],  $Z(G) \Phi(G) = G^{p} \cdot [G,G]$  denote the commutator subgroup, the center and the Frattini group of G respectively. G is called an extra-special *p*-group if it satisfies the following condition

(1.1) 
$$[G,G] = \Phi(G) = Z(G) \cong \mathbb{Z}_p.$$

Equivalently, G is an extra-special p-group if we have the group extension

(1.2) 
$$0 \to \mathbb{Z}_p \xrightarrow{i} G \xrightarrow{\pi} V \to 0$$

where V is a vector space of finite dimension over  $\mathbf{Z}_p$  and *i* is an isomorphism from  $\mathbf{Z}_p$  onto the center of G. (For details or extra-special *p*-groups see D. Gorenstein, *Finite Groups*, Harper & Row, New York, 1968, especially §5.5.)

As well known, the dimension of  $V \cong G/Z(G)$  is even. If dim V = 2, G is isomorphic to one of the following groups

$$E = \langle a, b | a^{p} = b^{p} = [a, b]^{p} = [a, [a, b]] = [b, [a, b]] = 1 \rangle,$$
  
$$M = \langle a, b | a^{p^{2}} = b^{p} = 1, b^{-1} \cdot ab = a^{1+p} \rangle.$$

Generally, if dim  $V = 2n - 2(n \ge 2)$ , then G is isomorphic to one of the following central products

(1.3) 
$$E_{n-1} = E \cdot \cdots \cdot E \qquad (n-1 \text{ times})$$
$$M_{n-1} = E_{n-2} \cdot M.$$

Let B:  $G/Z(G) \times G/Z(G) \rightarrow [G,G]$  be the map defined by

$$B(u,v) = \begin{bmatrix} u',v' \end{bmatrix} \text{ for } u,v \in G/Z(G)$$

where u', v' mean representatives of u and v respectively. One can easily see that B is well-defined. Identifying  $G/Z(G) = V = \mathbb{Z}_p^{2n-2}$  and [G,G] $= \mathbb{Z}_p$ , B becomes the alternating form  $V \times V \to \mathbb{Z}_p$  defined by

(1.4) 
$$B(u,v) = \sum_{i=1}^{n-1} u_{2i-1} \cdot v_{2i} - u_{2i} \cdot v_{2i-1}$$

$$u = (u_1, \ldots, u_{2n-2}), \quad v = (v_1, \ldots, v_{2n-2}) \in V.$$

A subspace W of V is said to be B-isotropic if B(u, v) = 0 for all  $u, v \in W$ .

In Quillen [7; §4] and Tezuka-Yagita [9; 1.7 and 3.4], we have

**LEMMA** 1.5. There is a 1-1 correspondence between maximal abelian p-subgroups A of G and maximal B-isotropic subspaces W of V. The dimension of any maximal B-isotropic subspaces W of V is just n - 1.

From this lemma, we have

LEMMA 1.6. Any maximal elementary abelian p-subgroup A of G is of rank n, i.e.  $A \cong \mathbb{Z}_{p}^{n}$ .

*Proof.* It suffices to prove that A is also a maximal abelian subgroup of G, and the result is implied from (1.5). Assume that A is not a maximal abelian subgroup of G, then  $A \not\subseteq A'$ , where A' is a maximal abelian subgroup but not elementary of G. Let  $a \in A'$  with  $\operatorname{ord}(a) = p^2$ . Let  $\Omega_1(G)$ ,  $\mathfrak{V}_1(G)$  denote the subgroups of G defined by  $\Omega_1(G) = \{x \in G/\operatorname{ord}(x) \le p\}$  and  $\mathfrak{V}_1(G) = \{y^p | y \in G\}$ . Since  $|\mathfrak{V}_1(G)| = p$ , we have  $|\Omega_1(G)| = p^{2n-2}$  and  $\Omega_1(G)$  is not an extra-special p-group. Hence  $Z(\Omega_1(G)) \not\supseteq Z(G)$ . Let b be an element of  $Z(\Omega_1(G)) \setminus Z(g)$ , we have  $[b, a] \ne 1$ , hence  $b \notin A$  and  $\langle A, b \rangle$  is then an elementary abelian p-subgroup of G which contains strictly A, a contradiction. The lemma is proved.

**PROPOSITION 1.7.** Let A be a maximal elementary abelian p-subgroup of G. Then there exist the elements  $a_1, \ldots, a_n, b_1, \ldots, b_{n-1}$  of G such that

- (a)  $A = \langle a_1, \dots, a_n \rangle$  and  $a_n = c$  is a generator of Z(G)
- (b)  $W_G(A) = \langle \underline{b}_1, \dots, \underline{b}_{n-1} \rangle$  where  $\underline{b}_i = b_i A, 1 \le i \le n-1$
- (c)  $a_i^{b_j} = a_i$  if  $i \neq j$ ,  $a_i \cdot a_n$  if i = j for  $1 \le i, j \le n 1$ .

*Proof.* It suffices to prove that: (\*) there exist the elements  $a_1, \ldots, a_n$ ,  $b_1, \ldots, b_{n-1}$  of G satisfying the conditions:

(a')  $A = \langle a_1, \dots, a_n \rangle$ , where  $a_n = c$ ,

(b') for each  $i, 1 \le i \le n - 1$ ,  $\langle a_i, b_i \rangle$  is an extra-special *p*-subgroup of G of order  $p^3$ ,

(c')  $[b_i, a_j] = 1$  if  $i \neq j$ , and the proposition can be obtained by noting that  $W_G(A) = G/A$  and  $a_i \in C_G(\langle a_i, b_i \rangle)$  if  $i \neq j$ .

First, let  $c_1, \ldots, c_{n-1}, c_n = c$ , be a basis of A. Clearly, for  $1 \le i \le n$  $-1, c_i \in G \setminus Z(G)$ , so there exists an element  $d_i$  of G such that  $[c_i, d_i]$  $\neq 1$ . Hence  $E_i = \langle c_i, d_i \rangle \supset Z(G) = \Phi(G)$  and  $\langle c_i \Phi(G), d_i \Phi(G) \rangle$  is a subgroup of  $G/\Phi(G)$  of order less than  $p^2$ . Then  $|E_i| \le p^3$ . Since  $E_i$  is not abelian, we have  $|E_i| = p^3$ . Thus  $E_i$  is an extra-special p-group of order  $p^{3}$ . By [8, 4.17 Chap. 4], we have  $G = E_{i} \cdot C_{G}(E_{i})$ .

Since  $G = E_1 \cdot C_G(E_1)$ , each  $c_i$   $(i \neq n)$  has the form

$$c_i = c_1^{r_i} \cdot d_1^{s_i} \cdot a_i^{(1)}$$

with  $0 \le r_i$ ,  $s_i \le p - 1$  and  $a_i^{(1)} \in C_G(E_1)$ . Since  $[c_i, c_1] = 1$ ,  $s_i$  is then equal zero. Set  $a_1^{(1)} = c_1$ ,  $b_1^{(1)} = d_1$ . We have  $A = \langle a_1^{(1)}, \dots, a_{n-1}^{(1)}, c \rangle$  and there exist the elements  $b_2^{(1)}, \ldots, b_{n-1}^{(1)}$  of G such that  $\langle a_i^{(1)}, b_i^{(1)} \rangle$  is an extra special p-group of order  $p^3$ , and  $[b_1^{(1)}, a_i^{(1)}] = 1$  for  $i \neq 1$ .

Assume that there exists the elements  $a_1^{(k)}, \ldots, a_{n-1}^{(k)}, b_1^{(k)}, \ldots, b_{n-1}^{(k)}$  $(1 \le k < n-1)$  of G such that

(i)  $A = \langle a_1^{(k)}, \ldots, a_{n-1}^{(k)}, c \rangle$ ,

(ii)  $\langle a_i^{(k)}, b_i^{(k)} \rangle$  is an extra-special *p*-group of order  $p^3$ ,

(iii)  $[b_i^{(k)}, a_i^{(k)}] = 1$  for  $i \neq j$  and  $j \leq k$ .

For  $i \neq k + 1$ ,  $a_i^{(k)}$  has the form  $a_i^{(k)} = a_{k+1}^{(k)m}i \cdot a_i^{(k+1)}$  with  $0 \le m_i < p$ and  $a_i^{(k+1)} \in C_G(\langle a_{k+1}^{(k)}, b_{k+1}^{(k)} \rangle)$ . Set  $a_{k+1}^{(k+1)} = a_{k+1}^{(k)}, b_j^{(k+1)} = b_j^{(k)}$  for  $j \leq j$ k + 1. Let  $b_i^{(k+1)}$   $(k-2 \le i \le n-1)$  be the elements of G such that  $\langle a_i^{(k+1)}, b_i^{(k+1)} \rangle$  is an extra-special *p*-group of order  $p^3$ . We have then

(i)  $A = \langle a_1^{(k+1)}, \dots, a_{n-1}^{(k+1)}, c \rangle$ , (ii)  $\langle a_i^{(k+1)}, b_i^{(k+1)} \rangle$  is an extra-special *p*-group of order  $p^3$ , for  $i \neq n$ ,

(iii)  $[b_i^{(k+1)}, a_i^{(k+1)}] = 1$  for  $j \neq i$  and  $j \leq k+1$ . Finally, put  $a_i =$  $a_i^{(n-1)}, b_i = b_i^{(n-1)}, 1 \le i \le n-1$ . We obtain (\*). The proposition is then proved.

(1.8) From now on, suppose that we are given a maximal elementary abelian p-subgroup A of G. Let us identify A with the vector space  $\mathbb{Z}_p^n$  by the correspondence

$$a_i \mapsto e_i = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix} < i,$$

where  $a_1, \ldots, a_n$  satisfy (1.7a). Then  $W_G(a)$  is the group

$$W_G(A) = \left\{ \begin{bmatrix} 1 & & & \\ & 1 & & & \\ 0 & & \ddots & & \\ * & * & \ddots & * & 1 \end{bmatrix} \in \operatorname{GL}(n, \mathbb{Z}_p) \right\}.$$

Let  $x_1, \ldots, x_n \in H^1(A) = \text{Hom}(A, \mathbb{Z}_p)$  be the duals of  $c_1, \ldots, c_n$ . Let  $y_i = \beta x_i$ , where  $\beta$  denotes the Bockstein operator. As it is well known, we have

$$H^{*}(A) = E(x_{1}, ..., x_{n}; 1) \otimes P(y_{1}, ..., y_{n}; 2)$$

where  $E(x_1, \ldots, x_n; 1)$  (resp.  $P(y_1, \ldots, y_n; 2)$ ) denotes the exterior (resp. polynomial) algebra of *n* generators  $x_1, \ldots, x_n$  (resp.  $y_1, \ldots, y_n$ ) of order 1 (resp. 2) over  $\mathbb{Z}_p$ .

As in Huỳnh Mùi [3, Chap. 2, §1], we have

(1.9) 
$$(H^*(A))^{W_G(A)} = (E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2))^{W_n}$$

where  $W_n$  is the subgroup of  $GL(n, \mathbb{Z}_p)$  given by

$$W_{n} = \left\{ \begin{bmatrix} 1 & & & * \\ & 1 & & 0 & * \\ & & \ddots & & \vdots \\ & 0 & & 1 & * \\ & & & & 1 \end{bmatrix} \in \operatorname{GL}(n, \mathbb{Z}_{p}) \right\}$$

and  $(E(x_1,\ldots,x_n; 1) \otimes P(y_1,\ldots,y_n; 2))^{W_n}$  denotes the invariants of  $W_n$  in  $E(x_1,\ldots,x_n; 1) \otimes P(y_1,\ldots,y_n; 2)$ .

2. A full system for the invariants of  $W_n$  in  $E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2)$ . We shall determine a full system for the invariants  $(E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2))^{W_n}$  by use of Huỳnh Mùi's invariants in [5].

Let 
$$1 \le k \le n$$
 be an integer. Following Huỳnh Mùi [5], we let  
(2.1)  $V_k = \prod_{\lambda_i \in \mathbf{Z}_p} (\lambda_1 y_1 + \lambda_2 y_2 + \dots + \lambda_{k-1} y_{k-1} + y_k).$ 

Let  $(s_1, \ldots, s_k)$  be a sequence of integers with  $0 \le s_1 < \cdots < s_k < n$ . For  $1 \le i \le k$ , define

(2.2) 
$$M_{n,s_{i}} = \begin{vmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ y_{1} & y_{2} & \cdots & y_{n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{1}^{p^{s_{i}-1}} & y_{2}^{p^{s_{i}-1}} & \cdots & y_{n}^{p^{s_{i}-1}} \\ y_{1}^{p^{s_{i}+1}} & y_{2}^{p^{s_{i}+1}} & \cdots & y_{n}^{p^{s_{i}+1}} \\ \cdots & \cdots & \cdots & \cdots \\ y_{1}^{p^{n-1}} & y_{2}^{p^{n-1}} & \cdots & y_{n}^{p^{n-1}} \end{vmatrix}$$

As in [5, Prop. I4.5], the product  $M_{n,s_1} \cdot M_{n,s_2} \cdots M_{n,s_k}$  has the factor  $L_n^{k-1}$ . Here

$$L_n = V_1 \cdot V_2 \cdot \cdots \cdot V_n$$

is Dickson's invariant (see e.g. [5]). Hence we have Huỳmh Mùi's invariants

(2.3) 
$$M_{n,s_1,s_2,\ldots,s_k} = M_{n,s_1,\ldots,s_k}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$
$$= (-1)^{k(k-1)/2} M_{n,s_1} \cdots M_{n,s_k}/L_n^{k-1}.$$

We have the following theorem

**THEOREM 2.4.** There is a direct sum decomposition of modules

$$(E(x_1, ..., x_n; 1) \otimes P(y_1, ..., y_n; 2))^{W_n} = E(x_1, ..., x_{n-1}) \otimes P(y_1, ..., y_{n-1}, V_n) \oplus \sum_{k=1}^n \oplus \sum_{0 \le s_1 < \cdots < s_k = n-1} \oplus M_{n, s_1, ..., s_k} P(y_1, ..., y_{n-1}, V_n).$$

Therefore the invariants  $x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}, V_n$   $M_{n,s_1,\ldots,s_k}, 1 \le k \le n, 0 \le s_1 < \cdots s_k = n-1$  form a full system for the invariants of  $W_n$  in  $E(x_1, x_2, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2).$ 

Let  $1 \le k \le n$  and let  $W_{n,k}$  denote the subgroup of  $GL(n, \mathbb{Z}_p)$  consisting of all elements



Particularly,  $W_{n,n-1} = W_n$  and  $W_{n,1} = GL_{n,p}$ . As a corollary of Theorem 2.4, we have

COROLLARY 2.6.  

$$(E(x_1, \dots, x_n; 1) \otimes P(y_1, \dots, y_n; 2))W_{n,k}$$

$$= E(x_1, \dots, x_k) \otimes P(y_1, \dots, y_k, V_{k+1}, \dots, V_n)$$

$$\oplus \sum_{l=1}^n \bigoplus \sum_{s=k+1}^n \bigoplus \sum_{0 \le s_1 < \dots < s_l = s-1}^{n} \bigoplus M_{s,s_1,\dots,s_l} P(y_1, \dots, y_k, V_{k+1}, \dots, V_n).$$

Note that  $W_{n,1} = \operatorname{GL}_{n,p}$ , so Theorem 2.4 provides a proof of [5,Th. I5.6].

 $W_{n,k}^{(i)} = \left\{ \begin{bmatrix} 1 & & & & & \\ & 0 & & & & \\ & & \ddots & & & \\ 0 & & 1 & & & & \\ & & & \ddots & * & & \\ & & & & \ddots & * & \\ 0 & & & 1 & \ddots & \\ & & & & & \ddots & 1 \end{bmatrix} \in W_{n,k} \right\}.$ 

*î*th-column

Since

$$(E(x_1,...,x_n;1) \otimes P(y_1,...,y_n;2))^{W_{n,k}}$$
  
=  $\bigcap_{i=k+1}^n (E(x_1,...,x_n;1) \otimes P(y_1,...,y_n,2))^{W_{n,k}^{(i)}}$ 

the assertion follows from Theorem 2.4.

*Proof.* For  $k + 1 \le i \le n$ , let

We shall prove Theorem 2.4 by induction on *n*. If n = 2,  $W_2 = GL_{2,p}$  and the theorem follows from [5, Th. 15.6].

LEMMA 2.7.  $P(y_1, \ldots, y_n)^{W_n} = P(y_1, y_2, \ldots, y_{n-1}, V_n).$ 

*Proof.* Let  $f \in P(y_1, ..., y_n)$  be an invariant of  $W_n$  having the factor  $y_n$ , then f has the factor

$$\omega y_n = \omega_{1n} y_2 + \cdots + \omega_{n-1n} y_{n-1} + y_n \quad \text{for } \omega = (\omega_{ij}) \in W_n.$$

Consequently f contains  $\prod_{\omega \in W_n} \omega y_n = V_n$  as a factor (refer to [5, I3.3]).

Assume that f' is another invariant of  $W_n$ . Let  $f_0$  be the sum of all terms of f' free of  $y_n$ . Then  $f_0$  is an invariant of  $W_n$ , hence so is  $f' - f_0$ . Since  $f' - f_0$  has the factor  $y_n$ , it has also the factor  $V_n$ . We have  $f' - f_0 = V_n^n \cdot f''$ , where f'' is a polynomial not having  $y_n$  as factor. Repeating the above process on f'', we conclude that  $y_1, \ldots, y_{n-1}, V_n$  generate the algebra  $P(y_1, \ldots, y_n)^{W_n}$ .

Clearly  $y_1, \ldots, y_{n-1}, V_n$  are algebraically independent. The lemma follows.

(2.8) For later use, we need some notations. Consider  $V_n = V_n(y_1, \ldots, y_n)$ , we set

$$V'_{n} = V_{n}(y_{2}, \dots, y_{n}, y_{1})$$
$$V''_{n-1} = V_{n-1}(y_{2}, \dots, y_{n-1}, y_{n})$$

Let  $0 \le s \le n$  be an integer. Then we have inductively the Dickson invariants

$$Q_{n,0} = (V_1 \cdot \dots \cdot V_n)^{p-1}$$
$$Q_{n,s} = Q_{n-1,s} \cdot V_n^{p-1} + Q_{n-1,s-1}^p, \qquad 0 < s \le n$$

where  $Q_{s,s} = 1$ . By a similar way as in 2.8, we set

$$Q'_{n-1,s} = Q_{n-1,s}(y_2, \ldots, y_n)$$

and

$$M'_{n-1,s_1,\ldots,s_k} = M_{m-1,s_1,\ldots,s_k}(x_2,\ldots,x_n; y_2,\ldots,y_n)$$

Let  $I = \{i_1, \ldots, i_k\}$  with  $i_1 < \cdots < i_k$  be a subset of  $\{1, \ldots, n\}$ . We set

$$x_1 = x_{i_1} \cdot x_{i_2} \cdots x_{i_k}.$$

Further, we denote

$$W_{n-1}' = \left\{ \begin{bmatrix} 1 & & & 0 \\ & 1 & & 0 & * \\ & & \ddots & & \vdots \\ & 0 & & 1 & * \\ & & & & 1 \end{bmatrix} \in \operatorname{GL}(n, \mathbb{Z}_p) \right\}.$$

LEMMA 2.9. Let  $1 \le k \le n$  and let f be an element of

$$E(x_1,\ldots,x_n;1) \otimes P(y_1,\ldots,y_n;2)$$

having the form

$$f = \sum_{I} x_{I} f_{I}(y_{1}, \ldots, y_{n})$$

where I runs over the subsets of order k in  $\{1, ..., n\}$ . If f is an invariant of  $W_n$ , then

(a)  $f_i$  is an invariant of  $W_n$ , for all I such that  $n \in I$ . Furthermore, if k = 1, then  $f_{\{n\}}$  contains  $L_{n-1}$  as a factor.

(b) If  $f_i = 0$  for all  $\dot{I}$  such that  $n \in \dot{I}$ , then  $f_I$  is an invariant of  $W_n$ , for all I.

*Proof.* Let  $\omega = (\omega_{ij})$  be an element of  $W_n$ , we have

$$\omega x_i = \begin{cases} x_i & 1 \le i < n, \\ \omega_{1n} x_1 + \cdots + \omega_{n-1n} x_{n-1} + x_n, & i = n. \end{cases}$$

Then f has the form

$$f = \sum_{I \neq j} x_I(\omega f_I) + x_j(\omega f_j).$$

This implies that  $\omega f_i = f_i$ , hence  $f_i$  is an invariant of  $W_n$ .

For the case k = 1, let  $1 \le m \le n - 1$  be an integer and  $\omega = 1 + \lambda_1 \varepsilon_{1n} + \cdots + \lambda_{m-1} \varepsilon_{m-1n} + \varepsilon_m$  be an element of  $W_n$ , where  $\lambda_i \in \mathbb{Z}_p$  and  $\varepsilon_{ij}$  denote the matrix with 1 in the (i, j)-position and 0 elsewhere. By comparing the coefficients of  $x_m$ , we have

$$f_m(y_1, \dots, y_{n-1}, y_n + \lambda_1 y_1 + \dots + \lambda_{m-1} y_{m-1} + y_m) + f_n(y_1, \dots, y_{n-1}, y_n + \lambda_1 y_1 + \dots + \lambda_{m-1} y_{m-1} + y_m) = f_m(y_1, \dots, y_{n-1}, y_n).$$

Put  $y_m = -(\lambda_1 y_1 + \cdots + \lambda_{m-1} y_{m-1})$ , we have

$$f_n(y_1,\ldots,y_{m-1},-(\lambda_1y_1+\cdots+\lambda_{m-1}y_{m-1}),y_{m+1},\ldots,y_n)=0$$

hence  $f_n$  contains  $y_m + \lambda_1 y_1 + \cdots + \lambda_{m-1} y_{m-1}$  as a factor. Consequently  $f_n$  contains  $L_{n-1}$  as a factor. The lemma is proved.

LEMMA 2.10. If 
$$0 \le s_1 < \cdots < s_k \le n-2$$
, we have  
 $M_{n-1,s_1,\ldots,s_k} \cdot V_n = M_{n,s_1,\ldots,s_k} - \sum_{i=1}^k (-1)^{k+i} M_{n,s_1,\ldots,\hat{s}_i,\ldots,s_k,n-1} \cdot Q_{n-1,s_i}$ 

and

$$M'_{n-1,s_1,\ldots,s_k} \cdot V'_n = M_{n,s_1,\ldots,s_k} - \sum_{i=1}^k (-1)^{k+i} M_{n,s_1,\ldots,\hat{s}_i,\ldots,s_k,n-1} \cdot Q'_{n-1,s_i}$$

up to a sign.

*Proof.* The first relation was proved in [5, Lemma I 4.12]. The second is a direct consequence of the first by permuting 1 and n.

LEMMA 2.11. If 
$$0 \le s_1 < \cdots < s_k \le n-2$$
, we have  
 $M'_{n-1,s_1,\ldots,s_k} \cdot V'_{n-1} = \sum_{0 \le t_1 < \cdots < t_k = n-1} M_{n,t_1,\ldots,t_k} \cdot F_{(t_1,\ldots,t_k)+h}$ 

where  $F_{(t_1,\ldots,t_k)}$  are elements of  $P(y_1,\ldots,y_n)$  and  $h \in E(x_1,\ldots,x_{n-1}) \otimes P(y_1,\ldots,y_n)$ .

Proof. Put

$$U = \prod_{\substack{\lambda_1 \in \mathbb{Z}_p \\ \lambda_n \neq 0}} (\lambda_2 y_2 + \cdots + \lambda_{n-1} y_{n-1} + \lambda_n y_n + y_1)$$

then  $V'_n = V'_{n-1} \cdot U$ . By Lemma 2.10, we have

$$M'_{n-1,s_1,...,s_k} \cdot V'_{n-1} \cdot U = M_{n,s_1,...,s_k}$$
  
-  $\sum_{i=1}^k (-1)^{k+i} M_{n,s_1,...,\hat{s}_i,...,s_k,n-1} \cdot Q'_{n-1,s_i}$   
=  $M_{n,s_1,...,s_k} \cdot V_n$   
+  $\sum_{i=1}^k (-1)^{k+i} M_{n,s_1,...,\hat{s}_i,...,s_k,n-1} (Q_{n-1,s_i} - Q'_{n-1,s_i})$ 

up to a sign.

Since  $V_n$  contains U as a factor, it remains to prove that  $Q_{n-1,s_i} - Q'_{n-1,s_i}$  has U as a factor. This is the fact by noting that

 $Q_{n-1,s_i}(\lambda_2 y_2 + \cdots + \lambda_n y_n, y_2, \ldots, y_{n-1}) = Q'_{n-1,s_i}(y_2, \ldots, y_n)$ 

for any  $\lambda_i \in \mathbb{Z}_p$ ,  $\lambda_n \neq 0$ . The lemma is proved.

LEMMA 2.12. Let 
$$1 \le k \le n$$
 and  $f$  be an element of  
 $E(x_1, \dots, x_n; 1) \otimes P(y_1, \dots, y_n; 2)$ 

given by

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{(s_1, \dots, s_k)}(y_1, \dots, y_k)$$

then f contains  $V_n$  as a vector if and only if so does every  $f_{(s_1,\ldots,s_k)}$ .

*Proof.* By definition of  $M_{n,s_1,\ldots,s_k}$ , we have

$$f = (-1)^{n-1} x_n \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n-1, s_1, \dots, s_{k-1}} f_{s_1, \dots, s_k}$$
$$+ \sum_I x_I f_I(y_1, \dots, y_n)$$

where  $\sum_{I}$  denotes the summation over the subsets I of order k in  $\{1, \ldots, n-1\}$ . Put  $y_n = \lambda_1 y_1 + \cdots + \lambda_{n-1} y_{n-1}$ . For each I,  $f_I(y_1, \ldots, y_{n-1}, \lambda_1 y_1 + \cdots + \lambda_{n-1} y_{n-1})$  must be equal zero. Then  $f_I$  has  $V_n$  as a factor. Consequently

$$F = \sum_{0 \le s_1 < \cdots < s_k} M_{n-1, s_1, \dots, s_{k-1}} f_{s_1, \dots, s_k}$$

also contains  $V_n$  as a factor.

Let  $0 \le s_1 < \cdots < s_k = n-1$  and  $s_{k+1} < \cdots < s_{n-1}$  be its complement in  $\{0, \ldots, n-2\}$ , we have

$$F \cdot M_{n-1,s_{k+1},\ldots,s_{n-1}} = \pm x_1 \cdot x_2 \cdots x_{n-1} I_{n-1} f_{s_1,\ldots,s_k}$$

by (2.3). Since the left side is equal zero for  $y_n = \lambda_1 y_1 + \cdots + \lambda_{n-1} y_{n-1}$ , so is  $f_{s_1,\ldots,s_k}$ . Hence  $f_{s_1,\ldots,s_k}$  contains  $V_n$  as a factor. The lemma is proved.

LEMMA 2.13. Let  $1 \le k \le n$  and

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{s_1, \dots, s_k} (y_1, \dots, y_k) + g$$

be an element of  $E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2)$ , where g is an element of  $E(x_1, \ldots, x_{n-1}) \otimes P(y_1, \ldots, y_n)$ . If f = 0 then g = 0 and  $f_{s_1, \ldots, s_k} = 0$  for each  $0 \le s_1 \cdots s_k = n - 1$ .

*Proof.* Let  $g = \sum_I x_I g_I(y_1, \dots, y_n)$ , where I runs over the subsets of order k of  $\{1, \dots, n-1\}$ . We have

$$f \cdot M_{n,n-1} = 0 = g \cdot M_{n,n-1}$$

For each *I*, the coefficient of  $x_I \cdot x_n$  in  $g \cdot M_{n,n-1}$  is  $(-1)^{n-1}g_I \cdot L_{n-1}$ . Hence  $g_I = 0$ . Then g = 0 and

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{s_1, \dots, s_k} = 0.$$

For  $0 \le s_1 < \cdots < s_k = n - 1$ , let  $s_{k+1} < \cdots < s_n$  be its complement in  $\{0, \ldots, n-1\}$ , we have

$$f \cdot M_{n,s_{k+1},\ldots,s_n} = \pm x_1 \cdot x_2 \cdot \cdots \cdot x_n \cdot L_n \cdot f_{s_1,\ldots,s_k}$$

then  $f_{s_1,\ldots,s_k} = 0$ . The lemma is proved.

Let k be an integer with  $2 \le k \le n$  and let f be an invariant of  $W_n$  having the form

$$f = \sum_{I} x_{I} f_{I}(y_{1}, \ldots, y_{n})$$

where I runs over the subsets of order k in  $\{1, ..., n\}$ . We write

(2.14) 
$$f = x_1 \left( \sum' x_J f_I \right) + \sum'' x_I f_I$$

where  $\Sigma'$  (resp.  $\Sigma''$ ) denotes the summation over the subsets of order k-1 (resp. k) in  $\{2, \ldots, n-1, n\}$ , and in the first summation J is given by  $I = J \cup \{1\}$  for each I containing 1. We set

$$G = \sum' x_J f_I$$

then G is an invariant of  $W'_{n-1}$ .

Now, we suppose that Theorem 2.4 is true for  $W_{n-1}$ . We have then

$$(2.15) \quad G = \sum_{0 \le s_1 < \cdots < s_{k-1} = n-2} M'_{n-1,s_1,\dots,s_{k-1}} g_{s_1,\dots,s_{k-1}} + \sum_J x_J g_J$$

where  $g_{s_1,\ldots,s_{k-1}}$  and  $g_J$  are the invariants of  $W'_{n-1}$  in  $P(y_1,\ldots,y_n)$  and  $\Sigma_J$  denotes the summation over the subsets of order k-1 in  $\{2,\ldots, n-1\}$ .

LEMMA 2.16. All  $g_{s_1,\ldots,s_{k-1}}$  in (2.15) are invariants of  $W_n$ .

*Proof.* Clearly all  $g_{s_1,...,s_{k-1}}$  are invariants of  $W'_{n-1}$ . We need only prove that  $g_{s_1,...,s_{k-1}} = \alpha_1 g_{s_1,...,s_{k-1}}$  with  $\omega_1 = 1 + \varepsilon_{1n}$ . We have  $f = x \cdot G + \sum f \cdot x \cdot f$ 

$$f = x_1 G + \sum'' x_I f_I$$
  
=  $\sum_{0 \le s_1 < \cdots < s_{k-1} = n-2} x_1 M'_{n-1,s_1,\dots,s_{k-1}} g_{s_1,\dots,s_{k-1}}$   
+  $\sum^{(1)} x_I h_I(y_1,\dots,y_n) + \sum^{(2)} x_I I_I(y_1,\dots,y_n)$ 

where  $\Sigma^{(1)}$  (resp.  $\Sigma^{(2)}$ ) denotes the summation over the subsets of order k in  $\{1, \ldots, n-1\}$  (resp.  $\{2, \ldots, n-1, n\}$  such that  $n \in I$ ). By Lemma 2.9, each  $1_I$  with I in  $\Sigma^{(2)}$  is an invariant of  $W_n$ . Hence

$$\omega_{1}f = \sum_{0 \leq s_{1} < \cdots < s_{k-1} = n-2} \left( x_{1}M'_{n-1,s_{1},\dots,s_{k-1}} \omega_{1}g_{(s_{1},\dots,s_{k-1})} \right)$$
$$\pm x_{1}M_{n-1,s_{1},\dots,s_{k-1}} \omega_{1}g_{(s_{1},\dots,s_{k-1})} + \sum_{i=1}^{n-2} \left( \sum_{j=1}^{n-2} x_{j} + \sum_{j=1}^{n-2$$

Then

(1) 
$$0 = f - \omega_1 f$$
  
=  $\sum_{0 \le s_1 < \cdots < s_{k-1} = n-2} x_1 M'_{n-1,s_1,\dots,s_{k-1}} (g_{s_1,\dots,s_{k-1}} - \omega_1 g_{s_1,\dots,s_{k-1}})$   
 $\times \sum_K x_K f'_K (y_1,\dots,y_n)$ 

where  $\Sigma_K$  denotes the summation over the subsets of order k in  $\{1, \ldots, n-1\}$ . By multiplying (1) by  $M'_{n-1,n-2}$ , we obtain  $f'_K = 0$  for each K, by (2.3). Let  $0 \le s_1 < \cdots < s_{k-1} = n-2$  and  $s_k < s_{k+1} < \cdots < s_{n-1}$  be the ordered complement in  $\{0, 1, \ldots, n-2\}$ . By multiplying (1) by  $M'_{n-1,s_k,\ldots,s_{n-1}}$ , according to (2.3), we obtain

$$g_{s_1,\ldots,s_{k-1}} - \omega_1 g_{s_1,\ldots,s_{k-1}} = 0.$$

The lemma is proved.

Lemmata 2.7-2.13 are obtained by a similar way as in [5]. The following is crucial in the determination of the invariants of  $W_n$ .

LEMMA 2.17. Let k be an integer with  $2 \le k \le n$  and f be an element of  $E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2)$  given by

$$f = \sum_{I} x_{I} f_{I}(y_{1}, \ldots, y_{n})$$

where I runs over the subsets of order k in  $\{1, ..., n\}$  such that  $\{1, n\} \not\subset I$ . If f is an invariant of  $W_n$ , then f can be decomposed into the form

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{s_1, \dots, s_k} + h$$

where all  $f_{s_1,\ldots,s_k}$  are invariants of  $W_n$  in  $P(y_1,\ldots,y_n)$  and h is an element of  $E(x_1,\ldots,x_{n-1}) \otimes P(y_1,\ldots,y_{n-1},V_n)$ .

Proof. We write

$$f = \sum'' x_I f_I + x_1 \left( \sum' x_J f_I \right)$$

as in (2.14). Set  $F = \sum_{I} x_I f_I$ , then F is an invariant of  $W'_{n-1}$ , and we have the decomposition

$$F = \sum_{0 \le s_1 < \cdots < s_k = n-2} M'_{n-1,s_1,\dots,s_k} F_{s_1,\dots,s_k}(y_1,\dots,y_n) + \sum_I x_I F_I(y_1,\dots,y_n)$$

where  $F_{s_1,\ldots,s_k}$  and  $F_I$  are invariants of  $W'_{n-1}$ , and  $\Sigma_I$  denotes the summation over the subsets of order k in  $\{2,\ldots,n-1\}$ . As in the proof of Lemma 2.16, one can see that all  $F_{s_1,\ldots,s_k}$  are invariants of  $W_n$ . Furthermore, we can assume that all  $F_I$ , where I occurs in  $\Sigma_I$ , and all  $f_I$ , with  $1 \in I$ , have  $y_n$  as a factor. Hence they obtain  $V''_{n-1}$  as a factor.

Let  $\omega_1 = 1 + \varepsilon_{1n}$ . We have

$$\omega_{1}f = \sum_{0 \leq s_{1} < \cdots < s_{k} = n-2} M'_{n-1,s_{1},\dots,s_{k}}F_{s_{1},\dots,s_{k}}$$
  
$$\pm \sum_{0 \leq s_{1} < \cdots < s_{k} = n-2} M_{n-1,s_{1},\dots,s_{k}}F_{s_{1},\dots,s_{k}}$$
  
$$+ \sum_{I} x_{I}\omega_{1}F_{I} + x_{1}(\sum' x_{J}\omega_{1}f_{I}).$$

Hence

$$0 = f - \omega_1 f = \pm \sum_{0 \le s_1 < \cdots < s_k = n-2} M_{n-1,s_1,\dots,s_k} F_{s_1,\dots,s_k}$$
$$+ \sum_I x_I (F_I - \omega_1 F_I) + x_1 (\sum' x_J (f_I - \omega_1 f_I)).$$

Since  $F_I$  and  $f_I$  have  $V_{n-1}''$  as a factor,  $F_I - \omega_1 F_I$  and  $f_I - \omega_1 f_I$  contain  $V_{n-1}'$  as a factor. By Lemma 2.12,  $F_{s_1,\ldots,s_k}$  also contains  $V_{n-1}'$  as a factor. Then we have

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-2} M'_{n-1,s_1,\dots,s_k} V'_{n-1} F'_{s_1,\dots,s_k} + \sum_I x_I F_I + x_1 (\sum' x_J f_I).$$

By Lemma 2.11, f has then the form

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{s_1, \dots, s_k} (y_1 2, y_n) + \sum m x_I h_I$$

where  $\Sigma'''$  denotes the summation over the subsets of order k in  $\{1, \ldots, n-1\}$ .

Let  $\omega$  be an element of  $W_n$ . We have

$$0 = f - \omega f = \sum ''' x_I (h_I - \omega h_I) + \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} (f_{s_1, \dots, s_k} - \omega f_{s_1, \dots, s_k}).$$

By Lemma 2.13, we have  $f_{s_1,...,s_k} - \omega f_{s_1,...,s_k} = 0$  and  $h_I - \omega h_I = 0$ . Hence  $f_{s_1,...,s_k}$  and  $h_I$  are invariants of  $W_n$ . The lemma is proved.

The proof of Theorem 2.4 will be completed by the following

**LEMMA 2.18.** Let k be an integer with  $1 \le k \le n$  and f be an element of  $E(x_1, \ldots, x_n; 1) \otimes P(y_1, \ldots, y_n; 2)$  given by

$$f = \sum_{I} x_{I} f_{I}(y_{1}, \ldots, y_{n})$$

where I runs over the subsets of order k in  $\{1, ..., n\}$ . If f is an invariant of  $W_n$ , then f can be decomposed into the form

$$f = \sum_{0 \le s_1 < \cdots < s_k = n-1} M_{n, s_1, \dots, s_k} f_{s_1, \dots, s_k} (y_1, \dots, y_n) + h$$

where all  $f_{s_1,\ldots,s_k}$  are invariants of  $W_n$ , and h is an element of  $E(x_1,\ldots,x_{n-1}) \otimes P(y_1,\ldots,y_{n-1},V_n)$ .

*Proof.* If k = 1, we have  $f = x_1 f_1 + \cdots + x_n f_n$ . By Lemma 2.9,  $f_n$  contains  $L_{n-1}$  as a factor

$$f_n = L_{n-1}g$$

with some invariant g of  $W_n$  in  $P(y_1, \ldots, y_n)$ . Then

$$f = x_1 f_1 + \dots + x_{n-1} f_{n-1} + x_n L_{n-1} g$$
$$= (-1)^{n-1} M_{n,n-1} g + h.$$

Hence the lemma is proved for the case k = 1.

Next we consider the case  $2 \le k \le n$ . As in the proof of Lemma 2.16, *f* has the form

$$f = x_1 \sum_{0 \le s_1 < \cdots < s_{k-1} = n-2} M'_{n-1, s_1, \dots, s_{k-1}} g_{s_1, \dots, s_{k-1}}$$
$$+ \sum_{I} \sum_{i=1}^{n-1} M'_{n-1, s_1, \dots, s_{k-1}} g_{s_1, \dots, s_{k-1}} g_{s_1, \dots, s_{k-1}}$$

and all  $g_{s_1,\ldots,s_{k-1}}$  are invariants of  $W_n$  by Lemma 2.16. Let  $0 \le s_1 < \cdots < s_{k-1} = n-2$ . By definition of  $M_{n,s_1,\ldots,s_{k-1},n-1}$  we have

$$x_1 M'_{n-1,s_1,\ldots,s_{k-1}} = M_{n,s_1,\ldots,s_{k-1},n-1} + \sum_I x_I h'_I(y_1,\ldots,y_n)$$

where  $\sum_{i}$  denotes the summation over the subsets of order k in  $\{2, ..., n\}$ . Then f has the form

$$f = \sum_{0 \le s_1 < \cdots < s_{k-1} = n-2} M_{n, s_1, \dots, s_{k-1}, n-1} g_{s_1, \dots, s_{k-1}} + \sum_{j=1}^{n-2} (3) x_j f'_j(y_1, \dots, y_n)$$

where  $\sum_{I}^{(3)} x_I f_I'$  satisfies the conditions of Lemma 2.17. The lemma is proved.

3. The restriction homomorphism. Let G be an extra-special pgroup of order  $p^{2n-1}$  ( $n \ge 2$ ). Let A be a maximal elementary abelian

*p*-subgroup of G as in (1.8). We are going to apply the invariants of  $W_n$  to prove the main theorem of this paper as follows.

THEOREM 3.1. (a) If  $G = E_{n-1}$ , then Im Res $(A, G) = H^*(A)^{W_G(A)}$   $= E(x_1, \dots, x_{n-1}) \otimes P(y_1, \dots, y_{n-1}, V_n)$   $\bigoplus \sum_{k=1}^n \bigoplus \sum_{0 \le s_1 < \dots < s_k = n-1} \bigoplus M_{n, s_1, \dots, s_k} P(y_1, \dots, y_{n-1}, V_n).$ (b) IF  $G = M_{n-1}$ , then Im Res $(A, G) = E(x_1, \dots, x_{n-1}) \otimes P(y_1, \dots, y_{n-1}, V_n).$ 

LEMMA 3.2. The elements 
$$x_i$$
,  $y_i$ ,  $1 \le i < n$ , and  $V_n$  are in Im Res $(A, G)$ .

*Proof.* This lemma has been proved by Tezuka-Yagita in [9]. For  $V_n$ , Tezuka and Yagita had used the Chern class of a complex representation of G. Here we give another proof by use of the norm map in Evens [1]. Let  $\mathcal{N} = \mathcal{N}_{Z(G) \to G}$  be the norm map. By [1, Th. 2], we have

$$\operatorname{Res}(A,G)\mathcal{N}(y_n) = V_n$$

LEMMA 3.3. For  $0 \le s_1 < \cdots < s_k = n - 1$ , there exist  $\varepsilon_i = 0, 1$ ;  $t_i = 1, 2, 3, \ldots$  such that

$$M_{n,s_1,\ldots,s_k} = \beta^{\epsilon_0} \mathscr{P}^{t_1} \beta^{\epsilon_1} \cdot \cdots \cdot \mathscr{P}^{t_l} \beta^{\epsilon_l} M_{n,0,1,\ldots,n-1}$$

up to a sign, where  $\mathcal{P}^i$  are the Steenrod operations.

*Proof.* Let  $\{i_1, \ldots, i_k\}$ ,  $\{i'_1, \ldots, i'_{k'}\}$  be respectively two subsets of order k and k' in  $\{0, 1, \ldots, n-1\}$  with  $i_1 < \cdots < i_k$ ,  $i'_1 < \cdots < i'_{k'}$ . Let us define the relation

$$\{i_1,\ldots,i_k\} \le \{i'_1,\ldots,i'_{k'}\}$$

if one of the following conditions is satisfied:

-k < k',

—if k = k', then there exists an integer  $1 \le m \le k$  such that  $i_m < i'_m$ and  $i_s = i'_s$  for  $m + 1 \le s \le k$ , unless  $\{i_1, \ldots, i_k\} = \{i'_1, \ldots, i'_k\}$ .

The set  $\mathscr{P}(\{0, 1, ..., n-1\})$  is then totally ordered. The lemma will be proved by descending induction on  $\{s_1, ..., s_k\}$ .

First, we have  $M_{n,1,2,\ldots,n-1} = \pm \beta M_{n,0,1,\ldots,n-1}$  up to a sign. Assume inductively that the lemma holds with  $\{s_1,\ldots,s_k\}$ . Let  $s'_1,\ldots,s'_k$  be the

preceding element of  $\{s_1, \ldots, s_k\}$ . We have

-if k' < k, the  $M_{n,s'_1,...,s'_{k'}} = \beta M_{n,0,s'_1,...,s'_{k'}}$ , -if k' = k, then there exists  $0 \le m \le k$  such that  $s'_m < s_m$  and  $s'_t = s_t$  for  $m + 1 \le t \le k$ . Hence

$$M_{n,s_1,\ldots,s_k} = \pm \mathscr{P}^{p^s m} M_{n,s_1,\ldots,s_k}.$$

The lemma is proved.

Let Z = Z(G). We have the following commutative diagram of group extensions

Let A' = A/Z be identified with the subgroup  $\mathbb{Z}_p^{n \ge 1}$  of A. The central group extension (3.5) becomes

$$(3.5)' 1 \to Z \to A \to A' \to 1$$

corresponding to the trivial cohomology class.

Let  $a_1, \ldots, a_n, b_1, \ldots, b_{n-}$  be the elements of G satisfying Prop. 1.7, such that  $a_1, \ldots, a_n$  correspond to the canonical basis of A as in (1.8). Then  $\{a_1Z, \ldots, a_{n-1}Z, b_1Z, \ldots, b_{n-1}Z\}$  form a basis of G/Z. Let us identify G/Z with  $\mathbb{Z}_p^{2n-2}$  by the correspondence

$$a_i \mapsto e_i = \begin{bmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{bmatrix} < i, \qquad b_i \mapsto e_{n+i-1} \begin{bmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{bmatrix} < n+i-1.$$

For  $i \ge n$ , let  $x_{i+1}$  be the dual of  $e_i$  over  $\mathbb{Z}_p$  and  $y_{i+1} = \beta x_{i+1}$ . For i < n (resp. i = n), the element  $x_i \in H^1(A)$  can be identified with the dual of  $e_i$  (resp.  $c \in Z$ ) over  $\mathbb{Z}_p$ . We have then

$$H^*(G/Z) = E(x_1, \dots, x_{n-1}, x_{n+1}, \dots, x_{2n-1}; 1)$$
  
 
$$\otimes P(y_1, \dots, y_{n-1}, y_{n+1}, \dots, y_{2n-1}; 2)$$

and  $H^*(Z) = E(x_n; 1) \otimes P(y_n; 2)$ .

In Pham Anh Minh-Huỳnh Mùi [4; Lemma 2.2], we have proved

LEMMA 3.6. Let  $f \in H^2(\mathbb{Z}_p^n)$  be represented by a 2-cocycle  $f: \mathbb{Z}_p^n \otimes \mathbb{Z}_p^n \to \mathbb{Z}_p$ . Then we have

$$f = \sum_{i=1}^{n} \alpha_i y_i + \sum_{1 \le i < j \le n} \beta_{ij} x_i x_j$$

where

$$\alpha_i = \sum_{k=1}^{p-1} f(e_i, e_i^k) \quad and \quad \beta_{ij} = f(e_i, e_j) - f(e_j, e_i).$$

From this lemma, one can see that the cohomology class z corresponding to the extension (3.4) is

(3.7) 
$$\begin{array}{c} y_1 + x_1 x_{n+1} + x_2 x_{n+2} + \dots + x_{n-1} x_{2n-1} & \text{if } G = M_{n-1} \\ x_1 x_{n+1} + x_2 x_{n+2} + \dots + x_{n-1} x_{2n-1} & \text{if } G = E_{n-1} \end{array}$$

via the isomorphism  $(x_n)^*$ :  $H^2(G/Z, Z) \cong H^2(G/Z, \mathbb{Z}_p)$ .

Consider the Hochschild-Serre spectral sequences of the central extensions (3.4) and (3.5)'. Let  $\tau: H^*(Z) \to H^{*+1}(G/Z)$  denote the transgression as usual. From [2; Chap. III, 3], we have

$$\tau x_n = z \in H^2(G/Z).$$

LEMMA 3.8. If 
$$G = M_{n-1}$$
, then  
 $\operatorname{Im} \operatorname{Res}(A, G) = E(x_1, \dots, x_{n-1}) \otimes P(y_1, \dots, y_{n-1}, V_n).$ 

*Proof.* Since Ann<sub> $H^*(X/G)$ </sub>( $\tau x_n$ ) = 0, we have

$$E_3(Z,G) = H^*(G/Z)|_{(\tau x_n, \beta \tau x_n)} \otimes \mathbf{Z}_p[y_n]$$

(see e.g. Pham Anh Minh-Huỳnh Mùi [4]).

The inclusion map  $A \hookrightarrow G$  gives us the corresponding map

$$E_{\infty}(Z,G) \to E_{\infty}(Z,A) = E_2(Z,A) = H^*(A) \otimes H^*(Z)$$

with image in  $H^{x}(A') \otimes \mathbb{Z}_{p}[y_{n}]$ . Then

Im Res
$$(A,G) \subset (H^*(A') \otimes \mathbb{Z}_p[y_n])^{w_n}$$
  
 $\subset E(x_1,\ldots,x_{n-1}) \otimes P(y_1,\ldots,y_{n-1},V_n)$ 

by Theorem 2.4. The lemma is proved.

The above lemma concludes the part (b) of Theorem 3.1. The following completes the proof of 3.1(a).

LEMMA 3.9. If  $G = E_{n-1}$ , then  $M_{n,0,1,\ldots,n-1} = x_1,\ldots,x_n$  is an element of Im Res(A,G), hence so are the elements  $M_{n,s_1,\ldots,s_k}$ ,  $0 \le s_1 < \cdots < s_k = n-1$ .

*Proof.* Since  $x_1 \cdot x_2 \cdot \cdots \cdot x_{n-1} \in \operatorname{Ann}_{H^*(G/Z)}(\tau x_n)$ , we have  $x_1 \cdot x_2 \cdots x_{n-1} \otimes x_n \in E_{\infty}^{n-1,1}(Z,G)$ 

(see e.g. Pham Anh Minh-Huynh Mùi [4]).

Consider the morphism of spectral sequences induced by the inclusion map  $(A, G) \hookrightarrow (G, Z)$ . We have the commutative diagram

(3.10) 
$$F^{n-1}H^{n}(G) \rightarrow E_{\infty}^{n-1,1}(Z,G)$$
$$\downarrow \qquad \qquad \downarrow f$$
$$F^{n-1}H^{n}(A) \rightarrow E_{\infty}^{n-1,1}(Z,A).$$

Here  $F^{i}H^{*}(G)$  and  $F^{i}H^{*}(A)$  are Hochschild-Serre filtrations corresponding to (3.4) and (3.5)'.

Let *m* be an element of  $F^{n-1}H^n(G)$  such that

$$M \in F^{n-1}H^n(G) \mapsto x_1 \cdot x_2 \cdot \cdots \cdot x_{n-1} \otimes x_n \in E_{\infty}^{n-1,1}(Z,G).$$

From the diagram (3.10), we have

$$\operatorname{Res}(A,G)M = x_1 \cdot x_2 \cdots x_n + F^n H^n(A).$$

Since  $F''H''(A) = H''(A') \subset \text{Im Res}(A, G)$  by Lemma 3.2, the element  $x_1 \cdot x_2 \cdots x_n$  lies to Im Res(A, G).

By Lemma 3.3, all  $M_{n,s_1,\ldots,s_k}$  are elements of  $\operatorname{Im}\operatorname{Res}(A,G)$ . The lemma is proved.

# References

- L. Evens, A generalization of the transfer map in cohomology of groups, Trans. Amer. Math. Soc., 108 (1963), 54–65.
- [2] G. P. Hochschild and J. P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc., 74 (1953), 110-135.
- [3] G. Lewis, The integral cohomology rings of groups of order p<sup>3</sup>, Trans. Amer. Math. Soc., 132 (1968), 501-529.
- [4] Phạm Anh Minh and Huỳnh Mùi, The mod p algebra of the group  $M(p^n)$ , to appear.
- [5] Huỳnh Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Tokyo Univ., 22 (1975), 319-369.
- [6] \_\_\_\_\_, The mod p cohomology algebra of the extra-special group  $E(p^3)$ , to appear.
- [7] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the Spiner groups, Math. Ann., 194 (1971), 197-223.
- [8] Michie Suzuki, Theory of groups, Iwanami shoten, 1977 (in Japanese).
- [9] M. Tezuka and N. Yagita, The varieties of mod p cohomology rings of extra-special p-groups for an odd prime, to appear.

Received July 7, 1983.

c/o Neal Koblitz University of Washington Seattle, WA 98195