MODULAR INVARIANT THEORY AND COHOMOLOGY ALGEBRAS OF EXTRA-SPECIAL p-GROUPS

Pham Anh Minh

Abstract

Let W_{n} be the group of all translations on the vector space \mathbf{Z}_{p}^{n-1}. Every element of W_{n} is considered as a linear transformation on \mathbf{Z}_{p}^{n}, i.e. W_{n} is identified to a subgroup of $\operatorname{GL}\left(n, Z_{p}\right)$. We have then a natural action of W_{n} on $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$. The purpose of this paper is to determine a full system of invariants of W_{n} in this algebra. Using this result, we determine the image $\operatorname{Im} \operatorname{Res}(A, G)$, for every maximal elementary abelian p-subgroup A of an extra-special p-group G.

Introduction. Let G be a finite group and \mathbf{Z}_{p} be the prime field of p elements. Let us write $H^{*}(G)=H^{*}\left(G, \mathbf{Z}_{p}\right)$ (the $\bmod p$ cohomology algebra of G).

If $p=2$, the cohomology algebras of all extra-special p-groups were determined by Quillen [7]. We are interested in the case $p>2$. So from now on, we shall assume this condition through the paper. For the extra-special p-groups of order p^{3}, their integral cohomology rings have been computed by Lewis in [3], and their mod p cohomology algebras are determined recently in Phạm Anh Minh-Huỳnh Mùi [4] and Huỳnh Mùi [6]. For an arbitrary extra-special p-group, Tezuka and Yagita had computed $H^{*}(G) / \sqrt{0}$ in [9]. As observed in [6], the ideal $\sqrt{0}$ of the nilpotents in this algebra is quite complicated, so it seems difficult to determine their nilpotent elements.

Let A be a maximal elementary abelian p-subgroup of an extra-special p-group G. The inclusion map $A \hookrightarrow G$ induces the restriction homomorphism $\operatorname{Res}(A, G): \quad H^{*}(G) \rightarrow H^{*}(A)^{W_{G}(A)}$, where $W_{G}(A)=$ $N_{G}(A) / C_{G}(A)$, the quotient of the normalizer by the centralizer of A in G. The purpose of this paper is to determine the image $\operatorname{Im} \operatorname{Res}(A, G)$ for every A. We shall see that the nilideal of $\operatorname{Im} \operatorname{Res}(A, G)$ is complicated, so our results will be needed in the study of the ideal $\sqrt{0}$ of $H^{*}(G)$.

This paper contains 3 sections. In §1, we consider maximal elementary abelian p-subgroups of an extra-special p-group following Quillen [7] and Tezuka-Yagita [9]. By means of the modular invariant theory developed by Huỳnh Mùi [5], we determine in §2 a full system for the
invariants of $W_{G}(A)$ in $H^{*}(A)$. Using the results in $\S 2$, we determine $\operatorname{Im} \operatorname{Res}(A, G)$ in $\S 3$. The main results of this paper are Theorem 2.4 and Theorem 3.1.

I would like to acknowledge my sincere gratitude to Prof. Huỳnh Mùi for his generous and inspiring guidance. I am also deeply grateful to Prof. Ngô Thê Phiệt for many valuable discussions.

1. Extra-special p-groups and maximal elementary abelian p-subgroups. Let G be a p-group. As usual, let $[G, G], Z(G) \Phi(G)=G^{p}$. $[G, G]$ denote the commutator subgroup, the center and the Frattini group of G respectively. G is called an extra-special p-group if it satisfies the following condition

$$
\begin{equation*}
[G, G]=\Phi(G)=Z(G) \cong \mathbf{Z}_{p} \tag{1.1}
\end{equation*}
$$

Equivalently, G is an extra-special p-group if we have the group extension

$$
\begin{equation*}
0 \rightarrow \mathbf{Z}_{p} \xrightarrow{i} G \xrightarrow{\pi} V \rightarrow 0 \tag{1.2}
\end{equation*}
$$

where V is a vector space of finite dimension over \mathbf{Z}_{p} and i is an isomorphism from \mathbf{Z}_{p} onto the center of G. (For details or extra-special p-groups see D. Gorenstein, Finite Groups, Harper \& Row, New York, 1968, especially §5.5.)

As well known, the dimension of $V \cong G / Z(G)$ is even. If $\operatorname{dim} V=2$, G is isomorphic to one of the following groups

$$
\begin{aligned}
E & =\left\langle a, b \mid a^{p}=b^{p}=[a, b]^{p}=[a,[a, b]]=[b,[a, b]]=1\right\rangle \\
M & =\left\langle a, b \mid a^{p^{2}}=b^{p}=1, b^{-1} \cdot a b=a^{1+p}\right\rangle
\end{aligned}
$$

Generally, if $\operatorname{dim} V=2 n-2(n \geq 2)$, then G is isomorphic to one of the following central products

$$
\begin{align*}
& E_{n-1}=E \cdot \cdots \cdot E \quad(n-1 \text { times }) \\
& M_{n-1}=E_{n-2} \cdot M . \tag{1.3}
\end{align*}
$$

Let $B: G / Z(G) \times G / Z(G) \rightarrow[G, G]$ be the map defined by

$$
B(u, v)=\left[u^{\prime}, v^{\prime}\right] \text { for } u, v \in G / Z(G)
$$

where u^{\prime}, v^{\prime} mean representatives of u and v respectively. One can easily see that B is well-defined. Identifying $G / Z(G)=V=\mathbf{Z}_{p}^{2 n-2}$ and $[G, G]$ $=\mathbf{Z}_{p}, B$ becomes the alternating form $V \times V \rightarrow \mathbf{Z}_{p}$ defined by

$$
\begin{equation*}
B(u, v)=\sum_{i=1}^{n-1} u_{2 i-1} \cdot v_{2 i}-u_{2 i} \cdot v_{2 i-1} \tag{1.4}
\end{equation*}
$$

for

$$
u=\left(u_{1}, \ldots, u_{2 n-2}\right), \quad v=\left(v_{1}, \ldots, v_{2 n-2}\right) \in V
$$

A subspace W of V is said to be B-isotropic if $B(u, v)=0$ for all $u, v \in W$.

In Quillen [7; §4] and Tezuka-Yagita [9; 1.7 and 3.4], we have
LEMMA 1.5. There is a 1-1 correspondence between maximal abelian p-subgroups A of G and maximal B-isotropic subspaces W of V. The dimension of any maximal B-isotropic subspaces W of V is just $n-1$.

From this lemma, we have
Lemma 1.6. Any maximal elementary abelian p-subgroup A of G is of $\operatorname{rank} n$, i.e. $A \cong \mathbf{Z}_{p}^{n}$.

Proof. It suffices to prove that A is also a maximal abelian subgroup of G, and the result is implied from (1.5). Assume that A is not a maximal abelian subgroup of G, then $A \nsubseteq A^{\prime}$, where A^{\prime} is a maximal abelian subgroup but not elementary of G. Let $a \in A^{\prime}$ with $\operatorname{ord}(a)=p^{2}$. Let $\Omega_{1}(G), \mho_{1}(G)$ denote the subgroups of G defined by $\Omega_{1}(G)=\{x \in$ $G / \operatorname{ord}(x) \leq p\}$ and $\mho_{1}(G)=\left\{y^{p} \mid y \in G\right\}$. Since $\left|\mho_{1}(G)\right|=p$, we have $\left|\Omega_{1}(G)\right|=p^{2 n-2}$ and $\Omega_{1}(G)$ is not an extra-special p-group. Hence $Z\left(\Omega_{1}(G)\right) \nsupseteq Z(G)$. Let b be an element of $Z\left(\Omega_{1}(G)\right) \backslash Z(g)$, we have $[b, a] \neq 1$, hence $b \notin A$ and $\langle A, b\rangle$ is then an elementary abelian p-subgroup of G which contains strictly A, a contradiction. The lemma is proved.

Proposition 1.7. Let A be a maximal elementary abelian p-subgroup of G. Then there exist the elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n-1}$ of G such that
(a) $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $a_{n}=c$ is a generator of $Z(G)$
(b) $W_{G}(A)=\left\langle\underline{b}_{1}, \ldots, \underline{b}_{n-1}\right\rangle$ where $\underline{b}_{i}=b_{i} A, 1 \leq i \leq n-1$
(c) $a_{i}^{b}=a_{i}$ if $i \neq j, a_{i} \cdot a_{n}$ if $i=j$ for $1 \leq i, j \leq n-1$.

Proof. It suffices to prove that: (*) there exist the elements a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n-1} of G satisfying the conditions:
(a') $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, where $a_{n}=c$,
(b^{\prime}) for each $i, 1 \leq i \leq n-1,\left\langle a_{i}, b_{i}\right\rangle$ is an extra-special p-subgroup of \boldsymbol{G} of order $\boldsymbol{p}^{\mathbf{3}}$,
(c') $\left[b_{i}, a_{j}\right]=1$ if $i \neq j$, and the proposition can be obtained by noting that $W_{G}(A)=G / A$ and $a_{i} \in C_{G}\left(\left\langle a_{j}, b_{j}\right\rangle\right)$ if $i \neq j$.

First, let $c_{1}, \ldots, c_{n-1}, c_{n}=c$, be a basis of A. Clearly, for $1 \leq i \leq n$ $-1, c_{i} \in G \backslash Z(G)$, so there exists an element d_{i} of G such that $\left[c_{i}, d_{i}\right]$ $\neq 1$. Hence $E_{i}=\left\langle c_{i}, d_{i}\right\rangle \supset Z(G)=\Phi(G)$ and $\left\langle c_{i} \Phi(G), d_{i} \Phi(G)\right\rangle$ is a subgroup of $G / \Phi(G)$ of order less than p^{2}. Then $\left|E_{i}\right| \leq p^{3}$. Since E_{i} is not abelian, we have $\left|E_{i}\right|=p^{3}$. Thus E_{i} is an extra-special p-group of order p^{3}. By $\left[8,4.17\right.$ Chap. 4], we have $G-=E_{i} \cdot C_{G}\left(E_{i}\right)$.

Since $G=E_{1} \cdot C_{G}\left(E_{1}\right)$, each $c_{i}(i \neq n)$ has the form

$$
c_{i}=c_{1}^{r_{i}} \cdot d_{1}^{s_{i}} \cdot a_{i}^{(1)}
$$

with $0 \leq r_{i}, s_{i} \leq p-1$ and $a_{i}^{(1)} \in C_{G}\left(E_{1}\right)$. Since $\left[c_{i}, c_{1}\right]=1, s_{i}$ is then equal zero. Set $a_{1}^{(1)}=c_{1}, b_{1}^{(1)}=d_{1}$. We have $A=\left\langle a_{1}^{(1)}, \ldots, a_{n-1}^{(1)}, c\right\rangle$ and there exist the elements $b_{2}^{(1)}, \ldots, b_{n-1}^{(1)}$ of G such that $\left\langle a_{i}^{(1)}, b_{i}^{(1)}\right\rangle$ is an extra special p-group of order p^{3}, and $\left[b_{1}^{(1)}, a_{i}^{(1)}\right]=1$ for $i \neq 1$.

Assume that there exists the elements $a_{1}^{(k)}, \ldots, a_{n-1}^{(k)}, b_{1}^{(k)}, \ldots, b_{n-1}^{(k)}$ ($1 \leq k<n-1$) of G such that
(i) $A=\left\langle a_{1}^{(k)}, \ldots, a_{n-1}^{(k)}, c\right\rangle$,
(ii) $\left\langle a_{i}^{(k)}, b_{i}^{(k)}\right\rangle$ is an extra-special p-group of order p^{3},
(iii) $\left[b_{j}^{(k)}, a_{i}^{(k)}\right]=1$ for $i \neq j$ and $j \leq k$.

For $i \neq k+1, a_{i}^{(k)}$ has the form $a_{i}^{(k)}=a_{k+1}^{(k) m_{i}} \cdot a_{i}^{(k+1)}$ with $0 \leq m_{i}<p$ and $a_{i}^{(k+1)} \in C_{G}\left(\left\langle a_{k+1}^{(k)}, b_{k+1}^{(k)}\right\rangle\right)$. Set $a_{k+1}^{(k+1)}=a_{k+1}^{(k)}, b_{j}^{(k+1)}=b_{j}^{(k)}$ for $j \leq$ $k+1$. Let $b_{i}^{(k+1)}(k-2 \leq i \leq n-1)$ be the elements of G such that $\left\langle a_{i}^{(k+1)}, b_{i}^{(k+1)}\right\rangle$ is an extra-special p-group of order p^{3}. We have then
(i) $A=\left\langle a_{1}^{(k+1)}, \ldots, a_{n-1}^{(k+1)}, c\right\rangle$,
(ii) $\left\langle a_{i}^{(k+1)}, b_{i}^{(k+1)}\right\rangle$ is an extra-special p-group of order p^{3}, for $i \neq n$,
(iii) $\left[b_{j}^{(k+1)}, a_{i}^{(k+1)}\right]=1$ for $j \neq i$ and $j \leq k+1$. Finally, put $a_{i}=$ $a_{i}^{(n-1)}, b_{i}=b_{i}^{(n-1)}, 1 \leq i \leq n-1$. We obtain (*). The proposition is then proved.
(1.8) From now on, suppose that we are given a maximal elementary abelian p-subgroup A of G. Let us identify A with the vector space \mathbf{Z}_{p}^{n} by the correspondence

$$
a_{i} \mapsto e_{i}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]<i,
$$

where a_{1}, \ldots, a_{n} satisfy (1.7a). Then $W_{G}(a)$ is the group

$$
W_{G}(A)=\left\{\left[\begin{array}{ccccc}
1 & & & & \\
& 1 & \cdots & 0 \\
& 0 & & \cdot & \\
* & * & \cdots & * & 1
\end{array}\right] \in \mathrm{GL}\left(n, \mathrm{Z}_{p}\right)\right\} .
$$

Let $x_{1}, \ldots, x_{n} \in H^{1}(A)=\operatorname{Hom}\left(A, \mathbf{Z}_{p}\right)$ be the duals of c_{1}, \ldots, c_{n}. Let $y_{i}=\beta x_{i}$, where β denotes the Bockstein operator. As it is well known, we have

$$
H^{*}(A)=E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)
$$

where $E\left(x_{1}, \ldots, x_{n} ; 1\right)$ (resp. $P\left(y_{1}, \ldots, y_{n} ; 2\right)$) denotes the exterior (resp. polynomial) algebra of n generators x_{1}, \ldots, x_{n} (resp. y_{1}, \ldots, y_{n}) of order 1 (resp. 2) over \mathbf{Z}_{p}.

As in Huỳnh Mùi [3, Chap. 2, §1], we have

$$
\begin{equation*}
\left(H^{*}(A)\right)^{W_{G}(A)}=\left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right)^{W_{n}} \tag{1.9}
\end{equation*}
$$

where W_{n} is the subgroup of $\mathrm{GL}\left(n, \mathbf{Z}_{p}\right)$ given by

$$
W_{n}=\left\{\left[\begin{array}{ccccc}
1 & & & & * \\
& 1 & & 0 & * \\
& & \ddots & & \vdots \\
& 0 & & 1 & * \\
& & & & 1
\end{array}\right] \in \operatorname{GL}\left(n, \mathbf{Z}_{p}\right)\right\}
$$

and $\left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right)^{W_{n}}$ denotes the invariants of W_{n} in $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$.
2. A full system for the invariants of W_{n} in $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes$ $P\left(y_{1}, \ldots, y_{n} ; 2\right)$. We shall determine a full system for the invariants $\left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right)^{W_{n}}$ by use of Huỳnh Mùi's invariants in [5].

Let $1 \leq k \leq n$ be an integer. Following Huỳnh Mùi [5], we let

$$
\begin{equation*}
V_{k}=\prod_{\lambda_{i} \in \mathbf{Z}_{p}}\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}+\cdots+\lambda_{k-1} y_{k-1}+y_{k}\right) \tag{2.1}
\end{equation*}
$$

Let $\left(s_{1}, \ldots, s_{k}\right)$ be a sequence of integers with $0 \leq s_{1}<\cdots<s_{k}<n$. For $1 \leq i \leq k$, define

$$
M_{n, s_{i}}=\left|\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \tag{2.2}\\
y_{1} & y_{2} & \cdots & y_{n} \\
\cdots & \cdots & \cdots & \cdots \\
y_{1}^{p_{i}^{s_{i}-1}} & y_{2}^{p_{1}-1} & \cdots & y_{n}^{p_{1}^{s_{i}}} \\
y_{1}^{p_{i}^{s_{i}+1}} & y_{2}^{p_{1}^{s_{4}+1}} & \cdots & y_{n}^{p_{4}^{s_{4}+1}} \\
\cdots & \cdots & \cdots & \cdots \\
y_{1}^{p^{n-1}} & y_{2}^{p^{n-1}} & \cdots & y_{n}^{p^{n-1}}
\end{array}\right| .
$$

As in [5, Prop. I4.5], the product $M_{n, s_{1}} \cdot M_{n, s_{2}} \cdots M_{n, s_{k}}$ has the factor L_{n}^{k-1}. Here

$$
L_{n}=V_{1} \cdot V_{2} \cdot \cdots \cdot V_{n}
$$

is Dickson's invariant (see e.g. [5]). Hence we have Huỳmh Mưi's invariants

$$
\begin{align*}
M_{n, s_{1}, s_{2}, \ldots, s_{k}} & =M_{n, s_{1}, \ldots, s_{k}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \tag{2.3}\\
& =(-1)^{k(k-1) / 2} M_{n, s_{1}} \cdots M_{n, s_{k}} / L_{n}^{k-1} .
\end{align*}
$$

We have the following theorem
Theorem 2.4. There is a direct sum decomposition of modules

$$
\begin{aligned}
& \left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right)^{W_{n}} \\
& \quad=E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right) \\
& \quad \oplus \sum_{k=1}^{n} \oplus \sum_{0 \leq s_{1}<\ldots<s_{k}=n-1} \oplus M_{n, s_{1}, \ldots, s_{k}} P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right) .
\end{aligned}
$$

Therefore the invariants $x_{1}, \ldots, x_{n-1}, y_{1}, \ldots, y_{n-1}, V_{n} \quad M_{n, s_{1}, \ldots, s_{k}}, 1 \leq k \leq$ $n, 0 \leq s_{1}<\cdots s_{k}=n-1$ form a full system for the invariants of W_{n} in $E\left(x_{1}, x_{2}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$.

Let $1 \leq k \leq n$ and let $W_{n, k}$ denote the subgroup of $\operatorname{GL}\left(n, \mathbf{Z}_{p}\right)$ consisting of all elements

Particularly, $W_{n, n-1}=W_{n}$ and $W_{n, 1}=\mathrm{GL}_{n, p}$.
As a corollary of Theorem 2.4, we have
Corollary 2.6.

$$
\begin{aligned}
& \left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right) W_{n, k} \\
& \quad=E\left(x_{1}, \ldots, x_{k}\right) \otimes P\left(y_{1}, \ldots, y_{k}, V_{k+1}, \ldots, V_{n}\right) \\
& \quad \oplus \sum_{l=1}^{n} \oplus \sum_{s=k+1}^{n} \oplus \sum_{0 \leq s_{1}<\ldots s_{1}=s-1} \\
& \quad \oplus M_{s, s_{1}, \ldots, s_{l}} P\left(y_{1}, \ldots, y_{k}, V_{k+1}, \ldots, V_{n}\right) .
\end{aligned}
$$

Note that $W_{n, 1}=\mathrm{GL}_{n, p}$, so Theorem 2.4 provides a proof of $[5, \mathrm{Th} . \mathrm{I} 5.6]$.
Proof. For $k+1 \leq i \leq n$, let
\hat{i} th-column
Since

$$
\begin{aligned}
& \left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)\right)^{W_{n, k}} \\
& \quad=\bigcap_{i=k+1}^{n}\left(E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n}, 2\right)\right)^{W_{n, k}^{(1)}}
\end{aligned}
$$

the assertion follows from Theorem 2.4.
We shall prove Theorem 2.4 by induction on n. If $n=2, W_{2}=\mathrm{GL}_{2, p}$ and the theorem follows from [5, Th. I5.6].

Lemma 2.7. $P\left(y_{1}, \ldots, y_{n}\right)^{W_{n}}=P\left(y_{1}, y_{2}, \ldots, y_{n-1}, V_{n}\right)$.
Proof. Let $f \in P\left(y_{1}, \ldots, y_{n}\right)$ be an invariant of W_{n} having the factor y_{n}, then f has the factor

$$
\omega y_{n}=\omega_{1 n} y_{2}+\cdots+\omega_{n-1 n} y_{n-1}+y_{n} \quad \text { for } \omega=\left(\omega_{i j}\right) \in W_{n} .
$$

Consequently f contains $\prod_{\omega \in W_{n}} \omega y_{n}=V_{n}$ as a factor (refer to [5, I3.3]).
Assume that f^{\prime} is another invariant of W_{n}. Let f_{0} be the sum of all terms of f^{\prime} free of y_{n}. Then f_{0} is an invariant of W_{n}, hence so is $f^{\prime}-f_{0}$. Since $f^{\prime}-f_{0}$ has the factor y_{n}, it has also the factor V_{n}. We have $f^{\prime}-f_{0}=V_{n}^{n} \cdot f^{\prime \prime}$, where $f^{\prime \prime}$ is a polynomial not having y_{n} as factor. Repeating the above process on $f^{\prime \prime}$, we conclude that $y_{1}, \ldots, y_{n-1}, V_{n}$ generate the algebra $P\left(y_{1}, \ldots, y_{n}\right)^{W_{n}}$.

Clearly $y_{1}, \ldots, y_{n-1}, V_{n}$ are algebraically independent. The lemma follows.
(2.8) For later use, we need some notations. Consider $V_{n}=$ $V_{n}\left(y_{1}, \ldots, y_{n}\right)$, we set

$$
\begin{aligned}
V_{n}^{\prime} & =V_{n}\left(y_{2}, \ldots, y_{n}, y_{1}\right) \\
V_{n-1}^{\prime \prime} & =V_{n-1}\left(y_{2}, \ldots, y_{n-1}, y_{n}\right) .
\end{aligned}
$$

Let $0 \leq s \leq n$ be an integer. Then we have inductively the Dickson invariants

$$
\begin{aligned}
& Q_{n, 0}=\left(V_{1} \cdot \cdots \cdot V_{n}\right)^{p-1} \\
& Q_{n, s}=Q_{n-1, s} \cdot V_{n}^{p-1}+Q_{n-1, s-1}^{p}, \quad 0<s \leq n
\end{aligned}
$$

where $Q_{s, s}=1$. By a similar way as in 2.8 , we set

$$
Q_{n-1, s}^{\prime}=Q_{n-1, s}\left(y_{2}, \ldots, y_{n}\right)
$$

and

$$
M_{n-1, s_{1}, \ldots, s_{k}}^{\prime}=M_{m-1, s_{1}, \ldots, s_{k}}\left(x_{2}, \ldots, x_{n} ; y_{2}, \ldots, y_{n}\right)
$$

Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<\cdots<i_{k}$ be a subset of $\{1, \ldots, n\}$. We set

$$
x_{1}=x_{i_{1}} \cdot x_{i_{2}} \cdots x_{i_{k}} .
$$

Further, we denote

$$
W_{n-1}^{\prime}=\left\{\left[\begin{array}{ccccc}
1 & & & & 0 \\
& 1 & & 0 & * \\
& & \ddots & & \vdots \\
& 0 & & 1 & * \\
& & & & 1
\end{array}\right] \in \operatorname{GL}\left(n, \mathbf{Z}_{p}\right)\right\}
$$

Lemma 2.9. Let $1 \leq k \leq n$ and let f be an element of

$$
E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)
$$

having the form

$$
f=\sum_{I} x_{I} f_{I}\left(y_{1}, \ldots, y_{n}\right)
$$

where I runs over the subsets of order k in $\{1, \ldots, n\}$. If f is an invariant of W_{n}, then
(a) $f_{\dot{I}}$ is an invariant of W_{n}, for all \dot{I} such that $n \in \dot{I}$. Furthermore, if $k=1$, then $f_{\{n\}}$ contains L_{n-1} as a factor.
(b) If $f_{\dot{I}}=0$ for all \dot{I} such that $n \in \dot{I}$, then f_{I} is an invariant of W_{n}, for all I.

Proof. Let $\omega=\left(\omega_{i j}\right)$ be an element of W_{n}, we have

$$
\omega x_{i}=\left\{\begin{array}{l}
x_{i} \quad 1 \leq i<n, \\
\omega_{1 n} x_{1}+\cdots+\omega_{n-1 n} x_{n-1}+x_{n}, \quad i=n .
\end{array}\right.
$$

Then f has the form

$$
f=\sum_{I \neq \dot{I}} x_{I}\left(\omega f_{I}\right)+x_{\dot{I}}\left(\omega f_{\dot{I}}\right)
$$

This implies that $\omega f_{\dot{I}}=f_{\dot{I}}$, hence f_{I} is an invariant of W_{n}.
For the case $k=1$, let $1 \leq m \leq n-1$ be an integer and $\omega=1+$ $\lambda_{1} \varepsilon_{1 n}+\cdots+\lambda_{m-1} \varepsilon_{m-1 n}+\varepsilon_{m}$ be an element of W_{n}, where $\lambda_{i} \in \mathbf{Z}_{p}$ and $\varepsilon_{i j}$ denote the matrix with 1 in the (i,j)-position and 0 elsewhere. By comparing the coefficients of x_{m}, we have

$$
\begin{aligned}
& f_{m}\left(y_{1}, \ldots, y_{n-1}, y_{n}+\lambda_{1} y_{1}+\cdots+\lambda_{m-1} y_{m-1}+y_{m}\right) \\
& \quad+f_{n}\left(y_{1}, \ldots, y_{n-1}, y_{n}+\lambda_{1} y_{1}+\cdots+\lambda_{m-1} y_{m-1}+y_{m}\right) \\
& =
\end{aligned}
$$

Put $y_{m}=-\left(\lambda_{1} y_{1}+\cdots+\lambda_{m-1} y_{m-1}\right)$, we have

$$
f_{n}\left(y_{1}, \ldots, y_{m-1},-\left(\lambda_{1} y_{1}+\cdots+\lambda_{m-1} y_{m-1}\right), y_{m+1}, \ldots, y_{n}\right)=0
$$

hence f_{n} contains $y_{m}+\lambda_{1} y_{1}+\cdots+\lambda_{m-1} y_{m-1}$ as a factor. Consequently f_{n} contains L_{n-1} as a factor. The lemma is proved.

Lemma 2.10. If $0 \leq s_{1}<\cdots<s_{k} \leq n-2$, we have

$$
M_{n-1, s_{1}, \ldots, s_{k}} \cdot V_{n}=M_{n, s_{1}, \ldots, s_{k}}-\sum_{i=1}^{k}(-1)^{k+i} M_{n, s_{1}, \ldots, \hat{s}_{t}, \ldots, s_{k}, n-1} \cdot Q_{n-1, s_{t}}
$$

and

$$
M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} \cdot V_{n}^{\prime}=M_{n, s_{1}, \ldots, s_{k}}-\sum_{i=1}^{k}(-1)^{k+i} M_{n, s_{1}, \ldots, \hat{s}_{1}, \ldots, s_{k}, n-1} \cdot Q_{n-1, s_{i}}^{\prime}
$$

up to a sign.
Proof. The first relation was proved in [5, Lemma I 4.12]. The second is a direct consequence of the first by permuting 1 and n.

Lemma 2.11. If $0 \leq s_{1}<\cdots<s_{k} \leq n-2$, we have

$$
M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} \cdot V_{n-1}^{\prime}=\sum_{0 \leq t_{1}<\cdots<t_{k}=n-1} M_{n, t_{l}, \ldots, t_{k}} \cdot F_{\left(t_{1}, \ldots, t_{k}\right)+h}
$$

where $F_{\left(t_{1}, \ldots, t_{k}\right)}$ are elements of $P\left(y_{1}, \ldots, y_{n}\right)$ and $h \in E\left(x_{1}, \ldots, x_{n-1}\right) \otimes$ $P\left(y_{1}, \ldots, y_{n}\right)$.

Proof. Put

$$
U=\prod_{\substack{\lambda_{1} \in \mathbf{Z}_{p} \\ \lambda_{n} \neq 0}}\left(\lambda_{2} y_{2}+\cdots+\lambda_{n-1} y_{n-1}+\lambda_{n} y_{n}+y_{1}\right)
$$

then $V_{n}^{\prime}=V_{n-1}^{\prime} \cdot U$. By Lemma 2.10, we have

$$
\begin{aligned}
& M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} \cdot V_{n-1}^{\prime} \cdot U=M_{n, s_{1}, \ldots, s_{k}} \\
& \quad-\sum_{i=1}^{k}(-1)^{k+i} M_{n, s_{1}, \ldots, \hat{s}_{i}, \ldots, s_{k}, n-1} \cdot Q_{n-1, s_{i}}^{\prime} \\
& = \\
& \quad M_{n, s_{1}, \ldots, s_{k}} \cdot V_{n} \\
& \quad+\sum_{i=1}^{k}(-1)^{k+i} M_{n, s_{1}, \ldots, \hat{s}_{t}, \ldots, s_{k}, n-1}\left(Q_{n-1, s_{t}}-Q_{n-1, s_{i}}^{\prime}\right)
\end{aligned}
$$

up to a sign.
Since V_{n} contains U as a factor, it remains to prove that $Q_{n-1, s_{t}}-$ $Q_{n-1, s_{t}}^{\prime}$ has U as a factor. This is the fact by noting that

$$
Q_{n-1, s_{i}}\left(\lambda_{2} y_{2}+\cdots+\lambda_{n} y_{n}, y_{2}, \ldots, y_{n-1}\right)=Q_{n-1, s_{t}}^{\prime}\left(y_{2}, \ldots, y_{n}\right)
$$

for any $\lambda_{i} \in \mathbf{Z}_{p}, \lambda_{n} \neq 0$. The lemma is proved.
Lemma 2.12. Let $1 \leq k \leq n$ and f be an element of

$$
E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)
$$

given by

$$
f=\sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{\left(s_{1}, \ldots, s_{k}\right)}\left(y_{1}, \ldots, y_{k}\right)
$$

then f contains V_{n} as a vector if and only if so does every $f_{\left(s_{1}, \ldots, s_{k}\right)}$.
Proof. By definition of $M_{n, s_{1}, \ldots, s_{k}}$, we have

$$
\begin{aligned}
f= & (-1)^{n-1} x_{n} \sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n-1, s_{1}, \ldots, s_{k-1}} f_{s_{1}, \ldots, s_{k}} \\
& +\sum_{I} x_{I} f_{I}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where Σ_{I} denotes the summation over the subsets I of order k in $\{1, \ldots, n-1\}$. Put $y_{n}=\lambda_{1} y_{1}+\cdots+\lambda_{n-1} y_{n-1}$. For each I, $f_{I}\left(y_{1}, \ldots, y_{n-1}, \lambda_{1} y_{1}+\cdots+\lambda_{n-1} y_{n-1}\right)$ must be equal zero. Then f_{I} has V_{n} as a factor. Consequently

$$
F=\sum_{0 \leq s_{1}<\cdots<s_{k}} M_{n-1, s_{1}, \ldots, s_{k-1}} f_{s_{1}, \ldots, s_{k}}
$$

also contains V_{n} as a factor.
Let $0 \leq s_{1}<\cdots<s_{k}=n-1$ and $s_{k+1}<\cdots<s_{n-1}$ be its complement in $\{0, \ldots, n-2\}$, we have

$$
F \cdot M_{n-1, s_{k+1}, \ldots, s_{n-1}}= \pm x_{1} \cdot x_{2} \cdots x_{n-1} I_{n-1} f_{s_{1}, \ldots, s_{k}}
$$

by (2.3). Since the left side is equal zero for $y_{n}=\lambda_{1} y_{1}+\cdots+\lambda_{n-1} y_{n-1}$, so is $f_{s_{1}, \ldots, s_{k}}$. Hence $f_{s_{1}, \ldots, s_{k}}$ contains V_{n} as a factor. The lemma is proved.

Lemma 2.13. Let $1 \leq k \leq n$ and

$$
f=\sum_{0 \leq s_{1}<\ldots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{s_{1}, \ldots, s_{k}}\left(y_{1}, \ldots, y_{k}\right)+g
$$

be an element of $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$, where g is an element of $E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n}\right)$. If $f=0$ then $g=0$ and $f_{s_{1}, \ldots, s_{k}}=0$ for each $0 \leq s_{1} \cdots s_{k}=n-1$.

Proof. Let $g=\sum_{I} x_{I} g_{I}\left(y_{1}, \ldots, y_{n}\right)$, where I runs over the subsets of order k of $\{1, \ldots, n-1\}$. We have

$$
f \cdot M_{n, n-1}=0=g \cdot M_{n, n-1}
$$

For each I, the coefficient of $x_{I} \cdot x_{n}$ in $g \cdot M_{n, n-1}$ is $(-1)^{n-1} g_{I} \cdot L_{n-1}$. Hence $g_{I}=0$. Then $g=0$ and

$$
f=\sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{s_{1}, \ldots, s_{k}}=0
$$

For $0 \leq s_{1}<\cdots<s_{k}=n-1$, let $s_{k+1}<\cdots<s_{n}$ be its complement in $\{0, \ldots, n-1\}$, we have

$$
f \cdot M_{n, s_{k+1}, \ldots, s_{n}}= \pm x_{1} \cdot x_{2} \cdots x_{n} \cdot L_{n} \cdot f_{s_{1}, \ldots, s_{k}}
$$

then $f_{s_{l}, \ldots, s_{k}}=0$. The lemma is proved.
Let k be an integer with $2 \leq k \leq n$ and let f be an invariant of W_{n} having the form

$$
f=\sum_{I} x_{I} f_{I}\left(y_{1}, \ldots, y_{n}\right)
$$

where I runs over the subsets of order k in $\{1, \ldots, n\}$. We write

$$
\begin{equation*}
f=x_{1}\left(\sum^{\prime} x_{J} f_{I}\right)+\sum^{\prime \prime} x_{I} f_{I} \tag{2.14}
\end{equation*}
$$

where Σ^{\prime} (resp. $\Sigma^{\prime \prime}$) denotes the summation over the subsets of order $k-1$ (resp. k) in $\{2, \ldots, n-1, n\}$, and in the first summation J is given by $I=J \cup\{1\}$ for each I containing 1 . We set

$$
G=\sum^{\prime} x_{J} f_{I}
$$

then G is an invariant of W_{n-1}^{\prime}.
Now, we suppose that Theorem 2.4 is true for W_{n-1}. We have then

$$
\begin{equation*}
G=\sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime} g_{s_{1}, \ldots, s_{k-1}}+\sum_{J} x_{J} g_{J} \tag{2.15}
\end{equation*}
$$

where $g_{s_{1}, \ldots, s_{k-1}}$ and g_{J} are the invariants of W_{n-1}^{\prime} in $P\left(y_{1}, \ldots, y_{n}\right)$ and Σ_{J} denotes the summation over the subsets of order $k-1$ in $\{2, \ldots$, $n-1\}$.

Lemma 2.16. All $g_{s_{1}, \ldots, s_{k-1}}$ in (2.15) are invariants of W_{n}.
Proof. Clearly all $g_{s_{1}, \ldots, s_{k-1}}$ are invariants of W_{n-1}^{\prime}. We need only prove that $g_{s_{1}, \ldots, s_{k-1}}=\alpha_{1} g_{s_{1}, \ldots, s_{k-1}}$ with $\omega_{1}=1+\varepsilon_{1 n}$. We have

$$
\begin{aligned}
f= & x_{1} G+\sum^{\prime \prime} x_{I} f_{I} \\
= & \sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2} x_{1} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime} g_{s_{1}, \ldots, s_{k-1}} \\
& +\sum^{(1)} x_{I} h_{I}\left(y_{1}, \ldots, y_{n}\right)+\sum^{(2)} x_{I} 1_{I}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where $\Sigma^{(1)}$ (resp. $\Sigma^{(2)}$) denotes the summation over the subsets of order k in $\{1, \ldots, n-1\}$ (resp. $\{2, \ldots, n-1, n\}$ such that $n \in I$). By Lemma 2.9, each 1_{I} with I in $\Sigma^{(2)}$ is an invariant of W_{n}. Hence

$$
\begin{aligned}
& \omega_{1} f= \sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2}\left(x_{1} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime} \omega_{1} g_{\left(s_{1}, \ldots, s_{k-1}\right)}\right. \\
&\left. \pm x_{1} M_{n-1, s_{1}, \ldots, s_{k-1}} \omega_{1} g_{\left(s_{1}, \ldots, s_{k-1}\right)}\right) \\
&+\sum^{(1)} x_{1} \omega_{1} h_{I} \pm \sum^{(2)} x_{1} \cdot x_{I \backslash\{n\}} \cdot 1_{I}+\sum^{(2)} x_{I} 1 .
\end{aligned}
$$

Then
(1) $0=f-\omega_{1} f$

$$
\begin{aligned}
= & \sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2} x_{1} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime}\left(g_{s_{1}, \ldots, s_{k-1}}-\omega_{1} g_{s_{1}, \ldots, s_{k-1}}\right) \\
& \times \sum_{K} x_{K} f_{K}^{\prime}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where Σ_{K} denotes the summation over the subsets of order k in $\{1, \ldots$, $n-1\}$. By multiplying (1) by $M_{n-1, n-2}^{\prime}$, we obtain $f_{K}^{\prime}=0$ for each K, by (2.3). Let $0 \leq s_{1}<\cdots<s_{k-1}=n-2$ and $s_{k}<s_{k+1}<\cdots<s_{n-1}$ be the ordered complement in $\{0,1, \ldots, n-2\}$. By multiplying (1) by $M_{n-1, s_{k} \ldots, s_{n-1}}^{\prime}$, according to (2.3), we obtain

$$
g_{s_{1}, \ldots, s_{k-1}}-\omega_{1} g_{s_{1}, \ldots, s_{k-1}}=0 .
$$

The lemma is proved.
Lemmata 2.7-2.13 are obtained by a similar way as in [5]. The following is crucial in the determination of the invariants of W_{n}.

Lemma 2.17. Let k be an integer with $2 \leq k \leq n$ and f be an element of $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$ given by

$$
f=\sum_{I} x_{I} f_{I}\left(y_{1}, \ldots, y_{n}\right)
$$

where I runs over the subsets of order k in $\{1, \ldots, n\}$ such that $\{1, n\} \not \subset I$. If f is an invariant of W_{n}, then f can be decomposed into the form

$$
f=\sum_{0 \leq s_{1}<\ldots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{s_{1}, \ldots, s_{k}}+h
$$

where all $f_{s_{1}, \ldots, s_{k}}$ are invariants of W_{n} in $P\left(y_{1}, \ldots, y_{n}\right)$ and h is an element of $E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right)$.

Proof. We write

$$
f=\sum^{\prime \prime} x_{I} f_{I}+x_{1}\left(\sum^{\prime} x_{J} f_{I}\right)
$$

as in (2.14). Set $F=\Sigma^{\prime \prime} x_{I} f_{I}$, then F is an invariant of W_{n-1}^{\prime}, and we have the decomposition

$$
\begin{aligned}
F= & \sum_{0 \leq s_{1}<\cdots<s_{k}=n-2} M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} F_{s_{1}, \ldots, s_{k}}\left(y_{1}, \ldots, y_{n}\right) \\
& +\sum_{I} x_{I} F_{I}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where $F_{s_{1}, \ldots, s_{k}}$ and F_{I} are invariants of W_{n-1}^{\prime}, and Σ_{I} denotes the summation over the subsets of order k in $\{2, \ldots, n-1\}$. As in the proof of Lemma 2.16, one can see that all $F_{s_{1}, \ldots, s_{k}}$ are invariants of W_{n}. Furthermore, we can assume that all F_{I}, where I occurs in \sum_{I}, and all f_{I}, with $1 \in I$, have y_{n} as a factor. Hence they obtain $V_{n-1}^{\prime \prime}$ as a factor.

Let $\omega_{1}=1+\varepsilon_{1 n}$. We have

$$
\begin{aligned}
\omega_{1} f= & \sum_{0 \leq s_{1}<\cdots<s_{k}=n-2} M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} F_{s_{1}, \ldots, s_{k}} \\
& \pm \sum_{0 \leq s_{1}<\cdots<s_{k}=n-2} M_{n-1, s_{1}, \ldots, s_{k}} F_{s_{1}, \ldots, s_{k}} \\
& +\sum_{I} x_{I} \omega_{1} F_{I}+x_{1}\left(\sum^{\prime} x_{J} \omega_{1} f_{I}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
0= & f-\omega_{1} f= \pm \sum_{0 \leq s_{1}<\cdots<s_{k}=n-2} M_{n-1, s_{1}, \ldots, s_{k}} F_{s_{1}, \ldots, s_{k}} \\
& +\sum_{I} x_{I}\left(F_{I}-\omega_{1} F_{I}\right)+x_{1}\left(\sum^{\prime} x_{J}\left(f_{I}-\omega_{1} f_{I}\right)\right)
\end{aligned}
$$

Since F_{I} and f_{I} have $V_{n-1}^{\prime \prime}$ as a factor, $F_{I}-\omega_{1} F_{I}$ and $f_{I}-\omega_{1} f_{I}$ contain V_{n-1}^{\prime} as a factor. By Lemma 2.12, $F_{s_{1}, \ldots, s_{k}}$ also contains V_{n-1}^{\prime} as a factor. Then we have

$$
\begin{aligned}
f= & \sum_{0 \leq s_{1}<\cdots<s_{k}=n-2} M_{n-1, s_{1}, \ldots, s_{k}}^{\prime} V_{n-1}^{\prime} F_{s_{1}, \ldots, s_{k}}^{\prime} \\
& +\sum_{I} x_{I} F_{I}+x_{1}\left(\sum^{\prime} x_{J} f_{I}\right) .
\end{aligned}
$$

By Lemma 2.11, f has then the form

$$
f=\sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{s_{1}, \ldots, s_{k}}\left(y_{1} 2, y_{n}\right)+\sum^{\prime \prime \prime} x_{I} h_{I}
$$

where $\Sigma^{\prime \prime \prime}$ denotes the summation over the subsets of order k in $\{1, \ldots$, $n-1\}$.

Let ω be an element of \boldsymbol{W}_{n}. We have

$$
\begin{aligned}
0= & f-\omega f=\sum^{\prime \prime \prime} x_{I}\left(h_{I}-\omega h_{I}\right) \\
& +\sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}}\left(f_{s_{1}, \ldots, s_{k}}-\omega f_{s_{1}, \ldots, s_{k}}\right)
\end{aligned}
$$

By Lemma 2.13, we have $f_{s_{1}, \ldots, s_{k}}-\omega f_{s_{1}, \ldots, s_{k}}=0$ and $h_{I}-\omega h_{I}=0$. Hence $f_{s_{1}, \ldots, s_{k}}$ and h_{I} are invariants of W_{n}. The lemma is proved.

The proof of Theorem 2.4 will be completed by the following
Lemma 2.18. Let k be an integer with $1 \leq k \leq n$ and f be an element of $E\left(x_{1}, \ldots, x_{n} ; 1\right) \otimes P\left(y_{1}, \ldots, y_{n} ; 2\right)$ given by

$$
f=\sum_{I} x_{I} f_{I}\left(y_{1}, \ldots, y_{n}\right)
$$

where I runs over the subsets of order k in $\{1, \ldots, n\}$. If f is an invariant of W_{n}, then f can be decomposed into the form

$$
f=\sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} M_{n, s_{1}, \ldots, s_{k}} f_{s_{1}, \ldots, s_{k}}\left(y_{1}, \ldots, y_{n}\right)+h
$$

where all $f_{s_{1}, \ldots, s_{k}}$ are invariants of W_{n}, and h is an element of $E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right)$.

Proof. If $k=1$, we have $f=x_{1} f_{1}+\cdots+x_{n} f_{n}$. By Lemma 2.9, f_{n} contains L_{n-1} as a factor

$$
f_{n}=L_{n-1} g
$$

with some invariant g of W_{n} in $P\left(y_{1}, \ldots, y_{n}\right)$. Then

$$
\begin{aligned}
f & =x_{1} f_{1}+\cdots+x_{n-1} f_{n-1}+x_{n} L_{n-1} g \\
& =(-1)^{n-1} M_{n, n-1} g+h
\end{aligned}
$$

Hence the lemma is proved for the case $k=1$.
Next we consider the case $2 \leq k \leq n$. As in the proof of Lemma 2.16, f has the form

$$
\begin{aligned}
f= & x_{1} \sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime} g_{s_{1}, \ldots, s_{k-1}} \\
& +\sum^{(1)} x_{I} h_{I}\left(y_{1}, \ldots, y_{n}\right)+\sum^{(2)} x_{I} g_{I}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

and all $g_{s_{1}, \ldots, s_{k-1}}$ are invariants of W_{n} by Lemma 2.16. Let $0 \leq s_{1}<\cdots$ $<s_{k-1}=n-2$. By definition of $M_{n, s_{1}, \ldots, s_{k-1}, n-1}$ we have

$$
x_{1} M_{n-1, s_{1}, \ldots, s_{k-1}}^{\prime}=M_{n, s_{1}, \ldots, s_{k-1}, n-1}+\sum_{I} x_{I} h_{I}^{\prime}\left(y_{1}, \ldots, y_{n}\right)
$$

where Σ_{I} denotes the summation over the subsets of order k in $\{2, \ldots, n\}$. Then f has the form

$$
\begin{aligned}
f= & \sum_{0 \leq s_{1}<\cdots<s_{k-1}=n-2} M_{n, s_{1}, \ldots, s_{k-1}, n-1} g_{s_{1}, \ldots, s_{k-1}} \\
& +\sum^{(3)} x_{I} f_{I}^{\prime}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where $\sum^{(3)} x_{I} f_{I}^{\prime}$ satisfies the conditions of Lemma 2.17. The lemma is proved.
3. The restriction homomorphism. Let G be an extra-special p group of order $p^{2 n-1}(n \geq 2)$. Let A be a maximal elementary abelian
p-subgroup of G as in (1.8). We are going to apply the invariants of W_{n} to prove the main theorem of this paper as follows.

Theorem 3.1. (a) If $G=E_{n-1}$, then

$$
\begin{aligned}
& \operatorname{Im} \operatorname{Res}(A, G)=H^{*}(A)^{W_{G}(A)} \\
& = \\
& \quad E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right) \\
& \quad \oplus \sum_{k=1}^{n} \oplus \sum_{0 \leq s_{1}<\cdots<s_{k}=n-1} \oplus M_{n, s_{1}, \ldots, s_{k}} P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right) .
\end{aligned}
$$

(b) $I F G=M_{n-1}$, then

$$
\operatorname{Im} \operatorname{Res}(A, G)=E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right) .
$$

Lemma 3.2. The elements $x_{i}, y_{i}, 1 \leq i<n$, and V_{n} are in $\operatorname{Im} \operatorname{Res}(A, G)$.
Proof. This lemma has been proved by Tezuka-Yagita in [9]. For V_{n}, Tezuka and Yagita had used the Chern class of a complex representation of G. Here we give another proof by use of the norm map in Evens [1]. Let $\mathcal{N}=\mathscr{N}_{Z_{(G)} \rightarrow G}$ be the norm map. By [1, Th. 2], we have

$$
\operatorname{Res}(A, G) \mathscr{N}\left(y_{n}\right)=V_{n} .
$$

Lemma 3.3. For $0 \leq s_{1}<\cdots<s_{k}=n-1$, there exist $\varepsilon_{i}=0,1$; $t_{i}=1,2,3, \ldots$ such that

$$
M_{n, s_{1}, \ldots, s_{k}}=\beta^{\left.\varepsilon_{0} \mathscr{P} \mathscr{P}_{1} \beta^{\varepsilon_{1}} \ldots \ldots \mathscr{P}^{t^{t}} \beta^{\varepsilon_{l}} M_{n, 0,1, \ldots, n-1},{ }^{2}\right)}
$$

up to a sign, where \mathscr{P}^{i} are the Steenrod operations.
Proof. Let $\left\{i_{1}, \ldots, i_{k}\right\},\left\{i_{1}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right\}$ be respectively two subsets of order k and k^{\prime} in $\{0,1, \ldots, n-1\}$ with $i_{1}<\cdots<i_{k}, i_{1}^{\prime}<\cdots<i_{k^{\prime}}^{\prime}$. Let us define the relation

$$
\left\{i_{1}, \ldots, i_{k}\right\} \leq\left\{i_{1}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right\}
$$

if one of the following conditions is satisfied:
$-k<k^{\prime}$,
-if $k=k^{\prime}$, then there exists an integer $1 \leq m \leq k$ such that $i_{m}<i_{m}^{\prime}$ and $i_{s}=i_{s}^{\prime}$ for $m+1 \leq s \leq k$, unless $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right\}$.

The set $\mathscr{P}(\{0,1, \ldots, n-1\})$ is then totally ordered. The lemma will be proved by descending induction on $\left\{s_{1}, \ldots, s_{k}\right\}$.

First, we have $M_{n, 1,2, \ldots, n-1}= \pm \beta M_{n, 0,1, \ldots, n-1}$ up to a sign. Assume inductively that the lemma holds with $\left\{s_{1}, \ldots, s_{k}\right\}$. Let $s_{1}^{\prime}, \ldots, s_{k^{\prime}}^{\prime}$ be the
preceding element of $\left\{s_{1}, \ldots, s_{k}\right\}$. We have
-if $k^{\prime}<k$, the $M_{n, s_{1}^{\prime}, \ldots, s_{k}^{\prime}}=\beta M_{n, 0, s_{1}^{\prime}, \ldots, s_{k}^{\prime}}$,
-if $k^{\prime}=k$, then there exists $0 \leq m \leq k$ such that $s_{m}^{\prime}<s_{m}$ and $s_{t}^{\prime}=s_{t}$ for $m+1 \leq t \leq k$. Hence

$$
M_{n, s_{1}^{\prime}, \ldots, s_{k}^{\prime}}= \pm \mathscr{P}^{s} m M_{n, s_{1}, \ldots, s_{k}} .
$$

The lemma is proved.
Let $Z=Z(G)$. We have the following commutative diagram of group extensions

$$
\begin{array}{ccccccccc}
1 & \rightarrow & Z & \rightarrow & G & \rightarrow & G / Z & \rightarrow & 1 \tag{3.4}\\
1 & & \| & & U & & \cup & & \\
1 & Z & \rightarrow & \rightarrow & A / Z & \rightarrow & 1
\end{array}
$$

Let $A^{\prime}=A / Z$ be identified with the subgroup $\mathbf{Z}_{p}^{\text {not }}$ of A. The central group extension (3.5) becomes

$$
\begin{equation*}
1 \rightarrow Z \rightarrow A \rightarrow A^{\prime} \rightarrow 1 \tag{3.5}
\end{equation*}
$$

corresponding to the trivial cohomology class.
Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n-}$ be the elements of G satisfying Prop. 1.7, such that a_{1}, \ldots, a_{n} correspond to the canonical basis of A as in (1.8). Then $\left\{a_{1} Z, \ldots, a_{n-1} Z, b_{1} Z, \ldots, b_{n-1} Z\right\}$ form a basis of G / Z. Let us identify G / Z with $\mathbf{Z}_{p}^{2 n-2}$ by the correspondence

$$
a_{i} \mapsto e_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]<i, \quad b_{i} \mapsto e_{n+i-1}\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]<n+i-1
$$

For $i \geq n$, let x_{i+1} be the dual of e_{i} over \mathbf{Z}_{p} and $y_{i+1}=\beta x_{i+1}$. For $i<n$ (resp. $i=n$), the element $x_{i} \in H^{1}(A)$ can be identified with the dual of e_{i} (resp. $c \in Z$) over \mathbf{Z}_{p}. We have then

$$
\begin{aligned}
H^{*}(G / Z)= & E\left(x_{1}, \ldots, x_{n-1}, x_{n+1}, \ldots, x_{2 n-1} ; 1\right) \\
& \otimes P\left(y_{1}, \ldots, y_{n-1}, y_{n+1}, \ldots, y_{2 n-1} ; 2\right)
\end{aligned}
$$

and $H^{*}(Z)=E\left(x_{n} ; 1\right) \otimes P\left(y_{n} ; 2\right)$.
In Phạm Anh Minh-Huỳnh Mùi [4; Lemma 2.2], we have proved
Lemma 3.6. Let $f \in H^{2}\left(\mathbf{Z}_{p}^{n}\right)$ be represented by a 2 -cocycle $f: \mathbf{Z}_{p}^{n} \otimes \mathbf{Z}_{p}^{n}$ $\rightarrow \mathbf{Z}_{p}$. Then we have

$$
f=\sum_{i=1}^{n} \alpha_{i} y_{i}+\sum_{1 \leq i<j \leq n} \beta_{i j} x_{i} x_{j}
$$

where

$$
\alpha_{i}=\sum_{k=1}^{p-1} f\left(e_{i}, e_{i}^{k}\right) \quad \text { and } \quad \beta_{i j}=f\left(e_{i}, e_{j}\right)-f\left(e_{j}, e_{t}\right)
$$

From this lemma, one can see that the cohomology class z corresponding to the extension (3.4) is

$$
\begin{array}{ll}
y_{1}+x_{1} x_{n+1}+x_{2} x_{n+2}+\cdots+x_{n-1} x_{2 n-1} & \text { if } G=M_{n-1} \\
x_{1} x_{n+1}+x_{2} x_{n+2}+\cdots+x_{n-1} x_{2 n-1} & \text { if } G=E_{n-1} \tag{3.7}
\end{array}
$$

via the isomorphism $\left(x_{n}\right)^{*}: H^{2}(G / Z, Z) \cong H^{2}\left(G / Z, \mathbf{Z}_{p}\right)$.
Consider the Hochschild-Serre spectral sequences of the central extensions (3.4) and (3.5)'. Let $\tau: H^{*}(Z) \rightarrow H^{*+1}(G / Z)$ denote the transgression as usual. From [2; Chap. III, 3], we have

$$
\tau x_{n}=z \in H^{2}(G / Z)
$$

Lemma 3.8. If $G=M_{n-1}$, then

$$
\operatorname{Im} \operatorname{Res}(A, G)=E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right)
$$

Proof. Since $\mathrm{Ann}_{H^{*}(X / G)}\left(\tau x_{n}\right)=0$, we have

$$
E_{3}(Z, G)=\left.H^{*}(G / Z)\right|_{\left(\tau x_{n}, \beta \tau x_{n}\right)} \otimes \mathbf{Z}_{p}\left[y_{n}\right]
$$

(see e.g. Phạm Anh Minh-Huỳnh Mùi [4]).
The inclusion map $A \hookrightarrow G$ gives us the corresponding map

$$
E_{\infty}(Z, G) \rightarrow E_{\infty}(Z, A)=E_{2}(Z, A)=H^{*}(A) \otimes H^{*}(Z)
$$

with image in $H^{x}\left(A^{\prime}\right) \otimes \mathbf{Z}_{p}\left[y_{n}\right]$. Then

$$
\begin{aligned}
\operatorname{Im} \operatorname{Res}(A, G) & \subset\left(H^{*}\left(A^{\prime}\right) \otimes \mathbf{Z}_{p}\left[y_{n}\right]\right)^{W_{n}} \\
& \subset E\left(x_{1}, \ldots, x_{n-1}\right) \otimes P\left(y_{1}, \ldots, y_{n-1}, V_{n}\right)
\end{aligned}
$$

by Theorem 2.4. The lemma is proved.
The above lemma concludes the part (b) of Theorem 3.1. The following completes the proof of 3.1(a).

Lemma 3.9. If $G=E_{n-1}$, then $M_{n, 0,1, \ldots, n-1}=x_{1}, \ldots, x_{n}$ is an element of $\operatorname{Im} \operatorname{Res}(A, G)$, hence so are the elements $M_{n, s_{1}, \ldots, s_{k}}, 0 \leq s_{1}<\cdots<s_{k}$ $=n-1$.

Proof. Since $x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n-1} \in \operatorname{Ann}_{H^{*}(G / Z)}\left(\tau x_{n}\right)$, we have

$$
x_{1} \cdot x_{2} \cdots x_{n-1} \otimes x_{n} \in E_{\infty}^{n-1,1}(Z, G)
$$

(see e.g. Phạm Anh Minh-Huỳnh Mùi [4]).
Consider the morphism of spectral sequences induced by the inclusion map $(A, G) \hookrightarrow(G, Z)$. We have the commutative diagram

$$
\begin{array}{ccc}
F^{n-1} H^{n}(G) & \rightarrow & E_{\infty}^{n-1,1}(Z, G) \\
\downarrow & & \downarrow f \tag{3.10}\\
F^{n-1} H^{n}(A) & \rightarrow & E_{\infty}^{n-1,1}(Z, A)
\end{array}
$$

Here $F^{i} H^{*}(G)$ and $F^{i} H^{*}(A)$ are Hochschild-Serre filtrations corresponding to (3.4) and (3.5)'.

Let m be an element of $F^{n-1} H^{n}(G)$ such that

$$
M \in F^{n-1} H^{n}(G) \mapsto x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n-1} \otimes x_{n} \in E_{\infty}^{n-1,1}(Z, G)
$$

From the diagram (3.10), we have

$$
\operatorname{Res}(A, G) M=x_{1} \cdot x_{2} \cdots x_{n}+F^{n} H^{n}(A)
$$

Since $F^{n} H^{n}(A)=H^{n}\left(A^{\prime}\right) \subset \operatorname{Im} \operatorname{Res}(A, G)$ by Lemma 3.2, the element $x_{1} \cdot x_{2} \cdots x_{n}$ lies to $\operatorname{Im} \operatorname{Res}(A, G)$.

By Lemma 3.3, all $M_{n, s_{1}, \ldots, s_{k}}$ are elements of $\operatorname{Im} \operatorname{Res}(A, G)$. The lemma is proved.

References

[1] L. Evens, A generalization of the transfer map in cohomology of groups, Trans. Amer. Math. Soc., 108 (1963), 54-65.
[2] G. P. Hochschild and J. P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc., 74 (1953), 110-135.
[3] G. Lewis, The integral cohomology rings of groups of order p^{3}, Trans. Amer. Math. Soc., 132 (1968), 501-529.
[4] Phạm Anh Minh and Huỳnh Mùi, The $\bmod p$ algebra of the $\operatorname{group} M\left(p^{n}\right)$, to appear.
[5] Huỳnh Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Tokyo Univ., 22 (1975), 319-369.
[6] ___ The mod p cohomology algebra of the extra-special group $E\left(p^{3}\right)$, to appear.
[7] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the Spiner groups, Math. Ann., 194 (1971), 197-223.
[8] Michie Suzuki, Theory of groups, Iwanami shoten, 1977 (in Japanese).
[9] M. Tezuka and N. Yagita, The varieties of $\bmod p$ cohomology rings of extra-special p-groups for an odd prime, to appear.

Received July 7, 1983.
c/o Neal Koblitz
University of Washington
Seattle, WA 98195

