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A POLYNOMIAL INVARIANT OF KNOTS AND LINKS

JIM HOSTE

Suppose L is a classical oriented link in S3. We define an isotopy
invariant of L, QL(x, y, z), which is a homogeneous Laurent polynomial
of degree zero. The Conway polynomial VL(z) and the Jones polynomial
VL(ί) sore special cases of Q. Some basic properties of Q are given along
with several examples.

1. Introduction. The definition of Q is perhaps best conveyed by

first recalling the iterative scheme by which the Conway polynomial (or

reduced Alexander polynomial) of a knot or link can be computed starting

from a projection of the link. (See for example [1], [4], or [6].) Suppose P + ,

P~, and Ps are three oriented link projections which are identical except

near a single crossing of P+ where they differ as shown in Figure 1.1.

PS

FIGURE 1.1

The projection P~ is obtained from P+ by changing the crossing and Ps

is obtained by smoothing the crossing. From the definition of the Conway

polynomial VP(z) it follows that

(1.1) VP+(z) - vP-(z) + zvps(z) = 0.

Thus we may compute VL(z) for a link L by first choosing some

projection P of L and then "resolving" P into projections for which the

Conway polynomial is known by repeatedly changing and smoothing

crossings. We then make use of equation 1.1 to work backward to P. It

also follows from the definition that VL(z) = 1 if L is the unknot and

VL(z) = 0 if L is an unlink with two or more components. Hence it is

always possible to compute VL(z) this way by resolving P into a

collection of unlinks.

The recently discovered Jones polynomial, VL{t), can also be com-

puted in this way [5]. However, instead of using equation (1.1), the

following identity is used.

(1.2) tVP+{t) - rΨP-{t) +(/χ/2 _ ri/2)VpM(t) = o
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The "initial data" is also changed with an unlink of k components now
having the value VL{t) = (-(ί + 1)/ yft)k~l. Note that this is still equal to
1 if L is the unknot.

These two invariants and the method by which they can be computed
prompt the following definition.

DEFINITION 1.1. Suppose L is an oriented link. Let P be any
projection of L. Choose some resolution of P into unlinks and then
use this to compute QL(x, y9z) as follows. First assign Q values of qk =
{-{x + y)/z)k~1 to the unlinks having k components. Next work back-
wards through the resolution using the identity

(1.3) xQP+(x, y, z) + yQP-(x9 y, z) + zQp.(x, y,z) = 0

to eventually assign a value of Q to P. Call this QL(x, y, z).

Notice that if QL is to be an invariant of the link L then we are
nearly forced to choose qk = (-(JC 4- y)/z)k~ι. For consider the resolu-
tion illustrated in Figure 1.2.

oo oo
FIGURE 1.2

From equation (1.3) it follows that q2 = QP = -((JC + y)/z)qv since Px

and P are both unknots. Similarly, one obtains qk = (-(JC + y)/z)k~ιqv

Hence, once the value of the unknot polynomial has been chosen, the
values of the unlinks are determined. Furthermore, the unknot polynomial
will factor out of QL for every L and so we may normalize QL by setting
the value of Q for the unknot equal to 1.

Of course there are so many choices involved that there is no
particular reason to believe that Q is well defined. Nevertheless, we shall
prove that this is indeed the case in §2. The general plan of the proof is to
first show that if P is an oriented link projection then Qp is well defined,
that is, independent of the choice of resolution. Once this is done it is
relatively easy to show that QP is preserved by Reidemeister moves and
hence is an isotopy invariant of the link. However, the proof that Q is well
defined for projections is difficult, with the chief problem apparently
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arising from the fact that there is no canonical way to unlink a given
projection by changing crossings. This difficulty is avoided by first giving
an alternate definition of Q for which the choice of resolution becomes
almost canonical. The two definitions are later shown to be equivalent.

Section 2 will be devoted to showing that Q is a well defined
invariant of oriented isotopy type. Then in §3 we enumerate a few basic
properties of Q and give several examples. Throughout this paper all links
will be considered to be oriented and we shall work in the smooth
category for convenience.

This research has as its origin the work of Vaughan Jones and his
discovery of the trace invariant VL(t) [5]. The author attended a lecture
given by Jones in the summer of 1984 and, upon seeing equation (1.2) and
noting its similarity to equation (1.1), was led immediately to this investi-
gation. Not surprisingly, so were several others. Different versions of Q
have been independently produced by Freyd and Yetter [2], Lickorish and
Millett [7], Ocneanu [8], and Przytycki and Traczyk [9]. (See also [3].) The
work of Lickorish and Millett and Przytycki and Traczyk is similar to that
given here while the others' work is quite different.

2. The definition of Q. We will call a link projection ordered if the
components have been given some ordering. A link projection is pointed if
a point (different from a double point) has been distinguished on each
component. In practice we will place a dot on each component at the
distinguished point and label the components with integers according to
their ordering.

An ordered link projection is layered with respect to its ordering if the
ith component never crosses beneath the j th component if i <j. A link
projection is layered if it is layered with respect to some choice of
ordering.

A pointed ordered link projection is descending with respect to its
ordering and pointing if it is layered with respect to its ordering and
furthermore, at each crossing between strands of the same component the
upper strand is reached before the lower strand if one travels along the
knot in the same direction it is oriented having started at the distinguished
point. A link projection is descending if it is descending with respect to
some choice of ordering and pointing.

Notice that a descending link projection is an unlink projection.
Suppose P is a link projection and that Px and P2 are obtained from

P by respectively changing and smoothing some crossing. Then corre-
sponding to these three projections is a graph having three vertices and
two edges. The vertices correspond to the projections P, Pl9 and P2, and
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the edges join P with Pλ and P with P2. This graph is called a tree of
projections with root P. The projections Px and P2 are outermost projec-
tions of the tree. The edge joining P with Pλ is called a changing edge
while the other edge is called a smoothing edge. We may build larger trees
from smaller trees by changing and smoothing some crossing in an
outermost projection, thus adding two more vertices and two more edges.
In practice we will draw trees of projections with the root on top and the
projections obtained from it below it. The changing edges will always be
drawn going down and to the left, while the smoothing edges will be
drawn going down and to the right. If all the smoothing (changing) edges
of a tree are removed, then each connected component of what remains is
called a changing {smoothing) branch. The changing (smoothing) branch
that contains the root of the tree is called the initial changing {smoothing)
branch. Notice that the number of crossings and the number of compo-
nents in each projection along a given changing branch is constant.

When a crossing in a link projection is smoothed it may cause two
different components to become one or a single component to become
two. The former phenomenon is called a fusion while the latter is called a
fission.

If the root of a tree is ordered then it induces orderings on all the
other projections in the tree as follows. To begin with, if a crossing in an
ordered projection is changed then the ordering of the components
remains the same. If a fusion occurs between the ith component and the
yth component, with i <j9 then the resulting component is the new ith
component. All components numbered less than j retain their labels while
those numbered greater than j have their labels reduced by 1. If a fission
occurs to the ith component, then the two new components will be
labeled i and i + 1 according to the following scheme. If one of the two
components crosses over the other one more times than it crosses beneath
it, then call it i and the other one i + 1. If this is not the case then label
the right one i and the left one i + 1. The right one is the one that is on
the right as one passes between the components in the same direction that
they are oriented at the place where the smoothing occurred.

If the root of a tree is pointed in addition to being ordered then it also
induces a pointing on each projection in the tree. This is done as follows.
If a crossing is changed, the pointing is left unchanged. If a fusion occurs,
the distinguished point on the lower numbered component is retained
while the other distinguished point is discarded. If a fission occurs then a
point is distinguished on the new component at the smoothing as indi-
cated in Figure 2.1.
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\

left component right component

F I G U R E 2.1

In this figure the left component retains the original distinguished
point while the right component is assigned the new point.

If P is a link projection then a resolution R of P is a tree R having P
as root and such that each outermost projection of R is an unlink
projection.

We are now in a position to define QP(x, y, z) for a link projection
P. Suppose first that P is a pointed ordered link projection, JR is a
resolution of P, and finally that each outermost projection of R is
descending with respect to the ordering and pointing induced on it by P.
We shall consider R as a tree of pointed ordered link projections with
each projection having the induced ordering and pointing. Such a resolu-
tion of a pointed ordered link projection is called a distinguished resolu-
tion. It is not hard to see that given any pointed ordered link projection
P there exists some distinguished resolution R of P. Now assign to
each outermost projection of R having k components the value qk =
{-{x + y)/z)k~ι. We may now compute a value for each projection in R
by working backwards from the outermost projections and using equation
(1.3).

(1.3) xQP+(x, y9 z) + yQP-(x9 y, z) + zQps(x, y, z) = 0.

The value of Q produced for the root of R is called the value of the
resolution and is denoted Q(R).

DEFINITION 2.1. Suppose P is an oriented link projection. Choose
some ordering and pointing of P and then some distinguished resolution
Rof P. Let QP(x,y,z)=Q(R).

THEOREM 2.2. The Laurent polynomial QP(x, y9z) is well defined.

Proof. We shall induct on the number of crossings in P. If there are
no crossings then P is descending with respect to every possible choice of
ordering and pointing. Thus Q(R) = qk where k is the number of
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components of P for every choice of ordering, pointing, and distinguished
resolution.

Now suppose that P has n crossings and that for any projection
having fewer crossings Q is well defined. The proof of the inductive step is
broken into three major steps.

Step 1. Once the ordering and pointing of P have been chosen, Q is
independent of the choice of distinguished resolution.

Proof of Step 1. Suppose that Rλ and R2 are two distinguished
resolutions of P with respect to some chosen ordering and pointing of P.
Now the initial changing branches of Rx and R2 must both end at the
same projection. This is because the ordering and pointing of P determine
whether a crossing should be changed or not in order to make the
projection descending.

Label the crossings of P, cl9cl9...9cn. Now the initial changing
branch of every distinguished resolution R of P determines a word w in
the symbols { c^1, c 2

± 1,..., c*1} as follows. On each changing edge in the
initial changing branch of R write cf if the j'th crossing was changed
(from its original position in P) and cjι if it was changed back again (to
its original position in P). Now we may read w off of the initial changing
branch starting at P and ending at the outermost projection. Let wi be the
word corresponding to Rt. Since the initial changing branches of both
resolutions end at the same projection we see that the sum of the
exponents of any cf is the same in wλ as in w2.

We will now prove the following two claims from which Step 1
follows easily.

Claim 1. If wx and w2 differ by commuting two adjacent symbols
(that correspond to different crossings) then Q(Rι) = Q(R2).

Claim 2. If wλ and w2 differ by the deletion of ctcjl for some / then
Q(RX) = Q(R2).

Proof of Claim 1. By using the inductive hypothesis we are free to
replace any subtree of R( rooted at a projection P' having fewer than ή
crossings with another distinguished resolution of P' without changing
Q(Ri). Furthermore, we can even reorder and repoint Pr and choose the
new distinguished resolution subordinate to the new ordering and point-
ing. Thus we may assume that Rγ and R2 are nearly the same. In
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particular let i\ be the last projection where the two initial changing
branches agree. Let R{ be the subtree of Ri rooted at Pv Then Rλ and R2

are both distinguished resolutions of Pλ and it suffices to prove that
QiRJ = Q(R_2).

Suppose Rλ begins by changing and smoothing ci in Pv Let P2 and
P4 be the respective resulting projections. If cy is next changed and
smoothed in P2, let P3 and P5 be the respective resulting projections.
Now in i?2, Cj is changed first and then c, is changed. Let P2, P4', P3, P5',
be the corresponding projections.

Since changing crossings does not affect ordering and pointing we see
that P3 = P3. Furthermore, the two initial changing branches are the same
below P3. Again, by using the inductive hypothesis, we may assume that
the two subtrees of R1 and R2 rooted at P3 and P3 are the same. Call this
subtree T.

The projections P4, P'A, P5, and P5' all have n - 1 crossings and so, by
the inductive hypothesis, we are free to order, point, and resolve them in
any way we wish without changing β(-Rf ). So begin to resolve P4 by
changing and smoothing the y th crossing. Similarly, begin to resolve Pf

A

by changing and smoothing the /th crossing. The resolutions now appear,
in part, as shown in Figure 2.2.

FIGURE 2.2

Without regard to ordering and pointing it's clear that P5 = P6', P6 =
P5', and PΊ = P'Ί. If we consider these projections with the ordering and
pointing induced on them by Px then they may not be the same. But this
does not matter.

Now there are four cases to be considered. The crossings ct and cy are
either both right handed, both left handed, or mixed. Suppose they are
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both right handed. Then we have

QiR,) = χ-2y2Q(T) + χ-2yzQPi + x~2yzQP>> + x~2z2QPη

= χ-2y2Q(T) + x~2yzQp, + χ-2yzQP, + x~2z2QP,

If they are both left handed, or mixed, then a similar calculation shows
that Q(Rλ) = Q(R2). Π

Proof of Claim 2. As in the proof of Claim 1 it suffices to prove that
Q(RX) = Q(R2) where Rλ and R2 are shown in Figure 2.3.

0

Rt R 2=T

FIGURE 2.3

Now P3 is the same projection as P4 even though the ordering and
pointing induced on them may be different. If ci is a right handed
crossing we obtain

Starting out with a left handed crossing yields a similar calculation. D

This completes the proof of Step 1.

Step 2. Once the ordering of P has been chosen, Q is independent of
the choice of pointing.

Proof. We will begin with the following special case.
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Claim 1. Suppose that P is a pointed ordered link projection that is
descending with respect to its ordering and pointing. Let P' be obtained
from P by moving one of the distinguished points forward along its
component past one crossing. Then Qp, = QP.

Proof of Claim 1. There are two cases, each of which is illustrated in
Figure 2.4.

Since P is descending with respect to its ordering and pointing Case I
can occur only if the overcrossing strand belongs to a different compo-
nent. But now P ' is descending with respect to its ordering and pointing.
Thus QP, = QP.

In Case II, if the undercrossing strand belongs to another component
then again, P ' is descending with respect to its ordering and pointing.

So suppose that both strands belong to the same component. The
right handed case is illustrated in Figure 2.5.

Since Pf is not descending we resolve it by changing and smoothing
the crossing shown in Figure 2.5. Now Pλ is descending with respect to its
induced ordering and pointing since P was. Furthermore, so is P2\ Now

Case I

Cβse Π

FIGURE 2.4

/ \

FIGURE 2.5
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by Step 1 we may use this resolution to compute QP>. We get

Qp> = -χ~ιyqk - * ~ ^ + i = qk

 β Qp-

The left handed case is similar. D

Now suppose that P is a pointed ordered link projection and that P'
is obtained from it by repointing it. We wish to prove that QP, = QP. It
suffices to consider the case where P' is obtained by simply moving one
distinguished point forward past one crossing. Let R be a distinguished
resolution of P and consider the initial changing branch of R together
with all the projections immediately descendent from the initial changing
branch. Let T be this subtree of JR. Call the projection at the end of the
initial changing branch Pm and the other outermost projections of T9 Px

through Pm_v Let T be obtained from T by repointing the root as P'
and inducing new pointings on the rest of T. Call P the corresponding
outermost projections of T. Now Pm and P'm satisfy the hypothesis of
Claim 1 and so Qp, = Qp . Furthermore, without regard to ordering and
pointing, P! = P. for i < m. Hence, by our inductive hypothesis, Qp, and
QP are both well defined and equal. Thus QP, = QP. D

Step 3. QP is independent of the choice of ordering.

Proof. We begin with the following reduction.

Claim 1. It suffices to prove Step 3 in the case where P is descending
with respect to some choice of ordering and pointing.

Proof of Claim 1. Let P be given some ordering and let P' be P
endowed with some other ordering. Choose some pointing for P and some
distinguished resolution R. Again, let T be the subtree of R consisting of
the initial changing branch together with all the immediately descendent
projections. Reorder the root of T as P' and induce new orderings and
pointings on T to obtain a new tree called V. Without regard to their
ordering and pointing we have again that P[ = P. for i < m. Since these
projections have n — 1 crossings it follows that their polynomials are well
defined and equal. Hence it only remains to prove that QP^ = QPm.

But Pm is descending and so we need only prove Step 3 for descend-
ing projections. D

Claim 2. It suffices to prove Step 3 in the case where P is descending
and has two components.
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Proof of Claim 2. Suppose P is a descending projection with k
components that has been given some ordering. Since P is layered we may
read the labels off the components starting at the "top" and working
down. This gives a Λ>tuple (iv ι2,..., ik). Suppose the ordering is not the
preferred one, that is, the one with ij < iJ+ι for all j . Then it may be
restored to the preferred one by repeatedly transposing a pair of consecu-
tive labels that are out of order. This can be done in a canonical way by
first moving 1 to the front, then 2 to the front, etc. We shall induct on the
number of such transpositions needed to restore the order to the preferred
order.

If none are needed then QP = qk since P is layered with respect to its
ordering.

Now suppose that P requires m such transpositions. Let P' denote
the two component sublink of P to which the first transposition takes
place. In other words, Pf consists of the ij and iJ+1 components of P
with ij > iJ+1 and iJ+1 is the smallest label which is out of order. So P' is
not layered with respect to its ordering even though it is descending with
respect to some choice of ordering and pointing. Give Pf that choice of
pointing and let Rf be a distinguished resolution of P'. The effect of the
initial changing branch of R' is to relayer the components of Pf. Now in
each projection of R' insert the remaining components of P to obtain a
tree R. Let P2 be an outermost projection of R and P2 the corresponding
projection of R\ We will show that QPi = qk-iQP>> This implies that
QP = qk-ιQ(R') Thus it suffices to prove Step 3 for a two component
descending projection. We could then conclude that Q{R') = q2 and
hence that QP = qk.

To finish the proof, assume first that P2 is at the end of the initial
changing branch of R. Then the order of the components of P2 can be
restored in m - 1 transpositions and so, by our inductive hypothesis,

Qp2

 = Qk = 4*-i#2 = Qk-iQpί' If pi *s n o t a t the e n c* of the initial
changing branch then P2 has less than n crossings. But P2 is descending
since P2 is and P2 is obtained from P2 by inserting k — 2 more descend-
ing components. Thus Qp = qk-2+r

 = (lk-ι(lr = 4k-iQp^ wh e r e r is the
number of components of P2. D

Now to finish the proof of Step 3 we will prove the following two
claims.

Claim 3. If P is a descending projection with two components and
any number of crossings, then P can be transformed into a split projec-
tion (i.e. one with no crossings between the components) by a finite
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number of generalized Reidemeister moves. By a generalized Reidemeister
move we mean the moves shown below where the shaded region may be
unbounded (i.e. contain the point at infinity if the projection is regarded
as lying in S2 = R2 U {oo}).

—> ) or yφ —> )

Π

m >^ > i/\ or

Note that we do not allow the inverses of these moves. Furthermore,
notice that after a move of this type is applied to P, the projection
remains descending with two components, although the number of cross-
ings may decrease.

By a 1-gon, 2-gon or 3-gon, we mean a region of the complement of
the projection like the shaded regions shown above.

Claim 4. Let P be a descending ordered link projection with two
components and n or less crossings. (P may not be layered with respect
to its given ordering.) If P is changed by a generalized Reidemeister move
then Qp is preserved.

Once these last two claims are proven we may finish the proof of Step
3 as follows. Suppose P is an ordered two component projection with n
crossings that is descending with respect to some choice of ordering and
pointing. By Claim 3 we may transform P into a split descending
projection P ' by a finite sequence of generalized Reidemeister moves.
Each projection in this sequence satisfies the hypothesis of Claim 4 and
hence QP = Qp,. But QP, is independent of ordering and equals q2 since
P' is layered with respect to any choice of ordering.

Proof of Claim 3. Suppose P is a descending projection with two
components, K and /, where K is the upper component. We may assume
/ crosses beneath K, for if not, P is already split. We shall induct on the
number of crossings in the projection of K alone.



AN INVARIANT OF LINKS 307

FIGURE 2.6

Suppose first that the projection of K alone has no crossings. Now K
divides the plane into two regions. Let R be the region that does not
contain the distinguished point of /. Strands of / enter i?, travel around
inside JR, and then leave R. Suppose a strand of / crosses itself inside iϊ
before leaving. This strand forms a 1-gon as shown in Figure 2.6.

If no other strands of / cross this 1-gon then it can be eliminated via
a generalized Reidemeister move of type I. (Note that the 1-gon might
contain the point at infinity. For the sake of convenience we shall draw all
the remaining figures in this step as projections in R2 U {oo}.) So assume
strands of / across this 1-gon. Proceed in this manner until an "inner-
most" 1-gon is found, that is, a 1-gon in which, if strands do enter they
leave without crossing themselves. Now if this 1-gon is empty, ehminate it.
If not, then a strand which enters and leaves it forms a 2-gon. We can be
sure of this since the distinguished point of J lies outside R. The
projection now looks, in part, like Figure 2.7.

Now if the 2-gon is empty, eliminate it. If strands enter it they do not
cross themselves inside since we are already inside an innermost 1-gon. If
strands enter and exit on the same side, or if two strands cross each other
inside then there exists a "smaller" 2-gon. Again, it is important to note
that the distinguished point of / lies outside R. So finally there is a 2-gon
with no smaller 2-gon inside. Strands that cross it enter on one side and
leave on the other and cross another strand inside it at most once. Thus
the strands that cross the 2-gon form a braid as shown in Figure 2.8. The
figure is drawn only with double points.

or

FIGURE 2.7
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FIGURE 2.8

\ / \

FIGURE 2.9

Now there must exist at least one triangle as shaded in Figure 2.8 at
each side of the 2-gon. The strands of the triangle must appear as in cases
(a)-(f), in Figure 2.9.

Cases (g) and (h) are impossible since J is descending and, again, the
distinguished point of / lies outside of R. Thus a move of type III will
move one crossing out of the 2-gon. Eventually the strands crossing the
2-gon will do so without crossing each other. Now moves of type III can
be used to clear the 2-gon. Finally, the 2-gon can be eliminated using a
move of type II.

Repeatedly doing this allows us to ultimately clear the 1-gon and then
eliminate it. So eventually we may arrive at the situation where strands of
/ that enter R leave without crossing themselves. If two such strands form
a 2-gon then the above argument may be repeated to eliminate it. Hence
we may assume that strands of / cross R without self crossings and no
two strands have more than one crossing between them. Now a strand of
/ that crosses R forms a 2-gon with K and we may suppose that this
2-gon is "innermost". Again clear it by using moves of type III and then
eliminate it by using a move of type II. Eventually we may clear R and
thus arrive at a split projection.
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Notice that the above argument actually proves the following. If a
1-gon is formed by some strand of K or / (or a 2-gon by two strands of K
or two strands of /) such that the 1-gon (or 2-gon) does not contain either
distinguished point in its interior or on its boundary then by using a finite
number of generalized Reidemeister moves we may move any strands of K
or / out of the 1-gon (or 2-gon). Moreover, it is not hard to prove the
above statement for 3-gons. We leave this as an exercise for the reader.

Now suppose that the projection of K alone has n crossings. To prove
the inductive step we consider the following classes of "arc projections".
Let Ki be the collection of all descending projections of an oriented arc in
R2 U {00} which have / crossings. We consider these projections only up
to an equivalence which should soon be clear to the reader. Figure 2.10
illustrates Kλ and K2.

K2: Λ "©Λ ©
*[m

FIGURE 2.10

Notice that each projection in K( can be obtained from a projection
in Ki_ι by extending the arc and introducing one more crossing. Further-
more, each descending knot projection with i crossings can be obtained by
"closing" some projection in Ki9 that is, by extending the arc to form a
closed curve without introducing any more crossings.

Now if a is a projection of Kέ we call a good if either of the
following conditions hold.

1. The complement of a either contains two 1-gons, or one 1-gon and
one 2-gon, neither of which contain the initial point of a in their interior,
or a is the extension of such a projection.

2. There exists a finite sequence of arc projections al9α2,...,αm

satisfying the following three conditions.
(a) a is an extension of av
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(b) The complement of each αl contains a 1-gon and a 3-gon neither of
which contain the initial point of α7 in their interior and such that a
move of type III can be applied to the 3-gon to obtain an extension
of α / + 1 .

(c) α w satisfies condition 1.
A projection in Kt is called bad if it is not good. So each projection

of Kλ is bad while only two projections of K2 are bad. Clearly each bad
projection in Ki must be the extension of a bad projection in JRΓ/_1. Thus
it is not hard to prove by induction on i that each bad projection in Kt

must appear as one of the projections in Figure 2.11.

FIGURE 2.11

For suppose a e Kt is a bad projection. Then a is the extension of a
bad projection β e Kt_v Now by assumption β appears as in Figure
2.11. But now it is easy to check that all possible extensions of β are either
good or appear as claimed.

Finally, we return to the proof of the inductive step. Suppose K has n
crossings and is the closure of a ^ Kn. If a is good and condition 1 is true
then the distinguished point of / does not lie in one of the 1 or 2-gons.
Hence it may be cleared and the number of crossings in K reduced. If a is
good and condition 2 holds then we may either clear the 1-gon and then
reduce the number of crossings of K or clear the 3-gon and repeat until
eventually we reduce the number of crossings of K.

Finally, if a is bad then closing a to form K yields a projection with
two 1-gons in its complement. One of these may be cleared and eliminated
to reduce the number of crossings of K. D

Proof of Claim 4. Let P be an ordered two component link with n or
less crossings that is descending with respect to some choice of ordering
and pointing. Suppose first that Pr is obtained from P by a Reidemeister
move of type I. Let c be the crossing that is eliminated by the move. Give
P its preferred pointing. Since each component of P is descending with
respect to its pointing we may begin to resolve P without changing c
along the initial changing branch. The effect of the initial changing branch
is to relayer the components. Each projection obtained by smoothing a
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crossing is a knot still containing c and the 1-gon that is to be eliminated
by the Reidemeister move. Since these knot projections have n — 1
crossings we are free to repoint them and resolve them however we wish.
Thus we may begin to resolve them in such a way that we again avoid
changing c. Continuing in this way we may build a resolution R for P in
which c is never changed and each projection contains the 1-gon that is to
be eliminated just as it appeared in P.

Now create a new tree R' with P' as root by performing the
Reidemeister move to each projection of R. Give P' the ordering and
pointing it inherits from P and use it to induce orderings and pointings
on all of R'. Now the outermost projections of R' are descending since
those of R are and the Reidemeister moves preserve this quality. But the
only outermost projections of /?' that might not be descending with
respect to their induced ordering and pointing are those with less than n
crossings. Thus Q(R') = Q(R) and so QP, = QP.

Now suppose P' is obtained from P by a Reidemeister move of type
II. Suppose first that the two strands of P involved in the move either
belong to the same component of P9 or if not, that the higher strand
belongs to the first component. Then as before, P admits a resolution R
in which these two crossings are never changed. Perform the move to each
projection of R to obtain a new tree R' with P' as root. Again Q(R') =
Q(R) and so QP, = QP.

If the two strands belong to different components and the first
component is lower, consider the tree shown in Figure 2.12.

FIGURE 2.12
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FIGURE 2.13

Depending on how the strands are oriented we obtain P2 and P3, or
P4 and P5. Now clearly QPi = ζ)^ and furthermore QPA = <2p5 since P4

and P5 can each be reduced to the same projection by a Reidemeister
move of type I. It will then follow that QP = QP. But Qp = QP>, since
the strands are now correctly layered.

Finally, consider a move of type III. Again, consider first the case
where the three strands belong to the same component, or if not, are at
least layered correctly. Then we may construct a resolution R of P never
changing the three crossings in question. Again let R' result by perform-
ing the move in each projection of R. Once again we have Q(R') = Q(R)
and so QP, = Qp.

Now suppose the three strands belong to two components and are
mislayered. There are four possible cases as shown in Figure 2.13.

Consider case (a) first and the two trees shown in Figure 2.14. As in
the case of a move of type II, the smoothings cannot be specified without
knowing the orientation of the strands. However, the smoothing appears
the same in Pi as in P[ for / = 2,3. Thus, QP = QP; for i = 2,3.
Furthermore, Qp, = QPi since Px and P{ differ by a Reidemeister move
of type HI where the strands are correctly layered. It now follows that
QP = QP> regardless of how the strands are oriented.

Cases (b), (c), and (d) are similar and are left to the reader.
This completes the proof of Step 3 and of Theorem 2.2. D
DEFINITION 2.3. Suppose L is an oriented link in S3. Let P be any

projection of L and define QL(x, y, z) = QP(x, y9 z).

THEOREM 2.4. The Laurent polynomial QL(x, y, z) is well defined and
depends only on the isotopy class of L.

COROLLARY 2.5. If L is an unlink of k components then QL(x, y, z) =
(-(x + y)/Z)

k~\
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FIGURE 2.14

Proof of 2.4. Suppose Px and P2 are two projections of L. Since Pλ

can be transformed into P2 by a finite sequence of Reidemeister moves,

and their inverses, it suffices to prove that QP is preserved by such moves.

Since we now know that QP is independent of the choice of pointing,

ordering, and resolution, we may proceed as we did in Claim 4 of Step 3

of the proof of Theorem 2.2. Namely, we may find a resolution R of P in

which the crossings involved in the Reidemeister move are never changed.

Now perform the move in each projection of R to obtain a new resolution

R'. The root P' of R' differs from P by the Reidemeister move and

furthermore Q(R') = Q(R) so that QP, = QP. D

Corollary 2.5 is obvious since if L is the unlink we may now consider

for P the trivial projection.

THEOREM 2.6. Definition 1.1 produces the same polynomial as Defini-

tions 2.1 and 2.3.

Proof, Choose some projection P of L and suppose that R is a

resolution of P with respect to Definition 1.1. In other words, R is a tree

with P as root and every outermost projection of R is an unlink



314 JIM HOSTE

projection. Now order and point P and induce orderings and pointings on
all of the projections of R. With respect to this choice, R may not be a
distinguished resolution. However, we may extend R to a distinguished
resolution R' by further resolving its outermost projections if necessary.
But by Corollary 2.5 the outermost projections of R have well defined Q
values of qk9 where k equals the number of components. Hence Q(R') =
Q(R) and the definitions agree. D

3. Properties of QL{x, y9 z). In this section we will describe some
basic properties of Q. The first two properties follow immediately from
the definition.

1. QL(x, y9 z) is a homogeneous Laurent polynomial of degree zero.
2. The Alexander, Conway, and Jones polynomials may be recovered

from Q by the following formulae:

3. If the orientations of all the components of L are reversed then QL

remains unchanged.
This is clear since the same resolution may be used to compute QL

both before and after the orientations are reversed.
4. If rL is the mirror image of L (gotten by changing all the crossings

in some projection of L) then QrL(x, y9 z) = QL(y, x, z).
To see this, suppose P is a projection of L and R a resolution of P.

Let rR be obtained from R by changing all the crossings in each
projection of R. Then rR is a resolution for rP, a projection of rL. But
changing and smoothing a crossing in R corresponds to changing and
smoothing a crossing of the opposite handedness in rR.

We may restate Property 4 as,
5. If the orientation of S3 is reversed then QL(x, y9 z) becomes

QL(y9x,z).
6. If L is amphicheiral, that is, isotopic to rL, then QL(x,y, z) =

QL(y,x9z).
7. Suppose that L is split. In other words, L = Lλ U L2 and there is

a 2-sphere in S3 - L separating Lγ from L2. Then QL = q2QLιQL2-

Proof. Let Pl9P29R1 and R2 be projections and resolutions respec-
tively of Lλ and L2. We may build a resolution R for L as follows. First
insert P2 in each projection of Rx to create a tree S with L as root. Each
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outermost projection of S consists of P2 together with some unlink
projection. Hence we may further resolve the outermost projections of S
by using R2 and carrying the unlink projections along through R2.
Now it is not difficult to show that R produces the polynomial Q(R) =

We may define a connected sum LX#L2 of two links Lx and L2 as
follows. First place Lx and L2 in separate hemispheres of S3. Next, form
the ordinary connected sum of some component of Lx with some compo-
nent of L2 using a band which meets the equator of S3 exactly once.

8. Suppose L = Lλ#L2. Then QL = QLχQw

Proof. From Figure 3.1 and Property 7 it follows that

*QL + yQL = -zqiQLιQ2 = (x + y)QLlQL2

so that QL = ρ L i ρ L 2 . D

FIGURE 3.1

Using Property 8 and the fact that the connected sum of two links is
not well defined, one can easily create distinct links having the same
polynomial. However, we will soon show that there exist distinct prime
knots having the same polynomial.

9. Suppose L has k components. Then we may write QL as QL =
zι~kQ'L where Q'L has only non-negative even powers of z and further-
more Q'L(x, y,0) Φ 0. Thus QL detects the number of components of L
and also is never zero.

Proof. Let m be the minimum number of crossings in any projection
of L. We shall induct on m. If m = 0 then L is the unlink and QL = qk

which has the desired form.
Now suppose L has a projection P with m crossings but that any

link having a projection with fewer crossings has a polynomial as de-
scribed above. We now consider two cases. Suppose first that L has one
component. Let R be a resolution of P and let T be the subtree of R
which consists of the initial changing branch of R together with the
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immediately descendent projections. Label the outermost projections of
Γ, Pλ through Pn9 with Pn at the end of the initial changing branch. Now
each P., for i < n — 1, has two components and less than m crossings.
Hence each Qp = z'ιQPj has only non-negative even powers of z and
furthermore Q'P(x, j>,0) Φ 0. Also, Pn is an unknot and so QP=\.
Therefore we have,

QP = an + Σ aά-z/bjQr, = an~Σ atfQ'^

where 6, is either x or y and at = {-y/x)r'{-x/y)li with η and /, being
the number of right and left handed crossings changed to reach P7. Since
each Qp has only non-negative even powers of z it follows that this is true
for Qp = Qp as well. Furthermore, since L is a knot we have VL(0) = 1.
Hence Q'p(l, -1,0) = 1 and so QP(x, j ,0) Φ 0.

Now suppose that L has k components, with k > 2. Because of
Property 7 and the inductive hypothesis we may assume that L is not
split. Let T be a tree having root P and only one changing branch, where
the crossings that have been changed are those that must be changed in
order to "lift" the first component of L above all the rest. Again, label the
outermost projections of Γ, Px through PΛ, with Pn at the end of the
changing branch. Hence Pn is split and therefore equivalent to a projec-
tion having fewer crossings.

Furthermore each Pi9 for i < n - 1, has m - 1 crossings and k - \
components. So we have,

QP = anz
ι~kQ'Pn + Σ a.χ-z/b^-kQ'Pι

Thus Q'P has only non-negative even powers of z and furthermore
Q'P(x,y,0) = anQ'Pn(x,y,0)Φ0. D

We can provide examples of distinct knots having the same polynomi-
als by means of mutations. Recall that a mutation of a projection P is
obtained as follows. Suppose D is a disk in R2 that meets P transversely
in 4 points. Let Pf = P Π D. We may alter P by removing P' and then
replacing it via some rigid motion of D which leaves P' Π 3D invariant.
Such an alteration is called a mutation. There are 8 possible ways to
replace P' with each corresponding to an element of the dihedral group
D4. However, since P is oriented, some rule by which the new projection
is oriented must be adopted. For some of the possibilities no such obvious
rule exists. Therefore consider only the four mutations illustrated in
Figure 3.2. (We may also compose these to obtain flips about the
horizontal axis).
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β) flip b) rotate and reverse orientations

of components enti rei g i nside D

H H
c) flip and reverse orientations

of components enti rei y i nside D

d) rotate

FIGURE 3.2

11. Suppose P is any projection and that mP is obtained from it by
one of the mutations shown in Figure 3.2. Then QP = QmP.

Proof. Suppose c is a crossing in P and that me is the crossing in mP
which c is sent to under the mutation. Then in each of the four possible
mutations c and me are either both right handed or both left handed. (In
cases (b) and (c) we reversed the orientation of components entirely inside
D so that this would be true.) Hence it follows that the operations of
mutating P and changing or smoothing c commute.

Now let R be a resolution of P such that each outermost projection
of R is descending with respect to some choice of ordering and pointing
where the distinguished points lie outside of D if possible. Let mR be
obtained from R by mutating each projection of R in the same way. Now
since mutation commutes with changing or smoothing a crossing it follows
that mR is indeed a tree of projections with mP as root. Furthermore,

FIGURE 3.3
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rπR is a resolution of mP. For suppose P" is an outermost projection of
R. Then inside Z>, P" can be isotoped, rel 3D, to one of the projections
shown in Figure 3.3. Hence mP" is isotopic to P" and thus is an unlink of
the same number of components.

Finally, since the mutation preserved the right or left handedness of
every crossing, mR will produce the same polynomial as R. D

It is easy to exhibit different knots or links which are related by a
sequence of mutations and hence have the same polynomials. For exam-
ple, consider the pretzel knot or link shown in Figure 3.4 where ri is the
number of right handed half twists in the ith band. Then the r/s may be
permuted by means of mutations. Hence, examples of distinct pretzel
knots or links with identical polynomials can be produced in this way.

FIGURE 3.4

Conway Kinoshita-Terβsβko

Q = Ίx3y4 + 6x*y3 + 2x5y
5y2

-(3xy4 3x4y)

{6xy2 + 6x2y + x3 + y3)z4 -(x + y)z6]

FIGURE 3.5
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As a further example, consider the Conway and Kinoshita-Terasaka
knots shown in Figure 3.5. They are related by the obvious mutation, and
hence, have the same polynomial, which is given in the figure. The
polynomial is nontrivial, yet reduces to a trivial Conway polynomial.
These knots can be shown to be different by examining representations of
their fundamental groups [10].

On the other hand, the square and granny knots shown in Figure 3.6
have isomorphic fundamental groups and hence the same Alexander
invariant, yet different polynomials. (We may compute their polynomials
by first computing the polynomial of the right handed trefoil, using
Property 4 to obtain Q for the left handed trefoil, and then Property 8.)
Clearly then, QL depends on more than the fundamental group or the
Alexander invariant.

As a final example, consider the two links shown in Figure 3.7. They
have homeomorphic complements but different polynomials. So QL is not
determined by the complement of L. But in this case neither is VL,
although this cannot be the case for knots where the complement de-
termines the Alexander invariant and hence VL.

K = square knot J = granny knot

QK = x-2y-2(-2xy -y2 + z2)(-2xy - x2 + z2) Qj = y~\-2xy - x2 + z2f

FIGURE 3.6

QLχ = χ-h-ι{-x2y2 - xy3 -f 3xyz2 + y2z2 - z4)

QLi = χ-2z-\-xy2 - y3 + yz2 - xz2)

FIGURE 3.7
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