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GENERATORS OF POSITIVE C0-SEMIGROUPS

SHIZUO MIYAJIMA AND NOBORU OKAZAWA

By the use of abstract Kato's inequality for generators of positive
C0-semigroups, it is shown that a differential operator with smooth
coefficients (with natural domain) is of order at most 2 and (degenerate)
elliptic provided it generates a positive C0-semigroup on Lp(Rn) (1 < p
< oo). Conversely it is also shown that a certain second order elliptic
differential operator with a singular Oth order coefficient generates a
positive C0-semigroup on Lp(Rn) (1 < p < oo).

1. Introduction. It has long been known that a certain second order
elliptic differential operator generates a positive (= positive-cone preserv-
ing) C0-semigroup on various spaces. As a recent result in this direction,
we mention Baoswan Wong-Dzung [16], in which it is proved by a
functional analytic method that an possibly degenerate elliptic second
order differential operator generates a positive C0-semigroup on Lp(Rn)
(1 < p < oo). One of the purpose of this paper is to show that, conversely,
if a differential operator generates a positive C0-semigroup on Lp(Rn),
then it must be (degenerate) elliptic and of order at most 2. This will be
shown in §3 by using abstract Kato's inequality recently established for
generators of positive C0-semigroups [1]. On the contrary, we show in §4
that a certain second order elliptic differential operator with a singular Oth
order coefficient generates a positive C0-semigroup on Lp(Rn) (1 < p <
oo). This will be proved by applying a perturbation theory obtained by
one of the authors to the result of [16]. Necessary definitions and
expositions are given in §2. In this paper we exclusively work with real
Banach lattices, especially real L/7(R"), since positive C0-semigroups and
their generators are real operators.

2. Abstract Kato's inequality and dispersive operators. Let {Tt} t > 0 be a
C0-semigroup of linear operators on a Banach lattice E with generator A.
Then {Tt}t>0 is said to be positive if Tt is positive for any t > 0, namely
Ttu > 0 whenever u > 0. The resolvent (λ — A)'1 of A is denoted by
R(λ, A). Then the equalities

Tt = s-]im[(n/t)R((n/t),A)V (t > 0),
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and

i?(λ, A) = ί e~x%dt (for sufficiently large λ)

immediately imply that {7J}/s>0 *s positive if and only if R(λ,A) is
positive for sufficiently large λ. But in practice the resolvent R(λ, A) is
rather distant from A itself. So it is desirable to obtain an intrinsic
characterization of the generators of positive Q-semigroups. As to this
problem, Simon [15] remarked that Kato's inequality for the Laplacian Δ
(Kato [5]) is relevant to the positivity of eΔ r on L2. Subsequently
Nagel-Uhlig [6] conjectured and partly confirmed that the positivity of a
semigroup is characterized by an abstract version of Kato's inequality for
the generator.

To formulate Kato's inequality for generators of positive Co-semi-
groups, we need the notion of "signum operators". Let E be a σ-order
complete Banach lattice and let u e E. Then there exists a unique
bounded linear operator "sgnw" on E satisfying

(2.1) \ ( s g n u ) v \ < \ u \ , υ ^ E ,

(2.2) (sgnu)v = 0 i f u ± υ ,

(2.3) (sgnu)u =\u\.

If the band projection (Schaefer [12], p. 61) onto the band generated by
υ e E+ is denoted by Pυ9

For the details of the definition of signum operators, we refer the reader
to Nagel-Uhlig [6]. In case E = Lp(Rn) (1 < p < oo), sgn u is the multi-
plication operator v •-> mυ9 where m e L°°(Rn) is defined as follows:

I 1 (u(x)>0)

m(x)=l-l (u(x) < 0)
\ 0 (u(x) = 0)

Next we recall the notion of Yosida approximation of the generator
of a Co-semigroup. Let A be the generator of a C0-semigroup {Tt}t> 0 on a
Banach space X with domain D(A). Then R(λ,A):= (λ - A)'1 exists
for sufficiently large λ e R , and the operator Aλ:= λAR(λ,A) =
λ2R(λ, A) — λ is called the Yosida approximation of A. It is well known
that s-limλ_^00 Aλu = Au for u e D(A) and Ttu = sΛimλ^ooe

tAχu holds
for a n y « G l a n d / > 0 (Pazy [8], Chap. I, Theorem 5.5).
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Now we state Proposition 1.1 in Arendt [2] with a different proof.

PROPOSITION 2.1 (Arendt [2]). Let {Tt}t>0 be a positive C0-semigroup
on an σ-order complete Banach lattice E with generator A. Then the
following abstract Kato's inequality holds:

Vw e D(A)Vf e D(A*) n E* (\u\,A*f) > ((sgnu)AuJ),

where A* designates the adjoint of A.

Proof. As remarked in the first paragraph of this section, R(λ,A) is
positive for large λ e R. Hence for such λ and u e E,

Aλ\u\ = X2R(λ,A)\u\- λ\u\

>X2\R(λ,A)u\-λ\u\

> X2(sgnu)R(λ,A)u - λ(sgnu)u

= (sgnu)Aλu.

Therefore

(\u\9AU) = (Λλ\u\J) > ((sgnu)AλuJ)

holds for any u e D(A) and / e D(A*) n E*. Letting λ -> oo we
obtain the abstract Kato's inequality since s-hmλ_+00̂ 4λw = Au and
W M i m ^ Λ ^ Λ * / . D

REMARK 2.2. Arendt ([1], Proposition 1.2) first established abstract
Kato's inequality for generators of positive semigroups. His proof is very
simple once one admits that w*-limu0(7]*/ — f)/t = A*f for / e Z>(̂ 4*).
Before the publication of [1], with essentially the same proof as above, the
present authors independently obtained a slightly weaker version of
Proposition 2.1 which was sufficient to get the result in §3 (Theorem 3.6).
The authors' result was weak in the sense that A* was replaced by the
generator of the dual semigroup of {Tt}t>0 (Yosida [17], p. 272). See also
Schep [13].

The following is an immediate corollary to Proposition 2.1.

PROPOSITION 2.3. Let E = Lp(Rn) (1 <p < oo, n e N) and let
(7^},>0 be a positive C^semigroup on E with generator A. Suppose A
satisfies D(A) Π D(A*) D Q°(R") and A is given as a differential operator
on Q°(R"):

Au(x)= Σ aa(x)Dau(x) {u^C?(Rn)),
\a\<m
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where a = (av OL2,..., an) is a multi-index, \a\ = aλ + a2 + +#„, ΰ α

ί satisfies the distributional Kato's inequality (see Definition 2.4
below):

\/u e C0°°(R") i4|u| > (sgnw)^ίw.

REMARK 2.4. We note that if Q°(R") is a core of 4̂, the assumption
D(A*)Ώ C™(Rn) in Proposition 2.3 follows from the rest of the assump-
tions. We also note that it suffices to assume aa e C |α |(RΛ).

For the use in §4, we briefly recall the theory of dispersive operators
following Arendt-Chernoff-Kato [3], which gave final touches to the
earlier results, e.g., Phillips [9], Sato [10], [11] and Hasegawa [4].

Let E be a Banach lattice and let Φ be the canonical half norm on E:
Φ(u) = ||w+|| (u G E). Then a linear operator A with domain D(A) and
range R(A) in E is said to be dispersive if Φ(u - μAu) > Φ(u) holds for
any u ^ D(A) and μ > 0. When A further satisfies the condition
(/ — μA)D(A) = E for any μ > 0 and is densely defined, it is called an
m-dispersive operator. If a linear operator A in E has the property that
A — λ is dispersive [resp. m-dispersive] for some constant λ, A is said to
be quasi-dispersive [resp. quasi-m-dispersive]. By Theorem 2.4 in [3], a
densely defined quasi-dispersive operator A is closable and its closure A is
also quasi-dispersive. We call a densely defined linear operator A essen-
tially quasi-m-dispersive if its closure A is quasi-m-dispersive.

Under these definitions, the following theorem is proved in [3] in a
similar way as for the Lumer-Phillips theorem on contraction semigroups.

THEOREM A ([3] Theorem 4.1). A densely defined linear operator A in a
Banach lattice E is the generator of a C0-semigroup of positive contractions if
and only if A is m-dispersive. Therefore if A is essentially quasi-m-dispersive,
then A generates a positive C0-semigroup.

The subdifferential 3Φ of the canonical half norm Φ on E at u G E
is given by

3Φ(u) = {/e £*; /> 0, 11/11 < 1, f(u) =\\u+ ||},

which is nonvoid since Φ is continuous. Then a linear operator A in E is
dispersive if and only if for any u G D(A) (Au,f) < 0 for some / G
3Φ(w) ([3] Theorem 3.1). Therefore, in case E = Lp(Rn) A is dispersive if
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and only if

(Au9 F(u+)) < 0 for u e D(A),

where

F(u)=\\uf~Pu\u\P~2 <= L*(R") (1/p + l/q = 1)

is the duality map, and ( , ) denotes the canonical duality between Lp

and ZΛ On the other hand, a linear operator A in a real Banach space X
is called accretive if

for all u e D{A) and λ > 0. A is said to be m-accretive if it is accretive,
densely defined, and the range of A + λ is the whole space X for some
(equivalently for all) λ > 0. It is well-known that A is m-accretive if and
only if -A is the generator of a C0-semigroup of contractions on X ([8] p.
14). Therefore if A is an m-dispersive operator in a Banach lattice, then
-A is m-accretive.

Finally we note the following consequence of [3] Theorem 2.5 on
addition of operators: Let A, B be dispersive operators in a Banach
lattice and suppose that A is densely defined. Then the operator sum
A + B (with domain D(A + B) = D(A) Π D(B) and (A + B)u:= Au
+ Bu for w E ΰ ( ^ + 5)) is also dispersive. Similarly the sum of two
accretive operators in a Banach space is also accretive provided at least
one of the two is densely defined.

3. Kato's inequality for differential operators. Let N be the set of all

positive integers. In this section we shall use the multi-index notation:
a = (al9 ...,an) with \a\ = Σ ^ α , , at e N U {0}; D« = D^D? D«-,
Dt = 9/ΘJC, (1 < i < n).

We consider the formal differential operator of order m

(3-1) J*= Σ aa{x)Da,
\a\<m

where αα(jc)'s are assumed to be real valued functions in C°°(RΠ).

DEFINITION 3.1. A formal differential operator si of the form (3.1) is
said to satisfy Kato's inequality if for any u G. C^R"), the inequality

(3.2) s/\u\> (sgnu)jtfu

holds in the sense of distribution, i.e., for any φ e Co°(Rπ) with φ > 0,

j J#*φ(x)\u(x)\dx > ί φ(x)(sgnu(x))sfu(x) dx

holds, where s/* denotes the formal adjoint of sf.
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In what follows we denote by 2{Rn) and 2'(Rn) the space of all test
functions (with the Schwartz topology) and distributions on R", respec-
tively, and consider that @(Rn) is contained in @'(Rn).

First we prepare some facts about the change of variables of distribu-
tions. Although these facts are certainly known, we state them with proofs
for later references. For the time being, we use two R"'s, R" and R", and
let H: Rn

x -> R" be a fixed non-singular linear mapping. Namely y =
H(x):= Cx(x ̂  R"), where C = (c/y ) is an n X n matrix with real
entries and det H = det C Φ 0. Then H induces an isomorphism

φ G 9{K*y) -> φ o H G ®{K*X).

For T e 2\Rn

x) define f e ^'(R^) by

(3.3) (f,φ):=(T9φoH) forφG^(R ).

Under these notations we have the following

LEMMA 3.2. The mapping Γ ^ T is a linear isomorphism from 3>'(Rn

x)
to @'(R"y) satisfying

f
(b) (aT) ~=(ao H~ι)Tfor a e C°°(R",),
(c) f > 0 if and only ifT>0.
If in particular T e ^ ( R ^ ) , ίΛew f G ̂ ( R p αwJ w g/i eΛ by

f= \dctH\-\ToH-1).

Proof. It is obvious that the mapping T *-> f becomes a linear
isomorphism with property (c). Let T G @'(Rn

x) and φ G £&(Rn

y). Then we
have

((8Γ/8*,Γ ,φ) = (aΓ/8^, φ o i/) = -(Γ,(3/8jcf.)(φ o H))

This is nothing but (a). Furthermore, let a G C°°(R"J and φ
Then we obtain (b):

aT)~ ,φ> = (aT9φoH) = (τ,((ao H'

The last assertion is clear. D
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The formal differential operator si of the form (3.1) is considered to
be a linear operator from £&'(Rn

x) into itself. The effect of the change of
variables on si is given by the following

COROLLARY 3.3. Let si be the formal differential operator of the form
(3.1), and let T ^ T be the mapping defined before Lemma 3.2. Then the
linear operator

t e &'(Rn
y) -> (s/T)~ €= 2'(Wy) (T <= 9'(Rn

x))

is given by the action of the following formal differential operator

(3.4) .*« Σ (a.oHli^r
\a\<m

i.e., ( J * Γ ) - = j^f holds for T e ^ '

Proof. Repeated applications of Lemma 3.2. (a) and (b) prove the
assertion. D

Moreover we have

PROPOSITION 3.4. Let si be the formal differential operator of the form

(3.1) and let si be the one given by (3.4), which is obtained from si by the

change of variables y = H(x) = Cx, C = (cu) (detC Φ 0). Then sϊ satis-

fies the Kato's inequality if and only if si does.

Proof. By using Lemma 3.2, we can show that for u

= |det H\'l[ jtf\u oH~ι\- (sgn(w o / / " 1 ) ) j ^ ( w o i f " 1 ) ] .

Hence the assertion follows from Lemma 3.2(c). D

The main theorem in this section is stated as follows.

THEOREM 3.5. Let aa be a real-valued function in C°°(R") for every a

with \a\ < m. If the formal differential operator si'= Σ\a\<maa(x)Da satis-

fies Kato's inequality, then the order m is at most 2. Furthermore,

six := Σ | α | = 2

 aΛx)Da m u s t be elliptic (including degenerate cases).

Proof. It suffices by translation to show that aa(0) = 0 for any a with
\a\ > 3. Set k := max{ |α|; aa(0) Φ 0}. We shall show that Kato's inequal-
ity cannot be satisfied by si if k > 3.
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Step (1). First we consider a special case. Namely, suppose that

(3.5) aao(0)Φ0 f o r α 0 = (fc,0,.. .,0) with & > 3.

Now let wf. be a function in <®(R) (/ = 1,2) and suppose that uλ(t) = t
near the origin and changes the sign only once, and that u2{t) = 1 near
the origin and u2 > 0. Setting

u{x):= u^xJYl u2(xi),
i = 2

we see that u e ^(R") and

(3.6) (J/H)(*) = Σ a^D^i

\a\<m

Next we calculate (s/\u\)(x). The distributional derivative of \u\ can be
written as

(D*\u\)(x) = (^kiί^i) I) Π D?'u2(Xi).
/ = 2

Note that the right-hand side should be regarded as a tensor product of
distributions (see Schwartz [14], Chapter 4, §4, Theorem 7). In more
detail,

ix,) (a, > 2),

where 8^aL^2) is the (aλ — 2)th derivative of Dirac distribution. Thus we
can write down s/\u\ as

(*\u\)(x)-2 Σ a.(x)δ^fl Dr u2(xt)

| <m

Therefore it follows from (3.6) that

(3.7)

It remains to show that the right-hand side of (3.7) is not positive as a
distribution. But, this is intuitively obvious. So, we give a proof for only
one of four cases: let k > 2 be even and aa (0) < 0, where a0 is as in
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(3.5). Let ψ, be a function in S(R) (i = 1,2) and suppose that ψx(r) = tk~2

near the origin and ψx > 0. Next choose b > 0 in such a way that

[-b,b] c {/GR; M2(/) = 1}

and suppose that ψ2(0) = 1, ψ2 > 0 a n d supp ψ2 c [-b, b]. Setting

7 = 2

we see that ψ e <&(Rn). For a multi-index a with αx > 2, we have

If αz > 0 for some / > 2, then D?iu2(xi) = 0 on [-6, Z?] for such i and
hence the integral on the right-hand side of (3.8) vanishes. This observa-
tion implies that {s#\u\ — (sgn u)s/u,ψ)/2is equal to

h 2

/=0 \ ) /

Since ψi7>(0) = 0 (0 ^ / < ik - 3) and φ[k~2) = (k - 2)!, this can be
simplified as

Π Ψ 2 ( ^ > « 0 2 J 2 ^

Taking a sufficiently small 6 > 0, we see that the above integral can not
be positive since tf «0(0) < 0.

Step (2). Let k be the number defined in the first paragraph of the
proof and suppose that 0αo(O) = 0 for α0 = (&, 0,..., 0) with k > 3. By a
linear transformation y = H(x) := Cx(x e Rπ), sf is transformed into
sϊ in (3.4) (Corollary 3.3). The coefficient of (Θ/ΘJΊ)* in J / is given by
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and it does not vanish if we choose the non-singular matrix C suitably.
So, we see from Step (1) and Proposition 3.4 that si does not satisfy
Kato's inequality if k > 3.

Step (3). Suppose that si satisfies Kato's inequality. Then, as was
shown above, the principal part of si is given by

Since it is known that the first order terms of si satisfies Kato's equality,
i.e., (3/3x )|w| = (sgnu)du/dxt as a distribution (u e <®(R")), we see that
six also satisfies Kato's inequality. We shall show that six is elliptic at
x = 0.

First note that we can write
n

<*i= Σ OtjWDiDj

with aiJ(x) = ajΊ(x). So by an orthogonal transformation, s/ι at x = 0
is transformed into

Then we can show that ay > 0 for 1 < j < n by using Proposition 3.4 and
applying a similar argument as in Step (1) (equation (3.7) for transformed
s/λ is again useful). Thus we are done. D

By combining Proposition 2.3, Remark 2.4 and Theorem 3.5, we
obtain the following

THEOREM 3.6. Let {Tt}t>0 be a positive C0-semigroup on Lp(Rn)
(1 < /? < oo, « E N) with generator A. Suppose that C™(Rn) is a core of A
and A is given as a differential operator on QO(R"):

Au(x)= Σ aa{x)D«u{x) (u e q»(R«); m e N),
\a\ <m

where aa(xys are real-valued functions in C00(R/7). Then the order of A is at
most 2, and the principal part of A is elliptic including degenerate cases.

REMARK 3.7. A corresponding result for general domain Ω c R" will
appear elsewhere.1

ιAdded in proof: R. Nagel et al. (eds.), Aspects of Positivity in Functional Analysis, North
Holland Amsterdam, 1986.
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4. m-dispersiveness of second order degenerate elliptic differential
operators on R". This section is concerned with the quasi-m-dispersiveness
(see §2) of second order degenerate elliptic operators on R". First let us
consider the formal differential operator

n n

s/u:= - Σ Dj(aJk(x)Dku)+ Σ aj{x)DjU + ao(x)u,

where ajk, cij and a0 are all real-valued functions on Rw. Basic assump-
tions are stated as follows.

(I) aJk e C2(R"), cij e C\Rn\ a0 e L°°(Rrt);the second order de-
rivatives of ajk and the first order derivatives of aj are all bounded on Rn.

(II) For any X G R " the matrix (aJk(x)) is positive semi-definite: for
every ξ e Rn,

Let A be the maximal operator in real Lp = Lp(Rn) (1 < p < oo)
associated with J ^ :

D(A):= {u e L^; J/W e L p in the distribution sense},

Au:=jtfu for U<Ξ D(A).

Recently Baoswang Wong-Dzung [16] has proved the following

THEOREM B. Let A be the operator as above. Then -A is quasi-m-dis-
persiυe in Lp (1 < p < oo) and C0°°(R") is a core of A.

Now we consider the possibility to relax the condition a0 e L00. Let
V(x) > 0 be a function in Lfoc(Rw \ {0}) and set

Vε(x):= V(x)[l + εV(x)]'\ ε > 0.

We denote by B the maximal multiplication operator by V(x) in Lp:

Bu(x):= V(x)u(x) for u e D(B):= {u; V(x)u e Lp).

Then -J5 is m-dispersive in Lp (1 < p < oo) and the bounded linear
operator

J?ew(x):= Ke(x)fi(x), u& Lp, ε>0

is related to the Yosida approximation of -B (in the sense specified in §2)
by the equation B1/λ = -(-B)λ (λ > 0). Note that Bε is also written as
Bε = 5(1 + eB)-\
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The purpose of this section is to prove the following

THEOREM 4.1. Let A and B be the operators in Lp (1 < p < oo) as

above. Assume that Vε belongs to C1(Rλ2), and there exist nonnegative

constants c, a andb (b < 4(/? — I)" 1 ) such that for any ε > 0 and x £ R"

(4.1) Σ ^ W , + Jfφ)fi/.

<c + aVε(x) + b[Vε(x)]2.

In the case of 1 < p < 2 assume further that c = 0.

If b < 4(p — I ) " 1 then -(A + B) is also quasi-m-dispersive in Lp. If

b = 4(/? — I ) " 1 then -(A + B) is essentially quasi-m-dispersive on

D(A + B) := D(A) Π D{B). In any case the closure of -(A 4- B) is the

generator of a positive C0-semigroup on Lp.

The proof of this theorem is based on the following

LEMMA 4.2. Let -A and -B be m-dispersive operators in real Lp(Kn)

(1 < p < oo). Let D be a core of A. Assume that there exist nonnegative

constants c, a and b (b < 1) such that for any u e D and ε > 0,

(Au, F(B£u)) > -c\\u\\2 - a\\Bεu\\ Ml " δ l l W

holds, where Bε = B{\ + εtf)'1 and

F(Bεu)=\\BεutPBεuX\BεuΓ2 ^U= {Lp)* (l/p + \/q = 1).

If b <1 then -(A + B) with D(A + B):= D(A) Π D(B) is also

m-dispersive in Lp. Ifb = l then -(A 4- B) is essentially m-dispersive on

D(A + B).

Proof. Since A and B are m-accretive in Lp (see §2), it follows from

Lemma 1.4 in Okazawa [7] that A + B is m-accretive [resp. essentially

m-accretive] if b < 1 [resp. b = 1]. Let C denote A + B or its closure

according as b < 1 or b = 1. Since -(A + B) is dispersive (see the last

paragraph of §2) and the closure of dispersive operator is also dispersive

([3], Theorem 2.3), -C is also dispersive. Thus we see that - C is also

m-dispersive in Lp. D

Proof of Theorem 4.1. In order to apply Lemma 4.2, we shall show

that for some constant a* e R and b, c appearing in (4.1),

(4.2) 4(Au,F(Bεu)) > -(p - l)(c\\u\\2 + a*\\Bεu\\ \\u\\ + b\\Bεu\\2)
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holds for any u e C0°°(R"). Since

\Bεu(x)\P'2Bεu(x) = [Ve(x)]p-ι\u(x)Γ2u(x),

173

we have

(Au,\Beu(x)Γ2Btu

2

M (x) Σ />,[«

+

+ f ao(x)w(x)\u(x)\Pdx,

where we set w( c) = [Ve(x)]p~1. Suppose p > 2. Then w, |t/|ί>~2M e
C^R") and Dj(\u\'-2u) = (p - 1)\U\'-2DJU, Dj(\u\?) = p\u\f~2uDjU
hold (1 < y < n). Therefore by the integration by parts it follows that

(Au,\BeuΓ2Bεu)-f ao(x)w(x)\u(x)\Pdx
is!

\P~u\P~\ Σ aJk(x)(Djw)(Dku)dx

Σ aJk(x){Dju)(Dku)dx

+ ̂ f w(x)iaj(x)Dj{\u\P)dx.

The sum of the first two terms on the right-hand side is not less than

Hence we obtain

χ |« f Σ aJkDjwDkwdx.
j,k-ι

Ί ljf Σ aj

P y
Λc.
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This inequality holds even if 1 < p < 2. In fact, by replacing \u(x)\p~2 in
\Bεu\p-2Bεu by [\u{x)\2 + δ p ~ 2 ) / 2 (8 > 0) and letting δ | 0 after the
integration by parts, we obtain the above inequality in this case. By a
straightforward calculation we see from (4.1) that

where a is the constant appearing in (4.1).
Setting

)" 1ί \
m = sup p-1 Σ Djaj(x) ~ ao(x)'> x e R /. α* = α + 4m(/> - I)

and using the Holder inequality we obtain (4.2) for any u e Co°(RΛ). By
Theorem B, there exists a constant M such that -(A + M) is m-disper-
sive. For such an M, we set α** = α* + AM(p — I)" 1 . Then we have

(4.3) A{(A+M)u,F{Bju))

for any u e Q^R"). Noting that C?(Rn) is a core of A + M (Theorem
B), the conclusion follows from (4.3), Lemma 4.2 and Theorem A in §2. D

COROLLARY 4.3. Let A and B be as in Theorem 4.1. Assume instead of
(4.1) that V(x) > 0 is of class Cι(Rn) and

(4.4) t ad^-DJVDkV^^-t aJ{x)DJV<b[V{x)^c}\
j,k = l V\X) P y = l

where c and b (b < A(p — I)"1) are nonnegatiυe constants. Then the
conclusion of Theorem 4.2 holds.

Proof. Set W{x):= V(x) 4- c and Wε(x):= W(x)[l + εWix)]-1 for
ε > 0. Then by a simple calculation it can be shown that (4.4) implies (4.1)
with Vε replaced by Wε and a = c = 0, whereas with b being the same as
in (4.4). Therefore, by Theorem 4.1, -(A + W) = -(A + V + c) is quasi-
m-dispersive or essentially quasi-m-dispersive on D(A) Π D(W) = D{A)
Π D(V) according as b < 4(p - \)~ι or b = A{p - I)" 1 , hence the
corollary is proved. •
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REMARK 4.4. The last paragraph of §2 implies that the addition
problem for m-dispersive operators is reduced to that of m-accretive
operators. Hence there exists a possibility that the results on m-accretive
operators contain the information about m-dispersive operators. In fact
Okazawa [7] has implicitly shown that, for example, Δ - exp(|jc|*) (k > 1)
is essentially m-dispersive on C™(Rn) in Lp (1 < p < oo), where Δ means
the Laplacian in Lp. For the details the reader is referred to [7].
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