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EIGENVALUE BOUNDS FOR THE DIRAC OPERATOR

JOHN LOTT

A natural question in the study of geometric operators is that of how
much information is needed to estimate the eigenvalues of an operator.
For the square of the Dirac operator, such a question has at least
peripheral physical import. When coupled to gauge fields, the lowest
eigenvalue is related to chiral symmetry breaking. In the pure metric
case, lower eigenvalue estimates may help to give a sharper estimate of
the ADM mass of an asymptotically flat spacetime with black holes. We
use three tools to estimate the eigenvalues of the square of the (purely
metric) Dirac operator the conformal covariance of the operator, a
patching method and a heat kernel bound.

I. A lower bound. Let V be a vector bundle associated to the SO(w)
(Spin(w)) frame bundle of a compact ^-dimensional oriented (spin)
Riemannian manifold X, with a positive-definite inner product ( , ). For
each metric g, let Tg: C°°(V) -> C°°(V) be a geometric elliptic symmetric
differential operator of order j < n. If g' = e2σg is a conformally related
metric, suppose that Tg, = e-

Jσe-(n~j)σ/2Tge
{n~j)σ/2. Let λ\(g) denote the

lowest eigenvalue of T2.

PROPOSITION 1. (i) // Tg is invertible then 3c > 0 s.t. Vg' <Ξ [g], {the
conformal class ofg),

(1) λ\(g')>c-2(Yolgr
2J/n.

(ii) Suppose that a multiple mV of V contains a trivial subbundle of real
dimension > n. Then the best constant c in (1) is

d = sap\f (f^Λdvol /ll/ll2n/(n+j)

Proof, (i) Let ψ range through C°°(K). Then

f ( ψ, T;,\ή d vol' / / <ψ, ψ> d vol'

= sup

= sup
fΦO

ί en°(\p,e-(n-j>o/2Tg-
1e{n+J)a/24>) d vol / j e"σ(ψ,ψ) d vol

/ ( /, T;ιf) d vol / / e-J°(f, f) d vol.
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By Holder's inequality,

\j/n

Then

sup 1/ |/|2-/("+Λrfvol)
\(n+j)/n

2 n / ( π + y )

andBecause (/ + V+V H / 4 |Γ g Γ 1 / 2 is bounded on L
L2, [5], the RHS is finite.

(ii) Consider Tg, = mΓ?, acting on mV with a C0 0 section ψ. Then

c = sup

sup
fΦO

Λ\fhn/(n+j)

With the hypothesis, the generic section of mF has no zeroes. Let {/•} be
a sequence in C°°(mV) approaching the sxφd. By perturbing each /
arbitrarily little in the C00 topology, we can assume that each / has no
zeroes. Define g\ = \},\A/in+l)g and ψ, = //]/;]. Then

f /IIΛH2π/(/f+y)

(voig;)
y/"

d = lim

= lim

II. The Dirac operator. For background on the Dirac operator we
refer to [4]. X is a spin manifold with a fixed spin structure. The spinor
bundle V is associated to the principal Spin(«) bundle over X. The Dirac
operator is the composition D: C°°(F) ^ C°°(F) 0 A\ X) -> C°°(F), the
last map being Clifford multiplication.

PROPOSITION 2. Takeg' = e2σg. Then

£) , = e~
σe~{n~1)σ/2D e{n~1)σ/1.

Proof. Let {f/JjLi be an orthonormal frame for g, with dual frame
{τy};=1. Locally, Dg = - i Σ ? . ^ ^ , with {γ ;};= 1 e End(C2ln/2]) satisfy-

ing = 2διJ and vβy

 = Λ The new orthonormal
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frame for g' is {ej}JLi = {e~aej\
n

j=x. The new connection is ω'ab = ωab -
(eaσ)τh + (ehσ)τa.Then

α

Thus f) is conformally covariant with j = 1. This differs from the
corresponding equation in [4], which has an additional line bundle tensored,
by the factor e~σ, but does not change the conclusion of [4] that the
dimension of the harmonic spinor space is conformally invariant. The two
Dirac operators can be compared because the conformal change in the
metric does not affect the spinor bundle; only the soldering form on the
Spin(w) bundle is changed, not the bundle itself.

Equation (1) implies, in particular, that on S2, 3c > 0 s.t. Vg,
λ\(g) > c-^Volg)"1. On the standard S2, λx = 1. Thus the best constant
d satisfies d > 1/ J4π . It appears that d = 1/ J4ϊτ, although we have no
proof.

The conformal covariance can also be used to get upper bounds on

PROPOSITION 3. Given a conformal glass [g], 3b > 0 s.t. Vg' e [g]
with R(g') < 0, λi(g') < -bR^ig').

Proof. Fix a g in the conformal class s.t. R(g) < 0 and write
g' = e2ag. For any ψ e C»(V),

λ\(g) < j ena\Dg4\2dvol/j e"°\ψ\2dvol

= f e-°\Dge^°^fdvo\/f e«y"~1/2)"Ψ|2dvol

Take e<"~1/2)σψ = ψ0, a lowest eigenfunction of Dg. Then

Ά(g') ^ λ2

1(g)(sup|ψ0 |2/inf|Ψ0 |2)/ e-dvol/f e'dvol.

For n > 3,

_4ll-le-r,o/2v2e(n-2)o/2 + Λ ( g ) e - = R(g') β".
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Then

Λg'))\ / e'σdvol/ eσdv

R(g)e-°dvo\/f R{g')e"d vol

= 1 + n(« - 1) j e-°\vσ\2d\o\/ j R(g')e"d vol

and

For n = 2, -e~σV2σ

f Reσ dvol/j R(g')eσd vol

= 1 + f e-σ\vσ\2dvo\/f R(g')eσd vol < 1

and the same result holds. D

III. A patching method. We give an upper bound on S 2 using the
method of [1].

PROPOSITION 4. Let Mt be the set of metrics on S2 with Gaussian
curvature Ksatisfying 0 < K < I Then 3α > 0 s.t. V/ e R+ and Vg e Mh

Proof. First we solve for the lowest eigenfunction of the Dirichlet
problem for D2 on the unit disk. Take

? l) * ' - ( ? o )
Then

Take

= °' mi> m2 e z
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Then

WLOG, we can assume η2 = 0. The lowest eigenfunction is ψ0 =
(J0(zr)e'θ/2

9 0) with eigenvalue λ\ = z2, z being the first zero of Jo.
Take normal coordinates around a point x in S2 and write g as

dr2 + /(r, θ) dθ2. With er = 9/θr and e, = /-1/29/30,

WLOG, we can assume / = ττ2. Put D = ( J G S 2 : 3! minimal geodesic
from x to j and d(jc, y) < 1), a contractible domain. We wish to patch
the Dirichlet solution onto X. Define ψ e L2(F) by

(

\θ

Then ψ is C1 a.e. and

λ2 <

Jsι Jo

I
Jsι

where a(θ) is min(distance to the cut locus of x along angle θ, 1). Now

dr

/ 0 ( ) ( / , ( r ( / Λ ( ) ) ) ) dr
o

[9 term] - j ^ f^%(zr)^rJ0{zr) + \fJ-\J0{zr)

dr.
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Put v^fy ss cdθ. Then f9r = 2c/ and /,„ = 2(c2 - K)f. By Rauch's com-
parison theorem, there are no conjugate points in D and (l/τr2)Sin27rr <
/ < r2, π Cot πr < c < \/r in 2). Thus [3 term] < 0 and

1

< -

\\J0(zr) + ( ^ j - | c ! - i*)/0(»-)) dr

2 T Γ / 0

2 ( z r ) κ m a x U ' 2 C o t 2 ^ 9 ~T (SinTrr)— L/r

< Z2 + 1L. + jjo L \ r2 I v r2}
2 Γ(θ)7τ-ι(Smπr)J0

2(zr)dr '

Thus λ̂  < al with

\ U 2 + ^ + τ sup Γ J^(zr)[rmax(π2Cot2πr,r-2)-π-ι(Smπr)r-2]dr]
α = * I l 40<α<l /Q i

-(Sinπr)J2(zr)dr
77

< 00.

IV. Heat kernel estimates. The higher eigenvalues of the Dirac opera-
tor can be estimated from below via upper bounds on the heat kernel of
D2.
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PROPOSITION 5. Ifn > 1 then

Vα > 0, je-« < Vn^j e-<«/4λ,)*(*) Vol(X)-1 + 4 ( ^ L f " )

with

r i I t \(2 + n^l r \~4/n

(2) c, - ω /|v/ιV //> /i/i .
feff()

Proof. We have that both D = V+V + Λ/4 and Λ/4 are self-ad-
joint on the unique closed extension of £)2|Coo(K) [7]. By the Golden-
Thomson inequality,

si.

with T being the local fiber trace.

We write e~Tv+v(x, x) as a Feynman-Kac path integral. This is given as a
limit of approximations, each of which can be estimated.

Let r be the cut radius of X, Kτ(x, y) be the kernel of e~TA and p(a)
be a bump function which is 1 near 0 and 0 for \a\ > r/2. Define the
operator Lτ on L2(V) by

Lτ(x,y) = Kτ(x,y) Pexpj-jf |ω^σ«»J\p(d(x9y))9

the path-ordered integral being taken along the unique minimal geodesic
from x to y. Then for ψ e L 2(F),

xcxpί-f \o>aba
ab\P(d(x,y))4>(y)dy

Choose normal coordinates around x and a synchronous frame r\ Then

Pexp{- f \.aboή = 1
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and

Thus

and
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= 0

<

n-\

i - O

n sup

showing that e ~ Γ v + v = 5 l i m , , ^ Ln

τ/n.
Let dμTx y denote the Wiener measure on paths γ going from y to x

in time T. Then for ψ, η e L 2(F),

lim f

γrt being the broken geodesic connecting the points {γ(/T/w)}"=0. Because

Pexp{-/?M 2ωab°ah} i s i n Spin, this is

Letting ψ and η approach F-valued δ-functions with support at x and
values ψoand η 0 ,

Thus
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Now

Kτ{x,x) < vol(ΛΓ)"1 + 4(2C1T/nYn/2 [2].

Thus

Ύre-tD2 < (dimV)f e-
TR^

Putting T = a/λj gives the desired result. D

COROLLARY. Forj > 2[n/2]en/1,

λj > c1(4Vol(Jf)Γ2/"(2-l-^-/V - 1)2/" + ±11^.

Proof. From (2)

(3) je- < 2ϊ"^e-<β/4λ^Λ-ίl 4^f)

Putting a = j8λy ,

Thus it suffices to assume Rmin = 0, pick /? to estimate λj and then add
i * m i n . Putting ^ = 0 in (3),

2/n

This gives lower bounds whenever 7 > 2[n/2\ but to get the best power
law behaviour take a = n/2 and 7 > 2[n/2]en/2. Then

We note that C\ can be estimated from below in terms of Diam(g),
Vol(g)andRic(g)[2]. D
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