ON THE SINGULAR K-3 SURFACES WITH HYPERSURFACE SINGULARITIES

Mikio Furushima

Let A be a singular K - 3 surface with hypersurface singularities. If A has singularities other than rational singularities, then the minimal resolution of A is a ruled surface over a non-singular algebraic curve of genus $q(0 \leq q \leq 3)$, and further, under the additional conditions $q \neq 0$ and $\operatorname{dim} H^{2}(A ; \mathbf{R})=1$, the global structure of M can be determined.

Introduction. Let A be a projective algebraic normal Gorenstein surface, namely, the canonical line bundle on the set of regular points of A is trivial in a neighbourhood of each singular point. Then we can define the canonical line bundle on A. We assume here that A has always singularities. Such a surface is called the singular del Pezzo surface (resp. singular K - 3 surface) if the anti-canonical line bundle on A is ample (resp. trivial) on A. The study of the singular del Pezzo surface (resp. singular $K-3$ surface) was done by Brenton [4] and Hidaka-Watanabe [7] (resp. Umezu [11]). In particular, Umezu had an interesting result on the singularities of a singular $K-3$ surface.

On the other hand, these surfaces are also closely related to the study of a complex analytic compactification of \mathbf{C}^{3} (see [4], [5]). Let (X, A) be a non-singular Kähler compactification of \mathbf{C}^{3} such that A has at most isolated singularities. Since X is a non-singular 3 -fold, A has at most isolated hypersurface singularities. Further, we can see that $\operatorname{Pic} A \cong \mathbf{Z}$ and A is isomorphic to either \mathbf{P}^{2}, or a singular del Pezzo surface, or a singular K - 3 surface. In the case where A is isomorphic to \mathbf{P}^{2} or a singular del Pezzo surface, the structure of (X, A) is determined in [6] (see also [4]).

Now, in this paper, we shall consider the singular $K-3$ surface. Let A be a projective algebraic singular $K-3$ surface and $\pi: M \rightarrow A$ be the minimal resolution of singularities of A. Then M is a non-singular $K-3$ surface or a ruled surface over a non-singular algebraic curve R of genus $q=\operatorname{dim} H^{1}\left(M ; O_{M}\right)$. Let S be the set of singularities of A which are not rational singularities. Then $S \neq \varnothing$ if and only if M is a ruled surface over
R. Taking into account that $\operatorname{Pic} A \cong \mathbf{Z}$ implies $S \neq \varnothing$, we shall study here the singular $K-3$ surface A with $S \neq \varnothing$.

In $\S 1$, we discuss the structure of M as a ruled surface (see Proposition 3). In $\S 2$, we show that if the singularities of A are hypersurface singularities, then we have $0 \leq q \leq 3$ (see Propositions 5 and 6). Finally, in case of $q \neq 0$ and $\operatorname{dim} H^{2}(A ; \mathbf{R})=1$, we determine the global structure of M (see Theorem).

The author would like to thank Prof. Masakazu Suzuki for his suggestions and encouragement and also thank the referee for pointing out mistakes in the original version.

1. Preliminaries.

1°. Let A be a projective algebraic normal Gorenstein surface (see Introduction). Then we can define the canonical divisor K_{A} on A. We call A the singular $K-3$ surface if (i) the singular locus of A is not empty, (ii) $K_{A}=0$, (iii) $H^{1}\left(A ; O_{A}\right)=0$. Let A be a singular $K-3$ surface and S be the set of singular points which are not rational double points. Let π : $M \rightarrow A$ be the minimal resolution of the singular points of A and put $\pi^{-1}(S)=C=\bigcup_{i=1}^{s_{0}} C_{i}$. Then we have

Proposition 1 (Umezu [11]). Assume that $S \neq \varnothing$. Then
(1) the canonical divisor $K_{M}=-\sum_{i=1}^{s_{0}} n_{i} \cdot C_{i}\left(n_{t}>0\right)$ and thus M is a ruled surface over a non-singular compact algebraic curve R of genus $q=\operatorname{dim} H^{1}\left(M ; O_{M}\right)$ (namely, M is birationally equivalent to \mathbf{P}^{1}-bundle over R).
(2) if $q \neq 1$, then S consists of one point with $p_{g}=\operatorname{dim}\left(R^{1} \pi_{*} O_{M}\right)_{S}=$ $q+1$.
(3) if $q=1$, then S consists of either one point with $p_{g}=2$ or two points with $p_{g}=1$. Moreover, in second case of (3), both of the two points are simple elliptic.

Remark 1. Let $b^{+}(A)$ be the dimension of positive eigenspace with respect to the cup product pairing $H^{2}(A ; \mathbf{R}) \times H^{2}(A ; \mathbf{R}) \rightarrow$ $H^{4}(A ; \mathbf{R}) \cong \mathbf{R}$. Then $b^{+}(A)=1$ if $S \neq \varnothing$. In fact, if $S \neq \varnothing$, then $p_{g}(M)=0$ since M is ruled. By Kodaira equality $b^{+}(M)=2 p_{g}(M)$ +1 , where $p_{g}=\operatorname{dim} H^{2}\left(M ; O_{M}\right)$, we have $b^{+}(M)=1$. By Brenton [3], $b^{+}(A)=b^{+}(M)$, thus we have the claim.

In case of $S \neq \varnothing$, let \bar{M} be the relatively minimal model of M and $\mu: M \rightarrow \bar{M}$ be the birational morphism. Then \bar{M} is a \mathbf{P}^{1}-bundle over R. Then we have the following

Proposition 2. Assume that $S \neq \varnothing$. If $q \neq 0$, then we have either
(1) $M=\bar{M}$ and C is irreducible (in fact, C is a section of M),
(2) there exists an irreducible component $C_{i_{1}}$ of C such that $C_{i_{1}}$ is a section of M and the rest $\overline{C-C_{i_{1}}}=\bigcup_{i \neq i_{1}} C_{i}$ is contained in the singular fibres of M, or
(3) C consists of two disjoint irreducible components C_{1} and C_{2} which are the sections of M.

Lemma $U_{1}([11])$. Let $M=M_{0} \xrightarrow{\mu_{1}} M_{1} \rightarrow \cdots \xrightarrow{\mu_{n}} M_{n}=\bar{M}$ be a sequence of blow-downs obtaining a relatively minimal model \bar{M} of M. Then there exists $D_{i} \in\left|-K_{M_{i}}\right|(0 \leq i \leq n)$ such that
(i) $\operatorname{supp}\left(D_{0}\right)$ is the union of the exceptional sets of π which correspond to the singular points in S,
(ii) μ_{i} is the blow-up with center at a point on $\operatorname{supp}\left(D_{i}\right)$ for $1 \leq i \leq n$,
(iii) $\mu_{i}\left(D_{i-1}\right)=D_{i}$ for $1 \leq i \leq n$.

Lemma U_{2} ([11]). Assume $q \geq 1$. Then $\left|-K_{M}\right|$ contains no irreducible curve.
(Proof of Proposition 2). By Proposition 1, M is a ruled surface over a nonsingular compact algebraic curve R of genus $q>0$ and $-K_{M}=\sum_{i} n_{l} C_{i}$ ($n_{i}>0$). Applying the adjunction formula for a general fibre f of M, we have

$$
2=\left(-K_{M} \cdot f\right)=\sum_{i} n_{i}\left(C_{i} \cdot f\right)
$$

Thus we have the following
(i) There exist two irreducible components C_{1}, C_{2} of C such that $n_{1}=n_{2}=1,\left(C_{1} \cdot f\right)=\left(C_{2} \cdot f\right)=1$, and $\left(C_{i} \cdot f\right)=0$ for $i \geq 3$. Applying the adjunction formula for the curve $C_{i}(i=1,2)$, we have that the curve $C_{i}(i=1,2)$ is a non-singular elliptic curve with $\left(C_{1} \cdot C_{2}\right)=0$ and there exists no other irreducible component of C which intersects $C_{i}(i=1,2)$. Thus, by Proposition 1, we must have $C=C_{1} \cup C_{2}$ and $-K_{M}=C_{1}+C_{2}$.
(ii) There exists an irreducible component $C_{i_{1}}$ such that $n_{i_{1}}=2$, $\left(C_{i_{1}} \cdot f\right)=1$ and $\left(C_{i} \cdot f\right)=0\left(i \neq i_{1}\right)$. Thus, $-K_{M}=2 C_{i_{1}}+\sum_{i \neq i_{1}} n_{i} C_{i}$.
(iii) There exists an irreducible component C_{1} of C such that $n_{1}=1$, $\left(C_{1} \cdot f\right)=2$ and $\left(C_{i} \cdot f\right)=0(i \neq 1)$. Applying the adjunction formula for the curve C_{1}, we have that C_{1} is a non-singular elliptic curve and there exists no other irreducible component of C which intersects C_{1}. Thus, by Proposition 1, we must have $C=C_{1}$ and $-K_{M}=C_{1}$.

By Lemma U_{1}, U_{2}, the case (iii) can not occur. Assume that $M=\bar{M}$. Then the case (i) cannot occur. In fact, since $M=\bar{M}$ is a \mathbf{P}^{1}-bundle over a non-singular elliptic curve in this case, $0=\left(-K_{M}\right)^{2}$. Thus, $\left(C_{1}+C_{2}\right)^{2}=$ $C_{1}^{2}+C_{2}^{2}=0$. Since C is an exceptional curve, this is a contradiction. In case (ii), since $\left(C_{i} \cdot f\right)=0\left(i \neq i_{1}\right), C_{i}$'s $\left(i \neq i_{1}\right)$ are all fibres of M, which are not exceptional. Therefore we must have $C=C_{i_{1}}$, and this is a section of M. This proves (1). The assertions (2) and (3) follow from the above facts (i) and (ii).
2°. We shall prepare some notations and results from the local theory of normal two dimensional singular points (see Laufer [9], Yau [13], [14]). Let $A, \pi: M \rightarrow A, C$ be as in 1°. Let Z be the fundamental cycle of the singular points S with respect to the resolution $\pi: M \rightarrow A$. Let U be a strongly pseudoconvex neighbourhood of C in M. A cycle D on U is an integral combination of the $C_{i}, D=\sum d_{i} C_{i}\left(1 \leq i \leq s_{0}\right)$, with d_{i} an integer. We let $\operatorname{supp} D=|D|=\cup C_{i}, d_{i} \neq 0$, denote the support of D. We put $O_{D}:=O_{U} / O_{U}(-D)$ and $\chi(D)=\operatorname{dim} H^{0}\left(U ; O_{D}\right)-\operatorname{dim} H^{1}\left(U ; O_{D}\right)$. By the Riemann-Roch theorem [10], we have

$$
\begin{equation*}
\chi(D)=-\frac{1}{2}\left(D \cdot D+D \cdot K_{U}\right) \tag{1.1}
\end{equation*}
$$

where K_{U} is the canonical divisor on U. Let g_{i} be the genus of the desingularization of C_{i} and μ_{i} be the "number" of nodes and cusps on C_{i}. Then, we have [10]

$$
\begin{equation*}
C_{i} K_{U}=-C_{i} \cdot C_{i}+2 g_{i}-2+2 \mu_{i} \tag{1.2}
\end{equation*}
$$

For two cycles D and E, we have, by (1.1),

$$
\begin{equation*}
\chi(D+E)=\chi(D)+\chi(E)-D \cdot E . \tag{1.3}
\end{equation*}
$$

3°. Next, we shall study the anti-canonical divisor $-K_{M}$ on M.
Lemma 1. $K_{M}=K_{U}$.
Proposition 3. Assume that $S \neq \varnothing$. Then
(I) $S=\{$ one point $\}$
(i) if $q=0$, then $-K_{M}=Z$
(ii) If $q \neq 0$, then $-K_{M}=Z+C_{i_{1}}$, where $C_{i_{1}}$ is a section of M in Proposition 2-(2).
(II) $S=\{$ two points $\}$ (thus $q=1$). Then, $-K_{M}=C_{1}+C_{2}$, where C_{1} and C_{2} are two disjoint sections of M in Proposition 2-(3).

Proof. By a theorem of Laufer [9] and Lemma 1, we have (I)-(i). The assertion (II) follows directly from Proposition 2-(3). We shall show the assertion (I)-(ii). Since $\left(-K_{M}-C_{i_{1}}\right) \cdot C_{i_{1}} \leq 0\left(1 \leq i \leq s_{0}\right)$, by definition of the fundamental cycle, $-K_{M}-C_{i_{1}} \geq Z$. Now, let us assume that $-K_{M}=Z+C_{i_{1}}+D$, where $D>0$. For a general fiber f of $M, 2=$ $-\left(K_{M} \cdot f\right)=Z \cdot f+C_{i_{1}} \cdot f+D \cdot f$. Since $C_{i_{1}} \subset|Z|, Z \cdot f=1=C_{i_{1}} \cdot f$ and $D \cdot f=0$. This means that D is contained in the singular fibres of M. Since $H^{2}\left(M ; O_{M}(-Z)\right) \cong H^{0}\left(M ; O_{M}\left(-C_{i_{1}}-D\right)\right) \cong 0$ and $H^{2}\left(M ; O_{M}\right)$ $\cong 0$, by the Riemann-Roch theorem, we have

$$
0 \geq-\operatorname{dim} H^{1}\left(M ; O_{M}(-Z)\right)=\frac{1}{2}\left(Z \cdot Z+Z \cdot K_{M}\right)+1-q
$$

By Lemma 1, and (1.1), we have the inequality $\chi(Z) \geq 1-q$. Since $H^{0}\left(U ; O_{Z}\right) \cong \mathbf{C}$ by Laufer [9], $\chi(Z)=1-\operatorname{dim} H^{1}\left(U ; O_{Z}\right) \leq 1$. Since S does not contain rational singularities, $\chi(Z) \neq 1$ by [1]. Therefore we have

$$
\begin{equation*}
1-q \leq \chi(Z) \leq 0 \tag{1.4}
\end{equation*}
$$

Since $1-q=\chi\left(C_{i_{1}}\right)=\chi\left(-K_{U}-C_{i_{1}}\right)=\chi(Z+D)=\chi(Z)+\chi(D)-$ $D \cdot Z$,

$$
\begin{equation*}
\chi(Z)=-\chi(D)+1-q+D \cdot Z \tag{1.5}
\end{equation*}
$$

By (1.4) and (1.5), $D \cdot Z \geq \chi(D)$. Since $D \cdot Z \leq 0, \chi(D) \leq 0$.
On the other hand, we have just seen that the support $|D|$ of D is contained in the singular fibres of M. We can easily find that the contraction of $|D|$ in M yields rational singularities. Thus, we have $\chi(D) \geq 1$. This is a contradiction. Therefore $D=0$, namely, $-K_{M}=$ $Z+C_{i_{1}}$.

Corollary 1. In the case (I)-(ii) of Proposition 3, we have
(1) $C_{i_{1}} \cdot Z=2-2 q$
(2) $Z \cdot Z \leq C_{i_{1}} \cdot C_{i_{1}}$
(3) $Z \cdot Z \leq 2-2 q$.

Proof. Since $-K_{M}=Z+C_{i_{1}},-\left(C_{i_{1}} \cdot K_{M}\right)=C_{i_{1}} \cdot C_{i_{1}}+C_{i_{1}} \cdot Z$. By the adjunction formula, $C_{i_{1}} \cdot C_{i_{1}}+C_{i_{1}} \cdot K_{M}=2 q-2$. Thus, we have
$C_{i_{1}} \cdot Z=2-2 q$. This proves (1). Since $-K_{M}=2 C_{i_{1}}+\sum_{i \neq i_{1}} \lambda_{i} C_{i}\left(\lambda_{i}>\right.$ 0) (see (ii) in the proof of Proposition 2), we can represent $Z-C_{i_{1}}=$ $\sum_{i \neq i_{1}} \lambda_{i} \cdot C_{i}\left(\lambda_{i}>0\right)$. Then

$$
\left(Z-C_{i_{1}}\right)\left(Z+C_{i_{1}}\right)=-K_{M}\left(\sum_{i \neq i_{1}} \lambda_{i} \cdot C_{i}\right)=-\sum_{i \neq i_{1}} \lambda_{i}\left(C_{i} \cdot K_{M}\right) \leq 0
$$

Therefore $Z \cdot Z \leq C_{i_{1}} \cdot C_{i_{1}}$. This proves (2). By the Noether formula, $K_{M} \cdot K_{M}=Z \cdot Z+2\left(Z \cdot C_{i_{1}}\right)+C_{i_{1}} \cdot C_{i_{1}}$, we have, by (1) and (2), $10-$ $8 q-b_{2}(M) \geq 2(Z \cdot Z)+4(1-q)$, namely,

$$
\begin{equation*}
2 \leq b_{2}(M) \leq 6-4 q-2(Z \cdot Z) \tag{1.6}
\end{equation*}
$$

Therefore $-(Z \cdot Z) \geq 2 q-2$. This proves (3).
2. Singular $K-3$ surfaces with hypersurface singularities.
1°. Throughout this section, we will assume that A is a singular $K-3$ surface with hypersurface isolated singularities. Let the notations S, M, C, C_{i}, Z, etc. be as in $\S 1$. Let us denote by mult $\left(O_{A, x}\right)$ the multiplicity of the local ring $O_{A, x}$ at the point x of A. Then,

Proposition 4. Assume that S consists of one point $x \in A$. We put $n=\operatorname{mult}\left(O_{A, x}\right)$. Then,
(1) (Wagreich [12]): $Z \cdot Z \geq-n$.
(2) (Yau [14]): $p_{g} \geq \frac{1}{2}(n-1)(n-2)$.

Proposition 5. Assume that $S \neq \varnothing$. Then $0 \leq q \leq 3$.
Proof. We may assume that S consists of one point. Then $p_{g}=q+1$. By Proposition 4-(2), we have

$$
\begin{equation*}
0<n \leq \frac{1}{2}(3+\sqrt{9+8 q}) \tag{2.1}
\end{equation*}
$$

By (1.6), $-2(Z \cdot Z) \geq 4 q-6+b_{2}(M)$. Thus, by Proposition 4-(1), we have $2 n \geq 4 q-6+b_{2}(M)$. We have, together with (2.1),

$$
\begin{equation*}
2 \leq b_{2}(M) \leq 9-4 q+\sqrt{9+8 q} \tag{2.2}
\end{equation*}
$$

Thus, $9-4 q+\sqrt{9+8 q} \geq 2$, namely, $q \leq 3$.
Corollary 2.
(1) $q=3 \Rightarrow b_{2}(M)=2$, namely, $M=\bar{M}$.
(2) $q=2 \Rightarrow 2 \leq b_{2}(M) \leq 6$.
(3) $q=1 \Rightarrow 3 \leq b_{2}(M) \leq 8$.
(4) $q=0 \Rightarrow 11 \leq b_{2}(M) \leq 13$.

Proof. The assertions (1), (2) and (3) follow directly from Proposition 4-(1), (2.1) and (2.2). In case (3), $b_{2}(M) \neq 2$. In fact, if $b_{2}(M)=2$, then $M=\bar{M}$, since $b_{2}(\bar{M})=2$. Since $q=1$ and $M=\bar{M}, K_{M} \cdot K_{M}=0$. On the other hand, by Proposition 1-(1) $K_{M} \cdot K_{M}=\sum_{i, j} n_{i} n_{j}\left(C_{i} C_{j}\right)<0$, since $n_{i}>0$ and the intersection matrix $\left(C_{i} \cdot C_{u}\right)$ is negative definite. This is a contradiction. Next, if $q=0$, then $-K_{M}=Z$, by Proposition 3-(1). Since S is a hypersurface singularity, by Laufer [9], $0<-(Z \cdot Z) \leq 3$. By Noether formula, $K_{M} \cdot K_{M}=10-b_{2}(M)$. Therefore $10<b_{2}(M) \leq 13$. This proves (4).
2°. Finally, we shall determine the structure of the singular $K-3$ surfaces with hypersurface singularities whose second Betti numbers are equal to 1 . Let us denote by $\operatorname{Sing} A$ the singular locus of A. Then Sing $A-S$ consists of rational double points. We put $B=\pi^{-1}(\operatorname{Sing} A)$ $\hookleftarrow C=\bigcup_{i=1}^{s_{0}} C_{i}$ and $s:=\operatorname{dim} H^{2}(B ; \mathbf{R})$.

Lemma 2. If $b_{2}(A)=1$, then S consists of one point and $b_{2}(M)=s+1$.
Proof. Let us consider the following exact sequence of cohomology group (see [3]):

$$
\begin{aligned}
& \rightarrow H^{1}(A ; \mathbf{R}) \rightarrow H^{1}(M ; \mathbf{R}) \rightarrow H^{1}(B ; \mathbf{R}) \rightarrow H^{2}(A ; \mathbf{R}) \\
& \xrightarrow{\pi^{*}} H^{2}(M ; \mathbf{R}) \rightarrow H^{2}(B ; \mathbf{R}) \rightarrow 0
\end{aligned}
$$

Since $H^{1}\left(A ; O_{A}\right)=0$, we have $H^{1}(A ; \mathbf{R})=0$. Since A is projective algebraic, M is also projective algebraic. Thus $1=b_{2}(A) \geq b^{+}(A)=$ $b^{+}(M)=2 p_{g}(M)+1 \geq 1$, that is, $b^{+}(A)=1$, and thus ker $\pi^{*}=0$. This implies $H^{1}(M ; \mathbf{R}) \cong H^{1}(B ; \mathbf{R})$ and $b_{2}(M)=s+1$. Now, let us assume that S consists of two points with $p_{g}=1$. We have then $C=C_{1} \cup C_{2}$, and C_{i} 's $(i=1,2)$ are non-singular elliptic curves (see Proposition 2 and (i) in the proof). We have also seen that C_{i} 's are two disjoint sections there. Thus M is a ruled surface over a non-singular elliptic curve, that is, $2=\operatorname{dim} H^{1}(M ; \mathbf{R})$. On the other hand,

$$
\begin{aligned}
\operatorname{dim} H^{1}(M ; \mathbf{R}) & =\operatorname{dim} H^{1}(B ; \mathbf{R}) \geq \operatorname{dim} H^{1}(C ; \mathbf{R}) \\
& =\sum_{i=1}^{2} \operatorname{dim} H^{1}\left(C_{i} ; \mathbf{R}\right)=4
\end{aligned}
$$

This is a contradiction. Therefore S consists of one point.

Let $C_{i_{1}}$ be the section of M as in Proposition 2-(2), and put the self-intersection number $C_{i_{1}} \cdot C_{i_{1}}=e<0$. Then, by Proposition 3, Proposition 5, Corollary 2 and Lemma 2, we have the following

Proposition 6. Assume that $b_{2}(A)=1$. Then we have
(1) if $q=3$, then $Z \cdot Z=-4$ and $s=1$.
(2) if $q=2$, then $-2 \leq Z \cdot Z \leq-4$ and
(i) $Z \cdot Z=-4 \Rightarrow(e, s)=(-3,4),(-4,5)$.
(ii) $Z \cdot Z=-3 \Rightarrow(e, s)=(-3,3)$
(iii) $Z \cdot Z=-2 \Rightarrow(e, s)=(-2,1)$
(3) $q=1$, then $Z \cdot Z \geq-3$ and
(i) $Z \cdot Z=-3 \Rightarrow(e, s)=(-3,7),(-2,6),(-1,5)$
(ii) $Z \cdot Z=-2 \Rightarrow(e, s)=(-2,5),(-1,4)$
(iii) $Z \cdot Z=-1 \Rightarrow(e, s)=(-1,3)$
(4) $q=0$, then $Z \cdot Z \geq-3$ and
(i) $Z \cdot Z=-3 \Rightarrow s=12$
(ii) $Z \cdot Z=-2 \Rightarrow s=11$
(iii) $Z \cdot Z=-1 \Rightarrow s=10$.

Next, let us see the structure of M as a ruled surface in case of $q \neq 0$.
Proposition 7. Assume that $b_{2}(A)=1$. If $q \neq 0$, then either $M=\bar{M}$, or there exists unique exceptional curve of the first kind in every singular fibre of M and then another irreducible components of singular fibre are all contained in B.

Proof. Assume that $M \neq \bar{M}$. Since $q \neq 0$, by Proposition 2-(2), there exists an irreducible component $C_{i_{1}}$ of C such that the rest $B-C_{i_{1}}$ is contained in the singular fibres of M. Let F_{1}, \ldots, F_{r} be the singular fibres of $M, 1+\alpha_{i}\left(\alpha_{i}>0\right)$ the "number" of the irreducible components of F_{i} and δ_{i} the "number" of the irreducible components of F_{i} which are not contained in B. Then we have

$$
\left\{\begin{array}{l}
1+s=b_{2}(M)=2+\sum_{i=1}^{r} \alpha_{i} \\
\sum_{i=1}^{r}\left(1+\alpha_{i}-\delta_{i}\right)+1=s
\end{array}\right.
$$

Thus we have $\sum_{i=1}^{r}\left(1-\delta_{i}\right)=0$. Since each singular fibre F_{i} contains at least an exceptional curve of the first kind, we have $\delta_{i} \geq 1(1 \leq i \leq r)$, thus $\delta_{i}=1(1 \leq i \leq r)$. This completes the proof.

By Proposition 6 and Proposition 7, we have

Theorem. Let A be a singular $K-3$ surface with hypersurface singularities. Assume that $b_{2}(A)=1$. Let S be the set of singular points which are not rational singular points, and $\pi: M \rightarrow A$ be the minimal resolution of singularities of A. Then M is a ruled surface over a non-singular compact algebraic curve R of genus $q(0 \leq q \leq 3)$, and S consists of one point. Moreover, if $q \neq 0$, then the dual graph of all the exceptional curves in M can be classified as Table I.

Table I
(1) (4)
(2)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

[1]
(10)

(11)

(12)
 (13)

(14)

(15)

(16)

Notation. In Table I, the vertex

[g]
represents a non-singular compact algebraic curve of genus g with self-intersection number $-k$, (k) a non-singular rational curve with self-intersection number $-k$, and we denote (2) by \bigcirc.

Remark 2. In case of $q=0$, since $-\left(K_{M} \cdot K_{M}\right)=\sum n_{i}\left(C_{t} \cdot K_{M}\right)$ and $\left(K_{M} \cdot K_{M}\right)=-1,-2$, or -3 , repeating the adjunction formula, we can determine the integers n_{1} 's and the dual graph $\Gamma(C)$ of the exceptional curve C (see Laufer [9]).

Remark 3 (see [6]). Let (X, A) be a non-singular Kähler compactification of \mathbf{C}^{3} and A has at most isolated singular points. Then A is purely two dimensional compact analytic subvariety of X with hypersurface singular points and the canonical divisor $K_{X}=-r \cdot A(1 \leq r \leq 4)$. In case of $r \geq 2$, the structure of (X, A) is determined in [6]. But in case of $r=1$, it is still unknown. In that case, A is a singular $K-3$ surface with hypersurface singular points and $b_{2}(A)=1$. Applying the theory of Iskovskih $[8]$ and our theorem to the paire (X, A), we can obtain some detailed informations on (X, A). This will be discussed elsewhere.

References

[1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136.
[2] E. Bombieri and D. Husemoller, Classification and embeddings of surfaces, in Algebraic Geometry, Arcata 1974, Amer. Math. Soc. Proc. Symp. Pure Math., Providence, 29 (1975), 329-420.
[3] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. Math., 41 (1977), 129-147.
[4] , On singular complex surfaces with negative canonical bundle, with applications to singular compactification of \mathbf{C}^{2} and 3-dimensional rational singularities, Math. Ann., 248 (1980), 117-124.
[5] L. Brenton and J. Morrow, Compactifications of \mathbf{C}^{n}, Trans. Amer. Math. Soc., 246 (1978), 139-153.
[6] M. Furushima, Singular Del Pezzo surfaces and complex analytic compactifications of the 3-dimensional complex affine space \mathbf{C}^{3}, to appear in Nagoya Math. J.
[7] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math., 4 (1981), 319-330.
[8] V. A. Iskovskih, Fano 3-folds II, Math. USSR Izv., 12 (1978), 469-506.
[9] H. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257-1295.
[10] J. P. Serre, Groupes algebriques et corps de classes, Actualites Sci. Indust. no. 1264, Hermann, Paris, 1959.
[11] Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math., 4 (1981), 343-354.
[12] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., (2 (1970), 419-454.
[13] Stephen S.-T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc., 257 (1980), 269-329.

Received April 5, 1985 and in revised form November 6, 1985.

Kumamoto Radio Technical College
Nishigoshi-machi Kumamoto, 861-11
Japan

