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SMASH PRODUCTS, INNER ACTIONS AND
QUOTIENT RINGS

MIRIAM COHEN

Let if be a Hopf algebra over a field k, and A an //-module
algebra over k. Let ΛH = {a e A\h a = ε(h)a9 all Λ G H). This
paper is mainly concerned with inner actions. We prove the existence of
a "symmetric" quotient ring Q oi A, which is also an //-module algebra,
and consider g-inner actions, an analogue of X-inner automorphisms.
Under certain conditions on A and H we show that Q contains B, a
finite-dimensional separable algebra over its center C, a field. Moreover,
the centralizer of B in Q is QH. This is used to prove that if AH is P.I.
then so is Λ, and that A is fully integral over AHC of bounded degree.
We also consider connections between the A, AH and A#H module
structures.

0. Introduction. Let H be a Hopf algebra over a field k. Let A be
an //-module algebra over k. As in [6], let A#H denote the so called
smash product and

AH = {a e A\h - α = ε(Λ)α, all λ e # } .

That is, ^ is the set of elements of 4̂ on which the action of H is trivial.
This paper is mainly concerned with inner actions of H on A [4,15].

In §1 we prove some basic identities (Lemma 1) which enable us,
among the rest, to prove the existence of left and "symmetric" quotient
rings Q (with respect to J^= {I\I is an if-stable ideal of A with
rA(I) = lA(I) = 0}) which are also i/-module algebras. (Right quotient
rings were introduced in [7]). These quotient rings give rise to a more
generalized notion of inner actions, an example of which is that of
X-inner automorphisms [13].

Another consequence of Lemma 1, which is not in the mainstream of
this paper, is Proposition 4 which states that if H is cocommutative then
the center of A is //-stable.

In §2 we get to the main concern of this paper, that of inner actions.
In [4] we have shown that inner actions give rise to 2-cocycles /, so that
A#H = At[H]9 a twisted product. In At[H]9 1 ® H commutes with A, a
key property utilized in §3. In Proposition 8 and Lemma 9 we summarize
basic facts about A and At[H]. We proceed to consider "generalized"
inner actions. That is, inner actions induced by elements in the right or

45



46 MIRIAM COHEN

left quotient rings (Qr or Q1). In Proposition 12 we show that in some
sense these inducing elements are "normalizing". More precisely we show
that if the action is Qr or g'-inner then it is induced by elements in the
smaller, symmetric rings of quotients, Qs; hence satisfy a property known
for generalized inner automorphisms or derivations. Namely: for each
h e H, there exists an ideal / e & so that u(h)I, v(h)I, Iu(h) and
Iv(h) are all contained in A. Specifying to β-inner actions on i/-prime
algebras we show in Proposition 14 that Q must then be prime and
centrally closed, with center C, the extended centroid of Q. If H is
furthermore assumed to be ^-dimensional and semisimple we show in the
course of proving Proposition 16 that Ct[H] c Qt[H] is a separable
^-dimensional C-algebra. This fact is used to prove that if H and A
satisfy all the above conditions then Q contains B, a separable C-algebra
of dimension < n.

The algebra B is the analogue of the "algebra of the group", a known
algebra in the study of groups acting as automorphisms. It "mirrors" H in
A. Moreover, CT(B), the centralizer of B in any T c Q satisfies:

CT(B) = TH.

We are thus in a position to apply a theorem of Montgomery and
Smith [12] about centralizers of separable sub algebras. We show in
Theorem 17 that if H is an π-dimensional semisimple Hopf algebra acting
in an inner fashion on A. Then, if AH satisfies a P.I. so does A.

Another application of Proposition 16 is to a question about integral-
ity. An application of a theorem of Passman [14] yields Theorem 18: If A9

H are as in Theorem 17 and A is moreover assumed to be iϊ-prime then
A is fully integral over AHC of bounded degree t.

In §3 we consider A -modules when the action of H on A is inner and
H is π-dimensional and semisimple. Let VA be a right A -module, then V
is an A ̂ -module by restriction of "scalars", moreover VA induces an
At[H] module V' = V ®A At[H). Using a Maschke-type theorem for Hopf
algebras [6], we prove Theorem 21 which relates the module structures of
VA, VAH and VA[H]. This is done in an analogous manner to Passman and
Lorenz's treatment of the case H = kG, G a finite group of automorphism
of A [10]. We further consider At[H\ A and ^-bimodules, using a
two-sided Maschke theorem proved in §1. Finally, we apply these results
to central simple algebras. In Theorem 23 we prove that if H is assumed
to be cocommutative and pointed, in addition to being ^-dimensional and
semisimple, and A is central simple then A is fully integral and finitely
generated over AH, and AH is a finite direct sum of simple rings. In
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particular, if H = w(L), the universal enveloping algebra of an w-dimen-
sional semisimple restricted Lie algebra L acting as derivation on A, then
AL is a finite direct sum of simple rings (Corollary 24).

1. Preliminaries. Let H be a Hopf algebra over a field A: and A an
//-module algebra. Notation is as in [19], for a summary of basic proper-
ties see [6]. Let S denote the antipode of //, Δ the comultiplication map, ε
the augmentation map. Denote for each h e H

We start with a basic identity:

LEMMA 1. Let H be a Hopf algebra and A an H-module algebra. For
any a,b ^ A, A e H

If S is bijective then

(2) α(Λ 6) = Σh2

(h)

Proof. (1)

Σ Ai * [*(S(A2) ^)] = Σ (Ax α)(A2 • 5(A3) 6)
(Λ) (Λ)

= Σ (Ai * a)(ε(h2)b) = Σ A1ε(A2) b = (h a)b
(Λ) (Λ)

(2) is proved similarly.

This lemma has some immediate corollaries.

COROLLARY 2. /// is an H-stable subring of A then the left annihilator,
lA(I), is H-stable. Moreover, if S is bijective then the same is true for the
right annihilator of I.

Proof. Let b e /, a e lA(I), then by Lemma 1

(A a)b = Σ Ax -[fl(S(A2) ft)] = Σ K ' ° = 0.

Hence A α e lA(I) and thus /^(/) is //-stable. One uses part (2) of
Lemma (2) to prove the statement for rA(I).
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An //-module algebra is called H-prime (respectively H-semiprime) if
for any //-stable ideals /, / of A, then // = 0 (resp. I2 = 0) implies
/ = 0 or / = 0 (resp. / = 0).

Using Corollary 2 and the usual proof for semiprime rings it is
immediate that:

COROLLARY 3. Let H be a Hopf algebra, and A an H-semiprime
algebra. If I Φ 0 is an H-stable ideal of A, then

rA(I) = lA(l) and I n rA(I) = 0.

If moreover A is H-prime then rA(I) = lA(I) = 0.

This result will be useful shortly when we form quotient rings.
Another interesting consequence of Lemma 1 is the following:

PROPOSITION 4. Let H be a cocommutatiυe Hopf algebra and A an
H-module algebra. Then, Z(A), the center of A, is H-stable.

Proof. First let us note that S is bijective since S2 = id, and thus
S = S~ι [19]. Now say z e Z(A), a e A, then,

(A z)a = Σhι- [z{S(h2) a)] (Lemma 1)
(Λ)

-Σ*i
(A)

(A)

= Σ ^2 * [(S"H^i) β)^] (// is cocommutative)
(A)

= Λ(Λ z) (Lemma 1)

The above proof is R. J. Blattner's "cleaner" version of our original
argument, we thank him for pointing it out to us. The assumption about
the cocommutativity of H cannot be removed, for, as shown in [2], there
exist graded rings (i.e. H = (fcG)*, G & non-abelian group) whose center
is not graded.

We turn now to quotient rings. In [7] we have introduced a right
quotient ring Qr with respect to:

J^= {/|/ is an //-stable idea of A, with rA(l) = lA(l) = 0}.

Note that by Corollary 3, if A is Zf-semiprime then J^= {/ Θ ann^ I\
I is an //-stable ideal of A}. If A is //-prime, then J^= {/|0 Φ I is an
//-stable ideal of A}.
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Let us recall how Qr became an //-module algebra. Let q ̂  Q\
where q: IA -> A, then for any h ̂  H, h - q: IA -* A is defined by:

= Σhι [q(S(h2).y)], all y e /.

If # has a bijective antipode, we can define analogously an action of H
on Qι. Where each element q = [/] e g ' is an equivalence class of left
^4-module homomorphisms, /: AI -> A, where / G F (J^ as above). As
usual / is written to the right of the element on which it acts and we
identify q with /. Define then for any h e H, f as above; h f: AI ^> A
by:

(Λ)

Using known identities for S"1 [6,19] one can proceed as in the proof
for Qr to show:

PROPOSITION 5. Let H be a Hopf algebra with bijectiυe antipode, A an
H-module algebra. Let Qι be the left quotient ring of A with respect to &,
then under the above action, Qι is an H-module algebra. This action extends
the action of H on A.

In many instances either of these quotient rings is too large. Consider-
ing X-inner automorphism, it turned out to be sufficient to deal with the
normal closure of a ring [13]. Similarly, for Q-inner derivations [9] one
only needed to deal with a certain two-sided quotient ring. Both can be
viewed either as the intersection of the left and right quotient rings, or as
limits of "multiplier algebras" that occur in the study of "partly inner"
automorphisms of C*-algebras [16, 17].

In [15], Passman termed such quotient rings, "symmetric", and studied
them for certain prime rings (where J^= (all non-zero ideals of R}).

As in [15], let Qs denote the symmetric ring of quotients with respect
to &. It consists of equivalence classes of pairs (/, g) where / G Qι and
g e Q\ f: AI -> A, g: JA -> A satisfying the associativity condition:

(xf)y = x(gy), alljce/j€ / .
We extend the action of H to Qs in the obvious manner. That is, for

s = (/, g) as above, h e if, define:

PROPOSITION 6. Let H, A, IF be as in Proposition 6. Let Qs be the
symmetric quotient ring with respect to &, then the above action makes Qs

an H-module algebra and extends the action of H on A.
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Proof. All we must check is that the pair (h •/, h g) satisfies the
above associativity condition. Let x e /, y e / then

= Σ

« Σ Λ2 • [ [ (S-W *)/](S(*3) ' *)] (Lemma 1.1)
(Λ)

= Σ h2'[{S-ι(h1)'x)[g{S(h3) y)]] ((/,g) satisfies associativity)

(*)

(Λ)

We have shown that, [x(A -/)] j = x[(A g)y]9 hence that (A •/,
h g) satisfies the associativity condition. As in [15], an alternate way of
viewing Qs is:

β" = {9 G Qr\I<l ^ A and ql a A, some / G ^ }

= {q e β'l/ςr c 4 and ql c A, some / G F } .

Well, in order to show that H acts on β J c Qr we must show it is
i/-stable. Let # e ρ 5, and / e J^ so that Iq <z A and ql a A. Let A G J Ϊ ,

α e /, then: a(h 9) = Σ(h)h2 [(S"^Ax) α)^] (by Lemma 1). Since / is
//-stable, and since Iq (Z A, this expression is contained in Jϊ A c A.
Hence I(h - q) a A. By definition, (h 9)/ c A.

Recall that when H is a finite-dimensional Hopf algebra then S~ι

exists. If it is also semisimple, then H is a separable algebra over /c, and it
contains an idempotent e satisfying:

eh = he = ε(h)e, all heH.

e is an element in the so called integral of H.
Finally, as for group actions [13], let us give a "right", and " two-sided"

Maschke-type theorem, analogous to the "left"-version proved in [6].

PROPOSITION 7. Let H be a finite-dimensional semisimple Hopf algebra.
Let A be an H-module algebra.

(1) // VA#H is a right A#H module and WA#H is an A#H submodule of
V which is an A-module direct summand of V, then it is an A#H-direct
summand of V.
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(2) // V is an (A#H, A#H)-bimodule, and W is an
(A#H, A#H)-subbimodule of V which is an (A, Ay direct summand of V
then W is an (A#H, A#H)-direct summand of V.

Proof. (1) The proof is similar to [6]. Let λ: V -> W be the ̂ 4-module
projection. Let e be the idempotent in the integral, for each v G V define:

Hv) = ΣMve2) S-\eι).
(e)

We show that λ is an >4#i2-module map. Well, if a e A then

\(r) a = ΣH" e2) S-ι(eι)a9
(e)

however

(Λ)

Thus the above equals Σ(£>)λ(j> e3) [5'"1(^2) a]S~ι(e1). Since λ is right
A -module map this is

(e)

N e x t , let h G H, then h = S~\g), some g e £ T h u s

λ(p) - h = λ(r) S'Hg) = Σ λ(. e2) S-H^

= Σ
(O,(g

= Σ

using similar maps as in [6] this equals
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Thus λ is an ^4#i/-module map. And if w e W, h e H, then λ(w A) =
w λ, hence

λ(w) = £ (w e2) S-H^i) = wε(e) = w.
<*)

That is, λ is an Λ#i/-projection from V to W.
(2) As in [13], we observe that for any ring S, if V is an (S, A#H)-

bimodule, and W is an (S, ^4#i/)-subbimodule of F, which is an (S, ̂ 4)-
direct summand then the above λ can be used to show it is an (S, A#H)-
direct summand. Similar statements can be made about (A#H,S)-
bimodules. Thus the result follows as in [13].

2. Inner actions and separable subalgebras. In what follows we

shall be mainly interested in inner actions of Hopf algebras. Let us first
recall this notion which genralizes the known ones for automorphisms or
derivations [4,18].

Let H be a Hopf algebra and A an /f-module algebra (less can be
assumed on A but we have no need for it here). We say that the action of
H on A is inner if there exist u, v e Hornk{if, A) so that for all h e H,
flGiwe have:

(1) Σu(hMh2) = Σu(hMh2) = e(h)
(Λ) (A)

(2) λ - a = E κ ( * i ) a * ( * 2 ) .
(A)

Sometimes (1), (2) hold with w, p e Hom^(i/, 5) where 4̂ c J? is a
A:-algebra. We say then that the action of H on A is 5-inner. This
generalizes the notion of X-inner automorphisms, or β-inner derivations
in which the "inducing elements" came from the quotient rings of A
rather than from A itself.

In the following proposition we shall summarize some facts, most
come from [4]. Relation (4) is new and essential for the proof of Proposi-
tion 12.

PROPOSITION 8. If the action of H on A is inner then:
(1) All ideals of A are H-stable, hence the quotient rings Q\ Qι are the

usual Martindale quotients rings.
(2)Z(A)czAH.
(3) [4, 18] For any a e A, h e H we have

u(h)a = Σ (Λi a)u(h2), av{h) = £ *(* i )(* 2 a)
(A) (Λ)
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(4) For any a e A, h e H we have

au(h) = Σ u{h2)(S~ιh^) a) (providedS'1 exists), and
(Λ)

(5)[4]Ifg,heHthen

t{g,h)= Σ v(hι)v(gι)u(g2h2) belongs to Z(A).
(h),(g)

(6) Forg,h e H define μ(g,h) = Σ(gUh)v(gιh1)u(g2)u(h2), then

that is, μ = t~ι under convolution *. In particular , μ(g,h) G Z(yί) /or α//
g, Λ e J5Γ.

Proof. We prove (4) the rest are easily checked. Let a G i , h e if
then

Σ «(A2)(S-1(Ai) • *) = Σ [A2 - ( ^ ( A i ) «)]n(A3) (by part (3))
(Λ) (Λ)

= Σ ^S-'ih,) fl)n(Λ3) = Σ e(*iM* 2 )
(Λ) (Λ)

The second claim follows similarly.

The function /: H X H ^> Z(A) of Proposition 8 plays an important
role in [4], where we showed that under the hypothesis of the proposition,

A#HLA\H}.

Where At[H] is the twisted product of A with H with 2-cocycle t. That is,
At[H] = A <8>k H as a vector space, but multiplication is defined by:

(a (8) h)(b®g)= Σ abt(hl9g1)9h2g2

all a,b e A a n d h,g <Ξ H.

Note that ^4,[//] is a free left A -module with basis (1 0 hέ} where {hέ} is
any A:-basis for H. Also, 4̂ is embedded naturally in At[H] as A (8) 1, we
shall identify A with its image. Under this identification, the elements
1 0 A, where A e i/, commute with A Finally, if Maschke theorem holds
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for A#H then it holds for At[H] since A is naturally embedded in both.

To each h e H we associate 1 ^ / I G At[H]. However, one can also

associate to it

(θ is the isomorphism between A#H and At[H]).
Let us denote θ(l#h) = A e Λ,[//]. Whereas

hg = 0(l#Λ)0(l#g) = θ(l#hg) = % .

Let us summarize some properties of ~.

LEMMA 9. Let h be as above,

(1) If {hj} is a k-basisfor H then {Az} is an A-basis for At[H].

(2) hx = xhforallx e ^ί77.

(3) If H is finite-dimensional and semisimple with e the idempotent in

the integral then Tie = eTi = ε(h)e, and eA\H]e = AHe = AH.

Proof, (1) If {ht} is a A:-basis of H, then {1#ΛZ} is an A -basis for

A#H. Since 0 is an isomorphism [θ{l#hi)} = {A,} is a 0(yl)-basis for

A\H]. But Θ(A) = A, hence the result.

(2) The elements 1#A commute with yl77 in A#H, hence Λ = θ(l#h)

commutes with AH.

(3) follows similarly from A#H, for which the above hold by [6].

Studying groups acting as automorphisms on division rings E. Noether

[8] introduced the so called algebra of the group. This notion was since

generalized to semiprime rings [13]. The algebra of the group "mirrors"

kG in A when G acts as inner automorphisms on A. Analogously, we

shall define an algebra B for inner actions of Hopf algebras. Let A be an

//-module algebra, and assume the action of H on A is inner, induced by

w, v with w(l) = v(ΐ) = 1 (this can always be assumed).

Let V = {v(h)\h e H) c A and let Z = center of A. Let B denote

the Z-module generated by V. Observe that since J>(1) = 1, 1 e B. We

show next that B is actually a Z-algebra.

LEMMA 10. Let A be an H-module algebra, and assume the action of H

on A is inner. Let J5, w, *>, Z be as above, then

(1) B is Z-algebra.

(2) For any φ Φ T c A we have:

CT(B) = TH.
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Proof, (1) Let X J G V, we show that xy G B. Well x = v(g),
y = v(h), for some g, λ G H, and hence

(g)(A)

= Σ ^(gi)^(Λi
(*)(Λ)

= Σ t(hl9gl)v(h2g2).

By Proposition 8, / has values in Z, hence xy G Z F =
(2) Let x e CT(B), then for any h e H,

(Λ) (Λ)

Hence x e Γ77.
Conversely, let x G Γ^. Then all we must show is that xv(h) = v{h)x

for each h ^ H. Well, by Proposition 8, xv(h) = Σ{h)v(h1)(h2 x). But
since x e ^l77, this equals = Σ(Λ)^(Λ1)ε(Λ2)

 λ: = v(h)x.

We consider next homomorphic images. If / is an if-stable ideal of A
then i/ acts on A = A/I in the obvious manner, that is, h a = h a, all
h ^ H, a ^ A. If the action of i/ on 4̂ is inner then every ideal / is
//-stable.

LEMMA 11. Let A be an H-module algebra, and I Φ A, an H-stable
ideal of A. Then,

(1) if the action of H on A is inner, then the action of H on A is inner.
(2) if H is finite-dimensional and semisimple {no inner action assumed),

then

Proof. (1) Let u, v e Homk(H,A) induce the action of H on A. Let
ΰ, v e Homk(H9J) by: ΰ(h) = ΰ(h)9 v(h) = y(A), all Λ e //. Then for
all h^H,a^A:

h - a =h - a=Σ u(hι)av(h2)=Σ u(hι)av(h2)= Σ u(h1)av(h2).
(h) (A)

Since I Φ A, A contains the identity ϊ and hence for each h G //,

(Λ) (A)
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We have shown that ΰ, v induce the action of H on A9 thus this action is
inner.

(2) Since H is semisimpole and finite-dimensional, H contains the
idempotent integral β, and, AH = e A. Thus

AH=e A= e A= A".

As for automoφhisms and derivations, we shall deal with β-inner
actions. We prove that just as for X-inner automorphisms, the "inducing
elements" originally assumed in Qr or Qι necessarily come from the
smaller Qs.

PROPOSITION 12. Let H have bijective antipode. Let A be an H-module
algebra and assume the action of H on A is Qr or Qι-inner, then it is
Qs-inner. That is, for each h e H there exists an I G f so that all of
u(h)I, v(h)I, Iu(h) andlv(h) are contained in A.

Proof. Say the action of H on A is (?Γ-inner. That is w, v e
Hom^//,Q r ). Let h e H, with Δ(Λ) = Σ(h)h1 ® h2. Since this expres-
sion involves only a finite number of elements in H, there exists a n / G j ^
so that:

u{h2)IcA and v(hy)I <z A, ίor dλ\hλ,h2

mentioned above.
Now let a e /, then by Proposition 8.4

(Λ)

But since / is //-stable and since u(h2)I c A, all Λ2, it follows that
c ΛL We have shown that Iu(h) c A. Now, w(Λ)/ =

Σ(Λ)ε(Λ1)w(Λ2)/, hence u{h)I <z A. The statement about *>(λ) follows
similarly from Proposition 8.3, and the one for β'-inner actions is proved
analogously.

In view of Proposition 12, we say that the action of H on A is
g-inner, if it is Q\ Qι or Qs inner.

In the following lemma we show that inner actions on A induce inner
actions on Q.

LEMMA 13. Let H have bijectiυe antipode. If the action of H on A is

Q-inner then the action of H on Qr and Qι is inner.

Proof. We prove it for Q\ the proof for Qι is similar. Let w, v e
, Q) induce the action of H on A. Let q e Q\ and let / e & so
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that q: I -> A. Let a e /, then we claim that:

(h q)(a) =

L(A)
a.

Hence h • q = Σ(Λ)M(Λ1)ήrί'(Λ2). That is M, P induce the action of H on
Qr. Well,

(Λ)

52 w(Λ1)ήf[(iSr(Λ3) 0)^(^2)] (# is a right ^4-module map)
(Λ)

Σ tι(hι)q[v{h2)(h3S{h4) α)] (Proposition 8.3)

(Λ)

Let us specialize now to ζ)-inner actions when A is /f-prime. Let us
recall that a prime ring R is called centrally closed if it contains C, the
center of the Martindale ring of quotients of R, called the extended
centroid of R. This center is a field, and it consists of (/?, i?)-bimodule
homomorphisms.

Just as for the Martindale ring of quotient it is easily seen that every
non-zero (^4,^()-bimodule of Qr(Qι> or Qs) intersect A nontrivially.
Hence if A is //-prime or /f-semiprime then so is Qr(Qι or Qs).

The following generalizes a result of [5], the proof is essentially the
same, using Lemma 10 and the above observation. The same statements
can be made about Qι or Q\ we denote Qs = Q.

PROPOSITION 14. Let A be H-prime. If the action of H on A is Q-inner,
then Q is prime and centrally closed. In particular, the center of Q is a field.

Proof. By Lemma 13, the action of H on Q is inner. Thus, every ideal
of Q is //-stable. Since Q is also //-prime, it is prime, and Qr(Q) =
Martindale ring of quotients of Q. By Lemma 13, the action of H is inner
on Qr(Q), hence in particular, the action of H on the extended centroid,
C, is trivial. Let 0 Φ z e C, then there exists an ideal of Q such that
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0 Φ zl = Iz c Q. Since zl is an ideal of Q, we have 0 Φ zl Π A. Let

/ = {x e /|xz e Λ}

then 0 ¥= J cz I is obviously an (y4,^4)-bimodule of β; moreover it is
i/-stable, since H acts trivially on C. Let

T=JΠAΦ0

then Γ is an i/-stable ideal of A contained in /. The restriction of z to T
yields an element of the center of Q, hence z e Z(β). We have shown
that C c Z(<2), and thus C = Z(g). Combining this with Lemma 10
applied to g, we have:

COROLLARY 15. If A is H-prime and the action of H on A is Q-inner,
then B is an algebra over the field C, and dimc2? < dim^ H.

Much more can be said if H is assumed to be finite-dimensional and
semisimple. For then, as for automorphisms [13], we show that B is a
finite-dimensional separable C-subalgebra of Q = Qs.

PROPOSITION 16. Let H be an n-dimensional, semisimple Hopf algebra,
A an H-prime, H-module algebra. If the action of H on A is Q'-inner then
B is an m-dimensional separable C-subalgebra of Q, with m < n. If more-
over A is prime and the action is inner then C is the usual extended centroid
of A, andB a AC.

Proof. By Proposition 12 g'-inner actions are β-inner actions. By
Lemma 13, the action of H on Q is inner. Let {Λ, }, /' = 1,..., n, be a
basis for H, then {1 0 A.} is a β-basis of Qt[H]. Recall that

where t(h, g) e Z(Q) = C, a field (by Proposition 14). Let E be the
vector space over C,

E= Spanc{l ® h\h e i / }

then by above, E is a C subalgebra of Qt[H] of dimension n. As a matter
of fact,

E = Ct[H] and Qt[H] = QE = EQ.

The last equality holds since {(1 <8> h)} and C both centralize Q. We first
show that E is a separable C-algebra. Let k c C c L, we show that

E<S*CL= Ct[H] Θ C L
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is semisimple. Well, since the action of H on Q is inner, and Q is prime,
[4] implies that Qt[H] is semiprime. Since Qt[H] = QE and since E
centralizes Q, E must be semiprime. However E is finite-dimensional,
hence semisimple. The following shows that extending C by L reduces to
the above situation.

Let K = H ®k L, then K is an ^-dimensional semisimple Hopf
algebra over L [3]. Let T = Q <8>c L, we show that Γ is a prime ΛΓ-module
algebra, that the action of K on Γ is inner, that Lt[K] c Γ,[^] serves the
role of C,[/f] in Qt[H] hence as above Lt[K] is semisimple. We finally
show that Lt[K] = E <8>c L and thus deduce that E is separable.

First, K acts on Γ by:

(h ®kl) -(q ®cm) = h- q ®clm, for all h <Ξ H, q <E Q, I, rn <Ξ L.

This action is well defined since the action of H on Q is inner, hence
H acts trivially on C, and thus h - (qc) = (h - q)c. As is easily checked,
this action is inner induced by the "extended" u\ v' e HomL(K, Γ),
defined by:

u\h ® /) = w(/z) ® /, v'{h β /) = ?(Λ) ® / for all A e # , / e L.

For completeness let us check that

Σ ^ f c i y ^ i ) = *(£)> all Are*:.
(A:)

Well, recall [3] that for k = h ®k I Δ(A:) = Σ{h){hx ®k I) ®L(h2 0 1) and
ε(k) = e(h)l. Hence

(A:) (A)

Let ί' relate to w', ̂ ' as does / to w, .̂ It is easy to check that; for all
A, g e //, /, m G L we have:

/r(Λ ® /, g Θ m) = /(Λ,g) ® Im.

that is, ίr extends /, thus we shall identify t' with /. Now, T = Q ®c L is
prime, and the extended centroid of T is L. This follows from the fact
that Q is prime and centrally closed (by Proposition 14), and from an
argument in [11, Theorem 2.2]. Thus,

Tt[K\ = TLt[K\.
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Since T is prime, Tt[K] is semiprime [4], hence Lt[K] is semiprime.
Finally to show that Lt[K] = Ct[H] ® c L, the obvious correspondence:

φ:(H®kL)®LL->(H®kC)®cL

by

AΘ/®ra->A®l<8>/m

for all A e H, /, m e L is easily seen to be an algebra isomorphism. We
have shown that E is an n-dimensional separable algebra over C. Now
define for all c e C, A e 7/,

ψ: E ^> B by c 0 A -> c?(A).

Extending linearly to £.
This is clearly a C-linear surjection. We show it is an algebra

antihomomorphism. Let A, g e i/, then

= Σ t(h1,gι)v(h2g2) = v(g)v(h) (Lemma 10)

= ψ ( l β g ) ψ ( l β A ) .

We have shown that 5 is an anti-homomorphic image of an fl-
sional separable C-algebra, hence B is a separable C-algebra of dimension
less than or equal to n.

REMARK. The above proof is in the same vein as the ones used for
automorphisms [12, 13]. A basic ingredient in these arguments is a
Maschke theorem for twisted group rings Fr[G]9 which states that if F is a
field with \G\~ι e F then FT[G] is semisimple. An analogous result for
Hopf algebras is yet unknown. In the course of the proof of Proposition
16 we showed that for an inner action on Q, the result holds with
F = L D C, and T = t.

Combining Proposition 16, Lemma 11 and [12, Theorems 1, 2]. We
prove a generalization of [12, Theorem 3]. The method of proof is
analogous to that of [12].

THEOREM 17. Let H be an n-dimensional semisimple Hopf algebra over
k. Let A be an H-module algebra, and assume the action of H on A is inner.
If AH satisfies a polynomial identify of degree m then A satisfies (snm[x])\
some integer t. If A is semiprime then t = 1.
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Proof, Note that since the action of H is inner, every ideal of A is

//-stable. First assume A is prime. Then by Proposition 16, B c AC is a

finite-dimensional separable subalgebra over C, and dim c l ? < n. By

Lemma 10

The last equality holds since H acts trivially on C. Since AH is P.I. so is

yl^C, hence so is CΛC(B). Thus we are in the situation of [12] where we

have a finite-dimensional separable subalgebra whose centralizer satisfies

a P.I. and we conclude by [12] that AC satisfies sm j.x]. In particular, A

satisfies smn[x].

If A is semiprime, then A is a subdirect sum of prime images. By

Lemma 11, all hypotheses are preserved by these images, hence each

satisfies, by the above, smn[x]. The same is then true for A. The rest now

follows by an argument in [1] as adapted by [12].

Another application of Proposition 16 is to question about integrality.

Let us recall the definition [14]. Let R D S be a ring extension. An

S-monomial in rl9..., rm e jR is a product in some order of the r/s, each

occurring finitely often, and of elements of S with at least one element of

S occurring. The extension R D S is said to be fully integral of degree m

if for any r l 9 . . . , r m e R
r\ri '" rm = Φ(rv > O w h e r e Φ(rv > O i s a s u m o f S-monomi-

als of degree less than m.

THEOREM 18. Let H be an n-dimensional semisimple Hopf algebra. Let

A be a prime H-module algebra, and assume that action of H on A is inner.

Then A is fully integral over AHC of degree t < 22"+1 (where C is the

extended centroid of A).

Proof. By Proposition 16, AC contains B, an m-dimensional separa-

ble C-subalgebra of AC with m < n. By Lemma 10, CAC(B) = (AC)11 =

AHC. Thus, by [14, Theorem 6], AC is fully integral over AHC of degree

t < 22m+1 < 22"+1. This is true in particular for A over AHC.

There are some immediate corollaries to the above theorem.

COROLLARY 19. Let H be as in Theorem 18, and assume that A is a

finite direct sum of simple algebras. If the action of H on A is inner, then A

is fully integral over AH of degree t < 22"+ .

Proof. By hypothesis

A — ΛT.1 vt/ Jx
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where At = etA, et is a primitive central idempotent of A and {e,} are
orthogonal. Since each Ai is an ideal of A, and since the action is inner,
each Aj is //-stable and H acts trivially on e(. Moreover, the action of H
on Ai is inner induced by

u\ v' e Hom^i/, .4.), w'(Λ) = u(h)ei9 v'(h) =

To see this, let x e Ai9 then x = aet. Let Aeί f , then

h x = h '(aβi) = (Λ fl)β,. = £ u(h1)av(h2)ei

= Σ κ(Ai) W(*2)*/ = Σ ̂
(Λ) (Λ)

Thus each yl, is a simple algebra with 1 on which H acts innerly. Since in
this case C c A f we have by Theorem 17 that 4̂Z is fully integral over ^4f
of degree t < 22"+\ However, A? = ( e ^ ) 7 7 = e f.^

H c ^ H . Hence each yίz

is fully integral of degree t over AH, and consequently the same is true
about their sum, A.

In the next section (Proposition 22) we prove some more properties of
A satisfying the conditions in the corollary.

3. Further consequences of Maschke's theorem. We assume as

before that H is w-dimensional and semisimple and that the action of H
on A is inner. Recall, that A#H s At[H], and that by Proposition 7 the
left, right or two-sided Maschke theorem holds for A#H, and hence for

We proceed as in [10] to relate modules over A, AH and At[H].
Let V be a right ^4-module, then the induced At[H]-module V given

by:

V=V9AAt[H] = p> V9Ahi9

where [hi}
n

i=ι is a fc-basis for H, chosen so that Λx = 1. Each V ® A iis
an ^4-module, for Λ, commutes with 4̂ in -4J//], and is isomorphic as an
A -module to V ® 1. It is this property of V which enabled us in [4] to
prove that A#H is semiprime, and which is also a key to what follows. A
notation first. For any i?-module MR9 denote by «£?(MΛ) the lattice of
right i?-submodules of M. Back to VA as above, V is an A ̂ -module
under restriction. We use the notation and consequences of Lemma
9. In particular, each element w e V can be written uniquely



SMASH PRODUCTS, INNER ACTIONS AND QUOTIENT RINGS 63

as w = Σ " = 1 vi ® ht, p.e V, h, e H. Define:

T : & [ v A ι [ m ) - * X { V A H ) , byw^Σ Ά h i ) ,
ί = l

any w e X, J f e i f ( F )

, by U^{U®Ae)At[H],

Since Λ, commutes with ΛH, T is a right ,4 "-module map. Thus, if
X e &(VAι[H]), Xτ & Se(VAH). Moreover, note that for any w e V

n

we = Σ vi ®hte= X) vt 0 ε(hi)e

LEMMA 20. Le/ H be an n-dimensional semisimple Hopf algebra acting
innerly on A, an H-module algebra. Let VA, σ, τ be as above then:

(1) For U G SP(VΛH\ Uστ = U. Thus, σ is strictly increasing.
(2)ForXl9X2e&(VAΛH]),

y Jί^ Φ ^ 2 / = = 1 2*

Proof. (1) Let t/ e &(VAH), then

C/«g= (ί/®^ e)At[H]e = t / ^ eA,[H]e

= U ®AA
He (by Lemma 9)

= ί / ® ^

However, as noted above, for any w e F, we = wτ ® ̂ . Thus, l/σe =
Uστ ®A e. We have shown that U ®A e = ί7σe = ί7στ ®A e and hence that
U = [/στ.

(2) It is clear that (Xλ + X2)
τ = X{ + JfJ.

If Xx Π X2 ~ 0, then in particular,

J^β Π X,e = 0.

By the above remark, Xte = X] ®A e, i = 1,2. Hence

0 = {XI ®, e) n{Xl ®A e) = (XI Π XI) ®A e,

Hence X{ Π X\ = 0, and consequently (Xx ® X2)
τ = Xx

τ θ X\.
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We are ready to prove analogs of [10] relating the module structure of

VA, VAH and VA[Hy By the radical of VΛ we mean the intersection of all

maximal submodules of VA, and KdimVA denotes the Krull dimension.

THEOREM 21. Let H be an n-dimensional semisimple Hopf algebra. Let

A be an H-module algebra and assume that the action of H on A is inner.

Let V be a right A-module, then:

(1) VA is Noetherian if and only if VAH is Noetherian.

(2) if VA has finite length m, then VΛH has length < mn.

(3) if VA is completely reducible then VAH is completely reducible.

(5) KdimVA exists if and only if KdimVAH exists, and then they are

equal.

Proof. The proofs are essentially the same as the ones in [10], using

Lemma 19 and the structure of V. We shall prove (1) as an example.

Recall that

where V<S>Aht is isomorphic as an ^4-module to V®A1. If VA is

Noetherian then V ®A 1 is a Noetherian A -module, and hence each

V ®A hι is a Noetherian A -module. Since V is a finite sum of Noetherian

^4-modules, VA is a Noetherian ^4-module. Since A c At[H], VA([H] is a

Noetherian yl^i/J-module. Since

is strictly increasing, the above implies that VAH is Noetherian.

Along the same lines, we can use the two-sided version of Maschke

theorem (Proposition 7) for (At[H]9 ^,[/f])-bimodules. This is analogous

to [13, Theorem 7.9].

PROPOSITION 22. Let A, H be as in Theorem 21.

(1) // V is an (At[H\, At[H])-bimodule which is a direct sum of m

simple {A, A)-bimodules, then V is a direct sum of < m simple

(At[H], At[H]ybimodules.

(2) if A is a direct sum of m simple algebras, then both At[H] and AH

are a direct sum of < nm simple algebras.

Proof. (1) Since V is a completely reducible (^4,^4)-bimodule, Pro-

position 7 implies that V is a completely reducible (At[H], At[H])-bimod-

ule; clearly the number of summands is < m.
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(2) If A is a direct sum of M simple algebras, then the same is true for

each summand A ®k hi in At[H\. Thus by part (1) V = At[H] is a direct

sum of < m simple (A\H\ A\H])-bimodules. These are simple subalge-

bras, hence At[H] is a direct sum of < mn simple subalgebra. The same

is true for AH since, by Lemma 9, AH = eAt[H]e.

There are situations in which inner actions are guaranteed. Sweedler

[18] has proved a generalization of the Noether-Skolem theorem to certain

Hopf algebras. He has shown that if if is a cocommutative Hopf algebra,

all of whose simple subcoalgebras are 1-dimensional (i.e. pointed), and if

A is a central simple finite-dimensional algebra over k, which is an

/f-module algebra, then the action of H on A is inner. Applying the

results of the previous sections we can describe some properties of A.

THEOREM 23. Let H be an n-dimensional semisimple cocommutative

Hopf algebra. Let A be a central simple n-dimensional H-module algebra

overk = Z(A). Then

(1) A is fully integral over AH of degree t < 22"+1.

(2) A is a finite AH-module.

(3) AH is a direct sum of < n simple algebras.

(1) Let \ be the algebraic closure of k, then H = H <8>k Tc is pointed

[19], and A = A ®k Tc is central simple over Tc, hence by [18], the action of

H on A is inner. By Corollary 19, A is fully integral over A**, which by [3,

Corollary 2] implies (1).

(2) Since A is finite-dimensional over Tc, Vj = Aj has finite length. By

Theorem 21, this implies that Aχπ has finite length. However, A71 = AH

[3], hence AAH has finite length.

(3) is a consequence of Proposition 22.2 with m = 1.

We conclude with an application.

COROLLARY 24. Let k have characteristic p, and let L be n-dimensional

semisimple restricted Lie algebra over k, acting as derivations on A, a

central simple finite-dimensional k-algebra. Then, AL is a direct sum

of < pn simple algebras.

Proof. Let H = w(L), the universal enveloping algebra of L. Then

dimkH = pn, H is cocommutative and pointed and by assumption it is

semisimple hence the result follows from Theorem 23.3.

Part (1) of Theorem 23 holds for u(L) as above without any assump-

tion on A9 and part (2) holds when A is only assumed to be semisimple

artinian [3]. The considerations in [3] are different from the ones above.
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