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THE DIRAC MONOPOLE AND INDUCED
REPRESENTATIONS

R. LANGLANDS

In this note a mathematically transparent treatment of the Dirac
monopole is given from the point of view of induced representations.
Among other things the question of bound states for the spinning
electron in the field of a magnetic monopole is considered.

In 1948, as he was turning from theoretical physics to mathematics,
Harish-Chandra wrote one last paper [5] on a physical topic, investigating
a question inspired by Dirac, and perhaps even proposed by him. Does an
electron moving according to Dirac's equation in the field of a magnetic
monopole have a bound state? The technique involved, namely, separation
of variables, is of course elementary, and would reappear but at a much
deeper level repreatedly in Harish-Chandra's later work on harmonic
analysis on semisimple groups. However, this time, his mind on other
matters, he handled it perfunctorily, and went astray with the calculations,
concluding—incorrectly—that there could be no bound states. The matter
has since been dealt with correctly ([4], [6], [8]). However, the derivation of
the radial equations in [6] and [8] is not so efficient as it might be. In view
of the possible historical interest to students of Harish-Chandra's later
work, a brief, mathematically transparent treatment does not seem out of
place. It is the purpose of this note, which does not touch on any
questions of serious current interest, to provide it.

In [2] Dirac considers the wave function ψ of a charged particle
without spin, observing that one can replace ψ by eiβ\p without changing
the distribution |ψ|2, which is what counts. The function β depends on
the coordinates /, JC1, x2, x3. The substitution replaces

i dt y i dt dt

and
1 3 ^ 1 3 dβ
— : by — : + ——

1 dxJ ι dxJ dxJ

but, since
1 3 Λ i a
T-TΓ- and

i dxJ
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do not appear alone but in the combinations

this effect can be countered by a change in the electromagnetic potentials
Ao, Av A2, Av The upshot is that ψ can be regarded as a section of a line
bundle with metric and with a connection defined by the electromagnetic
potentials.

The pertinent line bundle is on M, four-dimensional space with the
line JC1 = X 2 = X3 = 0 removed. This space is to be identified with
RxR+X H\G, where G is SU(2) and H is the group of diagonal
matrices. As usual G is mapped to SO(3) and thus acts on 3-space
(O\ x2,x3) -> (y1, y2,y3) = (x1

yx
2,x3)A(g)) in such a way that the

Pauli matrices

= /0 -i\ 3 /I 0

\i or lo -lU
multiplied by i/2 correspond to infinitesimal rotations through the x1, x2,
and jc3-axes. Thus

Then (r, g) -» r(0 0 l)A(g) identifies R+X H\ G with 3-space minus the
origin. The line bundle is defined by a one-dimensional representation

'ea 0

of H, sections being complex functions / o n R x R + X ( J satisfying

f(t,r,hg) = p(h)f(t,r,g)

The connection, like the bundle, is a product, trivial on the first two
factors. Let Jίf -1 be the orthogonal complement of Jί? in G and regard
functions on H \ G as /^-invariant functions on G. We prescribe that for

the tangent vector Xg at Hg defined by

Xf

acts on sections by the same formula, and verify that this yields a
well-defined connection.

The curvature of this connection can be computed on H \ G and,
since [Jf -1, Jί? x ] c JίT, is a two-form that takes the value %ρ([Xι, X2]) at
Xι

g A X2. Taking X1 = iσι/2, X2 = iσ2/2 and recalling that when di-
vided by -i/2 the curvature on M yields a two-form that gives the electric
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and magnetic fields, we see that the associated electric field is 0 and the
magnetic field purely radial and equal to

Observe that all constructions are invariant under the action of G on
H\G, which of course yields the usual action of G on M. Consequently
the magnetic field is spherically symmetric and need only be evaluated at
(0,0, r). Notice also that at a point (r, g) where g = 1,

(1) X ' = - r Λ ' X? = rYΊ
However, the Dirac equation, with which [5] was concerned, is for

electrons with spin. To introduce it we tensor the bundle with the
four-dimensional trivial bundle on M. If σ is the representation of G on
four-dimensional space obtained by adding the identity representation of
G to itself, then the equations are invariant under the transformation
F -* F' with

So we replace F by f with

(2) f(t,r,g) = (1 0 a(g))F(t,r(090,l)A(g))

to obtain equations invariant under right translations.
In terms of / the Dirac operator may be written

Vs) ~ -
The notation is that of [1]. This need only be verified at (ί, r, 1). Using
equations (1) we see that the Dirac operator may be written as

/(I (£
g being set equal to 1 after the differentiation. Thus it is

f + γ 3 f + ̂ X1 - Ί-Xx ~ Ί-*(X2) + ̂ σiX1)) - m.dt dr r r r v ' r v ')

Since

v o _ / l 0) j _ ί 0 oJ

a n d

σ(χy)= ϊ ί σ 7 °
2 \ 0 σ7

the equation (3) follows.
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The eigenfunction equation of the associated Hamiltonian is

1 ! 0 °3\9 +l
1 / 0 o2)Xι 1 / 0 σ

^ U 3 O J Γ
0 W

0 E + rn

It cannot be interpreted until the formal expression on the left has been

completely defined as an operator H that will be an extension of the

closure Ho of the obviously defined operator on functions with compact

support on R+X G. Since Ho will be seen not to be self-adjoint if n Φ 0,

there will be some freedom in the choice of H.

To analyze Ho and its self-adjoint extensions we can clearly consider

the projections onto the space of functions / transforming according to a

given representation of G. Take the representation of dimension d + 1

acting on the polynomials of degree d in two variables with orthonormal

basis ejtk = (dj)ι/2xJy\ j + k = d.

The entries of the column vector / will then be matrix coefficients of

the representation and we can take them all from one column, the several

columns entailing a multiplicity. As a consequence of (2) the first and the

third entries will be multiples fx/r and / 3 /r of the matrix coefficient on

the row with j — k = n + 1, and the second and fourth entries will be

multiples f2/r and fA/r of the coefficient in the row with j — k = n — 1.

The denominator simplifies the inner product

/ ||/||W<fe= I ΓϊfMfdr
VXG / = α Ό

and, when we rewrite (4) in terms of the /,, removes the last term on the

left. We have

\X2-iX1

and, in the Lie algebra,

γ2 γ\ _ l' {„! 1\ _ /0 1
X ~ ι X ~ 2 ( σ " m ) "



Moreover

(5)

and

(6)

So the left 5

1

7

ί°
0

1

0

ί°
ll

lo
ide of

0

0

0

-1

the right side

lE-

0

0

0

°\
o)

I)
(4)

1

0

0

0

m

DIRAC

= « M "> <

becomes

0]
- 1

0

°i
3

dr

0

E — m

0

0

MONOPOLE

U +

1

ir

0

0

E +

0

- Λ\
•U

1)*

ί°
0

0

)1 / 2«y

0

0

-μ

0

0

0

0

E +

-l,k

+ l,k

0

μ
0

0

m
I

+ 1'

- l

-μl

0

0

°)

f/l\
Λ
Λ

ί/l\

Λ
Λ

149

H e r e μ = ( ( j + l ) k ) 1 / 2 = / ( J + I ) 2 - n 2 / 2 , j + k = d, j - k = n -

1. In the special case d + 1 = -n, the coefficients /2 and /4 are fictitious,
μ = 0, and (5) becomes

O/3/ Λ '
If 6? + 1 = n then (5) becomes

(8)
O/3/ /4

Taking

Λ
h
Λ

/

with ε = ± 1, we decouple the system given by (5) and (6) into the
systems

1/0 l\JL + £ ί i ί 0 \\\(f\ = lE-m 0 W/\
i l l O/θr ir\-\ 0//U/ I 0 £ + w/lg)'
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In the two exceptional cases we have the system

i l l θ M s J ' 0 E + mί\g
The operators appearing on the left of (9) and (10) have still to be

defined. They are to be self-adjoint extensions of the closure To of the
obviously defined operators on smooth functions of compact support on
(0, oo). We apply the theory of [3], XIII. 2, which obviously extends to
systems. Denote the formal differential operator on the left of (9) or (10)
by T.

For equation (9) the roots of the indicial equation of T at 0 are +μ.
Since ju > 1, only one solution of

ίMί.
is square-integrable on (0,1], and there are no boundary conditions ([3],
XII.4.21, XΠI.2.19, XIΠ.2.23). For equation (10) the indicial equation has
the multiple root 0 at 0. So there are two independent boundary values.
For both equations there is one square-integrable solution of (11) on
[1, oo) and no boundary condition at oo.

We conclude that for (9) the operator TQ is already self-adjoint. It
follows from Lemma XIII.4.23 of [3] and integration by parts that for (10)

-i(T0*F, F) + i(F, T0*F') =fg' + gf\

with F = (/, g)', F' = (/', g')'. So the self-adjoint extensions T of To are
defined by /(0) = /λg(0), λ e R, or g(0) = 0.

In all cases the discrete spectrum of

Im 0 0 0\

τ 0 m 0 0
0 0 -m 0

k 0 0 0 -m

is obtained by explicitly solving (9) or (10). For a square integrable
solution E must be real. For (10) there is a square-integrable solution of
the equation only if m2 > E2 and it is

It satisfies the boundary conditions if and only if - /(m -f E)/(m - E)
= λ. So there is a bound state if -oo < λ < 0 and none otherwise.

For (9) there could be a solution square-integrable at oo only if
m2 > E2 and then it would have to be a multiple of the pair with / equal
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to the Whittaker function WOv(ar) ([7]) where a = 2Vm2 - E3, *> =

M""2? e > 0 , v = μ + 2> ε < 0 . This pair cannot be square-integrable

near 0.

We can sum the discussion up with a theorem (cf. [4]).

THEOREM. Ifn = 0 the operator Ho is self-adjoint. If \n\ > 0 then

there is a l-parameter family of spherically symmetric self-adjoint extensions

HofH0, parametrized by λ e R U {oo} and no others. The operator

,

m
0
0
0

0
m
0
0

0
0

-m
0

0
0
0

-m /

a discrete spectrum if and only if λ G (-oo, 0), αwd ίΛe« zϊ consists of the

eigenvalue E = m(λ 2 — 1)(1 + λ 2 ) " 1 with multiplicity \n\.
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