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QUADRATIC FORMS OVER DYADIC VALUED
FIELDS I, THE GRADED WITT RING

BILL JAcOoB

This paper gives a detailed account of the arithmetic of quadratic
forms over a field F of characteristic 0, carrying a 2-Henselian discrete
valuation with residue field of characteristic 2. We give an analogue of
Springer’s Theorem for the graded Witt ring of such a field, and describe
new counterexamples to the amenabilitiy problem for multiquadratic
extensions. The sequel to this paper will contain an axiomatic approach
to the results contained herein, and will treat the Galois cohomology of
such fields.

0. Introduction. This paper is devoted to the concrete calculation
of the graded Witt ring of a 2-Henselian dyadic, discretely valued field.
Section 1 is devoted to some computations necessary to test for the
isotropicity of n-fold Pfister forms over such fields. These results, which
are quite general and are proved for arbitrary dyadic valued fields, are of
interest in their own right. Section 2 is the computational section, where
we find bases for some specific ideal quotients needed in §3. We encour-
age the reader to read the statements of the results in §3 before reading
§2, to clarity the goals of that section.

Section 3 contains the main result, which is the analogue of Springer’s
Theorem for the graded Witt ring of a 2-Henselian dyadic, discretely
valued field (cf. [W] for the non-dyadic version). In particular, we com-
pute GW(F) for such a field F in terms of GW(%), &, and v(2) € Z,
where & is the residue class field of F. The result is stated for the case
where % has a finite 2-basis, the infinite 2-basis case can be obtained
from this in an obvious way. The final §4 is devoted to some specific
applications of §3, answering questions concerning the “amenability prob-
lem”.

There have been several papers in the literature (cf. [T], in addition to
others) on the behavior of quadratic forms over dyadic valued fields.
None of these treatments are complete (in the sense that Springer’s [S]
non-dyadic treatment is complete), presumably because the problem is so
very complicated and messy. In recent years, a need for a detailed account
of the behavior of quadratic forms over dyadic valued fields has arisen,
largely for two reasons (as far as this author is aware). First, dyadic valued
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fields provided a source of counterexamples for the phenomenon of
“amenability”. See [ELW1, 2], [ELTW], and [STW]. One needs to under-
stand what is going on with these examples more exactly. Secondly, Kato
has recently shown in [K2], that an important problem of Milnor’s [M1]
has an affirmative answer for complete, dyadic, discretely valued fields.
His proofs, which involve K-theory and Galois cohomology, do not
illuminate what’s really happening to quadratic forms over such fields, so
one desires to have more explicit information.

The author would like to extend a special thanks to Adrian Wads-
worth who carefully read several versions of this paper and made many
valuable suggestions and corrections.

1. Some representation computations. In this section we establish
notation and prove some basic results needed for the rest of this paper.
Throughout this paper F'= F — {0} and v: F'— G will denote an
additively written (Krull) valuation on the field F with value group G. F
will always have characteristic 0, while the residue field % will always
have characteristic 2. We recall that the set of squares #? forms a
subfield of #. Also, if #,,...,t, € # one says that the set {7,,...,1,}
is 2-independent in % if F? # FAt) + Fit,t,) + - F
T(t,...,t,). I, in addition, F=F2(1,,...,t,) the {t,...,1,) are
called a 2-basis for #.

We denote by O,, M,, U,, the valuation ring, maximal ideal, and
units of v: F°— G respectively. The subscripts will be deleted when no
confusion may arise. We define UY:= {x € F|v(1 — x) > y} for y € G,
Uv:= {x€ F: v(1 — x)> v}, and U7:= U — U". For any t,...,t, €
U, with images f,7,,...,7, in %, we define F7(f,,...,1,) to be the

n

additive subgroup of & consisting of elements of the form X, . o o %2,
where the x, € # and where 7* means ff? --- f» whenever a =
(iypigy.--yip) for iy, iy, ... i, €{0,1}. So if #,%,,...,¢, are 2-indepen-

dent %7(f,,...,1,)is a 2" — 1 dimensional % %-subspace of # that does
not contain % 2 Finally, @(x) = x? + x will denote the characteristic 2
Artin-Schreier operator, which as the reader will recall defines an additive
homomorphism g: ¥ — Z%.

For the rest of this section we adopt the following;:

Standing Hypothesis 1.1. We fix u € U with v(1 — u) = y, where
y€A={8€G|0<8=<0v(4))}. Wefix f,,...,¢, to be units of F such
that their residues {7, ..., f } are 2-independent in % Elements 7,,..., 7,

of F are also fixed where we assume that the residues of v(m,),...,v(7,)
in G/2G are independent in this Z /2Z-vector space. Depending upon y
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there are three possible cases which we always refer to as cases (i), (ii), (iii)
throughout the rest of this section

Case (i). Here y & 2G. In this case we additionally assume that
Yy & 2G(my,...,m,)

where 2G(m,...,m,) denotes the subgroup of G generated by 2G and

Mo eens My

Case (ii). Here y = v(7?) # v(4) for some 7 € F. In this case we
additionally assume that the residue

7721 — u) $.¢2(fl,...,fj).

Case (iii). Here y = v(4). In this case we additionally assume that

A -u)/de p(F)+Fb.... 1)

LemMma 1.2. Suppose u and vy satisfy 1.1 above. Let x € F. Then
v(1 —ux®) <v. If v(1 — ux?) <7y then v(l1 — ux?) = v(7w?) for some
7 € Fwithn *(1 — ux?) € %2 Moreover:

Case (i). Ifv(1 — ux®) =y & 2G, then (1 — u) "'(1 — ux?®) e F*

Case (ii). If v(1 — ux?) = v(7?) < v(4) then 7~ %(1 — ux?) lies in the
F2coset F2+ 77%(1 — u).

Case (iii). If v(1 — ux?®) =y = v(4), then 7~ (1 — ux?) lies in the
A F) coset F)+ (1 —u)/4

Proof. First suppose that v(1 — ux2?) > y. Thenas 1 — ux?> = (1 — u)
+ (u — ux?) we conclude that y = v(u — ux?) = v(1 — x?2). Expressing
x=1+a', we find y=0v(1 — x2) =ov(7” + 27"). If y <v(4) then
necessarily v(7’) < v(2) so that y = v(«’%). But now v(l — ux?) >y
implies 7' 2(1 —u) = 7' *u(1 — x?) =o' *u(7”* + 27’) = 1, con-
trary to the choice of u. In case y = v(4), then v(7’) = v(2) and we find
that (1 — u)/4=u(l —x?)/4= (7" +2n')/4 € o(F), again con-
tradicting the choice of u.

We now assume that v(1 — ux?)=7v’<+y. Then as (1 —u)=
(1 — ux?) + u(x* — 1) we find that v(1 — ux?) =v(x - 1) =y <y <
v(4). Again setting x = 1 + «’, we find as above that v(#’) < v(2) and
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that v’ = v(7?). As

7 21— ux?) =" 2u(x>-1) =777+ 22') =1 € F2,
the desired conclusion follows.

In case v(l1 —ux?)=y and Y€ 2G, as 1 —ux?=(1—u)+
u(1 — x?), we see that v(1 — x2) > v. As y < v(4), in case v(1 — x2) =
y we conclude that y = v(7’?) for x =1 + #’ as above, a contradic-
tion to the fact that y &€ 2G. Thus o»(1 — x?) > y and hence
(1 — u) '(1 — ux?) = 1 € #? which settles case (i).

Finally in case v(1 — ux?) =y = v(7?) we find that v(1 — x?) =
v((1 — ux?) — (x%(1 — u))) = y. Setting x =1+ #’ this means that
v(27’ + 7'*) = vy = v(#?) and hence v(7’) > v(7) as v(w) < v(2). Thus

7 2(1 — ux?)
=7 221 —u) + 7721 - x2) =71 - u) + 7 %(7? + 27'),
as X=1. If y <wv(4) then 7~ 2(#> + 2#’) is 0 if v(7’)> v(7w) and
equals 7 %7’ € #2 if v(w’) = v(w). Case (ii) follows. If v = v(4) we
may set 7 =2, and then 7 2(7"*> + 2#’) € o(F) so that Case (iii)
follows. This proves Lemma 1.2. O

Recall that ({(a;,a,,...,a,)) denotes the n-fold Pfister form
® (1, a;), which is a 2"-dimensional quadratic form. For any quadratic
form a, D(a) denotes the subset of F° represented by a. See [L] for
details.

LEMMA 1.3. Assume that u, v, t,, ty,...,1; satisfy 1.1 above. Then
v(D{(~u,~ty,...,—t;))) € 2G(¥).

Proof. By the 2-independence properties of #, ¢,,...,,, it is clear that
v(D{{-ty,-..5~1;))) € 2G. If w € D{{~u,~t;,...,—t;)) We can express
w =w, — uw, where w; € D((~t,,...,~t;)). Evidently we may assume
that v(w;) = v(w,) =0, and further as w;' € D((-t,,...,—t;)) we
may assume that w; = 1. Thus we are reduced to computing
v(1 — uw,).

Express w, = x{ — ;x5 + --+ +(<1)’t; -+ £,x3,, and note that
1—uw, =1 —"ux{) —u(-t;x] + -+ +(-1)’t, --- t,x3,). We see that
as v(1 — ux?) € 2G(y) (by Lemma 1.2) in order for (1 — uw,) & 2G(y)
we must have o(l —ux})=wv(-t,x3+ - +(-1)1; --- t;x3,). Now
choose x,, where 2 < k < 2/ 50 that

v(x2) = v(—t1x§ + e (<1)8 - tjxgj).



DYADIC VALUED FIELDS 25
In case v(1 — ux?) < v(4) we find that
x2(1 — wx?) & F2iy by, )

by Lemma 1.2, and by the Standing Hypothesis 1.1. Thus when y < v(4)
we find that

v(1 — uw,) =0v(l — ux?) or v(—t1x§ + e +(=1) - tjxg,-),

both of which lie in 2G(y). In case v(1 — ux}) = v(4), then as (1 — u) /4
& W F) + Fiy, by, ...,7) by 11, and as (1 - ux?)/4 € o(F)
+ (1 — u)/4, it follows that x;%(1 — ux?) & F(fy, iy,...,1,). (Note
that #2(7,, ..., 1) is closed under multiplication by elements of %2
Thus we conclude that v(1 — uw,) = v(4) € 2G. This proves Lemma
1.3. |

LeMMA 1.4. Suppose that u, v, t,t,,..., Eiy Ty Myyeees My satisfy 1.1.
Then

v(D(( - u,—tl,...,—tj,—wl,...,—wk») c 2G(y,v(m),...,v(m)).

Proof. We proceed by induction on k. If k = 0, this is Lemma 1.3. So
assume that

u(D((—ul, R STRTIIE S .,—7rk_1>>) c 2G(y,v(m),...,v(m_,)).

Then note thatif w € D{((-u,~t,,...,~t;, —m,...,—m,)) then w = w; —
mw, for w,w, € D{(-u,-t,,..., ~t;, =M,...,—M_;)). By induction, as
v(m,) & 2G(y,v(m),...,v(m _,)) the desired result now follows. O

Recall that if a = ({a,,...,a,)) is an r-fold Pfister form, that
o’ = {{ay,...,a,)) denotes the so-called pure subform of a. This is the
2" — 1 dimensional subform (a,,a,,...,a; --- a,) of a. See [L, p. 278]
for more discussion of a’. Recall that @(%#) + (1 — u)/4 denotes the
©( F)-coset in the additive group F+.

LemMMA 1.5. Suppose u, v, 1,,1,...,t; satisfy Hypothesis 1.1. Let
w € D(({~u)) ® {{(~ty,...,~t;))). Then we have the following:

Case (i). If v & 2G and v(w) = v(7w?) for some = € F, then n~*w €

F(ty, by, ..., 1), In particular, 77w & F2. If v & 2G and v(w) = v,

then (1 — u)"'w & F2.
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Case (ii). If Y = v(7?) # v(4) and v(w) = v(7'?) for w,n’ € F, then
7 *w € Fia2(1 — u))o(ty, by, ..., §;). In particular =" *w &
FHn (1 — u)).

Case (iii). If y=0v(4) and v(w)=ov(n?), then m 2w & F2U
@ F) + (1 - u)/4.

In all cases if v(w) = v(w?), then ™ %w & F 2.

Proof. We express w = w; — uw,, where w, € D{((-t;,...,—¢;))". If
v(w) = v(w;) or v(w,), then as v(w;) € 2G by the 2-independence of
f;,%,,...,1; we find that v(w) € 2G. Next note that v(w,) = v(7?)
implies 7~ *w, € #(f,,1,,...,1;). Since # =1 this shows that 7~’w &
F(fytgynst ). Case (i) is now clear in this situation. Likewise, for Case
(i), as 7 2(1 — u) &€ F (i), 1,,...,1;) by 1.1, the result is also clear. For
case (iii), clearly 72w & %2, so assume 7w € (%) + (1 — u) /4. But
then (1 — u)/4 € A F) + F(1,,1,...,1;) a contradiction to 1.1. Thus
we may assume in all cases that v(w) > v(w;) = v(w,).

In what follows we shall express w as a sum of many terms with the
property that the value of the sum must be the smallest value among the
terms. The desired conclusions of the Lemma will then follow by inspec-
ting the residues of these summands. We express

W, = Z (-t)“x2,

where the x,, € F. Then we find that

= ¥ () - wd).

Using the 2-independence of the 7;’s over %2, and the facts that v(w) >
v(w;) = v(w,) we conclude that whenever v(x?2) = v(w,) we must have
that v(x,,) = v(x,,) and that x,, = x,,(1 + =,) for some =, with v(,)
> 0. For those x,, with v(x2) > v(w,), we express x,, = x;,(1 + 7,)
with v(w,) > 0 if this is possible, otherwise we do not. Setting u = 1 + =7,
v(7Y) = vy, we are able to express

w= Y () (xf -0 +7)Q +7)x%) + L (=) (x — wxd,)

a€X; a€ X,
where X, U X, = 2/ — {(0,0,...,0)}, and

v(x2 — ux3,) = inf{v(x2), v(x3,)} forall a € X,.
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We investigate the terms

A= = (xf, =1+ 7)1+ 7,)’x], )x;7

a’

= (']]‘y + '7)'0‘2 + 27Ta + 77',,(77012 + 2770())

where a € X, and the terms B, := (x{, — ux3,) where a € X,. As v <
v(4), in case v(m,) > v(2), then we find that v(A4,) = v(7?) = y and thus
one of the following three things must occur:

(@) (1 —u)'4,=1€F?* if y & 2G, or
(by7 24, € F*(n*(1 — u))if y = v(7?), or
(c)A,/4=7"/4=(1—u)/4 when vy = v(4).

In case v(w,) < v(2) and y # v(w?) we find that v(A4,) = inf{y, v(72)}

and that in case v(7?2) < v the following occurs:
(@) 77?4, € F* where v(71}) <.

In case y < v(7?) we find that conclusions (a) or (b) above must hold.
Now we assume that v(7,) < v(2), while v(7?) = y. But as 7’7" &

F? by 1.1, we find that 7’7 # 1 € #2 Thus v(4,) = v(7?) and we

conclude:

(b)) 77?4, € F*(w;*(1 — u)) where y = v(72).

Finally, in case v = v(7?) = v(4), as 77/4 & @ F) by 1.1, we see that

(7¥ + w2 + 2m,)/4 + 0 € F, so that v(4,) = v(4). Hence we may con-

clude that
(cYA,/4€ (1 —u)/4+ oF) where y = v(4).

Finally we note that whenever a € X,, v(B,) = inf{v(x3), v(x3,)}.

Thus if this inf is realized by v(x,,) we conclude

(d) x;2B, € F* where v(x2) = v(B,).

a

The proof of the Lemma is concluded as follows: If y < v(4) and
y & 2G, then as the 7., ,,...,1 ; are 2-independent over & 2. we find using
(a), (2'), and (d) above that necessarily v(w) = inf{ v(x24,), v(B,)}, and
that the desired conclusions of case (i) immediately follow. Similarly, in
case y € 2G where y < v(4) one uses (b), (a’), (b'), and (d) together with
1.1 to see that case (ii) follows. Finally in case y = v(4), using (c), (a),
(c’), and (d) together with 1.1 and Lemma 1.6 below, the desired conclu-
sions of case (iil) follow. This proves Lemma 1.5. O

LEMMA 1.6. Let F be a field of characteristic 2, and let f,t,,t,,...,t ;
E€F be such that t,t,,...,t; are 2-independent and f& F)+
Fo (b tys .. -5 1)) Then the equation g, + t,g, + - -+ +1t; -+ t,8,, = 0 has

no solutions with g, € F* U F?* - (f + A F)) and some g, # 0.
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Proof. As the ¢,¢,,..., t; are 2-independent over %2, we see that
some g, & %2 in some such solution. Multiplying the expression by a
square and some product among the Lylyseonst; if necessary, we can
assume that g; = f + ©(z,). We then obtain an expression of the form:

fre(z)+ X ewi(f+e(z,)+ X t92;=0

acX, aEX,
for X, U X, = 2/ — {(0,0,...,0)}. Solving for f we find that:
7= {o(z)+ T ewiolz)+ X oeaz)/(1+ L ewd).

a€ X, aEX, a€X;

Note that as X; N X, = &, we have that

Y t"zﬁ/(l + Y t"wj) € Fi (1, t,,...,1;).

a€ X, a€ X,

Next consider a term of the form:

t""waz,g.)(za,)/(l + ) t"‘waz) where o’ € X].
aE X,

Multiplying both the numerator and the denominator by (*w2)~!, this

term actually equals an expression of the form

@(zaf)/(l + X t"Wf),

aEeX’
where again &’ € X’ and X’ is a subset of 2/ — {(0,0,...,0)}. We now
apply the formula (r) /(1 + 1) = (r/(1 + 7)) + (r2/(1 + 7%))7 to con-
clude that the preceding expression lies in (%) + %) (1), 1,,...,1)).
From this it follows that f € @(F) + F12(t,,t5,...,t 1), a contradiction,

so the Lemma is proved. O
THEOREM 1.7. Suppose that u, t,, Lyseoosljy Ty, Moo, My satisfy the
hypotheses 1.1. Then for any unit
-w E D(<<—u, —lyeees =ty =T, ,—7rk>>')

we have v(1 — x) < v.

Proof. We proceed by induction on k. First assume that k£ = 0. We
express —w = —ux> + w’ where w’ € D({{-u)) ® ({(~t},~1,,..., ~£,)))-
Suppose that v(ux?) < 0. But according to Lemma 1.5 we have that
x?w’ & #? while # = 1 € #2 This contradicts the assumption that w
is a unit and shows that v(ux?) > 0. If v(ux?) > 0, then v(w’) = 0 and
—w=-w &%? by Lemma 1.5, so we conclude v(1 — w) = 0. Thus we
may assume v(ux?) = 0 and v(w’) > 0.
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Now suppose that v(1 —w)>y. As1 —w=1—ux?+ w’, and as
v(1 — ux?) =17’ <y by Lemma 1.2, we conclude that v(w’) =7y’ < y.
But further, in case y’ < y, we know by Lemma 1.2 that v(1 — ux?) =
v(m?) for some 7 € F and that 7~ %(1 — ux?) € # 2 Thus,as 72w’ & %2
by Lemma 1.5, we conclude that v(1 — w) = ¥’ in this case. Hence we are
reduced to considering the case where v(1 — ux?) = y = v(w’). However,
comparing Lemma 1.2 Cases (i), (ii), (iii) with Lemma 1.5 Cases (i), (ii),
(iii) respectively shows that v(1 — w) = y. This takes care of the case
where k = 0.

Now assume the result is true for k — 1. If

—-wE D(((—u,-—-tl,...,-tj, —771,---7_'”k>>’)

is a unit, we express -w = —w, — mw, where

-w; [ D(((—u,—ll, ey _tj’ UTEERE _7Tk—1>>,)

and
W2 (S D(<<“‘u, _tl’ eeey _t}’ "“"’1, ceey —'”'k_1>>).
By Lemma 1.4 we find that v(7w,) € v(m,) + 2G(y,v(m),..., (7 _1)),
and hence v(w,) # v(mw,) # 0. Thus —w, is a unit as -w, — mw, is a
unit. Hence by induction we find that v(1 — w;) < y. But also by Lemma
1.4, as 1 e Wl (S D(<<_u, —‘tl,...,_tj, ~W1’°'°’_7Tk*1>>)’ U(l - Wl) (S
2G(y,v(m),...,v(m_,)). It now necessarily follows that
v(1 —w)=v(l —w —aw,) =inf{v(l — w,), v(mw,)} < 7.

This proves the Theorem. O
As an important consequence of Theorem1.7 we now have:

COROLLARY 1.8. (i) Suppose that u, v, t,t,,..., Ly Ty Tysenns Ty
satisfy Hypothesis 1.1, or that v(1 — u) = v(m), where t,,...,1; are 2-inde-
pendent over 2, (1 — u)/m & F*(1,,...,1,), and m, ..., m, are indepen-
dent in G/2G. Then the j + k + 1-fold Pfister form ({-u,-t,,...,-t
—Ty, ..., —M)) IS anisotropic over F.

(i) In particular, if u =1+ 4g, ift,,...,1; are 2-independent in %,
if m,...,m, are independent in G/2G, and if ((~(1 + 4g), —t;,...,-t;,
~Tyy .., —T)) is isotropic, then § € X F) + Fi(1y, ..., 1)).

Proof. (i) In case u, v, ty--estjy ..., m satisfy Hypothesis 1.1,
then the result is an immediate consequence of Theorem 1.7. In the second
case _we observe that ((-u,-m)) = ((-u, -a7'(1 — u))). Since
a' (1 —u) € FXiy,...,1), we find that u, v, t,,...,1, 771 — u),
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Ty, ..., T, satisfy Hypothesis 1.1. Thus the result follows from Theorem
1.7 in this case as well.

(ii) This follows from (i) above, negating standing Hypothesis 1.1 case
(iid). g

We now give one last technical result, which is essential for the proofs
of the main results of §2.

THEOREM 1.9. Suppose that u, v, ty,t,,...,t;, M, M,,..., T, satisfy

Hypothesis 1.1. Let w € D({{~u,~t;,...,~t;, =My, ..., —m))). Then v(w)
€ 2G(y,v(m),...,v(m,)) and moreover:

Case (i). If v & 2G and v(w) = v(w*(1 — u)) for w’ € F, then
(w21 = u))'w € FXiy,..., 7). Ifv(w) = 0 thenw € F(1,,...,1).

Case (ii). If v = v(7?) < v(4) for some 7 € F, and if v(w) = 0, then
772 (1 — u)w € Fi(ty,..., 1, 7731 — u)).

Proof. The first statement is clear by Lemma 1.4. The remaining
conclusions will be proved by induction on k. We first assume that
k = 0. We express w = —ux> + w; where w, € D{((-u)) ®
({~t,...,—t;)). For the first part of case (i), if v & 2G and v(w) =
v(w?(1 - u)), then as v(ux?) € 2G we conclude by the first part of
case (i) of Lemma 1.5 that if v(ux?) = v(w,), then v(w) = v(ux?). Thus
as v(w) & 2G, we conclude that v(w)= v(w,) < v(ux?). In par-
ticular (w?(1 — u))_zw = (w’2(1 - u)_l)w1 € Z(1y,...,1;) by the sec-
ond part of Case (i) of Lemma 1.5.

For the second part of Case (i), if v(w) = 0, then by Lemma 1.5
Case (i) we conclude that v(ux?), v(w;) >0, and that the desired
result w = —ux>+ w; € F%(f,,...,1,) follows. Finally for case (i) we
find as above, using Lemma 1.5 Case (ii), that v(ux?), v(w;) > 0 and
that w = —ux®>+w; €F> + F*(7*(1 — u))(f;,...,7,). The desired
conclusion follows from this. This takes care of the Theorem where
k=0.

We now assume that the result is true for £ — 1 and prove it for k.
In each case the argument is the same. Express w = w, — mw,
where w, € D({(—u,~t},...,~t;,—m,...,—m,_,))’) and where w, €
D({({-u,~t, ..., ~t;, =M, ..., —m_q))). By Lemma 14 v(mw,) €
v(m,) + 2G(y, v(m),...,v(m_,). Hence v(w, — mw,) = inf{ v(w,),
v(mw,)} and this must equal v(w;) in order to satisfy the hypotheses of
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the Theorem. The desired conclusions now follow by induction, proving
Theorem 1.9. a

There is no suitable analogue of Theorem 1.9 in the case of y = v(4).
This is primarily due to the technicalities of Lemma 1.6, and how they
affect the proof of Theorem 1.5. In order to obtain the results necessary
for the next section, we must prove some special results for the y = v(4)
case. Our main goal is Theorem 1.13 below, but first we need some
technical lemmas about fields of characteristic 2. The first such lemma is
an analogue of Springer’s Theorem on odd degree extensions (c.f. [L, p.
197)) in the characteristic 2 case. In fact, the proof is simply the obvious
generalization of the well-known proof of that theorem.

In the sequel we shall adopt the following notation. For any collection
Uy, ...,u, wedenoteby A(uy,...,u,) = {1, uy, uy, ugtty,...,uy --- u,} (the
set of all 27 products), and we denote by 4,(u;,...,u,) = A(uy,...,u,) —
{1}. Whenever S,, S, C A(uy,...,u,), $,8,:= {5,5,]s; € S;and 5, € S, }.

LeMMA 1.10. Suppose that % is a field of characteristic 2, that
ty,...,t, are 2-independent in ¥, 0 <s, r<2" and that 7,...,T,
N ---5M, € Ay(ty,...,t,) are all distinct. Suppose that k = F (a) is an
odd degree extension of % . Then:

D) FnN(k?+L1k))=F 2+ L1.F?

In particular, t,,...,t, are 2-independent in k.

(i) Ifa,a, €%, f, g, h; € kand

2
a=@(f)+ ) 78} +(E ajhj) + 2 "’jhfz‘
then there exists f’, g/, h} € % so that
2
a=p(f)+ X g’ +(X ah)) + Xnh?.
In particular, FN (k) + L1.k?) =  F) + L7,.F 2

Proof. Suppose that for some a € # there exists f, g;,, h; € k so
that:

a=q(f)+ Y rg? +(Zajhj)2 + Z"ljh}

where ¢(f) = f2, and there are no a;’s or m;’s in case (i), and q(f) =
f?+f in case (i)). Our job is to show that in either case a similar
expression exists with f’, g/, h; € #. What we shall show is that in fact
such an expression exists with f’, g/, h’ € k’, where k’ is an odd degree
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extension of # with [k’: #] < [k: #]. The result is then immediate by
an obvious induction.

Let #( X) the monic irreducible polynomial of « over #. We choose
f(X), g(X), h(X)€ F[X] each of degree less than n =[k: F]=
degree(7( X)), so that f(a) =f, g(a) =g, and h;(a) = h; in k. Since
k = F[X]/(7(X)), this means that for some d(X) € Z[X]:

For R(X):= q(f(X)) + £7.8(X)* + (Ta;h,(X)> + L,k (X)?
we have a = R(X) + #(X)d(X).

Each degree among q(f(X)), 7,8(X)? (Za,h,(X))? and 7,h;(X)?
is even and less than 2n — 1. We claim that the degree of R(X) is the
maximum of the degrees of these summands. In case (i), R(X) = f(X)?
+ Y 7,g,(X)2 Thus by the 2-independence of ¢,,...,1,, and by a leading
coefficient argument, we conclude that the degree of R(X) is the maxi-
mum degree of its summands. In (ii), in case the degree of one of 7,g;( X)?
or n;h(X )2 is maximal among the degrees of the summands of R(X),
then again by the 2-independence of ¢,,...,¢, and a leading coefficient
argument, the desired conclusion follows. (Note that if ¢q(X)* +
Xa;h(X ))? attains maximal degree, its leading coefficient is a square.) If
none of 7,g,(X)> and 7, (X)* attains the maximal degree, then
Xah(X ))2cannot either, as its degree is necessarily < the maximum of
the degrees of the 7,k (X )2. Thus, g(X) is the only summand attaining
the maximal degree, and the claim follows.

In case the degree of R(X) is less than the degree of 7(X), we see
that the degree of each of the polynomials f(X), g;(X), h;(X) is zero,
d(X) = 0, and the result is immediate. Hence we can assume that the
degree of R(X) is greater than n. Since the degree of R(X) is even and
less than 2n, and since » is odd, we conclude that the degree of d(X) is
odd and less than n. Let p(X) be an irreducible odd degree factor of
d(X). Let B be a root of p(X), and set k' = % (B). We have that
[k: F1<[k:ZF] Set f"=f(B), g = g(B), and h;=h,(B) in k’. In
view of the equation a = R(B) + m(B)d(B) = R(B) € k’, the proof of
the Lemma is complete. O

The next Lemma, provides in characteristic 2, the information neces-
sary to study the function fields that arise in Theorem 1.13.

LemMA 1.11. Suppose that ¥ is a field of characteristic 2, and
K =%(X,, X,, ..., X,) is a field of rational functions in r variables over F .
Assume that t,, ..., t, are 2-independent in F and that T,...,7, N,...,0,
€ Ay(ty...,t,) are all distinct. Suppose that a, a; #+ 0 € ¥, and there
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existf, g;, h; € K such that:

s

(+) a=p(f)+ Y g+

=1

r 2 r
Y a,Xh,| + Y nhl
Jj=1 j=1

Thena € o(F) + L1.F>.

Proof. We proceed by induction on r. If r = 0, then the result is
trivial. Assuming the result for » — 1, we prove it for r. Suppose that a,
a, f» 8, h ; are as in the hypotheses of the Lemma. Set K, =
F(X..., X,_1)- Let v: K — Z be any valuation on K with K*0c U,
and for which #,...,¢, are 2-independent in the residue class field K,.
Let o be a summand on the right hand side of () and suppose that the
value v(o) < 0 for some such summand. Then necessarily (since v( f?) <
v(f) whenever v(f) < 0) the minimum of all such v(o) must be even, say
—2m. Let 7 be a uniformizing parameter for v. Multiplying (*) by 72™,
using the fact that v(f?) < v(f) whenever v(f) <0, we obtain by
passing to residues that:

, 2 s r

j=1 i=1 j=1

By the 2-independence of the ¢,,...,¢, in K, we obtain that each of
the residues 7,g,7>", n h;7>", and [f2 +(Z§=1anjhj)2]7rz”‘ must be 0.
In particular, v(g;) > -m and v(h;) > -m for each i, j. From this, as
v(0) = -2m, v(f?) = v((Xa,X;h,)*) = -2m. Since v(a,X;h;) > -m for
j # r, we conclude v(a,X,h,) = -m, i.e. v(X,) < -1. Thus:
(%) Whenever v(X,) >0 or v(a,X,h,) >0, v(s) >0 for

every summand o on the right-hand side of (*).

Consider the discrete valuation v;: K — Z, with residue class field
K,, with v;(1/X,) = 1. (The value of v, on a polynomial in K [X,] is the
negative of its degree in X,.) Suppose first that v,(a,X,h,) > 0. By (**)
each summand on the right-hand side of (*) is v,-integral. Also, as a, # 0,
v,(h,) > 0 as well, so passing to residues we find that in K;:

s r—1 2 r—=1__
a=p(f)+ Lrgl+| La,Xh,| + ¥kl
i=1 Jj=1 Jj=1

The desired result now follows from our inductive hypothesis.

From this point on we may assume that v,(a,X,h,) < 0. We first
show that v,(h,) is odd. If v(a,X,h,) =0, then v,(h,) =1. So now
suppose that v,(a,X,h,) <0. Assuming that v,(6) = -2m <0 is the

r=er’vr
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minimum value of any summand occurring on the right-hand side of (x),
we have already established that v,(g;) > -m, v,(h,) > -m, and v,(f)
= v,(a,X,h,) = —m, with the residue | 2 +(a,X,h,)’|(1/X,)*" = 0 in
K. It follows that one can express in K:

a,X,h,=f+f’, witho(f’)> -m.

Substituting this into (*) we obtain:

2

r—1 K r
a=f+(f)+ Ya;Xh;,| + ) ng}+ X onhl.
j=1 i=1 j=1

We know that v,(6”) > -2(m — 1) for each summand ¢’ in the above,
and that v,(h2) = -2(m — 1). Suppose v,(f) > -2(m — 1). Then, as
v,(f) = —m, m > 2. Multiplying by (1/X,)%™~D and passing to residues,
we find that in K

2 r 1 \2m=D
+ Z'njhjz- (—X") .
Jj=1 r

By the 2-independence of ¢,...,¢, inside K, we find that
(n,h2)(1/X,)*™ ™" = 0, a contradiction since v,(h?) = —2(m — 1). Hence
v,(f) = =2(m — 1). Since v,(f*) = -2m, it follows that m = 2. Since
-2 = vy(f) = vy(a,X,h,), we conclude that v;(h,) = -1, in particular it is
odd.

We express h, = c(X,)/d(X,) where c(X,), d(X,) € K,[X,] are
relatively prime. It follows, since v,(%,) is odd, that as polynomials in X,
one of c¢(X,) or d(X,) must have odd degree. Thus, one of ¢(X,) or d( X,)
has an odd degree irreducible (in K[ X,]) factor #( X,). We denote by v,
the discrete valuation on K, with v (7(X,)) = 1, and residue class field
K,(a) where m(a) =0. By Lemma 1.10, we know that ¢,...,¢, are
2-independent in K,(«a). Since v,( X,) > 0, (**) shows that for every term
o occurring on the right-hand side of (*), v, (o) > 0. In particular,
v,(h,) = 0, but the choice of 7 assures v,(4,) # 0. We may conclude that
both v,(a,X h,) > 0 and v,(h,) > 0. With this information, passing to
residues we find that in K (a):

r—1
o+ Zlanjhj
i-

i=1

O=(ZTigi2+

2

s r—1 r—1___
a=p(f)+ Lng?+| X aXh| + ¥nht
i=1 Jj=1 Jj=1

Since [K,(a): K,] is odd, we can apply Lemma 1.10 to find that the
above equation actually holds (for some possibly modified f, g, ;)
inside K. The result now follows by induction, proving the Lemma. O
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LemMMA 1.12. Suppose that F is a field of characteristic 2, t,,...,t, €
&, and suppose that S C A(t,...,t,_,). Set F' = F(t/?). Then:

(E'rﬂ"z)= 27‘93'24- Z TF?,

TES TES T€L,S

and

FnN (ga(%) + ) Ty'z) =p(F)+ LrFr+ Y, F2

TES TeS T€L,S

Proof. Suppose g = L ra? where g € # and a, € #'. Express a, =
a, + b,t'/? where a,, b, € #. Then, o = a + b?t,, and the result fol-

lows substituting these expressions. O

We now return to our valued field F (of characteristic 0) with residue
class field &#. Let € F, with v(7) & 2G. Recall that ¢,,...,¢, € F are
units with 2-independent residues in %#. Whenever ¢ is a n-fold Pfister
form, say q = {({(-a;,-a,,...,—-a,)), we consider the subform g*:=
(-a;) 1L {{-ay,...,—a,)) over F. A particular function field, F(gq*)
(denoted F(gq*), in [Kn]) is defined by:

F(q*):= F(le""Xr)

, 1/2
o+ X - ij) )
j=1
where r =2""!' — 1 and {p,,...,p,} = Ay(-ay,...,~a,). Since g* is a
(2"~ + 1)-dimensional subform of the n-fold Pfister form ¢, and since ¢*
becomes isotropic in F(g*), g vanishes inside W( F(q*)). Further, since
q* is a Pfister neighbor of g, it is known that ker(W(F) —» W(F(gq*))) =
gW(F) ([Kn-Sc, p. 29)).

THEOREM 1.13. Let ¢ = ((~(1 + 4g), ~t1,...,~F1r...,~L,, —W)) or
(-1 + 4g), ~ty,...,~l4y...,~1,)) where1 < k < n and v(g) = 0. Sup-
posethat ¢ € {({~t;,~t 1,...,—t,)YW(F). Then:

g € @(g) +‘%32(t_15---s?k>-"3tn)
+0 75 (h, - fk—l)‘gz-z(fk+1’ oo By).
Proof. We set F' = F(q*) where ¢q is the n-fold Pfister form
{({~tgs—tis1,--->—t,y) over F. The explicit description of F’ we need in

this case is:

F'=F(X,...,X,)

’ 1,2
DY —ijf) )
j=1
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where r = 2""%¥ — 1, X, ..., X, are algebraically independent over F, and
{py.-osp,} =Aog(~tesrs- .-, —t,). The valuation v: F —» G has an un-
ramified extension v: F’ — G for which the X, X,,..., X, are units and
the residue field is

F =F(X,...,X)

r 1/2
L+ Y p,ijz) )
j=1

where X], X,,..., X, are algebraically independent over %#. (We abuse
notation by writing X; for the residue of X; inside #".)

Since ¢ =0 € W(F’), we conclude from Corollary 1.8 (ii) that
g€ AF)+F (iy...,bh...,1,). We denote K=F(X,...,X,)C
F’,and u =1, + Lfi; X € K. Applying Lemma 1.12 we find that there
exist f, g;, h; € K such that:

s’

g=w(f)+ L 7g’+ XL uth?

i=1 i=1

where {7,...,7,} = Ay(t},..., ..., t,). Assume that the 7, are num-

bered so that 7, = +p; if 7, € Ay(#44y,- - -, 2,)- We denote by

{Tyirsenn} = 4ol s i )0 A(tirs -0 1)

Note that each +u; € {,...,7,}, but if we define n; = #,u; then each
n; € {7,---,7,}. Expanding u according to its definition shows that (for
1<j<ys)

s
uth? € Y 7K? if1,€ Ag(ty,.... 1, 1) A(t4i15---51,);
— - — 2
uth? = f,ih? +(7.Xh;)" + H,

where H; € ¥ TK?if 7, € Ag(ts15-- -5 t,)- We obtain, modifying each
g; to g/ for i =1,...,s’, absorbing appropriate summands to create g,’s
fori=s"+1,...,s:

— . -/ - 2 -
g=p(f)+ L7g’+(Xa,Xh,) + Lah
i=1

where the n; range over ¢, 4y(#;,1,---,¢,). The desired conclusion now
follows from Lemma 1.11, proving the Theorem. m|

2. Some ideal quotients. The object of this section is to define
some subideals VY, V.Y of I'F, where y € A:= {y € G: 0 <y <v(4)},
and to determine the structure of the quotients V" /V,? in terms of % and
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G. Throughout the rest of this paper we shall assume that G = Z, and we
shall fix 7 € F with v(7w) = 1 € G = Z. All of the results of this section
can be extended to the non-discrete value group case in an obvious way.
However the author has not been able to extend the results of §3 to the
non-discrete case, and for this reason the many extra calculations needed
to generalize this section have been omitted. In view of the technical
nature of this section, the author recommends to the readers that they
familiarize themselves with the statements of the results of §3 before
wading through the results proved here.

All notation established in §1 will remain in force throughout this
section. We fix #,,1,,...,¢, € U chosen so that their residues 7,,7,,...,1,
form a 2-basis of #. Whenever X = (1,,...,7,} C {f},1,,...,1,} we
shall denote by A( X) the 2° products of distinct elements of X, i.e.

AX)={1,1,,...,¢, -~ 1, }.

h

We shall also denote 4,(X) = A(X) — {1}. Next, whenever ¢,,...,1, € X
are distinct with i; <i, < --- <, we define:

B(X,iy,...,i;)= {beAO(X):expressingb =t ot

with s; <5, -+ <s, thens; & {iy,...,0,}}

Note that B(X,iy,...,i))= @ in case X = {i,--50,}). We similarly
define

C(X,iy,....1;)={c € Ay(X)| expressing ¢ =z, --- 1, with

§; <85, < --- <s, thens, € {i1,~~,ij}}~

Evidently C( X, ij,...,i;) = Ay(X) — B(X, i3,.-.,i,). Forany Y C A(X)
we set D(Y):= X _, 7% 2, an additive subgroup of % . Thus for instance
in this notation we have when X = {¢,,...,¢,} that D(A4(X)) =% and
D(Ay( X)) = #(ty,...,1,). For convenience, when X = {1,,...,1,} we
shall denote A( X) and 4,(X) by 4 and A, respectively.

In what follows we fix r, 2<r and we fix T'= {7,,...,7, } C
{t;,...,1,} for 1 <n’ <n. For any a« € Ay(T), a =1t} --- i, we set
N(a) = {s;|i; =1} C {sy,...,5,}, and we let n(a) = cardinality of N(a).
We consider a “lifting” ( )%: % — F which is chosen with the property
that (x,)y = x, and such that (ax?)* € aF? for all « € A(T), where the
x; give a fixed Z/2Z-basis of the additive vector space #'. Next we
describe an ideal V,(T) whose definition depends upon ( )%, the 7,, some
f;’s, g,’s, h;’s described below, as well as upon 7. By definition V(T') will
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be the subideal of I'F generated by I"*'F and the set of r-folds described
in the following list:

List 2.1. For all y€ A we consider all »r—1 or r— 2 tuples
(#y-.-,i,_1) and (#,...,i,_,) respectively with 1, €T for each i,
l<i< -+ <i,_;<nandl<i < --- <i,_, < nrespectively. With
the x,’s as above we list the following r-folds:

Type A. For y € Awith y & 2G we have
@) ((~( + (-1 @aX(@xD$), —t,,...,—t; ) for all a € Ag(T)
where s() is the cardinality of N(a) N {i;,...,i,_1}.
(i) ((~(1 = 7h;), ~t,,...,~t, _)) for h, ranging over a basis of F*
mod F2(f;: t; € T).
(iii) ((~(1 = #"h)), ~t,,...,—t, ,—m)) for h, ranging over a basis of
F* mod F(i: t,€T).

Type B. For y € Awith y € 2G but y # v(4) we have
@ ((-A = a(Fx)$), ~t;,...,—t,_ )y for 7 € B(T: iy, ..., i, ).
(i) ({(~(1 — 7" (Tx})%), ~tiy st ,-m))yfor T €B(T: iy,...,
ir—z)‘
(i) (-1 —=h)), ~t;,...,~t; )) and ((—(1_— Th), ~tis...,
~t, ,—my) for h, ranging over a basis of # mod #*(7;: t, € T).

Type C. Here we consider y = v(4) € A.

(@) (-1 —4g), ~t;,...,~t; )) where the g, give a basis of
F mod (A F) + D(C(T,iy,...,i,_1))).

(i) ((-(1 —4g,), ~t;,...,—t; _,—m)) where the g, give a basis of

h i

Z mod (X F) + D(C(T, iy,...,i,,)).

Throughout the rest of this section the subscript 7" on ( )% will be
dropped as the set T will always be clear from context. The condition that
(ax?)* € aF? for a € A(T) gives:

(*) <<—(1 - ﬂy(ax?)*), —,8>> = <<—(1 - w*(ax,.z)*), —,Bvr’a>>.

This fact will be used often in what follows. We also remark that in case
r > n’ + 2, then none of the r — 1 or r — 2-tuples can exist so V,(T)
becomes the ideal I"*(F). When r = n’ + 2, then the generators of
V(T) over I"*!(F) all have the form ((~(1 — #"h), —t,,...,~t, ,—7))
for some h € F. Mod I"*}(F) any sum of such r-folds is another such
r-fold. Thus by a straight-forward application of Corollary 1.8 we see that
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the generators listed above in Type A (iii), Type B (iii) and Type C (i), (ii)
freely generate V,(T)/I"*}( F) as a Z /2Z-vector space. We now show that
the same holds more generally.

PROPOSITION 2.2. Suppose r = n’ + 1. Then V(T)/I"*}(F) is freely
generated by the r-folds listed in 2.1 as a Z /2Z-vector space.

Proof. Without loss of generality we may assume that 7' = {#,,...,¢,}.
All of the generators of V,(T) over I"*!(F) can now be redescribed as
below. In this new listing note that () has been applied to the Type A (i)
generators (here s(a) = n(a)), and the generators of Type B (i) and Type
C (ii) become vacuous when r = n” + 1.

Type A. (i) ((~(1 + (1)*BaY(Bx2)*), —t1,.ver—tpsees—Ly, —T))
where “hat” means delete, and B € ¢t, A({t,,,...,t,}) withl < k <n’".

(i) {((-(1 —="h;), -1,,...,~1,)) where the h; give a basis of
F mod Fl2 (i1, by, ..., L)

(ii)) (- = 7h;), ~ty,...,~F4,...,~t,,—m)) where the h; give a
basis of # mod F (i}, 1,,...,1,).

Type B. (i) ((-(1 — 7#"(7x})*), ~t1,..., ~E4yerrr—t,,—7)) where
1€t A{tgsr--->tpy})andl <k < n'.

(i) ((~(1=7h,), —t,...,~1,)) and ((~(1 — 7"h,), —1,...,
~f4r -+ .» —t,, —m)) where the h give a basis of # mod F (1, 1,,...,1,).

Type C. (1) ({(-(1 — 4f), ~t;,-..,~1,)) where the f; give a basis of
F mod ((F) + D(Ay(T))).

() ((—(1 —4g,), ~ty,...,~lf>...,—t,,—m)) where the g, give a
basis of # mod ((F) + D(Ay — t,A{tys1,---51})),and1 < k < n'.

In what follows we shall suppose that some sum o of the above
r-folds lies in I"*Y(F). We shall examine ¢ in many quadratic extensions
of F as outlined in the following two steps.

Step 1. Set F, = F((w)'/?). It follows that over F, we have a sum o,
of distinct r-folds of the following type that lies in I"*( F;):

Type A. ((~(1 — 7"h}), —t;,...,~1,)) where the h; give a basis of
F mod F (..., L,).
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Type B. ({ (1 — @'h;), —t,...,-1,)) where the h, give a basis of
F mod F(i,...,1,).

Type C. ({—(1 — 4f), ~t,...,~t,)) where the f; give a basis of
F mod(@(F) + D(Ay({ -, 1, })))-

Using the multilinearity of r-folds mod I"*(F), we find that ¢ is
congruent to an r-fold of the form ((-u,-t,...,-t,)) where u is the
product of the corresponding first terms. Note by construction that this
implies u € U” for some y € A. Observe also that the conditions listed in
Types A, B, and C above imply that the Hypotheses 1.1 apply to this
r-fold. Thus as ({(-u,-t,,...,-t,)) =0 € W(F,) by the Arason-
Pfister Hauptsatz we have 7 € D({{(-u,-t,,...,-t,))"). According to
the first part of Theorem 1.9 this can occur only when y = v(1 — u) & 2G.
But then by the conditions on the & ; In (A) immediately above we see that
77 Y(1 — u) & D(Ay(T)). This contradicts Theorem 1.9 Case (i). Hence
u=1¢€ F? and we conclude that in the original o each r-fold must
contain a ‘z’-term. This concludes step 1.

Step 2. From step 1 it follows that o is a sum of r-folds of the form:

Type A. () ((~(1 +(-1)’(3)777(Ex,.2)*), ey —Eyeee s =t —T))
where B € 1, A({t),y,..., 1, )

(iii) ((-(1 — =h)), —tl, ~f4. s~ —m)) where the h; give a
basis of # mod %2 (tl, t,,. ..,t ).

Type B. (i) ((-(1 — #(7x})*), ~t1,.--, ~Igr--->~1,, —7)) where
TE€ HA{ s s tw})- ~

(i) ((-Q - 7)), -t},...,~E},...,~t,,—7)) where the h; give a
basis of # mod F *(1,,...,f,).

Type C. (i) ({-(1 — 4g;), ~t},...,~I},...,—t,,—m)) where the g,
give a basis of # mod (i F) + D(Ay(T)-t, A({tys1s---> 10 })-

We may now express o as:
o= ((—ul,-—tz,...,—t,,,,—vr»
oo (b —Ey ey Ly —T))

-+ ((—un,, =lyeees =ty 1, —77)),

the u, appropriate products. Note that if u, € F? then the ‘kth’ sum-
mands in o are each 0. Let k be the largest such that u, € F? and we
proceed by induction on k to derive a contradiction. If k£ =1 then
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({~ty,~ty,...,~ty,—m)) € I"*}(F), i.e. it is hyperbolic. If ¢ is not the
trivial sum, then », € U for some y € A. If y & 2G, then according to
the type A generators listed at the end of step 1 we have that 7~ 7(1 — u,)
& F(i,,...,5,). If y<0v(4) y € 2G, then according to the Type B
generators listed at the end of Step 1 we conclude that 77 7(1 — ;) &
Fi,,...,1,). Lastly if y = v(4) we conclude that (1 — u;)/4 & A F)
+ Z(%,,. .., 1,). Each of these contradicts Corollary 1.8, so we are done
if k=1.

We now assume the result for £ — 1 and examine k. There are three
cases:

Case 1. In this case we assume u, € Y where y & 2G. It follows
from the Type A generators that either 7 Y(1 — u,) &€ F ({1, i5,...,1,)
or else 771 -u,) € {,.FX({41p--->1,). In case 77(1—u,) &
F (i, 1,,...,1,) we consider F,:= F((2,)*/?). As all but the last sum-
mand in o vanishes in F, we note that ({~u,, —t;,...,~fp, ..., —ty —T))
€ I"**(F,), ie. that ({(~uy,~t,...,~lg,...,~t,—m)) =0 € W(F,).
This contradicts Corollary 1.8.

We now may assume that 7~ Y(1 — ;) € . F *(f;,4,...,1,). In view
of this there exists some w € F with w = #7(1 — u,) and such that
w € D({{~ty,...,—t,))"). According to the maximality of k we find that
(=tjy=tyseeey=tjn, =ty —m)) = 0 € W(F(wm)'/?)) whenever j + k.
Thus we find as o € I""Y(F) that ({—uy,~t,...,~Fgseeuy~ty,—7))
= 0 € W(F((wmn)?)). However,

TP S A ),
zF((—uk,...,-—tk,...,—tn,,—ﬂ“y(l - uk)>>

where now u,, t,...,5,..., ¢, 7 Y1 — u,) satisfy Hypothesis 1.1 Case
(). Butnow aswr (1 — u,) € 2 and

-wr~Y € DF((("uka_tv---’“fk""’—tn"_'”—y(l - uk)»,)

we have a contradiction to Theorem 1.9 Case (i). This concludes Case 1.

Case 2. Here we suppose that u, € U” where y € 2G and y # v(4).
In case 77 Y(1 — u,) & F(i,1,,...,1,), we note arguing as in Case 1
that ((—uy, —ty,os—tpr ooy =ty —m)) = 0 € W(F(t,)'/?), contradicting
Corollary 1.8 applied to F(¢!/?). In view of the Type B generators listed at
the end of Step 1 we can assume that 77 Y(1 — u,) € [, % ({,,1,---,1,)-
From this it now follows that there is some w & F with w =
7 Y1 — u,) and ~-w € Dp({{~t;,...,~1,))’). As in case 1 we find that
((=tgs ~tys e vos~Tgsenny =ty —m)) =0 € W(F(w'/?)). However this
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means that -w € Dp({{~uy, ~ty, ..., ~fp, ..., ~t,, —m))) and as
wr (1 — u,) € F?* we have another contradiction to Theorem 1.9 Case
(i1). This concludes Case 2.

Case 3. Finally we consider the situation where u, € U*®. By the
Type C generators listed at the end of Step 1 we see that u, = (1 + 4g)
where g & A F) + D(Ay(T) — t, A({t;1,---,t,})). The maximality of
k shows that

({=thyy —tys ey —thseees =ty —m)) € {{~ty,...,~t,) Y W(F).
Thus, Theorem 1.13 shows that
g€ (F)+D(A4,(T) - t, Aty v, 1)),

a contradiction. This concludes step 2 and the proof of the Proposition. O

In the following we denote the subideal of V,(F) generated by all the
type C r-folds and I"*1( F) by V°@(F).

PROPOSITION 2.3. Suppose r < n’ + 1. Then V,(T)/V'®(F) is freely
generated by the Type A and Type B r-folds listed in 2.1 as a Z/2Z-vector
space.

Proof. We proceed by inductionon s = n” + 1 — r. The case of s = 0
follows from Proposition 2.2, so we will assume the result for s — 1 and
prove it for s. We may assume that 7T = {¢,,...,¢,}. As in the proof of
2.2 we suppose that o is a sum of generators that lies in V*®(F), and we
show that o is a trivial sum. By taking a suitable multiquadratic unrami-
fied extension F’ of F we can assume that ¢ in fact lies in I"**(F). To
see this, observe that if one expresses o as sum of Type C r-folds
((~u;,~t;,...)) mod I""'(F) then one can take F’ to be the multi-
quadratic extension obtained by adjoining (u;)'/* to F for all such u’s.
Such F’ is unramified over F, the residue field of F’ is a separable
multiquadratic extension of %#. Over such a residue field, the elements
t,...,1, remain 2-independent, so the hypotheses of the Proposition
apply to the field F’. With these reductions we now give a sequence of
steps that shows ¢ was in fact the trivial sum.

Step 1. First we consider the valued field F, := F((t,,)*/?). Then, over
F,, o is a sum of generators of the form ((-u,~¢,,...,~t, ,—7)) and
({~u,~t,,...,—t; ) where each i; < n’. We claim that each of these
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generators can be viewed as generators of Types (A) or (B) for an ideal
V(T — {t,}) over F,. There are two cases to consider:

Case 1. Let ( )%: F(i¥/*) > F, be any lifting which extends the
lifting ( )¥: &% — F. We consider as a basis for the Z /2Z-vector space
F (%/?) the elements { x;, (t/*)x;}. Evidently for all « € A(T — {¢,}) we
have that (ax?)% € aF? and (&((Z,)"/*x;)*)% € aF? so that this lifting
(which we shall from now on simply denote by *) satisfies all the desired
properties. We also note that % (/%) has a 2-basis consisting of the
n-elements {7y, ..., 4,1, 6x/> t,i15-..,1,}. From these remarks it is clear
how to regard the original Type A generators as Type A generators for the
new ideal V,(T — {t,}) in F,. (Note that those type A (i) generators with
a = t, become type A (ii) generators.)

Case 2. For the Type B generators of the form ((—(1 — 7'h),
~t,s---s~t; ,-m)) where i, <n’ and the h; are independent
mod F%(t,,...,1t,) there is no problem arguing as in case 1 to see that
such elements are Type B (iii) generators over F,. Also, in case 7 €
B(T,iy,...,i,_,) —t, A({t,...,t,_1}), then clearly 7€ B(T — {¢,},
i, ...,i,_,) so likewise ((~(1 —#"(7x})*), —t,,...,~t, ,-m)) has
the desired form as a Type B (ii) generator. Next we assume 7 &
B(T,ip,...,0,_y) Nt A{t, ..., t,_1}) and we set 7':= 1/t €
A({ty,...,t,_1})- Again in case 7" € B(T — {t¢,}, iy,...,i,_,) over F,,
there is no problem, for in this situation we may view (7Tx})* =
(7(£/%x,)?)*. Tt follows however from the definitions that necessarily
v € B(T — {t,}, i},...,i,_,) occurs except in the case where 7 = ¢,.. In
examining this case we note that over F, we may apply the identity
1-a¥»/0+a)?*=1-2a+a*/(1+a)* with a®=7"({,x})* to
obtain mod F;? that:

(1= a7(7,x2)")

=] - [ZWY/2((fn»x?)*1/2 + WY/Z(fn/xiz)*)(l + 777/2(5 xz)*l/z)—z]

; n'vi
=1— 70(2)+7/2hi
where
h = c((f,,,x?)*l/z + a2(5,x2)")(1 + wY/Z(fn,xf)*l/z)—z,

with ¢ = 7°@ /2. Since h, = ct/*x,, these residues are all independent in
ZF(12/*) mod Z. Thus these r-folds can be viewed as either Type A (iii) or
Type B (ii1) generators for V(T — {t,.}) over F,,, depending upon whether
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v(2) +v/2 € 2G or not. One treats the case of the r-folds of the form
({-u,~t;,...,~; ) in exactly the same manner. This concludes Case 2.

It now follows from Cases 1 and 2 that all the r-folds in o must have
a “t,”-term as otherwise we would have a non-trivial relation amongst the
generators of V(T — {¢,}) in F, contradicting our inductive hypotheses.
This concludes Step 1.

Step 2. We now consider the field F,_,:= F(¢}/2)), and we repeat
the arguments of Cases 1 and 2 above. Case 1 goes through exactly as in
Step 1 above. Case 2 goes through exactly as in Step 1 except that when
TE€ B(T,iyy...,0,_3n ’)ﬂt,, LGA{t, .ty gty with T/t =1 &
B(T - {t,_1},i1,...,i,_3,n") one has that eitherr=1¢,_;orr=1,_1t,.
The case where 7 = t,,_; can be handled exactly as in Step 1 Case 2
(where we had 7 = ¢,), to see that such a r-fold is either a Type A (iii) or
a Type B (iii) generator for V(T — {t,}). This leaves the case where

T = t,_,t,.. One notes that
(= i) )

<< ~(1 = 2(Fy_iiex?)”), -t,,,>>
as y € 2G so we find that such r-folds arising in this situation vanish in
E, oy

From this we can conclude that all the r-folds occurring in o must
have a ¢, -term and a ¢,,_,-term except those of the form:

I

Type B. (i) ({-(1 — 7Y({,_1f,x7)*), ~tiseees =t s ~ly,—m)) and

-3

(11) << (1 - ﬂ'.Y(tn’—ltn‘x ) )9 _t - i,_z’_tn’>>’

We now consider the extension F,,_, ,.:= F((-t, _yt,)"?). Clearly,
all the r-folds in o which contain both a ¢,-term and a ¢,,_,-term vanish
in F,,_; . By the argument of Step 1 Case 2 (where 7 = t,,) we see that
the remaining Type B r-folds in o listed immediately above can be
regarded as Type A (iit) or Type B (iii) for an ideal V(T — {¢,._,}) over
F, _, .. It now follows from the inductive hypothesis that such r-folds
cannot occur in . We thus conclude that every r-fold in ¢ contains both a
t,~term and a ¢,,_;-term. This concludes Step 2.

Steps 3 — n’. We now apply the arguments of Steps 1 and 2 to
F,_,:= F(t}/?,) and so forth to find that each r-fold occurring in 6 must
be of the form ({-u,-t,,...,—t,)) where u is some unit in F. We have
thus reduced to the case where r=n’+1, ie. where s = 0. This con-

cludes the proof of Proposition 2.3. ]
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In the following we consider (» — 1)-tuples I = (i},...,i,_;) of ele-
ments in {1,2,...,n'} for which i, <i, < --- <, _,. If J=
(/1 --» J.—y) is another such (r — 1)-tuple, we say that J dominates [ if
the tail end of J can be expressed as J = (..., j, i, 1,...,1,_1) (Where
1 < s <r—1)with j, > i_. (This is the same as saying that J > I in the
“right to left” lexicographic order.) We denote by ({—¢,)) the (r — 1)-fold
Pfister form ({—¢,,...,~t, )).

Lemma 2.4. Suppose I = (iy,...,i,_1), Jy,...,J, are (r — 1)-tuples,
and each J,, dominates I. Let g € U,. If

(= = 4 (-t)) € T (-, )VI(F) + I7N(F), or

k=1

((-(1 = 4 )((=t)){((-m)) € 5 ((~t; )2 (F) + I"*2(F),

k=1
then: g € A F)+ D(C(T,iy,...,i,_1))-

Proof. We treat only the first case of

(== 4g)(-t)) € X (-t ))I(F) + I (F),

k=1
the proof in the second case is entirely analogous. For each (» — 1)-tuple
J, we denote by J.:= (Jj,, jy+1---» J,—1) the (r — v)-tuple of the last
(r — v)-terms of J where j, # i, but (j, 1> 1) = (psps-c-rip_1)-
(So, i, <j, <j,+1 = i,+1.) For example, in case j,_, # i,_; then J/ =
(J._1)- Note that possibly some J,' = J, even though J, # J,. Addition-
ally, note that no two different J can have the same leftmost coefficient.
Eliminating all duplications, we list the distinct J’ sequences that occur as
J/,..., J,, ordered from greatest to least leftmost coefficient. In other
words, if J/ = (Ji, jizs---)s & = (i Juzs---) and i < k, then j; > j,;.
For each k£, 1 < k < w, we denote by j,, the leading term of J,. (This is
denoted j, in the definition of J; above, but from now on we need to
keep track of which J; this leading term corresponds to.) We denote by
s, € {1,2,...,r — 1} the unique integer such that i, <j,; <i, .5 (5, =
r— 1if i,_, <j,). According to the ordering of the J/,..., J, described
above, we have that if i < k, then s, > s, (s, is completely determined by
the length of J)).

In the above notation J;| = (jiy, i +1---5i,-1)- Thus {({~z,)) is the
Pfister form ((-¢, , —tisk+1,...,—tir_l>>. For each k with 1 <k <w we
define F, to be the iterated function field:

F.= F(<<—t1{>>*)(<<—t,2,>>*) T (<<“t1,;>>*)
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where ({~t,))*, F({{(-;))*) are as described in Theorem 1.13.
Our hypotheses, together with the Arason-Pfister Hauptsatz show that
(-1 —4g), ~t,...,~t;_»)) =0€ W(F,). We must show that this
implies § €  F) + D(C(T, iy,...,i,_,)). In case w = 0, this is a conse-
quence of Corollary 1.8 (ii). So we assume w > 1. We denote by v:
F, — Z the unramified extension of v: F — Z, as in the proof of Theorem
1.13, except iterated. Additionally, we denote the residue class field F, by
%, where for notational convenience %, = %#. Over the field F,_,, we
have that ((~(1 — 4g))){{-t;)) € {({(~t,))W(F,_;). Since J =
(Juas b5 +15+ - -5 i,1) Where j, & {iy,...,i,_,}, applying Theorem 1.13 (or
Lemma 1.12 and Corollary 1.8 (ii) in case J,, = (j,_,;)) we obtain:

gep(Z, 1) +(9:v—1)<2)(fil’---s z,_l)

+1,(F el B a By WP (0 ) -

sytl’

o~

For k with 1 < k <r—1 we denote A(k):= A(z; ,....t, ), and
Ay(k):= A(k) — {1}. For all p with 1 <p <w we define C,, C,, C
C(T,iy,...,i,_,) as follows:

C,={r=1t, -1, €C(Ti,....i, )leg<¢c;< --- <c,and

each ¢, € {i,...,i, 1} U{j,..., j,1} while ¢; € {if,...,i,_;}}

Coy=A{rlr=1,-- t, € C,yy with ¢ <ju}-

It is readily checked that, in case ¢; > j, 1y, as ju <j,_1n for
k>p-1, necessarily ¢; € {iy,...,7,_;} for all /. Hence C, =
C; UAy(p—Dforall p.

Suppose n € Ay(p) and 7€ C, where 7#n. If 7 lies in
Ao(t;,.. ., t; ), then so does Ty (modulo squares). If 7 € Ay(¢;,...,¢; )
then for some k > p, 7 € tjle,jHA(k). But now, as s, < s, we see that
TEt jkIC,j +1A4(k) (modulo squares) as well. Altogether, whenever 7 € G,
n € Ay(p), and 7 # 7, then 7 € C, (modulo squares).

We finally prove by (backwards) induction on p that:
gep(Z 1)+ Dy (C,).

The case of p = w, has been observed above. We have that

F=%_(X,....,X,)

4

’ 1,2
- = v2
(tjpl + [gl nl‘le ) )
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where J, = (Jj1, 45 415+ +-»1,-1) and {my,...,m,} = A( p). We assume the
induction hypothesis that g € (%)) + D%(Cp +1)- Using this, it follows
from Lemma 1.12 that there exist elements f, g, h, € K=
F,_1(X;; ..., X,) such that:

1) g=p(f)+ Y 782+ Y ath?, wherea= [+ Y X2
r€C, r€C S
Each 9, € 4,(p + 1) € C,,;. Thus by the preceding paragraph for all /,
7 W, 7h; X} € D (C,. ) whenever 7, # 7. From this:

(2) Y othl= Y L2+ Y (A Xh)'+H

T€C, 1 T€C, 1 n=7€4,(p)

where H € Dy ( »+1)- As remarked earlier, C,,, = G, U dy(p). If
TECly ¢ 7 e C and if T € Ay(p), ¢; ,7 & C,. The former correspond
to summands of (2), that like H, all fie in DK(C) The latter 1-h2
summands of (2), cannot be cancelled by summands from H. With th1s in

mind, substituting (2) into (1) and relabeling yields:

r 2 r

g=p(f)+ X 78’ +( Zﬁl‘)(lhl) + ) t-,ﬁlhlz-
T€C, =1 I=1

According to Lemma 1.11, g € &(#,_;) + D%_I(CP). This completes the

induction. From the p = 1 case, we find that:

g€ o(F) + Dg(C,) c p(F) + D(C(T, iy, ..., i,_,))
which completes the proof of the Lemma. a

PROPOSITION 2.5. Whenever r < n’ + 1, the ideal quotient
VPO(F)/I"Y(F) is freely generated by the Type C generators listed in
2.1.

Proof. Given any sum ¢ of generators for V*®(F), using the multi-
linearity of r-folds mod I ’“(F ) we may combine all summands of the
form ((-(1 — g;), —t;,- )) for fixed i, i,,...,i,_; into a single
r-fold of the form ( ( ];, i»--+»—t;_)) where we still have that
(1-f)/4 & F)+ D(C(T,iy,...,i,_;)). In what follows we assume
that only summands of forms of this type ({(-f, ~t;,..., ¢, _)) occur in
o. The general case where r-folds of the form ((-(1 — g)),

~t;,...s—1; ,,—m)) also occur is handled analogously; by first passing to
F(vrl/ 2) to ehmmate the r-folds not containing a “z”-term and then
applying the analogue of the argument below to ehmmate the summands

with “a ”-terms.
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We shall now prove that if a sum of r-folds of this form lies in
I"*Y(F) then it is a trivial sum. From this the result will follow. We work
with the (r — 1)-tuples (i},...,i,_;) in the linear order of domination
described above. We fix I = (iy,...,i,_;) to be the least (r — 1)-tuple
occurring in o. Let ({(—(1 — 4g)))((-t;)) be the corresponding summand
in o. For the remaining (r — 1)-tuples J,,..., J, occurring in o, with each
J, dominating I, we have

(=1 - 4)))((-1)) € T (-, ))I(F) + I"*X(F).

k=1
It follows from Lemma 2.4 that g € (#) + D(C(T, iy,...,i,_;)). This
contradiction proves the Proposition. O

DEerFINITION 2.6. We define V,(F):= V,({t,...,t,}), where as we
recall {7,,...,7,} forms a 2-basis for &#. We also define VY(F), for
vy € A, to be the subideal of V,(F) generated by I"*1(F), and all the
Type A, B, or C r-folds, where the leading units lie in U". Finally we
define:

VY=Y VXF).
8>y

THEOREM 2.7. The ideal V,(F) is freely generated mod I"*'(F) by the
generators of Type A, B, C listed in 2.1.

Proof. This is why we proved Propositions 2.3 and 2.5. O

In what follows we record the structure of the ideal quotients
V,Y(F)/V,Y(F). These quotients provide the key to all the results of the
rest of this paper. These results can be viewed as the ideal theoretic
analogues of the cohomological results of Kato (cf. [K]) obtained in the
complete discrete case. As remarked in the beginning of this section, all of
these results can be generalized to the non-discrete case using the general
results of §1, however this has been omitted to free the reader from the
many extra pages of cumbersome notation that would be involved.

The generators listed in List 2.1 were listed in a manner to accom-
odate the inductive nature of the proofs of Propositions 2.2 and 2.3. For
future reference we record here the simplifications that occur in this list
when T = {1,,1,,...,¢,}, which is only case we care about from this
point on anyway. In this new list, since #%({;: t, € T) = &, the Type A
(iii) and Type B (iii) generators become vacuous. Also, we have been able
to drop the sign change factor (-1)*® in the Type A (i) generators, this
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being a simple basis change modulo Type B and Typc C generators. Thus
the Type A (i) and (ii) may be combined in one list.

List 2.8. Let r > 2. We consider all » — 1 or r — 2-tuples (i;,...,i,_;)
and (iy,...,i,_,) withl <i < --- <i,_, <n (tesp. i,_, < n). Let x;
be a Z /2Z-basis of the additive vector space of % . Then the following are
the generators of the ideal V,(F) over I"*!( F).

Type A. For y € A with y &€ 2G we have ((—(1 — #n¥(ax?)*),
~tis...,—t; )y foralla € A(ty,...,1,).

Type B. For y € Awithy € 2G and v < v(4):

@) ({(-A — 77(7x2)*), ~tiy-.s—t; ) forall T € B(iy,...,i, ).

) (- - 7 (7Fx})*), —t,...,-t,_,-m)) for all 7€
B(iy, ... i,_5).

Type C. Here y = v(4) € A.

(@) ((-Q —4f), ~t,,...,—1,_)) where these f, give a basis for
Fmod@ F) + D(C(iy,...,i,_)).

(i) ((-(1 = 4f)), ~t,,...,~t,_,—w)) where these f; give a basis for
F mod@(F) + D(C(iy,...,i,_,)).

COROLLARY 2.9. Suppose vy € A and vy & 2G. Then there is an isomor-
phism

oy F0 > V(F)/V(F)

which is defined by mapping the multi-indexed f, ;, € % to the class of
the r-fold ({-(1 — T foi ) ) i s =t _))-

Proof. This follows immediately from Theorem 2.8 and the list of
generators for V,(F) as described in 2.8 once we see that the described
map really is a group homomorphism. This follows from the observation
that for fixed i,,...,i,_, the map from % to V¥(F)/V,"(F) given by
o =1 = 7(f)*), ~t;,...,~,_)) (mod ¥V;Y(F)) is a group homomor-
phism by Fact 3.3 (iv) proved in the next section. O

COROLLARY 2.10. Suppose that y € A, y € 2G, and vy # v(4). Then
V,Y(F)/V,Y(F) is isomorphic to

®  D(BGu-i))e( @ DBl

(lsi1<-~-<i,_1sn <iy<-+- <i,_y<n
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via the map which sends the multi-indexed element f; (S

D(B(is-.ri, 1) (resp. £, , € D(Blins-...1,) tothe roid

<< (1 -7 (f,l i,_l)*), —til,...,—t,-'_l>>
(resp. << (1 - 71'7(]‘,1 ,,,,,, _2)*),—1?,.1,...,—t,-r_z,—vr>>).

Proof. This follows immediately from Theorem 2.8 and the list of
generators given in List 2.8 once we se that the defined map really is a
group homomorphism. This follows as in Corollary 2.9. O

COROLLARY 2.11. Suppose y = v(4). Then the ideal quotient
VY@ (F)/I™Y(F) is isomorphic to
®  [Fe(F)+D(Clis,....i,0)))]

1<iy<---<i,_;<n

® i< ®< [‘97/(@(3?) + D(C(lh I,_ z)))]
via the map which sends the multi-indexed f, .  (resp. f,,...,i,_;) to
the r-fold Pfister form

<<—<1 — 4. i,_l)*)’ “hipeee _ti"1>>
(resp ( (-1 = )t ) )

Proof. Again, this follows immediately from Theorem 2.7, and the list
of generators given in List 2.8. a

To close this section we shall define and compute one more ideal
quotient. In what follows, for any field K (regardless of characteristic) we
shall let W(K) denote the ring Z[K /K *]/#(K) where Z[K ' /K *?] is the
group algebra of square classes over Z, and #(K) is the ideal generated
by elements of the form [1] + [-1], [a] + [b] — [a + b] — [ab(a + b)]
whenever a,b € K; a # -b. Let (a,,...,a,)Z denote the image of [a,]
+ --- +[a,] in W(K). If the characteristic of K is not 2, then W(K) is
isomorphic to the usual Witt ring of K (cf. [L]), and if the characteristic of
K is 2, then W(K) is isomorphic to the Witt ring of symmetric bilinear
forms of K ([K2], [M2]) as defined by Milnor in [M2]. By I"(K)
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we shall mean the ideal in W(K) generated by the ‘Pfister forms’
(1] = [a]) --- (1] — [a,]) in Z[K'/K*]. As usual we denote
I"(K)/I""Y(K) by I"(K).

DEFINITION 2.12. Let F be a valued field with residue field #. We
define I"(F) to be the subideal of I"(F) generated by I"*(F) and all
r-folds of the form ({(-u,-x,,...,—x,_;)) where x;,...,x,_; € F, and
ue U with u=1€%. We define T(F) to be the ideal of W(F)
generated by all 1-folds ((-u)) where u is a unit of F satisfying
u=1€e%.

We now assume (for simplicity) that F is a discretely valued field
with residue class field %#. We construct a ring homomorphism
p,: W(F)— W(%) and a group homomorphism §,: W(F) — W(ZF)
using the group algebra definition of W(K). These constructions are
well-known (cf. [L, p. 145]), but are included here for completeness.

To construct p,, choose 7 € F with v(7) = 1. If U denotes the units
of F, then every element [f] € F'/F'? has a unique representation
mod( F?) [f] = [u][#’] for some u € U and some i = 0, 1. The mapping
[f]1~ [#] gives a group homomorphism F'/F? - % /% 2, which
induces a ring homomorphism p,: Z[F*/F?] > Z|% ' /% **]. One easily
verifies that p(F#(F)) € #(%), and hence induces the desired map p,.
By checking the behavior of p, on r-fold Pfister forms one obtains that
p, (I"(F)) € I'(¥), and hence one obtains surjections p_: I'(F) —
I'(#F).

To construct §, (often called the ‘second residue homomorphism’) we
consider the group homomorphism 8.: Z[F'/F?] -» W(%) defined by
[u] = 0 and [7u] — (u) for all u € U. One checks that #(F) C ker(d,)
so that &, induces a group homomorphism §,: W(F) — W(¥). Further,
for all r > 1, one has that & (I"(F)) € I""(%), so that one obtains
surjections §,: I'(F)— I""}(%). Lastly we observe that T(F)C
ker(6,) N ker(p,).

THEOREM 2.13. For all r > 1, the mappings p, and 9§, induce isomor-
phisms

5,8 : I'(F)/[(I"(F)NT(F))+ I'(F)] » I'(¥) e I'"'Y(%).

Proof. We define a map x: W(F) — W(F)/T(F) as follows: Let
()*: & — F" by any lifting, and consider the map x,: Z[F /% ?] —>
W(F)/T(F) defined by x,([f]) = {((f)*). This makes sense, and does
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not depend upon the choice of ( )* in view of the definition of T(F).
Also, one easily obtains that x,(#(%)) =0, and thus x; induces the
desired map x. Analogously we construct amap x,: W(%#) - I(F)/T(F)
which is induced by x,,: Z[F /% *] - I(F)/T(F) defined by x,,((f])
= ((f)*){-m))-

These two maps just described induce homomorphisms

x: I"(F) > I'(F)/(I"*}(F) +(T(F) n I'(F)))
and
X.: I"N(F) > I'(F)/((I'(F) 0 T(F)) + I""\(F)).

According to the remarks preceding the Theorem, the map

p,®8,: I'(F)/(I"(F)NT(F)) + I'(F)) > I'(#) o I""/(#)

is surjective, since ((-w)YW(F) C ker(p,) and 8,({({-m))I""Y(F)) =
I""Y(%#). Hence, to prove the Theorem it suffices to prove that
(p, + 6,)(x + x,) is the identity on I'(F)/((I'(F) N T(F)) + I'(F)).
As I'(F) is generated by r-folds of the form ({(-u,,...,-u,)) and
({~uty,...,~u,_j,—m)) mod I’(F) where the u; are units of F with
u,+1 €%, it suffices to see what happens to these elements.
Evidently p,({({-uy, ..., -u,))) = ({(-uy,...,-u,)) while
Po(((=ttyy - s =,y —m))) = 0, and 8, (((~uy,...,-u,))) = 0 while
8, (((~thyy- s =ty gy =))) = ((Tiy.r =i, _1)). As

X (s 1)) = (@), ~(@,)") )

={{(-uy,...,-u,)) mod T(F),

and as
Xw<<“—‘1’ SRR “_‘r-l» = <<‘(‘—‘1)*, ) _(ar—l)*’ “‘77>>

=((-uy,...,~u,_1,~m)) mod T(F),
the result follows. 0

3. The graded analogue of Springer’s theorem. We continue to
assume that F is a discretely valued dyadic valued field of characteristic 0
with residue class field # of characteristic 2. In this section we accom-
plish two things. First we relate the ideals V,Y( F) defined in §2 to some
more natural ideals I™Y(F). Second, we use these latter ideals to prove
results that relate GW(F) to GW(%#) and the value v(2) € Z. These
results are the dyadic analogues of the graded version of Springer’s
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Theorem (cf. [S] and [W]). We recall that » is the 2-dimension of %#. The
results of this section in the special case where n = 1 are crucial to the
examples studied in §4.

DEFINITION 3.1. For all r > 1 and y > O the ideal T,7(F) is the ideal
of W(F) generated by all r-folds of the form {((-u,-x,,...,-x,_;)),
where u € U". We define I”Y(F) by I"Y(F):= TX(F) + I"*!(F).

It is clear from the definitions that V,Y(F) C I"Y(F). In some sense
one hopes that these two ideals should be ‘almost equal’, but this is hard
to make precise. Using List 2.8, we do however have the following:

LEMMA 3.2. Ifr > 2 and v € T,Y(F), then there exist elements o0,, . .., 0,
from List 2.8 such that 1 = o, + - -+ +0, mod(TY*Y(F) + T, (F)). Con-
sequently the inclusions V,Y(F) C I"Y(F) induce surjections i,.:
VX F)/VYT F) > I"(F)/I""*YF) for all vy € A. In particular, if
r>n+2, thenI™"(F)=I"""Y(F) forall y.

The proof of Lemma 3.2 uses a number of computational facts, which
we now list separately for future reference.

Facts 3.3. Let x, y, 7, p € F with v(7), v(p) > 0. Then:
@ ((=x)) + (2> = =xp)) + ({-x,-y)) in W(F).
@) ({1 = »),—x)) = (-1 = y), —=xy))
(i) ((—1 + x), -1 +y))) = (-1 = xp),-x(1 + x)(1 + »)))
(V) (-1 = (7 + p)), —=x}) = (-1 —7), —x) )+ ({(~(1 - p), —x))
mod(7yM**®)(F) + T;(F))
V) If v(x) =v(y) =v(x + y) = 0 then

((~(1 = 2),~(x + »)))
=((-(1 =(x/(x +y))7),-x))
+{{=(1 = (3/(x + y))m), ) mod(T7*™(F) + T}(F)).

Proof. (1) and (i1) are easy and well-known. For (iii) note that
(=1 + x),~(1 + p))) = ((~(1'+ x), x(1 + »))) by (ii) and that

(1,-(1 + x),x + xp,—x(1 + x)(1 + y))

=(1,-(1 = xp), (@ + x)(x + )1 = xp), x(1 + x)(1 + y))
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since (1 + x) + (x + xy) = —(1 — xy). Thus (iii) follows. For (iv) note
that

<<'_(1 - W),—X>> + <<—(1 - p),-x))
=((~(1 = 7)(1 = p),~x)) mod(T(F))
in view of (i), and that
((-1 =)@ = p),-x)) =({~(1 = (7 + p) + mp),~x))
= ((-(1 (7 + p)), -x)) mod(T3"**®(F) + T}(F))
since (1 — (7 + p) + mp) = (1 — (7 + p))u for some u € U™+ This
proves (iv). Finally for (v) note that by (iv)
((-( = 7),~(x +)))
=((-(1 =(x/(x +y)7),~(x +)))

+({~(1 = (r/(x + y))7),~(x +»))) mod(T*(F) + TI(F)),
the latter sum being equal to
(-1 = (x/(x + ) 7), —xm)) + ((=(1 = (3/(x + y)) ), ~ym))
by (ii). Mod(T;( F)) this is
= (-1 = (x/(x + p)7),-x)) + ({(-(1 = (x/(x + y))7),~m))

+((-( =/ (x + ) 7)) + (-1 =/ (x + p))7), -m)).
By (iv), then (ii) we find mod(T,?*™(F) + T}(F)) that
((—0 = (/o + ) m)-m)) + (-1 = (3/(x + y)) ), )

= ((-(0 = m),-m)) = ((-(1 = m),-1)) = 0.

This proves (v). O

Proof of Lemma 3.2. By definition T,Y(F) is generated by all r-folds
of the form ({-u,-x,...,-x,_;)) where u € U". Thus it suffices to
prove the Lemma for such r-folds. If u € U**!, there is nothing to prove.
If some x; is a unit with X; =1 € % then by 3.3 (iii) we see that this
r-fold lies in T,Y*!( F), so again there is nothing to prove. Applying (i), the
preceding precisely means that it suffices to study the r-folds of the form
{~uy,—x4,...,—x,_1)) and {({(-u,—xq,...,—x,_,,—7)) where u € (U" —
UY*1), and the x; are units with X, # 1 € #.
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Next observe that any such r-fold can be written mod(7,*}( F) +
T} ,(F)) as a sum of r-folds of the form ((-u,—t,,...,~t, )) or
((-u,~t;,...,~t; ,-m)) where u€ UY and 1 <i; < --- <i,_;<n.
This follows from 3.3 (iii) and (v), together with the fact that as =
F*(t,,...,[,) one can express

= ) x}t/ mod(7) in F.

je2”
Thus using the multilinearity mod(7, ;( F)) (this is 3.3(i)) one can expand
the r-folds ({(-u,-x,,...,-x,_;)) and {({(-u,~x,,...,—x,_,,—m)) into a

sum of r-folds of the desired shape. Finally, taking 3.3 (iii) and (iv)
together, we observe that mod(ZY*}(F) + T ,(F)) it is only necessary
to consider those r-folds of the form {((-u,-t,,...,-¢; )) and
((~u,~t;,...,~t, _,—m)) where the #~"(1 — u)’s range over a Z/2Z-ba-
sis of #*. In case y & 2G, the result is now clear since the Type A
generators given in List 2.8 include such u’s with the 77 7(1 — u)’s
ranging over a Z/2Z-basis of #*.

In case y € 2G and y # v(4), according to the description of the
Type B generators listed in 2.8, we must show that r-folds of the form
(1 = a(FxD)*), by, ..., =1, )Y (tesp. ((~(1 — m"(7x?)*),
TR M w))) where TE A(T) B(iy,...,i,_,) (tesp. T €
A(T) — B(zl, i,_,)) can be represented mod(TY*Y(F) + T ,(F)).
If r=1, then as y €2G, 0 <y <wv(4), there is some z € F with
z2(1 — #¥(x?)*) € U'*L. Thus there is no problem in this case. The
case of 7 # 1 is treated by inducting backwards on the order of the
r — 1-tuple (iy,...,i,_;) (resp. (iy,...,i,_,)) in the lexicographic order
in n"~! (resp., n"~2). Suppose such 7 has the form 7 = ¢,7’ where 7’ €
At ,...ot,) and ij € (iy...,0,_y) (&p. i; € {iy,..., 0 5))
Since (( (1 - 7r7(1x2)*), ~t,7’)) =0 (remember that y € 2G im-
plies 7" € F?), we find by 3.3 (i) that (-1 = 7(7x})*), D)) =
(-1 — 7(7x2)*), -1’)) mod T;(F). This shows that the orlgmal
r-fold can be written mod (T.Y*}(F) + T ,(F)) as a sum of r-folds
where the (r — 1)-tuples involved (resp. (r — 2)-tuples) are larger
than (i},...,i,_,) (resp. (i,...,i,_,)) in the lexicographic order.
This completes the case where y € 2G and y # v(4).

Finally we treat the case where y = v(4). We must see that r-folds of
the form ({(—(1 — 4g;), ~t;,...,~¢; _)) can be represented where the g,
form a basis of WF) + D(A — B(iy,...,i,_1))- Note however that if
g, € 9(F), then for some z € F one has that z*(1 — 4g,) € U"™®™*!, 5o
that such r-folds lie in 7"*!, We are thus reduced to treating g;’s where
the g,’s are assumed to lie in 7% 2 for some © € A, — B(iy,...,i,_;). The
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arguments applied above for the case y € 2G apply verbatim in this case.
This completes the proof of the first statement of Lemma 3.2. The second
statement is an immediate consequence of the first, given the definitions.
This completes the proof of 3.2. a

Recall [D], that a valued field F is called 2-Henselian if Hensel’s
Lemma holds for quadratic polynomials over F, i.e. if a,b € Oy and if
x2 + ax + b is separable with a root in %, then x2? + ax + b has a root
in F. In our case this implies that if u € U*® satisfies (1 — u) /4 € ( F),
then u € F?2. One particularly important property of 2-Henselian valua-
tions is that if F is 2-Henselian, then so is any quadratic extension of F
(in the necessarily unique extended valuation). For some details see [D].

Our next result related the ideals T(F) and I”(F) defined in 2.12 to
the ideal VY( F).

THEOREM 3.4. If F is a discretely valued, dyadic valued field, and if F
is 2-Henselian, then for all r we have:

(i) VX(F)=I1"'(F) forall y € A

(i) I'(F) N T(F) c I'(F) = I"X(F). In particular I'(F)/I"(F) =
I'F)e I (%)

Proof. First note that A is a finite set. Next note that U*@*! c F?
by the 2-Henselian property, and thus we may conclude that
({~uy=xy,...,~%,_1)) = 0 € W(F) whenever u € U*®*!(F). In partic-
ular, if y > v(4) this means that V,Y(F) = I"Y(F) = I"*(F). Now let
p € I™(F) for y € A. By the surjectivity of i, , we can find some
X1 € VX(F) with x; — p € I"""Y(F). Repeating this process (noting that
VY+l c VY(F)) a sufficient number of times, we find some x € V,Y(F)
with x — p € I""@*Y(F) = I"*Y(F). As I"*(F) C V,(F) we conclude
that I"Y(F) C V,Y(F), which proves (i).

To prove (ii) we apply the first statement of Lemma 3.2 and proceed
by induction on r to prove the stronger statement that I'(F) N T(F) C
TY(F). As TX(F) c I"(F), (ii) will follow. If r = 1 the result is trivial, as
T(F) = T}(F). For r =2 the result holds since T(F) is generated by
1-fold Pfister forms and hence I2(F) N T(F) = T(F) - IF = T}(F). For
r > 2,if p € I'(F) N T(F), then by induction we have that p € T (F),
so choose y maximal so that p € T,Y. ,(F) + T}(F). Applying 3.2 we can
find o, in List 2.8 such that p = o, + - -+ +0, mod(T,Y;}(F) + TX(F)).
In particular, p = 0; + - -+ +0, mod(V,Y*}( F)), using the first part of this
Theorem. However, p € I’( F), so according to Theorem 2.8 each o; must
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occur with even multiplicity. But 20, € TX(F), so p € Y1 (F) + TX(F),
and thus no maximal y exists. Finally as 7Y ,(F) = 0 for y > v(4) we
have I'(F) N T(F) € TX(F). The final statement follows from this and
from Theorem 2.13. This proves Theorem 3.4. a

THEOREM 3.5. If F is discretely valued, then for all r > 2 and for all
Y €4,
eyt VIE)/V(F) = I'7(F) /177 (F)

is an isomorphism.

Proof. By the preceding Lemma, the Theorem is true if F is 2-
Henselian. If F is not 2-Henselian, let F, be a Henselization of F inside
the algebraic closure of F. Consider the commutative diagram:

VANF)/V)(F) -  I"(F)/I""*Y(F)
l V)
I/ry(Fh)/f/ry(Fh) - I"(F,)/I"""(F,)
The left-hand vertical map is an isomorphism in view of Corollaries 2.9,
2.10, 2.11 and the lower horizontal map is an isomorphism as just

mentioned. This shows that p, . is injective and proves the Theorem in
view of Lemma 3.2. a

We are now ready to describe the ‘graded analogue’ of Springer’s
Theorem in the discrete case. We refer the reader to the paper of A.
Wadsworth [W, Prop. 4.7] for the same result in the non-dyadic case. The
result, as stated, is slightly unsatisfactory in that only a graded group
homomorphism is described, no a graded ring homomorphism. We do
remark however, that it is reasonably clear from the computations that
one could describe a ring structure (although extremely messy) on
A(Z, v(4)) below. This ring structure would depend upon the ‘arithmetic’
of the particular uniformizing parameter =, as well as &% and v(4). To do
this would take us too far afield, and is not necessary for the current
applications of this paper.

In the following we let A = {1,2,...,v(4)} and for each r > 2 we set
A(F,v@)=I"(F oI (F)o @ ., V(F) where by V(F) we
mean (%) if y & 2G, we mean

o8, )
1<ih<---<i,_;€n\7€B(i,..., i_1)

ea( ® ( (43) fgﬂ))
1<iy< -+ <i,_,<n ‘TEB(,..., i,_5)
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when y € 2G, y # v(4), and we mean

(@ (V) Dl )]

e <i,_1<n

of @ _(#)/F)+D(Clin.i )

cee<i,_,<n

whenever vy = v(4). By 4, we simply mean Z/2Z and A4,(%,v(4)):=
(F /F*HSZL/L ® 4 VI'(F) where in this case V'(F)=%
when vy & 2G, V)(F)= (@TeAO(T)q‘-é'FZ) when y € 2G, y # v(4), and
VIO(F) = #/0(F). We then denote by A(F,v(4)) the graded group
O A(F, v(4).

According to the preceding Theorems 3.4, 3.5 and Corollaries 2.9,
2.10, 2.11 we have that in case F is 2-Henselian, whenever r > 2 that

I'(F)/I(F) @ - @I"/(F) /I"V*(F)
® - BIO(F)/ I (F)=4,(F,0(4)),

with all the identifications mentioned in these previous results. Further,
one is able to identity the elementary 2-group I'(F)/I""}(F) with the
direct sum I'(F)/I"(F) & --- @ I7"®(F)/I""Y(F) in this case by using
the List 2.8 elements as “representatives” for the elements of the quotients
I™S(F)/I™*Y(F) inside I'(F)/I"*'(F). Now, in case F is not 2-
Henselian let F, be a Henselian of F. The composition of the functorial
maps I'(F)/I"*YF) - I'(F,)/I""}(F,) together with all the above
mentioned identifications give rise to a map w,: I'(F)/I""F) -
A(F, 0(4).

For r = 1 the map w,: I(F)/I*(F) - A,(%,v(4)) arises from the
identification I(F,)/I*(F,) = F; /F;*. By valuation theory it follows
that F, /F;’=%"/F* & 1/2Z & U'/(U"2. Since F, is Henselian,
U@+ F) c F%, so we can decompose

U'/(U) = U UAUY) @ U (U /U3 (UY)
®--- e U'D(UY /(U

Again, by valuation theory and the Henselian condition, one readily
checks that the maps r; F— U(UY)?/U"*}U")? given by r(f)=
1+ a{f}]forl <i<uv(4),and r,,(f)=[1+ 4{f}] are well-defined
surjective homomorphisms. Such 7, are injective if i is odd, have kernel
F? if i is even < v(4), and has kernel (%) if i = v(4). From this
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F; /F;? = A, (Z,v(4)) follows. We may now give:

ANALOGUE OF SPRINGER’S THEOREM 3.6. Suppose F is a discretely
valued field with residue field % of characteristic 2. Then the previously
described maps w, induce a surjective graded group homomorphism

w: GW(F) > A(F,v(4)).
Moreover, such  is an isomorphism if and only if F is 2-Henselian.

Proof. The surjectivity of w is a consequence of the surjectivity of
F'/F? > F; /F;* which gives the surjectivity of I"(F)/I"*'(F) -
I'(F,)/I"*Y(F,). If F is 2-Henselian, then by earlier remarks, « is an
isomorphism. Conversely, if  is an isomorphism, then necessarily F*/F?
= I(F)/I*(F) = I(F,)/I*(F,) = F; /(F,)"> Since F as characteristic 0,
this implies that F must be 2-Henselian. a

COROLLARY 3.7. If F is 2-Henselian and discretely valued, then
I""3(F)=0 and I"**(F)=%/F) + F(ty,...,t,). In particular,
I""Y(F)=0if x F)=%.

4. Applications to the amenability problem. As mentioned in the
introduction, one reason for looking for a generalization of Springer’s
Theorem was to study in greater detail certain fields which are known to
provide counterexamples to the phenomenon of ‘l-amenability’. The
problem of 1-amenability was first studied in detail in [ELW1], and
subsequently counterexamples were found in [ELTW]. In this section we
first look closely at some such counterexamples, both to illustrate how one
may apply the results of §3, and to answer some questions about such
counterexamples not resolved in [ELTW]. We then shall describe a
counterexample to the property known as ‘strong 1-amenability’ intro-
duced in [ELW?2], the first such counterexample found. For the most part
we shall follow the notation of [ELTW].

Throughout this section we will assume that F is 2-Henselian
with G=2Z, vQ=1lor2, n=11ie. F=F2+iF? and that F=
AF) + tF? where t € U with ¢ F2. We fix a uniformizing parame-
ter 7 € F (i.e. v(7) =1 € G = Z). Much of this section can be gener-
alized without these restrictions, but we have chosen these conditions to
keep the computations reasonable in length. In order to facilitate our
computations we shall fix a lifting ( )*: &% — F which is constructed as
follows: Let ( )§: &# — F be any fixed lifting with (1)¥ = 1, and then for
feF with f=a®+ tb* we set (f)* = (a)> + t(b)>. We note that
()* = t, and it is easily seen that whenever f, g € # then (f)*(g)* =
(f8)* mod(2, 7?) and (f)* + (8)* = (f + g)*mod(2, 7*).
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We begin by studying quadratic extensions of F. If M is a quadratic
extension of F, the valuation of F extends uniquely to a valuation of M
(as F is 2-Henselian), whose residue class field is denoted M and value
group is denoted G,,. As F is 2-Henselian, and since G is discrete, it
follows that F has no immediate quadratic extensions (not necessarily
true if G is not discrete). Thus in case v(2) = 1 there are four types of
quadratic extensions of F, which we name and describe as follows:

(i) inseparably unramified: Here M = F(t'/?) where t € U and
TEF2 -
(ii) tamely ramified: Here M = F(w'/?) where v(7) = 1in G = Z.

(iii) separably unramified: Here M = F((1 + 4g)'/?) where g € O,
and g & @(%). In this case one easily obtains that M = % (&) where
a=(1+(1+4g)"/?)/2 satisfies a*> + @ = g in F.

(iv) wildly ramified: Here M = F((1 + wf)!/?) where v(7) = 1, and
f € Op with f+ 0 € #. In this case one can check that

o(1+(1 + af)"?) = v(7)/2 = 1/2 € v(M).

In case v(2) > 1, then one obtains an additional case:
(v) wildly unramified. Here M = F((1 + 7%f)'/?) where 0 < v(7) <
v(2) and f & 2. In this case one can check that

y=7"Y1+(1 +7%)"?) satisfies y> = fin &

so that M = F(f1/?).

Cases (i) and (v) may strike the reader as odd at first glance, but this
is because they do not occur in number theory where residue fields are
always perfect. It is also customary, when defining unramified extensions,
to include the condition that the degree be prime to the characteristic of
&% . We ignore this convention since we are exclusively interested in the
case where [M : F] is a power of char( %).

Before proceeding to a sequence of computational Lemmas involving
these quadratic extensions of F, we record here a Lemma that provides us
with some conventient technical devices for proving these Lemmas.

LeEMMA 4.1. Suppose the residue field of F satisfies F=F* + iF >
Then for any m € F* with v(m) > 0:
(i) The map % — I(F)/IVwUD*Y(F) given by f —
(-~ + m(f)*))) is an additive group homomorphism that is independent
of the choice of ()*.
(i) The map F*— F* given by a* + tb* — b*>/(a* + ib?) is a group
homomorphism with kernel F *2.
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(i) The map F°—> F* given by a*>+ th*> — ab/(a* + th?) is a
group homomorphism with kernel F > U {F 2,

Proof. (i) and (ii) follow by straightforward computations. So does
(iii), but also note that

b2/(a? + ib*) = (ab/(a* + 2))* + {(b%/(a® + b?))".
Thus the map in (iii) is really the composite of the map in (i) with the
map a2 + ib*> — a. O

Until further notice we shall assume that v(2) = 1. For each of the
four cases listed above we shall compute generators for the
kernels I*(M/F):= ker(I*(F) —» I*(M)). Our hypothesis that
F= @ F) + iF?, together with Corollary 3.7 gives that I>(F) = 0. Thus
according to 3.6, we can list a Z /2Z-basis for I*( F) as follows:

(1) ({=(x,)*,—=)) where the x,’s range over a basis of F */F 2,

(i) ({(-(1 + =(f;)*), —t)) where the f,’s range over a basis of #™,

(i) {(—(1 + 4(g,)*),—m)) where the g/’s range over a basis of
F* mod @ F).

We now give:

LemMA 4.2. (Inseparably Unramified Case.) Suppose that v(2) = 1 and
M = F(t'/?). Then I>(M/F) has as a Z/2Z-basis the following 2-folds:

@) ({2, -7))
i) ((~(1 + 7(f;)*), ~t)) where the f,’s range over a basis of F™*.

Proof. Clearly each of the listed 2-folds vanishes in W(M). To see
that these form a basis for 1>(M/F) we must see that they generate
I>(M/F). For this we show that the remaining generators for I(F)
remain independent inside I%(M). These remaining generators can be
listed as:

(i) {{(-(x;)*, -m)) where the x,’s range over a basis of
F N F2ULF2).

(i) ((-(1 + 4(g;)*),-m)) where the g,’s range over a basis of
F* mod @ F).

Evidently, the x,’s in (i) can all be expressed in the form x, = y> + ¢
(y, # 0) since F= %2 + %2 For such x, we have that (x,)* = (y,)% + t.
Thus as

(00 + (003 + 82 =1~ 2205 + )
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in M, setting z, = (y)3/(»)% + 1'/?)? gives

<<—(x,.)*, —77>>§ w((~(1 = 20Y2), 7)) =((-(1-21%2), 2m'%z,))
E<<-(1 +21%,), /%)) mod I*?(M).

Note that z, = y,/y> + { € FC F(¢*/*)?, which is the image of x, under
the map of part (ii1) of Lemma 4.1. Since the x,’s are all independent mod
the kernel of this map, we see by part (i) of Lemma 4.1 and by Corollary
2.9 that the {((~(1 + 2f/?z,),-w)) are necessarily independent in
I (M) /I*?*(M).

According to Lemma 1.12 #N @ F(¢/?)) = o(F). Thus the g,’s
remain independent in % (¢/?) mod (% (t*/?)), so that the type (iii)
generators listed above remain independent in I%?(M). This proves the
Lemma. O

LEMMA 4.3. (Tamely Ramified Case.) Suppose v(2) =1 and M =
F(7/*). Then I*(M/F) has as a Z/2Z-basis the following 2-folds:
(1) {({(~(x,)*,—7)) where the x, range over a basis of F * /F .
(i) ((~(1 — 7(f,)*), —t)) where the f, range over a basis of {F *.
(i) ((—(1 + 4(g,)*),-7)) where the g, range over a basis of
F* mod @ F).

Proof. The fact that the type (i) or (iii) 2-folds vanish in W(M) is
clear. For the type (i) 2-folds note that as (f,)* € tF?, for such f, we
have that ((-(1 — #(f)*), —t)) = ((-1 — #(f,)*),-7)) by Fact 3.3
(i1), so likewise these 2-folds vanish in W( M).

The remaining basis elements for I?(F) can be listed as follows:

(i) ((-(1 — 7(f;)*),~t)) where the f, range over a basis of %2,
Using the fact that (f,)* € F? for these f,’s we find that in M"/M? we
have

1= o] = [0 o)1 (o)) ]
- [1 — 2 (£)*) + w,]

for some w, € M with v(w,) > v(4). Since v(27'/?) & 2G,,, and as M =
&, we observe that the 2-folds

<<‘(1 - '”(fi)*),—t>> = <<—(1 - 2(vr(f,.)*)1/2 + w,.),—t>>
= (-1 = 2"} ~1) ) moa 12 a1)
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by 3.3. Thus they are independent in I>*@™*)( M) by Corollary 2.9. This
proves the Lemma. O

LEMMA 4.4. (Separably Unramified Case.) Suppose v(2) =1 and M =
F((1 + 4g)'/?) where g € O and g & @ F). Then I*(M/F) is generated
by the 2-fold ({—(1 + 4g),-m)).

Proof. Clearly the stated form vanishes in W(M). We note that
Gy = Gy, and that M = F (@) where &* + & = g. Thus #N M?* = F?2,
and by a direct calculation #FN (M) =@ F)U (g + @ F)). From
these observations it is clear by Theorem 3.6 that the remaining generators
of I*(F) remain linearly independent in I*(M). This proves the Lem-
ma. a

One last Lemma of this type is:

LemMA 4.5. (Wildly Ramified Case.) Suppose v(2)=1 and M =
F(1 + 7)Y?). Then I*(M/F) has as a Z./2Z-basis the following 2-folds:

i) ((~@ + 7(f)*), 1)) where p(f,) € tF~

(i) {({(—(1 + 4(g,)*),-m)) where the g, range over a basis of
F mod p F).

Proof. We set 7’ =1+ (1 + 7)/? inside M and note that #’* =
7 + 277 so that p(7”%) = v(7) = 0(2) = 1, and [7] = [1 — 27""] inside
M* /M. For f = a* + th* € # * we find mod I>*®( M) that

(=) =m) ) = ((~(N)" - = 20"7Y)))
= ((~((a)” + 1(6)3). ~(1 - 207°1)))
(-1 = (@R A(@ + (o)F)2m), -1(e)57))
{1 =(@F /@3 + @) 2r ). =@
(by Fact 3.3(v))
= (-1 = (®F /(@) = eB))2r). 1))

= <<~(1 —(tb/(a® + tbz))*27r"1),—t>>.

Thus by Lemma 4.1 (ii), and by Corollary 2.9, we see that for f; chosen
independent mod %2, the 2-folds ({~(f,)*,—m)) are independent in
I (M) mod I**P(M).



64 BILL JACOB
Suppose now that @( f) € i# % Then f? + f = ib* implies that ( f )*
= ()& + t(b)? = (f)** + t(b)* mod(4) (as a = bmod(2) implies a?

= b?>mod(4) inside M). In particular, recalling that #’> — 27’ = =, we
find that

(1= (1)) + o((0)3)) = 1 = 22°(1)* + 2(()** + 1(b)3)

=1+ #(f)*mod(8) in M.

It follows that ((—(1 + #(f)*),¢t)) =0 € W(M). This shows that the
listed elements of type (ii) vanish in W(M). In view of Lemma 3.3 (iii)
together with the fact that M 1is 2-Henselian, since = =
1 — 27" ' mod M2 is a 1-unit in M, the type (iii) generators all vanish in
M.

For a type (ii) generator of I%(F) with f = a* + tb*> we have using
that 7*(F) = 0 and that U*“") c M? that

(-4 () = (- + (7 = 2090)°).1))
_ <<_(1 4 W,z(f)*)’t>> 4 <<_(1 - 271"(f)*),t>>

(by Fact 3.3 (iv))

= (0 7@, 0) + (-0 + 7 (050).1))

+H{(1-m @O /(1 + 7 @)1+ 7'(6)7), 1))

(-1 -27(1)°). 1))

=((-(1+ 7@V (1 - w(@)). 1))

(1 + 7(@(0)71). 1)) + ((-(1 = 20°(1)*). 1) )

= (-1 +m@i/1 - 7)), t>>
+H((-L=20(0)%). 1))

= (-1 + 22((@)5 + 1)) 1))

/\
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Next we observe that the homomorphism % — % defined by a? + ib? —
a + a* + tb? has kernel precisely those f € % such that @(f) € {F 2
For, o(f) € i#? if and only if f+ f?= ib? which is equivalent
to f=f2+ th®. Thus for f, chosen to be independent in %
mod{ f: @(f) € tF?*}, Corollary 2.9 shows the 2-folds of the form
({—=(1 + 7(f)*),t)) are independent in I>*C")(M) mod(I**(M)).

The Lemma is now proved. O

We now turn to the study of multiquadratic extensions M =
F(x172,...,x?) of F. Following [ELTW], for such an extension we
define ID(M/F) = ({{=x1)),...,{{-x,))) € W(F). Clearly ID(M/F)
C I(M/F). The quotient I(M/F)/ID(M/F) is denoted by h,(M/F),
and in case h,(M/F) is trivial M is said to be a 1-amenable extension of
F. In [ELW1] the question was raised if all multiquadratic extensions were
1-amenable, (and it was proved there in case n = 1 or 2). However in
[ELTW] a counterexample with n = 3 was discovered. In Theorem 4.8
below we study a version of the counterexample of [ELTW] and show that
for all n > 3 there exist M with h,(M/F) = Z/2Z. From this it follows
(see Remark 4.10) that counterexamples exist for all n > 3 with h,(M/F)
any finite elementary 2-group.

COROLLARY 4.6. Ifv(2) =1, F=F 2 + iF* = o F) + iF?, and if
M is a multiquadratic extension of F which either contains both an insepara-
ble unramified quadratic subextension and a tamely ramified quadratic
subextension, or does not contain any wildly ramified subquadratic exten-
sions, then M is a 1-amenable extension of F.

Proof. In the first case, if M contains both an inseparable unramified
and a tamely ramified quadratic subextension, then without any loss of
generality we may assume that /2 and #'/? lie in M. According to
Lemmas 4.2 and 4.3 we find that I?(F) C ID(M/F). Recalling from
[ELTW] that h,(M/F)=I1*(M/F)/I*D(M/F) where I?’D(M/F) =
ID(M/F) N I*(M/F), we see that h,(M/F) = 0 in this case.

In the second case, in view of the case just treated we can assume that
M = F(x}?,...,x}/?) where x, =1+ 4g,,...,x,_;=1+4g, , and
where x, is either ¢, #, or 1 + 4g,. In case x, is ¢, then I*(F) is
generated over ID(M /F) N I*(F) by the following 2-folds:

(i) ({(—(x)*, —m)) where the x range over a basis of & " /(F %, i.F ?).

(i) ({(—-(1 + 4h,),-m)) where the h,’s range over a basis of
F/AF) + G, where G is generated by g,...,8,_;-
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Setting F, = F(x}/%,...,x%/2) one sees by Lemma 4.1 that both the (i)
and (iii) type 2-folds remain independent in I%( F(¢}/?)) = I*(M). Thus
W(M/F) = ID(M/F) in this case. In case x, = =, the proof is the same,
only that Lemma 4.2 is used. Finally, in case x, =1 + 4g, then by
repeated applications of Lemma 4.3 one sees that 1°(M/F) is generated
precisely by ((—-(1 + 4g)),-7)),...,{({(-(1 + 4g,),-7)) from which
I>(M/F) = I’D(M/F) immediately follows. This proves the
Corollary. O

For the next Theorem we shall assume that %/@(.%) is infinite as
well as F= @ F) + t% 2. We show in the following Lemma that indeed
such fields do exist, and that these properties are inherited under quadratic
extensions (separable or inseparable). # ((u)) denotes the field of formal
Laurent series over %#. The proof of the Lemma, being entirely straight-
forward is omitted.

LeMMA 4.7. If & is a field of characteristic 2, then:

() If F is perfect then F((u))/I(F(w) + t(F(w))’] =
F/AF), and F((u)) /A F ((u))) is infinite.

@) If F=xAF)+0F*=F*+ vF? then F(v'/?) = «F(v'/?))
+ VA F(vV/?))? and F(a) = (F () + vF (a)? whenever a* + a €
F.

In what follows we take # to be F#'((t)) where &’ is perfect and
W(F') =F"'. We shall take F to be a discretely valued 2-Henselian valued
field with residue class field # and with v(2) = 1. For the existence of
such fields see [G, p. 70]. We now fix x, = ¢, x, =1+ 7, x;=1+ 7g,
x,=1+4g,,...,x,=1+4g,, where n>3 g,,..., 8, € O and
g, 84,---» 8, are independent mod(g(.#)). For convenience we express
g=a’>+1’in F andseta = 27! € F.Incase M = F(x;/%,...,x/?%)
we have:

THEOREM 4.8. For such M and F, h,(M/F) is trivial in case b = 0 or
ib*/a* & §F). If y*+ vy =1b*/a* in F then hy(M/F) has two ele-
ments, the non-zero class given by the 2-fold {{—(a*y? + th*)*, -m)).

Proof. The idea behind this calculation is the following: Let F, =
F(x17%, x¥/?, x¥?,...,x'/?). Note that I*(F) =0, and as previously re-
marked h,(M/F)=I*(M/F)/I*D(M/F). We shall find a basis for
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I*(F) mod I?’D(M/F) and compute the image of this basis inside I2( F,).
Using the fact that biquadratic extensions are 1-amenable (cf. [ELW1]) we
find that I%(M/F) = (((~x,)),((~x))) - I(F,) € I*(F,). Comparing
the images of our basis with this kernel will give the result.

First, as all the type (ii), (iii) generators of I2(F) vanish in I%(M), by
Lemmas 4.2, 4.4, 4.5 we see that every element of I%(F) can be repre-
sented mod I°D(M/F) by a 2-fold of the form ((—(x? + 7)*,—=)) where
x € %. For as x ranges over %, (x*+ f) ranges over all classes of
F*/F? except [1]. Next we note F, = ({2 a,,...,a,) where a,
satisfies a? + @, = g;. Thus we know by Lemma 4.7 that F, = @(F)) +
fY/?F,. We fix ()¥: F, — F, by setting (a® + i*/?b)* = (a)*> + 1'/%(b)*?
where we assume that ( )¥: F, > F, is a lifting which extends the
mapping a + bi'/? = (a)¥ + t*(b)¥ whenever a,b € #. We remark
that we are now able to calculate the ideals ({{-x,))), and ({({-x3)))
inside W( F,) using Lemma 4.5, as long as we use the lifting ( ).

We calculate as (x? + 7)* = (x)3* + ¢ and as

(x2+ D) = ((x + 22P) = (x)3 + t + 2(x)512

that (x2 + f)* = (x> + 0)¥ — 2x)%*% In particular, [(x>+ 7)*]=
[1 — 2(x)*'/?/(x* + ©)¥] inside F; /F;% so that our generators

<<—(x2 + f)*, —'rr>>

(-1 + mlea? /(x> + D)]), ) ) modV2(F),

where a = 27! € #. From this we see that as axi*/?/(x? + {) € i/*F?
our generators are in fact = ((—~(1 + 7(axi*?/(x* + [)¥),-t*?))
mod V2(F,).

Next, noting that F, = @ F)) + {*/2F2, we find that V2(F,) is gener-
ated only by the 2-folds of the form ((—(1 + 4(h;)*), -7 )) where the &,
range over a basis of F,mod@(F,). Thus VA(F,) C ({(-x,))) inside
W(F,) by Lemma 4.5. Further, again according to Lemma 4.5 we find
that I2(Fy) N ({(=x,)), {({(=x3;))) is generated mod V;2( F;) by the 2-folds
of the form ((—(1 + @(f,)¥),t/?)) where @(f,) € i*/*F? or ¢(f,/8) €
f'/2F?. Thus working mod V2(F;) it follows that the 2-fold
({~(x* + 0)*,—m)) lies in I’(M/F) if and only if the equation
axi'/?/(x* + f)=f, + f, can be solved for f,,f, € F; where @(f,),
@ f,/8) € I*/°F.
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A straightforward calculation shows that @(i%/2/(w? + */%z?)) €
f*2F?if and only if z = 1. Thus we must solve the equation

(1) axi¥? /(x> + 1) = 1Y% /(w2 + 1V/2) + gi'/2/(w} + /)

for w;,w, € F,. As ax/(x? + {) € FC F? we have (multiplying by 7'/?)
that

2/ (wi + 172) + g2/ (wi + 1V2)

= (f +51/2w2)/(w2 + t_l/z) (gt + gt ?w. 2)/(w2 + f1/2)2 € \/2F2.

This implies that #(w} + /%)% = tg(w + {%/2)2 In particular, wj + /2
= g'/2(w2 + /%) (note that as g € #, g '/? € F?) so that

(2) ax/(x*+ 1) = (1 + g2) /(w + i*/2)

must be solved for w,. In case § € #2, then g'/? € F?, so eq. (2) cannot
be solved for w;. Thus M is 1-amenable over F in this case. If § = a® +
ib%, b # 0, then g% =a + bi*/? and (1 + a + bi*/?) /(w2 + 1/?) € F}
implies that 1 + a + bw? = 0, i.e. wl = (1 + a)/b. Substltutmg this into
(2) gives ax/(x?>+ f)=b. Thus we must solve x>+ (a/b)x +
= 0, which setting (a/b)y = x gives g y) = {(b*/a?). The conclusion
stated in the Theorem now follows. a

REMARK 4.9. Setting # =2 and g=1t/(1 + t?) in Theorem 4.8
gives a version of the example where n =3 studied in [ELTW].
Evidently, a =1, b=1/(1 + 1), ®1/(1 + £)) = {(1/(1 + ©))? so that
{({=(1 + t)*,-2)) gives the non-trivial class of h,(M/F) in this case. It
can be easily checked that this generator corresponds with the class of
“q” computed in Remark 5.8 (iv) of [ELTW].

REMARK 4.10. Using the notion of direct sumf of Witt rings (cf. [M]),
and the techniques of constructing fields with these Witt rings (cf. [M],
[Ku]) one can use Theorem 4.8 to construct fields F with multiquadratic
extensions M (n > 3) with h,(M/F) any prescribed finite elementary
2-group. By applying the Theorem of Merkurjev [Me] one can conclude
that the group N,(M/F) of [ELTW] is this same elementary 2-group.
Putting this together with Remark 3.10 of [ELTW] we find that the
following relationships between the possible values of 4,(M/F) and
N,(M/F) may occur: For any n > 3,1 < m; < m, there exists fields F,
M = F(x}?,...,x¥?) with |[Ny(M/F)| = 2™ and |h,(M/F)| = 2™.
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Our final result concerns the homology group 4,(M/F) (as defined
in [ELTW] for a certain triquadratic extension M of F. Whenever M is a
multiquadratic extension of F, h;(M/F) is the homology of the following
Zero sequence:

WF) = W(M)> @ W(L)

where s is the sum of all the transfers sf; , : W(M) — W(L,), where the
L, range over all the subfields of codimension 2 in M which contain F.
The example below is the first constructed example where h;(M/F) is
non-trivial, although their existence has been suspected for some time.

For our final example we consider F where 2172 € F, v(21/?) =1,
and further where (%) = #. (For example % could be the separable
closure of Z/2Z(t), where ¢ is transcendental over Z/2Z.) Again I>(F) =
0 and we note that 1 + 40, C F*%. From this we see that I?(F) has the
following four types of generators:

(1) ({(~(x} + D)*,-2"/?)) where x, € #.
(i) ((-( + 272(f,)*),~t)) where f, € Z.
(iii) ((~(1 + 2AB})*),-2'/?)) where y, € #.
(iv) ({1 + 2%2(f,)*,—t)) where f, € F.

We begin with a version of Lemma 4.5:

LemMA 4.11. (Wildly ramified case.) Suppose that
M= F((1+ 22+ 22(n)*)").

Then I*>( M /F) is generated by:

(i) (-1 + 2Y2(f)* + 222(fik)* + 22((f)* = (L)L 1))
where @ f,) € tF

@) (-1 + 2(iw?)*), -2'2)) + ({~(1 + 222(F2wh™), ~t)) where
weEZF.

@iv) ((-(1 + 232(fy?)*), —t)) wherey € #.

Proof. We set w =1+ (1 + 22 + 23?(h)*)/2 in M and observe
that 72 = 212 + 23/2(h)* + 27, so that 7 can be taken as a uniformizing
parameter for M. It follows that v(7) = v(2)/4. We now investigate the
type (ii) elements listed above. We set f = a? + ib* where @(f) € iF?
(s0 @ = f). Setting r = 1 + 22(f)* + 222(fr)* + 22((f)* — ()
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we compute in M/M? that
[r] = [1 +(5)* (22 + 222(0)*) + 27(( )" -]
(as (/2)* = (/)*(r)* mod2)
= [1+()*(r? = 2m) + 22((1)* = (N)2)]
(as 72 = 212 + 23/2(h)* + 27
= [t = 2 (1)) + 22((1)* () + 22(()* ~ ()]
= @ =2 + (57 + 1) - (1))
+22((1)* = (13))]
(as f = f2 + ib?)
= [0 = 2 + (=)
(D5 = (D) (x2 = 272)(()* = ()3) + 272(1)3))

- (1= w0 + (o]

as o(()& = (f)*) = v(2"/?) and as v(7? — 2'/%) > 50(2)/4 in M. From
this we see that ((-r,¢)) = 0in W(M).

Next we consider the type (i) sums of 2-folds. Since [2!/?]=
[1 — 277! — 232¢-2(h)*]in M" /M2 we find, for w € &,

<<_(1 + 2(iw2)*),-21/2>>

< (1 + 2(w?)*),~(1 = 2071231 "2(h)*) >
)

(-1 + 4n71(B?)*), 2771 + 2220 2(h)")))
x(((1+ 2801 - 207 = 27 2(h)")))
=((-(1 + ar7(?)%), 7r>> = ((-(1 + 477 (@*)"), 1))
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inside W(M). Also ((~(1 + 2>2(F?w*)*),-1)) = ({(~(1 + 4=~} (iw?)*),
—t)) over M since

(1 +222(w2)) /(1 + 2% (8w2)3) = 1 + 2% (iw?)}

=1 — 477 (w?)* mod(4)

as 21/27-2 = 1 € #. Thus the type (iii) elements listed vanish.
Finally,

((-(+ 272(52)"),~1)) = ((-(1 + 272(5)").22))

({4 25220 0 wo

as v(2%/22771) > v(4) in M, so the type (iv) elements listed vanish.

To see that the above elements actually generate (M /F) we now
show that the remaining generators for I*( F) remain independent inside
I*(M). These remaining generators may be listed as:

(i) {({(~(x)*,-2/?)) where the x’s range over a base of F°
mod(.Z 2).

(i) ({(—(1 + 2Y*(f,)*),—t)) where the f, range over a basis of
Fmod { f: of) € tF?}.

@iv) ({1 + 2372(w?)*), —t)) where the w; form a basis of Z.

For the type (i) generators we have for x = a? + th*> € F° that
mod I%*®(M):

(=" =22) ) = ({~()*, (1 = 2071 + 2227 ()"))))
= {(-(x)*, -1 = 7))
(Whefe u=21"%1+ 2227 (h)*)isa 1-unit)
(-0 = 7u), ~{(@)3" + 1(6)57)))
(-1 = 7ul(@i/(2)7), ~(@)57))
+<< (1 = 72u((b)3’/(x)*)), —(b):2t>> (by 3.3(v))
= 0+ {{-(1 - w5/ ((@)i” +(85*))). 1))
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Since the x’s were chosen independent mod(.% *?), Lemma 4.1 (ii) shows

that the residues ut((b)()" 2y ((a)(’)" >+ ()} 2t)) are linearly independent
inside #*. This, together with Lemma 4.1 (i) and Corollary 2.9 shows that
the 2-folds ((—(x)*, —2'/?)) are all independent mod I***(™( M).

Next, for the type (ii) generators above, we express f, = x? + 2.
Since 72 = 22 + 27 mod(2%/?) we obtain that:

1+2Y2(f)* =1+ (x> = 27)(f)*
= (1 - 22(£)*)(1 + 27(£)*) mod(23/2).
By direct calculation:
(1= 72(£)*) = (1 = 72((x)8” + 1 (1))
= (1 - m22(3)37)(1 = 17 (%) (3)57)(1 = 72(x,)57)  mod(2%2)
Multiplying by the square (1 — 7(x,)¥)> we find that:
(1= 72(x,)s7) = (1 - 27(x,)5) mod M 2(1 + 2%%0,,).

Putting all this information together, and wusing the fact that
({—(1 — 1z?),~t)) = 0, we finally obtain that:

((-(1+22(0)"). 1))
= <<_(1 +2m(f + x,)*),-t>> mod 1>*®/2(M).

However the mapping f+— f+ x whenever f= x>+ fy? in % is an
additive homomorphism with kernel { : ¢( f) € % ?}, and thus since the
f.’s were chosen independent mod { f: @( f) € i%# )} these 2-folds remain
independent mod 1%3*@/2( M) (using 4.1 (i)).

For the type (iv) generators, set u = 23/2/7° and note:

1-u)= (776 —(772 —232(h)* - 277)3)/776
= [#% — (7% — 67° + higher order terms)] /7
= 73(67~* + higher order terms)

= ax’w for some unit w € U,,.
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Consider f = a* + #b? in &%. Then in I*(M):
(- +272()"), 1)) = ((~(1 + =“u((a)3” + 1(6)57). 1) )
= <<—(1 + 7r6u(a)3‘2),—t>> + <<—(1 + 'n'Gut(b)S‘z), —t>>

(as 173*@(M) = I’ (M) = 0)

< El + 7;6111(0)3;2) ’ -t> N <<—(1 N W6ut(b)6k2), u>>

1 - 7(a)g)

=((-(1 +((=*(w = D@% + 2w(@3) 1 = (@)}, 1))
3

1+ 7%ut(b)g ) 1- 7r3w>> (using 3.3 (ii))

(-
< (1 +(27r3(a)0 - 7°w(a)y ) (1 - 773(a5")2)),—t>>
+<<(1 + wour(b)3?), -11 - 2)(1 - 'rr3w)>>

<< (1 + 2773(a)0) >> +0

as I*°*@/4( M) = 0 and using Fact 3.3 (iii) for the second term. Since the
map f — a where f = a? + tb* is an additive homomorphism with kernel
iF?, we see using Lemma 4.1 (i) together with Corollary 2.9 that the
images of the type (iv) generators are independent mod I%7@/4(M).
These independence statements conclude the proof of the Lemma. O

We also need a similar result in the “wildly unramified” situation:

LemMMA 4.12. (Wildly Unramified Case.) Suppose that
M= F((1+2t)").

Then I*(M/F) is generated by the 2-folds:
(iii) ((—(1 + 22), 21723
(i) ((-Q + 272(f)*), -t)) forall f € F.

Proof. We set w =1+ (1 + 2¢)"/? and note that 72 =2t + 2.
Thus v(7) = v(2V/?) and 7/2'/2 = {2 € M = F(1/?). Clearly the Type
(iii) 2-fold listed above vanishes in W(M). Since [t]=[1 — 277!] in
M /M? we find: ((~(1 + 2¥2(f)*), -t)) = ((~(1 + 22(f)*),
-1 - 2w‘1))) =0 € W(M) by 3.3 (iii) since v(2°/2277 ') = v(4) and
since (M) =
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Next we note that I2(F) is generated over the above 2-folds by:

() {{~(x*), —2'/?)) where x € & " range over a basis of F# /% ‘2.

(i) (-1 + 22(f)*), —t)) where f € F* range over a basis of
FH,

(i) ((—=(1 + 2#?)*), -2'/*)) where y, range over a basis of #* mod
(0,1).

We compute the images of these 2-folds inside I2(M). In case (i)
consider ({~(x)*, -2'/2)) for any x € # . Write x = a* + b?, with a or
b # 0. Then (x)* = a* + 182, where @ = (a)* and B = (b)¥. Computing
in M*/M*? we find that:

[()*] = [(e®+ 82) /(a + /2]
= [(a® + 182) /(a® + 2V/%aB +(t + 7)8?)]
= [1 —('rrB2 + 21/2773)/(0(2 + tB% + #B* + 21/27r,8)].
Since
(1 — (7B + 2Y%1B) /(o + tB2 + mB2 + 2/%nB))
= (1 - 77(,32/(&2 + th))) mod(7?),

we find:

<<—(x)*, _21/2>>
=((-(1 - =(B>/(a® + 1%))), 2'/%) ) mod I***(M).

From this it is easy to see that the mapping 6: % — I%(M)/I**(M(M)
given by x = ({(~(x)*, -2'/2)) mod I***(™( M) is the composition of the
homomorphism % °— %* given by a* + th> = b*/(a”* + th*) (Lemma
4.1(ii)) with the homomorphism %#*— I*(M)/I***(™(M) given by y —
({—(1 = m(y)*), -2"/?)) (Lemma 4.1(i)). (Recall that the second map is
independent of the choice of the lift (y)* of y.) Since the first map in this
composition has kernel .% 2 and the second is injective by Corollary 2.9,
6 is a homomorphism with kernel % *2. Hence, the type (i) elements listed
above as generators remain linearly independent in 12(M)/I***(M(M).

For the type (ii) generators observe that as [t]=[1 — 277']=
[1 — 7(2Y%71)?]in M"/M"? we find that

<<_(1 _ 21/2(f)*), —t>> _ <<_(1 _ 21/2(f)*), _(1 - w(21/27r-1)2)>>
= <<_(1 _ 21/2(f)*77(21/277‘1)2), —7ru>>
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by Fact 3.3 (i) where u = (1 — 2'2(f)*)(1 — #(2'?n1)?) € UY(M).
As ({(~(1 = 2V2(f)*a(2Y*n~1)?), —u)) € I**‘M( M), this shows that

(-t =220"). )
=((-(1 = 22(/) n(@/n)), -} ) mod 1) (M),

Note that (2'/%7)/2 has residue /*/? inside M, and that each f € M2,
Thus by Corollary 2.10 the type (ii) generators remain linearly indepen-
dent inside 1>?*(M) /1> (M).

Finally for the type (iii) generators we note that

(1= 26()eY/(1 - 22(p)am272) =1 - 20(y* + y)* mod(4)
in M as (w271/2)2 = ¢ + . Thus

(-l + 207)), 22))

= <<—(1 —27(y*+ y)*), —21/2>> mod I>*@(M).
Further,

((-0= 202 51, 27))

_ <<—(1 _ 277())2 +y)*), _23/2,”,())2 +y)*>>

by Fact 3.3 (ii). Since y € #, and FC M2, (y2 + y)* € U(M)M2
Thus [2327(y? + y)*] = [72"*u]l € M*/M*? for some u € U (M).
From this, Fact 3.3 (ii), and the multilinearity of 2-folds, we obtain

({1 2(07)7) 27))
- <<~(1 = 27(y* +y)*), —7r2'1/2>> mod I>*™(M).

Since 7271/ = {*/2 € M, and as the y’s were chosen to be independent
mod {0,1}, (so the y* + y’s are linearly independent in ™), the inde-
pendence of these type (iii) 2-folds follows from Corollary 2.9. Thus the
2-folds of types (i), (ii), (iii) are all independent in I?( M). This proves the
Lemma. a

Before proving our final result we need a technical result that enables
us to compute h,(M/F) for a triquadratic extension. This result and its
proof given below were communicated to the author by Adrian Wads-
worth. In what follows M = F(a'/? b'/?, c'/?) where we assume that
[M:F]=28. We define a= ((-a))W(F), B=({(-b))yW(F), y=
((~c))W(F), 8 = ((-acyyW(F) and ¢ = ((~ab)) W(F).
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PROPOSITION 4.13. hy(M/F) = N/D where
N=(B+y)n(B+8)n(y+e)N(8+e) N ann(a)
and where
D = (ann(a)) - (B+v)=(BNe) +(y N ).

Proof. Let K = F(a'/?), L, = F(b'/%,c"/?), L, = F(b/?, (ac)'/?),
L, = F(c'?, (ab)*?) and L, = F((ab)*/?, (ac)*/?). The L, are the four
fields such that FC L,c M, [M:L,J=2, but K¢ L,. We set N, =
ker(s) (s the map described above) and we set D, = im(r,,,r) where for
any two fields F C L the map ry,, is the map W(F) — W(L) induced by
field inclusion. Then D; C N, and by definition h,(M/F)= N,/D,.
According to [ELW, Th. 2.10] one has h;(M/K) = 0. Therefore, N, =
im(ry, k) O Ny ker(sfy,;), and ker(ry x) = BW(K) + YW(K). Let
N, =ryyx(N,) and D, =ry\(D;) inside W(K). Evidently, D,=
im(rg,r) + ker(ry ) = ker(sg z) + BW(K) + YW(K). Let N; =
sg,;r(N,) and D; = s§,p(D,). Then because N; C im(ry ) and
ker(sg ) € D, we have that hy(M/F) = N,/D, = N,/D, = N;/D;. To
complete the proof we show that N = N, and D = D,.

Since a'/? ¢ L, we may assume that sy, is derived from the
L linear map given by s,,,, (1) =0 and s,,, (a'/?) = 1. Likewise we
may assume that s} . arises from si ,(1) = 0 and s¢ ,(a'/?) = 1. Then
S¥/r,° sk = T r° Sk p- Hence for g € W(K) we have that g € N, if
and only if 0 = 53,7 (ry/x(q)) = 1 se(s§,r(q)) for i=1,2,3,4 if and
only if s r(q) €N ker(r, ). Since L, = F(b'/*c/?) is a bi-
quadratic extension of F, ker(ry ,r) = ((=b))W(F) + ({-¢c))W(F) =
B + y. Analogous formulas hold for ker(r; ) where i = 2,3,4. Recall
that im(sg ,r) = anny, r (). Therefore,

4
N, = S;/F(Nz) = im(sf'é/F) NN ker(rL,/F)
i=1

= amn () N(B+y)N(B+8)N(y+e)N(8+e)=N.
For D, we have, using the Frobenius reciprocity of the transfer,
D, = S;/F(D2) = sIt/F(ker(s;/F) + BW(K) + YW(K))

= S;/F(BW(K)) + SI?/F(YW(K)) = Bim(s}?/ﬁ) + 'Yim(sl*(‘/F)

= BannW(F)(a) + YannW(F)(a) =(B+vy) annW(F)(“) = D.
The second formula for D follows because fann,, (a)=pf N e and
yann,, () =y N & by [ELW, Lemma 2.9]. This proves the proposi-
tion. O
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THEOREM 4.14. For F satisfying the standing hypotheses of this section
with 212 € F, v(2Q"?) =1, F) = F and

M= F((1+ 272, (1 + 2%, (1 + 21)"7)

we have that h,( M /F) is infinite.

Proof. Weseta=1+ 2% b=1+2"*and ¢ =1 + 2r and we use
the notation of Proposition 4.13. We now directly compute N and D
using Lemmas 4.11 and 4.12.
(1) B N I*(F) has as generators:
) (14 27+ 22 = (DD, 1), where p(f) €
LF -,

(i) ((—(1 + 2(w?)*), —22)) + ((~(1 + 2(2w*)*), —1)), where
weEZF,

(iv) ({1 + 2°2(iw?)*), —1)) for w € Z.
(2) Y N I*(F) has as generators

(i) ((—(1 + 20), ~21/2)),

i) ((~(1 + 2372(f)*), —t)), where f € F.
(3) 8 N I*(F) has as generators

(i) ((—(1 + 201 + 2/2), ~2/2)y,

iv) ({(~(1 + 2°2(f)*), 1)), where f € F.
(4) € N I*(F) has as generators

(i) ((~(1 + 22(f)* + 22(f)* + D((f)* = ())$)?), 1)) where
o f) € iF2.

(i) ((=(1 + 2(w?)*), 22y + ((~(1 + 2>2(2w*)*), —t)) where
weEeZ.

(iv) ({1 + 2*%(iw?)*), 1)) where w € F.

From this we shall show that 8 N ¢ is generated by the forms:

(ii) ((—~(1 + 2(w?)*), =2'72)y + {(~(1 + 272 (*w*)*), —t)) where
wEZF.

(iv) ({(~(1 + 2*2(tw?)*), —t)) where w € F.

Let J be the ideal generated by these forms. Then from Lists (1)
and (4), J=BNI*O(F)=enI**®(F)c BnNe We show that
(B N €)/J =0.Note that 8 N e C I?(F).

The map £~ ((~(1 + 2V2(f)* + 22((f)* = (/)%)?), t)) induces
a group homomorphism % — I*(F)/I*>*@(F) by 4.1, so it induces a
surjective homomorphism 6: {f€ #: o(f) € tF*} - (B N I*(F))/J.
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Take any f € 07((8 N €)/J). Then ¢ contains
(- 2200+ 22 = (1)), 1))

_ <<‘(1 +272(/) + 27((N* = () + 22(1)%). 1))
(- 227, 1)

(using 3.3 (iv) and I%*®(F) = 0). Since the first summand lies in &, so
must the second. Hence f € %2 from the description of ¢ N I*(F). But
also @ f) € t%?2, as f lies in the domain of 6. Together these imply that
f=0ie BNe=J.

From this we obtain that D = (B N &) + (y N §) = I>"®(F). Next,
since I3(F) = 0, I*(F) C ann(a). Also by inspection it is easy to see that
(=1 + 22(f)*), t)) liesin (B + ¥), (B + 8),(y + €), (8 + &) whenever
@ f) € i 2. This shows that these latter 2-folds are all non-zero in N/D
and concludes the proof of Theorem 4.15. a

REMARK 4.15. The preceding counterexample was obtained by replac-
ing the unramified quadratic extension F(¢/?) of the counterexample of
[ELTW] by the wildly unramified quadratic extension F((1 + 2¢)1/2)
(where 2172 € F). We also remark that using the calculations of Theorem
4.14 one may also show that h,(F)# 0 for F = Q(2'/?)(¢) and the
triquadratic extension M /F as described above. Thus strong 1-amenabil-
ity fails for function fields over global fields.

REMARK 4.16. It follows from the Theorem of Merkurjev that since
I3(F) = 0 that I?>(F) = H*(F,2), and similarly for all 2-extensions of F
as well. Thus in this situation we find that h,( M /F) is isomorphic to the
homology of:

HXF,2) S HXM,2)S> @ HXL,)2).
[M:L]=2

Thus in the terminology of [STW] we have that N;(M/F) is infinite as
well.
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