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REALIZING CERTAIN POLYNOMIAL ALGEBRAS
AS COHOMOLOGY RINGS OF SPACES OF

FINITE TYPE FIBERED OVER XBU(d)

LARRY SMITH

The problem of constructing topologίcal spaces whose cohomology
ring with coefficients in the field of p elements is a polynomial algebra
has attracted the attention of algebraic topologists for many decades.
Apart from the naturally occurring examples, classifying spaces of Lie
groups away from their torsion primes, rather little progress was made
until the construction of Oark and Ewing of a vast number of new
non-modular examples. The completeness of their construction in the
non-modular case was shown by Adams and Wilkerson (see Smith and
Switzer for a compact-proof). One interest in the construction of spaces
with polynomial cohomology is that they are related to the study of finite
//-spaces, which should appear as their loop spaces; "should" because the
construction of Clark and Ewing does not yield a simply connected CW
complex of finite type. On the contrary the construction of Oark and
Ewing yields non-simply connected spaces that are p-adically complete.
By forming their finite completion they can be made simply connected.
But considerably more effort would be required to show that they have
the homotopy type of the ^-completion of a simply connected CW
complex of finite type.

We will avoid these drawbacks by constructing for certain of the
examples of Oark and Ewing a simply connected space of finite type
with the requisite cohomology.

Recall that the construction of [6] depends on a group G < GL(F),

V = Θ^F^, where Fp is the field of /^-elements, and which satisfies: G is

generated by pseudo reflections and \G\Φ O(p). A theorem of Chevalley

[2; V §5 no. 5, 3, Thm. 3] [24] shows that:

where P ( K * ) denotes the ring of polynomials on the dual vector space F *

of V upon which G acts, and P ( F * ) G < P ( F * ) is the ring of invariant

polynomials. We will say that P(V*)G satisfies the weak splitting principle

iff we can find polynomial generators ρv...,ρn e P ( F * ) G , and poly-

nomials fx(X)9...,fb(X)e P(V*)G[Xl where X is an indeterminate of

degree 2, such that:

(1) ρ l 9 . . . , ρn are among the coefficients of fλ( X),..., fb{ X), and
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(2) fi(X) splits into a product of linear factors in P(V*)[X] for

i = 1, . . . , b. If we can choose b = 1 then we say P{V*)G satisfies the

splitting principle. (N.B. The polynomials ft{X) are homogeneous and

their roots he in V*.)

THEOREM. Suppose G < GL(F) is generated by pseudo reflections.

\G\ Φ O(p), and P(V*)G satisfies the weak splitting principle. Then there

exist integers dv ... ,da depending on G < GL(F) and a convergent tower

of fibrations

' ' ' ~> Xn -* Xn-l -> * * * - *l -» X BU{dt)

such that: if W is the space at the top of the tower then W is simply

connected, of the homotopy type of a CW complex of finite type, and further

H*{W,Fp) ^ P{V*)G

and the induced map
a \

X BUidJ F) -* P(F*)G

z = l /

is surjective.

There are two aspects to the construction of the tower to which we

wish to draw attention. The first is the simple idea of "trapping" P(V*)G,

which we wish to realize as a cohomology ring, as the image of an induced

map inside H*(BV; Fp)\ where BV is the classifying space of the elemen-

tary abelian p group V. (See Lemma 5 and the discussion around it.) This

allows us to solve the sort of extension problems that occur in [8], [9], [14],

[15], etc.

The second aspect of the construction worthwhile remarking is the use

of the Carlsson [4], Miller [10] result that H*(BV,Fp) is an injective

object in the category of unstable modules over the Steenrod algebra (see

also [23]) to continue trapping P(V*)G < H*(BV; Fp) as the image of an

induced map as we move up the tower.

The method employed should be of use in other situations, and is

perhaps more important than the actual results obtained here. A number

of further applications will be appearing in a joint paper with Paul

Goerss.

We postpone a discussion of examples of groups satisfying the

splitting principles to the end of this paper and [17], where, among other

things, we show that, when p is large compared to |G|, P(V*)G satisfies

weak splitting.
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The remainder of this paper is organized as follows. After some
preliminary maneuvers we take up the construction of the tower required
for the proof of the main theorem. We then complete the proof of the
main theorem, deferring to the end the proofs of the technical results, so
as to not interrupt the flow of the argument.

The tower construction. We denote by BV the classifying space of
the abelian /?-group V = (Bn Fp9 and identify

H2(BV,Z) - F* - Ext z (F,Z).

We may then write

H*(BV;Fp) z-Eiβ-ψ*) ®P(V*)

where β is the mod/? Bockstein operator and E( ) the exterior algebra
functor. If G < GL(F) then there is an induced action oί G on BV
(which we may assume to be free) and hence on H*(BV; Fp). In this way
we obtain an inclusion

P(V*)G -> H*(BV;Fp)
G

and an isomorphism (see [1] for more information)

10

where {θ denotes the ideal of nilpotents.

PROPOSITION 1. Suppose G < GL(F), F = Θ ^ , andP{V*)G satis-
fies the weak splitting principle. Then there exist G vector bundles ξt I BV,
i = 1,..., α, such that

and moreover {cy(£,-)} generate P{V*)G as an algebra.

Proof. By hypothesis there are polynomials

such that:

= Π (X + υ) e P(V*)[X]',

and P ( F * ) G is generated as an algebra by the coefficients of
fι(X\...Ja(X). Since A ( I ) 5 . . . , / a ( I ) G P ( P ) G [ I ] , it follows that
Al9..., Aa are G invariant subsets of F* = H2(BV; Z). Corresponding to
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each element v e AJ we may find a (unique) line bundle λ(v) I BV with
c^λ^v)) = v. T
dle and satisfies

J

v)) = v. The vector bundle £z = Θϋ€Ξ i 4 λ ( » j 2?F is then a G bun-

where c( ) denotes the total Chern class as required. D

COROLLARY 2. Suppose G < GL(K), V = @nFp andP(V*)G satisfies
the weak splitting principle. Then there is an epimorphism of algebras over
the Steenrod algebra

0 H*(BU{dt);Έp) ^ P{V*)G. U

The preceding corollary suggests a rather obvious way to attempt to
construct a space W with H*(W; Fp) = P(V*)G. Namely, we let

/: X BU(d,)->K= X K{HZ,mj)
i=1 i = l

be a map such that the classes

are a minimal set of ideal generators for the kernel of an epimorphism

Introduce the fibre square

X

X
i = l

where L I K is the usual pathspace fibration. It is of course too much to
hope that

H*{X;Fp) - P(F*)G - if*| X BUid^F^//f\

It is however not too much to hope that H*(X; Fp) is a good approxima-
tion to P ( F * ) G , and in fact this is the case as we now proceed to show.

LEMMA 3. In the preceding diagram set S * = Im/*. Then S* is a
polynomial algebra andH*( X s.=ιBU(di); Fp) is a free S*-module.
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LEMMA 4. Ker/* < H*(K; Fp) is a Borel ideal.

We may now apply [14; II.2] to compute H*(X;Fp). We obtain an
isomorphism of algebras over the Steenrod algebra s/ *

a coexact sequence of J / * algebras (for a discussion of coexactness see
[14, II] or [15])

1 -+ # * -> H*(X;Fp) -* U(M) -* 1,

and an exact sequence of J / * modules

1 -* ϋ * -> F ' 1 -+ j ^ - 1 * -+ 0

where:
(a) iί* ^H+iX^BUidahFJ///* - P(F*) G ;
(b) F~ι < H*(X;hFp) is the submodule of elements of filtration -1

with respect to the Eilenberg-Moore spectral sequence;
(c) M = Fp ®R* i?"1'*;
(d) U(M) « Im{/*: i / ^ X F )̂ -^ H*(QK;Fp)}.

(For a discussion of the functors U( ) and UΛ*( ) see [8] and [9].) All this
is standard. What we would now like to do is to choose a submodule
N < H*(X;Fp) mapping isomorphically onto M; represent the elements
of N by a map

X^ X K{N\i) = K\

form the pullback diagram

X' -> U
IT' 4

X ^ Kf

etc. The problem is that we do not a priori know that N can be chosen to
be an J / * submodule, and so we cannot assure that r'* maps P(V*)G =*
R* < H*(X;Fp) monomorphically. To deal with this problem let us
decorate the fibre square (&) to a diagram

BV A x
i = l
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g/.BVΪ X BUid^BUidj)
ί - l

classifies the bundle ξjlBV of Proposition 1. By construction / ° g is null
homotopic, so there is a lift σ as indicated.

LEMMA 5. There is a choice of σ such that

Imσ* =

We obtain therefore a diagram

the composite

being the identity. The map σ* therefore provides a splitting over
of both of the sequences

0 - R* -> F - Ή ίJΓ F,) -» £ " 1 -> 0,

R A"; F,) -> U(M) -• 0.

If we set

= Ker{σ*: F~lH*(X; Fp) -» P(V*)G),

we then obtain:

PROPOSITION 6. Wϊί/i /Ae notations preceding there is an isomorphism

such that

H*{ΏK;¥p)

t (*
#•(*; F,)

4 a*

U(iV)

1 ® e
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where e is the augmentation. The module N is at least 3 connected. If
x G N is a non-zero element of minimal degree, then some higher order
Bockstein applied to x is non-zero.

REMARK. For a discussion of higher order Bockstein operators βr see
[3]. If u e Hd(X,Fp) and βru = 0, r < s, βsu Φ 0, then

u e Im{H*(X;Z/ps) -* H*(X9Z/p)}9

but

u <£ lm{H*(X;Z/ps+1) -+ H*(X;Z/p)}.

This implies that we can represent u by a map

φ: X^K{Z/p\d)

such that φ*(/) = w, and hence kerφ* = 0 in degrees < d + 2.

PROPOSITION 7. WϊίΛ /fte notations preceding we may choose /,

X

w α polynomial algebra of the same type as P(V*)G. In fact there is
a subalgebra R* < H*(X; Z) such that R* Θ z Q = /ί*(X; Q)

of the main theorem. We are going to construct inductively a
convergent tower of fibrations and lifts

I

g: BV-+B
; = 1

where B = BV/G and g factors g over the orbit map π: BVI B, and
(a) Img* = IniTj V = = Imτr*σπ* = P(V*)G;
(b) H*(Xn;Fp) = P ( F * ) G ® U(iV(«)) as algebra over the Steenrod

algebra; and
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(c) the diagram

H*{Xn;Vp) - P(V*)G®U(N(n))Vp) - P(V*)G

π*σ* 1 1 ® ε

H*(BV;Fp) *-> P(V*)G

commutes.
For n = 1 this is just Proposition 6, so the induction starts and we

turn to the inductive step. We will first describe the construction of Xn+ι

from Xn. We then locate inside H*(Xn+ι;¥p) a well-placed copy of
P(V*)G (condition (a)). Next we show how to split this copy of P(V*)G

off (condition (b)), and finally we adjust the lift σn+1 (condition (c)) so
that we may repeat the splitting argument at the next stage.

Construction of Xn+ι. Let

fn+1:Xa-+KH+ι:- XK(N(n)J;j)

be defined by requiring that

f*+ι:H*(KH+1;¥p)-*H*(Xn;¥p)

map N(n) isomoφhically. There is then the fibre square

f

defining Xn+1 where Ln+1i Kn+1 is the path space fibration.

Locating P(V*)G inside H*(Xn+ι;Fp). An Eilenberg-Moore spectral
sequence argument (of the type to be found in [15; §4] say) applied to

^) yields an isomoφhism of algebras over the Steenrod algebra

R*

a coexact sequence of si * algebras

1 -> Λ* -> #*(X Π + 1 ; Fp) -> U(M(π + 1))

and an exact sequence of si * modules

1 -» R* -» F-1 -»• Έ£ * -» 0,

where
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and

U(M(n + 1)) - Im{H*{Xn;Fp) - H*(QKn^;¥p)}.

Splitting H*(Xn+1; Fp). By property (c) of the inductive hypothesis we
may decorate (J^) to a diagram

IT ' o»
Joy —* ΰ ~~* Λ n —> A + i

because the composite fn+1 σn is null homotopic by construction. Since
|G| Ψ O(p) a transfer argument shows

From [1] it follows

H*(BV;Fp)
G/Jθ * P(V*)G.

The composite

splits the above exact sequences to give an isomorphism of R* Θ
modules

s R* e ^ 0 0

Since the functor UΛ*( ) sends direct sums into tensor products and Ej"*
is a free R* module, we obtain

where

M(n + l) = Fp ®R* E-1'*.

Adjusting the lift σn+1. It remains to show that we can choose the lift
σn+ι so that o*+ι(N(n + 1)) = 0. To this end consider the diagram (P
denotes primitives)

^PH*(Kn+ι;Fp)

H*{B;Fp) *- H*{Xn+ι;Fp) - N(n)
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By the dual of a theorem of Carlsson [4] and Miller [10], [23] H*(BV; Fp)
is an injective object in the category of unstable modules over the
Steenrod algebra. By a transfer argument H*(B;Fp) is an J / * direct
summand in H*(BV; Fp). Therefore H*(B; Fp) is also an injective in the
category of unstable modules over the Steenrod algebra, and therefore we
obtain a dotted map a. Cutting a down to fundamental classes defines a
map φ: B -> Kn+1 such that

σn+ι* = φ*i*:N(n)^H*(B;Fp).

Since the fibration

is a principal bundle, we can form the twisted lift

σ' : £ ( < P ^ + 1 W M + 1 X Xn+λ A χn+1

where μ is the principal action. The adjusted lift σn'+1 satisfies

C i ( M « + 1)) = 0

by construction.

This completes the inductive construction of the tower. It remains to
verify that the tower converges. To this end, note that as a consequence of
Propositions 6 and 7 the space Xn+1 arises from Xn by using an F̂  vector
space to annihilate /?-torsion classes in H*(Xn; Z) of finite order. Thus the
connectivity of N(n) goes to infinity with n and the tower converges. D

It remains to prove (3)-(7).

Proof of (3). We first show that H^X^BUid^ F^ is a free
5'*-module. Note by construction we have a coexact sequence of com-
mutative graded algebras

1 -> S* -> H* -> R* -> 1,

where we have abbreviated H*( Xa.=1 BU(dt)\ Fp) to AT*, and P ( F * ) G to
i?*. Polynomial algebras being free commutative, this sequence splits to
yield an isomorphism of algebras H* - S* ® R*. Hence H* is a free
/S*-module.

To verify that 5* is a polynomial algebra we employ Serre's converse
to Hubert's syzygy theorem [12] (see also [20; Thm. 8]). According to this
result a graded connected algebra over a field is a polynomial algebra iff it



REALIZING CERTAIN POLYNOMIAL ALGEBRA 371

has finite projective dimension. So it will suffice to show that the projec-
tive dimension of 5* is finite. To this end suppose M is a graded
^•-module. Set d = dx + +da. Let

be a partial projective resolution of M, that is, P0,...,Pd are projective
S*-modules and the sequence is exact. Since H* is a free S'*-module the
functor ®sm jfiΓ* is exact and sends projective Sf*-modules into projective
i/*-modules. Thus

0 -> JSΓrf+1 β s H* -+ Pd®s*H* -> - - -> M ®5* H* ->0

is an exact sequence of /f*-modules, where all but perhaps the last term
are projective. By Hubert's syzygy theorem H* has projective dimension
d and hence the last term Kd+1 ®5* H* is also H* projective [5; VI.2.1].
Since H* is free over S*, projective H*-modules are also projective
S*-modules. Note

5* ^ H* ~ S* ® R

where ε is the augmentation, presents S* as an 5*-module direct sum-
m a n d i n H*. Thus

represents Kd+1 as an S* direct summand in the projective ιS*-module
Kd+ι Θ 5 * H*. Hence Kd+ι is a projective 5*-module, and thus ( ^ ) is a
projective resolution of M, so the projective dimension of S* is at most
</. D

Proof of (4). From the epimorphism

we obtain by passing to the indecomposable quotients an epimorphism

Qf*:QH*(K;Fp)-*QS*.

Since polynomial algebras are free commutative algebras there is an
algebra splitting of / *

s: S*-* H*{K;Fp)

by Lemma 3. Let T be the kernel of Qf*. By choosing representatives in
H*(K; Fp) for a basis of T and using the splitting s, we can define

φ:P(T)*S*->H*(K;Fp),
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which is an isomorphism on the module of indecomposables. Since the
domain and range of φ are polynomial algebras φ is an isomorphism.
Thus φ(T) generates the kernel of /*. The iso φ shows that H*(K; Fp) is
a free P(φ7τ)-module, so the result follows from [14; Π.l.l]. D

Proof of (5) (after Zabrodsky). The action of G on V induces an
action on BV, which, without loss of generality we may assume to be free.
Let π: BV j B be the orbit map. By Proposition 1 the bundles ζv...9ζa

descend to B so we may form the diagram

X -* L

v
BV^B Λ X BUidt) -4 K

i = l

where g classifies the descended bundles. By replacing / by \G\ / if need
be we may assume that

g* f*:H*(K;Z/q)^H*(B;Z/q)

is the zero map for all primes qΦ p. This composite also vanishes for
q = p by construction and the fact that

H*(B;Fp)$H*(BV;Fp)
G.

Since also H%B; Q) = 0, it follows that

g*.f*:H*(K;Z);Z)-*H*(B;Z)

is the zero map. Thus g / is null homotopic, and there exists a lift σ as
indicated.

Consider the diagram

H*(BV;Fp) <-H*(B;Fp) *-M

By the dual of a theorem of Carlsson [4] and Miller [10] [23] H*(BV\ Fp)
is an injective object in the category of unstable modules over the
Steenrod algebra. Since \G\ Φ O(p) we may form the averaging operator

^ 4 Σ g: H (Bo;Vp)-+H*{BV;Fp)
1 1
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whose image is H*(BV;Fp)
G = H*(B;Fp). Since A is J ^ * linear it

follows that H*(B;Fp) is an s/* direct summand in H*(BV\Fp), and
therefore H*(B\Fp) is an injecitve object in the category of unstable
modules over the Steenrod algebra. Therefore there is a dotted morphism
as in the preceding diagram. Now recall that by construction

for suitable integers j . Therefore, PH*(ΏK;Fp) being generated as an
j^*-module by its fundamental classes, is generated by odd dimensional
classes with vanishing Bocksteins. However, by [1; §3].

H*(BV;Fp)
G = E[τl9...9τn]9P[Pι,...9pH]

where βτ = τ/? i = 1,..., π, so

H*{B;Fp) = H*{BV;¥p)
G

contains no odd dimensional classes with vanishing Bocksteins. Therefore
the dotted map is zero. Thus 77*σ*(m) = 0. The fibration

ΏK-> X-* X BU{di)
i = l

is a principal ΩK bundle. Thus any two lifts σ', σ" of g over T differ by a
map BV -> ΏK. But the preceding considerations with Bockstein shows
any such map induces the zero map in Fp cohomology. Thus σ* = ττ*σ*
and so σ*(M) = 0. D

Proof of (7). By Lemma 3 and [14; Π.l.l]

X

is an ESP-sequence. Therefore

is an ESP-sequence. A standard Eilenberg-Moore spectral sequence argu-
ment now completes the proof. D

Proof of (6). It only remains to verify the statement about Bocksteins.
But this follows because Proposition 7 assures us that X contains no
unwanted rational cohomology classes. D

We turn now to a discussion of examples of groups G satisfying the
weak splitting principle.
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EXAMPLE 1. Let G = GL(F). Then [7] [18]

P(V*f = D*(n) =

where

X*'-ί+yιX'-1-ι+ .'+yπ= Π (X+v).

This is perhaps the most basic example, but of course for n > 1 does not
satisfy the non-modularity condition \G\ Ψ O(p). As previously noted,
the groups G < GL(F) generated by pseudo reflections and satisfying
\G\ ψ O(p) are products of irreducible examples that have been listed by
Clark and Ewing [6]. In this hst there are three infinite families.

EXAMPLE 2. Let G = Σn be the symmetric group on n letters acting
o n F = ®n ¥p by permutation of the basis vectors. Then

where

{tv...,tn} being the basis of V permuted by Σn. Thus Σn satisfies the
splitting principle.

EXAMPLE 3. G = Dm = Z/w tx Z/2, the dihedral group of order
\Dm\ = 2m, where m is a divisor of p — 1, acting on K = F^ θ F ; via the
matrices

θ 0 \ (0 1\

o β-1]' U or
where β G F̂ * is a primitive mth root of unity. If we write {u, v} for the
dual basis in V*9 then

where we may choose

Pι = muυ9 p 2 = - ( u

a n d

m~2
X w + P l X m ~ 2 + •••

i = l

Thus Z>w satisfies the weak splitting principle.
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EXAMPLE 4. G(n,m,r). These are the groups of type 2b in the
Clark-Ewing list. Here p = 1 modm, p \ n\, and r\m. If θ e F̂ * is a
primitive mth root of unity, then G(n9m,r) may be taken to be the
subgroup of GL(F) generated by the permutation matrices and the
matrices

0*2

0

0

θv

with respect to some fixed basis of V, where vλ +
One has

where

+ vn = 0 mod r.

Π (x + θ'tj) = xnm + Plx
{n-1)m +

Moreover

Let w = *! + + /„. The orbit of w "sees" r; to wit

This orbit has mnr elements. Let

< nm/r

Since 5 is a polynomial in the elementary symmetric functions, it lies in
the subalgebra generated by the coefficients of φ[w]( X). Let us look at the
coefficient of pn = t™/r - t™/r in s. The sum defining s has nm/r
terms, namely

».)m/r {nm/r)\ (nm/r)\

. fm/ras /? > nm/r and p \ n\. Therefore the coefficient of ρn = t™/r

in s is

(nm/r)(nm/r)\ __

ί(m/r)!]"
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so we conclude that

5 = p n G P ( F ) G ( w ) mod decomposable.

Thus for p > nm/r, p \ n\, P(V)G{n>m>r) satisfies the weak splitting

principle.

Acknowledgment. I am grateful to R. E. Stong for assistance with the
preceding example.

For a thorough discussion of splitting principles we refer to [17].

A Consequence of the Main Theorem

THEOREM. Suppose G < GL(F) is generated by pseudo reflections,
\G\ Φ 0 mod/?, and P(V)G satisfies the weak splitting principle. Let B c V
be an orbit with orbit Chern class c(B) e P(V*)G. Then there exists a
simply connected space X of finite type and a vector bundle ξB I X such that

H*(X;Fp) = P(V*)G

and under this identification

c(B) = c(ξB)

where c(ξB) is the total Chern class of the vector bundle ξB.

Proof. We modify ever so slightly the proof of the main theorem. Let

B = {# c VIB is an orbit of G in V].

For B G B let |J5| be the cardinality of B. The orbit Chern classes then
provide a map

H*{BU(\B\);Fp)-+P(V*)G

and the induced map

H*( X BU(\B\);¥p)

is an epimorphism. We now start the construction of the tower in the
main theorem with this product X>b€=BBU(\B\) to construct the desired
space X. The desired vector bundle ξB is then classified by the composite

X^ X BU(\B\) -> BU(\B\)

where the last map is projection onto the factor corresponding to the orbit
B. Π
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