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LIFTING UNITS IN SELF-INJECΠVE RINGS

AND AN INDEX THEORY FOR RICKART

C*-ALGEBRAS

PERE MENAL AND JAUME MONCASI

In this paper we study the following question: If R is a right
self-injective ring and I an ideal of R, when can the units of R/I be lifted
to units of RΊ

We answer this question in terms of KQ(I). For a purely infinite
regular right self-injective ring R we obtain an isomorphism between
KX(R/I) and K0(I) which can be viewed as an analogue of the index
map for Fredholm operators.

By giving a purely algebraic description of the connecting map
Kλ(A/I) -» K0(I) in the case where A is a Rickart C*-algebra, we are
able to extend the classical index theory to Rickart C* -algebras in a way
which also includes Breuer's theory for W* -algebras.

0. Preliminary results. Throughout this paper R will denote an as-
sociative ring with 1. By a rng we mean a ring which does not necessarily
have a 1.

We write Mn(R) for the ring of all n X n matrices over R, and
GLn(R) for the group of units of Mn(R\ though we shall write U(R)
rather than GLx(i?). For 1 < i, j < n let eu e Mn(R) be the usual
matrix units. Define En(R) to be the subgroup of GLn(i?) generated by
all the matrices of the form 1 4- reij9 r G ί , i Φ j ; and GEn(R) to be the
subgroup of GLn(R) generated by En(R) together with the subgroup
Dn(R) of all invertible diagonal matrices. If GEn(R) = GLn(R), then we
say that R is a GEn-ring\ if R is a Gϋ^-ring for all n > 1 then R is said to
be a GE-ring.

If R is a G2sn-ring, then En(R) is a normal subgroup of GLn(R) and

Let GL(i?) denote the direct limit of the directed system

U(R) -»• GL2(i?) -+ GL3(i?) -»

where each a e GLn(i?) is mapped to

a 0
0 1
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in GLn+1(R). Then Kλ(R) is defined to be GL(7?)ab, that is GL(R)
abelianized.

Note that the canonical map U(R) -> KX(R) is onto in the case where
R is a GE-ήng.

Let / be a rng and R a ring containing / as an ideal. Let P(I)
denote the class of all finitely generated projective right i?-modules A
such that AI = A. We say that A, B ^ P(I) are equivalent if A Θ C ~
B Θ C for some C G P(I). Denote by [A] the equivalence class of
A G P(I). Thus the set {[A]\A G P(/)} with the operation [̂ 4] 4- [5] =
[A θ B] is a cancellative abelian semigroup. We write G(I) for its
associated universal abelian group. Then every element of G(I) has the
form [A]-[B] for suitable A, B G P ( / ) and [Λ] - [5] =
[A'] - [B'] if and only if A Θ 5 ' Θ C « Λ' θ B θ C for some C G P(/).
It is not difficult to show that P(I) consists of all i?-modules A such that
A « e(Rn) for some idempotent n X n matrix e with entries in /. Thus,
we see that G(I) depends only on the structure of the rng / and not on
the involving ring R. Note that G is a functor from the category of rngs
into the category of abelian groups such that preserves direct limits.

For a ring R, G(R) is simply KQ(R). Recall that Bass and Milnor
have defined a functor Ko on the category of rngs; following Milnor [14,
§4], we consider any ring R containing / as an ideal, let TΓ: R -> R/I be
the natural surjection, and form the pullback

D(R)

1 Λ

R

-* R

Then KQ(I,R) is defined as the kernel of K0(Pι): K0(D(R)) ->
K0(R). In [2] it is proved that K0(I9R) depends only on /. Furthermore,
there is an exact sequence, cf. [14, §4]:

Kτ(R) -» ̂ (Λ//) Λ^0(/,Λ) -> K0(R) -> K0(R/I).

Let / be a rng that is an F-algebra, where F is either Z or a
commutative field. Consider I1 = I θ F, the unitification of / by F; by
applying the above exact sequence we obtain

When we write K0(I) we will have K0(I, I1) in mind.
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If / is a ring with unit e, then there is a ring decomposition
71 = / X (1 - e)F. Therefore K0(Iι) = K0(I) Θ K0(F) and so K0(I, I1)
= K0(I). Hence we see that K0(I) agrees with the corresponding Ko of
/, where I is viewed as a ring.

Let / be a rng. With each A G P ( / ) we can associate its class in
K0(I). In this way we obtain a group homomorphism φ: G(I) -> K0(I).
In the case where φ is an isomoφhism we shall write G(I) = K0(I).
When this occurs there is a very simple form for the elements in K0(I, R).
More precisely, if A e P(/), then 0 X A is a projective D(i?)-module,
and one easily obtains a group isomoφhism

in which [A] -> [0 X A}.
In general we do not know whether K0(I) = G(I) but the following

easy result will be enough for our puφoses.

PROPOSITION 0.1. Let I be an ideal of an F-algebra R, where F is either
Z or a commutative field. Suppose there exists a set E of idempotents of I
such that for each pair e, f e E there exists g e E such that eRe + fRf c
gRg, so the subrings eRe + F 1 form a directed system. If the induced
map

dir.lim. K0(eRe 4- Fl) -• K0(l + F\)

is a group isomorphism then K0(I) = G(I).

Proof. There is an obvious commutative diagram

dir.lim. Ko (e#e) -+ dir.Hm. Ko (eRe + Fl) -^ iΓ0 (F)

l α 1 ||

with exact rows, and by hypothesis the middle column is an isomoφhism
so a is also. On the other hand G preserves direct limits, so we have a
map β: diτMm.e(ΞEG(eRe) -> <?(/). As G(eRe) = KQ(eRe) for all e e E,
it follows that βa'1: K0(I) -> G(I) provides an inverse for φ. Therefore
K0(I) = G(I). D

We shall need another result. First recall Milnor's definition of the
connecting map δ: Kλ{R/I) -> K0(I,R). Consider any element μ of
Kλ(R/I)\ it lies in the image of GLn(R/I) for some n and so can be
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represented as the image of a matrix u e Mn{R) for which there exists
v e Mn(R) such that the elements i = uυ — 1, j = υu — 1 lie in Mn(I).
Write

M= {(x,y) ^nR XnR\u(x) -y ew/}.

In [14, Theorem 2.1] it is proved that M is a finitely generated projective
Z>(i?)-module. Now δ(μ) is defined as [M] - [nD] and this gives the
connecting map. In this situation we have:

LEMMA 0.2 As D-modules nD Θ (0 X i{nR)) = M θ ( 0 x j(nR)).

Proof. By using the Morita equivalence between Mod-D and Mod-
Mn(D) we see that the claimed isomoφhism is equivalent to an Mn(D)-
module isomoφhism

Mn(D)e(0,i)Mn(D)<*»Me(0,j)Mn(D).

It is clear that
nM ~ {(*, y) e Mn(D) X Mn{D) \ux - y e Jlfn(/)}

This shows that without loss of generality we may assume that n = 1.
Now any element of M can be expressed in the form

so M = (1, u)D + (0, /)/). Now define a Z>-module homomoφhism

α: D θ(0,i)Z> -> M, ((x, j ) , (0,/) J ) ^ (1,II)(JC,^) - (0,/)J .

Clearly α is onto, and Kerα = {((0, y), (0, />')) e ^) θ (0, i)D \ uy - iyr

= 0}. But if uy — iy' = 0 then from the relation

l-j v\(l - v \ ( l 0\
\-u 1/U -i) lθ 1/

we obtain

y
So Kerα = ((0, j \ (0, iu))D « (0, j)D. Since M is 2)-projective, α splits
and the result follows. D

1. Regular rings. Let R be a ring.
Recall that R is said to be regular if for every x e R there exists

y ^ R such that JC = xyx. An element JC of R is called unit-regular in R if
there exists a unit u oί R such that x = xux. We say that R is
unit-regular if every element in i? is unit-regular.
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An ideal / of R has stable range 1 if for all a, b e /, if (1 + a)R +
bR = R then there exists c e / such that (1 + α + 6c)i? = R; cf. [17],
[18]. Vasershtein [17] proves that / having stable range 1 depends only on
the rng structure of /, and not on the ambient ring R. Now one can see
that for a ring R the stable range 1 condition is equivalent to saying that
for all a, b e i?, aR + bR = R implies a + be is a unit for some c e i?,
cf. [18, Theorem 2.6], [2, p. 231].

A theorem of Fuchs and Kaplansky [7, Proposition 4.12] asserts that
the unit-regular rings are precisely those regular rings with stable range 1.
We shall use Evans' theorem [7, Proposition 4.13]: if the endomorphism
ring of a right Λ-module M has stable range 1, then M can be cancelled
from direct sums of right i?-modules, that is, M θ N ~ M θ N' for some
right i?-modules N and N' implies N « N\ By [18, Theorem 2.4, Theo-
rem 3.9] the stable range condition carry over to corners and it is
Morita-invariant. Hence, if R has stable range 1 then all finitely-generated
projective right i?-modules cancel from direct sums.

Now we shall give a description for K0(I) in the case where / is an
ideal of a regular ring R. In an earlier version of this paper we had
obtained such a description in the case where R is unit-regular, and then
Goodearl provided us with the general case.

First we need a more-or-less known lemma.

LEMMA 1.1. Let R be a regular ring and let e, f e R be ίdempotents.
Then

(i) // eR Q fR, then there exists an idempotent g in R with gR = fR
and ge = eg = e.

(ii) Let I be an ideal of R. If e, f e / then there exist idempotents g,
A e / such that eRf c hRh and eRe + fRf c gRg. Moreover if a e / then
there exists an idempotent k e / such that a e kRk.

Proof, (i) Define g = (1 + ef{\ ~ e)f{\ - ef{\ - e)).
(ii) Let h be an idempotent such that eR + fR = hR. Clearly A e /

and, by (i), we can choose h such that fh = hf = /. Then eRf c hRh.
Let c and d be idempotents in / such that eR + fR = cR and

Re + Rf= Rd. Then eRe + /R/ c (eΛ + fR) Π (Ite + Rf) = cRd. It fol-
lows from the above that cRd c gi?g, for some idempotent g in /.

If a e /, then by regularity there exists x E ϋ such that α = αxα, so
e = ax and f = xa are idempotents in / and a e ei?/. Now the result
follows from the above. D

PROPOSITION 1.2 (Goodearl). If I is an ideal of a regular ring R then
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Proof. Let E be the set of all idempotents in /. By Lemma 1.1 (ii),
I + Z> - 1 is the directed union of the subrings eRe + Z 1. Therefore
diτMmeGEK0(eRe + Z 1) = K0(I + Z 1). By Proposition 0.1 the re-
sult follows. D

Now we shall obtain a tidier expression for the connecting map
δ: Kλ(R/I) -> K0(I) m the c a s e where R is a regular ring.

If a is an n X n matrix over R we write Ker a for the set of elements
x G"JR such that a(x) = 0. We define Coker a to be any complement of
a(nR) in nR, so Coker α is determined up to isomorphism.

PROPOSITION 1.3 (with Goodearl). Let R be a regular ring and I an
ideal of R. Then the connecting map

satisfies 8(a) = [Cokera] — [Kerα], where a is any matrix over R repre-
senting a e Kλ(R/I).

Proof. Suppose a e Mn(R). By regularity there exists an n X n

matrix b over R such that a = αfo*. Since α is a unit modulo /, we have

ab - 1 = i e

Nowj(nR) = Kerα and /("i?) θ α("i?) ="i?. With the same notation as in
Lemma 0.2 we have δ(ά) = [M] - [nD] = [0 X Cokerα] - [0 X Kerα] G
^ ( 7 , # ) . Hence 8(a) = [Cokerα] - [Kerα] e AΌ(/). D

We now use the preceding propositions to obtain some results on
lifting units.

LEMMA 1.4. // R is a regular ring and I is an ideal of R then the
following are equivalent

(i) For each idempotent e in I the corner ring eRe is unit-regular.
(ii) 7 4- Z is a unit-regular subring of R, where Z is the centre of R.

(in) 7 has stable range 1.

Proof, (i) => (ii) By Lemma 1.1, 74- Z is the directed union of the
subrings eRe + Z, where e is an idempotent in 7. Now eRe + Z ~ eRe X
(1 — e)Z is the direct product of two unit-regular rings, so eRe + Z is
unit-regular. Since unit regularity is preserved by taking direct limits we
see that 7 + Z is unit-regular.
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(ϋ) => (ϋi) By hypothesis / + Z is unit-regular and so has stable range
1. It follows from [18, Theorem 3.6 (g)] that / has stable range 1.

(ϋi) => (i) Every corner of a rng with stable range 1 also has stable
range 1 cf. [18, Theorem 3.9]. D

It follows from [17, Theorem 4] that the sum of two ideals with stable
range 1 has stable range 1. Hence there is a unique largest ideal Ro of R
having stable range 1, namely, the sum of all ideals of R with stable range
1.

If an i?-module A is isomorphic to a direct summand of an i?-module
B then we write A < B. Two idempotents e and / of R are said to be
isomorphic if the modules A = eR, B = fR are isomorphic. The notations
e < f and e < f mean eR c fR and eR < fR respectively.

LEMMA 1.5. If R is a regular ring then Ro coincides with the ideal I
generated by all idempotents of R whose corner is unit-regular.

Proof, By Lemma 1.1 any ideal of R is the directed union of its
corners, so by Lemma 1.4 (i) <=> (ϋi), we see that R0Q I.

Conversely, if e is an idempotent in / then e = Σjc^jλ, where xi9

yt G R and the e/s are idempotents with eiRei unit-regular. From the
i?-Unear map (Be(R -> R, Σeiri •-> Σxieiri we see that eR < ®etR. It
follows from [12, Corollary 10(ϋ)] that the endomorphism ring of the
iί-module @etR has stable range 1 and since eRe is a corner of this
endomorphism ring it also has stable range 1. D

If / is an ideal of R write x for x + / e R/I and denote by π the
natural projection R -> R/I.

PROPOSITION 1.6. Let R be a regular ring and I an ideal of R with
stable range 1, then the map

a: U(R/I) -+ K0(l), a^> [Cokerα] -[Kera],

is a group homomorphism. Moreover

Kerα = π(U(R)) = {a e U(R/I): a is unit-regular).

Proof. By Proposition 1.3 we see that a is the composition of the
maps U(R/I) -> Kλ{R/I) and 8: Kλ(R/I) -> K0(I) and so it is a group
homomorphism.

If Z is the centre of R then K0(I) is a subgroup of K0(I 4- Z).
Notice that a Ues in Kerα if and only if [Cokerα] = [Kera] in K0(I 4- Z).
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Since / and so / + Z has stable range 1, we have that a G Kerα if
and only if Coker a » Ker a and this occurs if and only if a is unit-regu-
lar, cf. [7, Proof of Theorem 4.1].

Conversely, let a G Kerα, If a is a representative in R for α, then
a = aua for some unit u in i?. Now since 5 G U(R/I), (a — ΰ'ι)ΰ = 0
so α = tΓ1 and α belongs to π(U/R)). D

Now we consider regular right self-injective rings. The reader is
referred to [7] for background. We mention, however, that every regular
right self-injective ring can be uniquely expressed as a direct product of a
unit-regular ring and a purely infinite regular ring (recall that an idempo-
tent e of a ring R is said to be purely infinite if (eR) » (eR)2, so R is a
purely infinite regular right self-injective ring if 1 is a purely infinite
idempotent in R).

LEMMA 1.7. If R is a purely infinite regular right self-injective ring and I
is an ideal of R, then π(U(R)) = U(R/I)\

Proof. By [13, Corollary 2.8] U(R) is a perfect group. Hence
π(U(R)) c U(R/iγ.

Conversely, take u in the commutator group U(R/I)\ Since R ~ R2

there exist matrices X G R2 and Y <Ξ2R such that ΛΎ = 1 and YX = I2.
Then ΓwX is a 2 X 2 invertible matrix. By [13, Theorem 2.2] YuX G
E2(R/I), hence there exists Z G GL2(i?) such that Z = YMX Therefore
v = XZY is a unit of i? with v = u. The result follows. D

If e is an idempotent of a regular right self-injective ring, then we
denote by cc(^) its central cover, that is, the minimum central idempotent
such that cc(e)e = e.

PROPOSITION 1.8. Let R be a purely infinite regular right self-injective
ring and I an ideal. If A, B G P(/), then

(i) [A] = [B] G K0(I) if and only if there exists a purely infinite
idempotent e in I such that A Θ eR « B θ eR.

(ii) (with Goodearl) K0(I) = 0 if and only if every idempotent in I is
sub-isomorphic to a purely infinite idempotent in I.

(iii) [A] = [B] ^ K0(I) if and only there exists a purely infinite
idempotent e in I such that A θ cc(e)R ~ B θ cc(e)R.

(iv) [A] = [B] G K0(I) if and only if there exists a purely infinite
idempotent e in I such that (1 — cc(e))^4 « (1 — cc(e))B.
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Proof, (i) By Proposition 1.2, K0(I) = G( J). Thus [A] = [B] if and
only if A θ C « B θ C for some C e P(/). It follows from [7, Theorem
10.32] that C can be written as Cx® C2, where C2 is purely infinite and
the endomorphism ring of Cx has stable range 1. But then Cγ cancels from
direct sums and we have A θ C2 « B θ C2. Since i? « U2, C2 is cyclic
and so C2 ~ eR, for some purely infinite idempotent e in /.

(ii) Since R is purely infinite, we see that every finitely generated right
i?-module is cyclic.

Suppose K0(I) = 0 and let e be an idempotent in /. By (i) there
exists a purely infinite idempotent / in / such that eR θ fR « fR. Thus
eR < fR as desired.

Conversely, let e be an idempotent in /. By hypothesis eR < fR for
some purely infinite idempotent / in /. Then, since fR < eR θ fR <
(fR)2, by [7, Theorem 10.14] we have eR φ fR ~ fR. So [eR] = 0 in

(ϋi) Suppose [Λ] = [B] e # 0 ( J). By (i), Λί θ î? « B Φ ei? for some
purely infinite idempotent e in / and a fortiori i θ cc(e)]? « 5 θ
cc(e)R.

Conversely, if A Φ cc(e)i? » JB θ cc(e)R then we have (1 - cc(e))A
~ (1 - cc(e))£. Hence it suffices to prove that [cc(e)A] = [cc(e)B] = [0].
By cutting down to cc(e)i? we may assume e faithful and we need only
verify [̂ 4] = [0]. Thus we are reduced to the case A directly finite. By the
general comparability axiom there exists a central idempotent h such that
heR < hA and (1 - h)A < (1 - h)eR. Since hA is directly finite and heR
purely infinite we deduce that heR = 0. But e is faithful so h = 0. Then
A < eR and the result follows from the proof of (ii).

(iv) The relation A Φ cc(e)R « B θ cc(e)R is equivalent to
(1 - cc(e))A « (1 - cc(e))jS and ccθ)>4 Φ cc(»i? « cc(e)B Φ cc(^)iί.
Since cc(β) is purely infinite the latter relation always holds. So the result
follows from (iii). D

THEOREM 1.9. Let R be a purely infinite, regular, right self-injective

ring and let I be an ideal ofR. Then

(i) The map

a : U(R/I) -> K0(I), a(a) = [Cokerα] - [Kera]

is a group homomorphism which induces an isomorphism

(ii) A unit a e U(R/I) can be lifted to a unit in R if and only if
[Cokerα] = [Kerα] e K0(I).
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Proof, (i) Let /: U(R/I) -> Kλ(R/I) be the natural map. It follows
from [13, Theorem 1.2 (in) and Theorem 2.2] that / is onto and Ker/ =
U(R/iy. So KX(R/I) = U(R/iyh. By [13, Theorem 2.7 (ii)] Kλ(R) = 0
and it follows from [7, Proposition 15.6] that K0(R) = 0. Thus (i) follows
from Proposition 1.3.

(ii) This is an immediate consequence of (i) and Lemma 1.7. D

LEMMA 1.10. Let Rbe a regular right self-injective ring and I an ideal of
R. If e is an idempotent of I, then the following are equivalent

(i) e < f for some purely infinite idempotent f in I.
(ii) e < f for some purely infinite idempotent f in I.

Proof. Clearly (ii) => (i). Conversely, by [7, Theorem 10.32] there
exists a central idempotent h in R such that heR is purely infinite and
(1 - h)eR is directly finite. So without loss of generality we may assume
that eR is directly finite. We have eR ~ e'R QfR for some idempotent
er. Since eRe has stable range 1, (1 - e)R « (1 — e')R, so there exists a
unit u in R such that e = u~ιe'u. The idempotent u~ιfu is a purely
infinite idempotent in / and e < u~ιfu. D

COROLLARY 1.11. Let Rbe a regular right self-injective ring. Let eλ be
the central idempotent in R such that eλR is purely infinite and (1 — e^)R is
directly finite. Then the following are equivalent

(i) Every unit in R/I can be lifted to a unit in R.
(ii) For every idempotent e e eλ I there exists a purely infinite idempo-

tent f e / such that e < f.

(iϋ) K0(e1I) = 0.

Proof. R decomposes into the direct product of the rings Rλ = exR
and R2 = (1 - eλ)R. Since R2 is unit-regular it is clear that a unit in a
factor ring of R2 can be lifted to a unit in i?2. Thus without loss of
generality we may assume that R is purely infinite, that is, ex = 1.

The equivalence (ii) <=> (iii) follows from Proposition 1.8 (ii) and
Corollary 1.10. It is clear from Theorem 1.9 (ii) that (i) <=> (iii). D

COROLLARY 1.12. If R is a regular right self-injective ring of Type III
and I is an ideal ofR, then every unit in R/I can be lifted to a unit in R.

Proof. Since R is Type III every idempotent is purely infinite. The
result follows from Corollary 1.11. D
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Now it is a simple matter to extend Corollary 1.11 to arbitrary right
self-injective rings. For this we first need a lemma.

For any ring R denote by / = J(R) its Jacobson radical. We shall use
the fact that an element of R is a unit if and only if so is modulo /. Recall
that if R is right self-injective then R/J is regular and right self-injective.
Moreover every idempotent in R/J can ΐ>e lifted to an idempotent in R.

We denote by R^ the right ideal generated by all purely infinite
idempotents in R.

LEMMA 1.13. If R is right self-injective, then R^ is an ideal of R.

Proof. If e is a purely infinite idempotent in R then it suffices to
prove that xe e R^ for all x in R. In the case x is a unit we have that
xex~x is a purely infinite idempotent, hence xex'1 e R^ and so ce e JRoo.
Now write R/J = Rλ X R2 where Rλ is purely infinite and R2 is unit-
regular. Let Sλ and S2 be the ideals of R such that Sλ/J = Rλ and
S2/J = R2. Since R = Sr

1S2 it suffices to consider separately the cases
x G Sλ and x e S2.

Suppose first x e Ŝ . Since Rx is purely infinite Rλ « M2(i?1) and
hence every element of i?x is a sum of an even number of units in Rv But
then, every element of Rx is a sum of units in RλX R2 and so every
element of Sτ is a sum of units in R. Now it is clear that xe ̂  R^.

Assume now x e S2. Since i?2 is unit-regular we can find an
idempotent / and α unit u in R such that xu — f ^ J. So x — fu'1 is a
sum of two units. On the other hand fRe c / so also /w~xe is a sum of
two units. Therefore xe = (JC - /w-1)e + /w"1^ e R^. •

THEOREM 1.14 If R is α right self-injective ring and I is an ideal of R,
then the following are equivalent.

(i) Every unit in R/I can be lifted to a unit in R.
(ii) If e is an idempotent in I which is contained in a purely infinite

idempotent in R, then there exists a purely infinite idempotent in I contain-
ing e.

(iii) K0(IRJ = 0.

Proof. Write R = R/J and denote images in R by overbars. Note
that R/(I + /) is a factor ring of the regular ring R/J. So J(R/(I + /))
= 0. Therefore J(R/I) = (/ + / ) / / . Now we have the following com-
mutative diagram

R -* R/I

I I
R -> (R/I)/J(R/I) - R/ϊ
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where the rows and columns are the natural projections. Now it is easily
seen that U(R) -> U(R/I) is onto if and onlytf U(R) -> U(R/Ϊ) so is.

If eλR is the purely infinite part of R, then IR^ = exϊ. Thus
K^e^) « KQ^IR^) (for this notice that the kernel of the natural projec-
tion IR^ -> ^ 7 is contained in / ) . Now it follows from Corollary 1.11,
applied to the pair (R,ϊ) that (i) <=> (iii). The result will follow by using
Corollary 1.11 and noting that (ii) holds for the pair (R, I) if and only if
it holds for (R,ϊ).

Suppose first that (R,I) satisfies (ii). Let e be an idempotent in /
such that e < f for some purely infinite idempotent / in R. Then e < f
and so there exists a purely infinite idempotent g in R such that e < g
and g belonging to /. In fact g e / + / and thus g G / .

Now we have ge = e so ge — e = j e /. From this we easily obtain
g(l +j)e = (1 +j)e. But then gλ = (1 + j)~~1g(l + j) is a purely infinite
idempotent in / such that e = gλe < gv

Conversely, let e be an idempotent in / such that e < f for some
purely infinite idempotent / in R. Clearly we may assume / is a purely
infinite idempotent in R and e is an idempotent in /. Then fe — e = j e /.
As in the preceding paragraph we obtain e < fx = (1 +j)~ιf(l +7).
Clearly fx is purely infinite and so, by hypothesis, there exists a purely
infinite idempotent g in / with e < g. Therefore g e / is a purely infinite
idempotent such that e < g. D

COROLLARY 1.15. If R is a prime, regular, right self-injective ring, and
I is an ideal of R, then

(i) If I = i?0, then a unit a e R/I can be lifted to a unit in R if and
only if a is unit regular or equiυalently Ker a « Cokerα.

(ii) If I Φ Ro, then every unit in R/I can be lifted to a unit in R.

Proof, (i) It follows from Proposition 1.6.
(ii) If / Φ Ro then, by Lemma 1.5, there exists an idempotent e in /

such that eRe is not unit-regular, but R being prime, regular, right
self-injective this implies that e is purely infinite. By Theorem 1.14 we
must prove that every idempotent / in / is contained in a purely infinite
idempotent in /. Without loss of generality we way assume that / is
directly finite. Since R satisfies the comparabihty axiom we have either
e < f or / < e. Since e Φ 0 we must have / < e, as desired. D

EXAMPLE. Let R = End^(F) where V is an infinite-dimensional
K-vεctoτ space. In this case Ro = {x e R \ dim^x( V) < 00}. If we associ-
ate with each [eR] e K0(R0) the ΛΓ-dimension of e(V), we obtain an
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isomorphism KQ(R0) ^ Z. By Theorem 1.9 U(R/R0)*b « Z, further-
more a unit a in R/Ro can be lifted to a unit in R if and only if
dim κ Coker a = dim^ Ker a. Ώ

2. Computation of KQ(I). Let R be a purely infinite regular right
self-injective ring and let / be an ideal of R. Our goal now is to realize
K0(I) as a group of continuous functions. This has been motivated by
Olsen's work in W*-algebras [15].

The starting point in Olsen's proof is Wils' characterization of the
closed ideals of W*-algebras. Although in the regular case such a char-
acterization is not our disposal, we can obtain our results by extending
some computations due to Goodearl and Boyle.

If M is a right i?-module and n > 0 is an integer we shall write nM
for Mn.

LEMMA 2.1 Let R be a regular ring. Let A and B be nonsingular
injectiυe right R-modules such that the endomorphism ring End # 4̂ is Type
II andpA « qB for some positive integers p, q. Let r be a positive integer.

(i) If r < p then there exists a right R-module D such that D c B and
qD « rA.

(ii) Assume A is directly finite. Let C be a finitely generated projective
right R-module such that A,B c C and rA < qC. If r > p then there exists
a right R-module D such that B c D c C and qD ~ rA.

Proof, (i) We have rA « Bγ c qB for some Bv Since EndΛ Bx is Type
II (see [7, Theorem 10.10]) by [7, Proposition 10.28] Bλ « qB2 for some
B2. So qB2 < qB and by [7, Theorem 10.34] there exists a right iί-module
D such that 5 2 « D c B.

(ii) As in (i) there exists AλQ C such that rA « qAv Now consider
the submodule of C, B + ^41? which is finitely generated and so projective.
Then B + Aλ < B Θ Aλ and by [7, Corollary 9.20] £ + Aλ is a directly
finite nonsingular injective right i?-module. Thus End#(J5 + Aλ) is unit
regular.

On the other hand qB « pA c rA « #/41? so JS « JBX C yίx for some
5 ^ Then by [7, Corollary 4.4] there are decompositions B + Ax = B ® Bf

= Bλ® B' and thus D = B ® (Aλ Γ) B')is the desired i?-module.
Finally note that (i) follows for any ring R. D

LEMMA 2.2. Let R be a regular right self-injective ring. Let A be a
principal right ideal of R such that ΈnάRA is Type \\f. Let {pn,qn}n€Ξn be
a set of positive integers such that pnA < qnRfor every n. Then there exist
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principal right ideals of R\ Bl9 B2,... such that qnBn « pnA for every n and

Bn c Bm wheneverpn/qn < pm/qm.

Proof. We are going to construct the right ideals Bn by induction on

n. Since pxA < qxR and EndRA is Type II there exists a principal right

ideal Aλ such that pxA « pλqχAx < qλR cf. [7, Proposition 10.28]. Then

by [7, Theorem 10.34] pxAλ ~ Bλ Q R for some right ideal Bv

Now suppose we have constructed Bv...,Bn. Set λn=pn/qn for

each n. Assume for simplicity that λ 1 > λ 2 > > λ n . Now there are

three possibilities: (1) λ π + 1 < λΛ, (2) λx < λ π + 1 and (3) λz > λ π + 1 > λi+1

for some / e { l , . . . , n - l } .

(1) By the induction hypothesis we have qnBn « pnA, so qn+ιqnBn ~

qn+ιPnA and then, by applying Lemma 2.1(i), there exists a principal right

ideal 5 n + 1 with Bn+1 c 5 n and qn+1Bn+1 * . p ^ ^ .

(2) Let 4̂X be a submodule of 4̂ such that >4 « ^n+i^v Now

* Pi-4 « pxqn+χAv On the other hand Λ + ^ + ^ x < ί n + 1 ϋ imphes

i :S -R. By Lemma 2.1 (ϋ) there exists Bn+ι with fi2 c 5 n + 1 and

i * Pn+ι<lιAv thus qn+1Bn+1 « /? π + 1 ^.

(3) As in the case (1), there exists a submodule of Bi9 say J?, such that

<ln+ιB ~Pn+iA F r o m t h e relation λn+1 > λ / + 1 we obtain pi+ιq»+ιBi+ι

£ Pn+i<li+ιBi+ι β Pi+iPn+iA β Pi+i^n+iB^ ™ there exists J5*+1 with fii+1
β ^ / ί i £ ^ Then by [7, Corollary 4.4] there are decompositions 5 +

Now write 2?π+1 for the module Bi+ι Θ (B Π 5*). Then 5Z 2 5 W + 1

D 5 i + 1 and qn+ιBn+ι « / ι π + 1 ^. •

Let i? be a regular right self-injective ring. If e is a directly finite

idempotent of R, then eRe is unit-regular cf [7; Corollary 1.23, Theorem

9.17]. By Lemma 1.5 we see that Ro coincides with the ideal of R

generated by all directly finite idempotents of R.

LEMMA 2.3. Let R be a regular right self-injective ring and I an ideal of

R contained in RQ. If J is an ideal of R contained in /, then the natural

homomorphism K0(J) -> K0(I), induced by the inclusion J c /, is injec-

tive.

Proof. By Proposition 1.2 every element in K0(J) can be written in

the form [̂ 4] — [B] for some finitely generated projective right Λ-modules

in P(I). If [̂ 4] = [B] in K0(I), then there exists a finitely projective right

i?-module C e P ( / ) with A θ C « B θ C. Since every idempotent in /
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is directly finite, by [7, Corollary 9.20] C is directly finite and then by [7,
Corollary 9.18] A * B. So [A] = [B] in K0(J). Π

From now on we shall identity K0(J) with its image in K0(I).
Let B(R) be the set of all central idempotents of R. If {£,};<=/ is a

family of elements in R we denote by V, e 7 ez and by Λz e 7 ez its supremun
and its infimum respectively. If R is regular and right self-injective then
by [7, Proposition 9.9] B(R) is a complete Boolean algebra.

Let X = BS(R) be the Boolean spectrum of i?, that is, X is the set of
all maximal ideals of B(R). Recall that the closed sets in X are of the
form V(S) = {M e ££(£) |S c M}, where S c £ ( # ) . Recall that with
this topology, X is an Stonian space, that is, X is a compact Hausdorff
space such that the closure of every open set is open. If 7 c X then we
denote the closure of Y in X by Y.

We shall need the following simple lemma.

LEMMA 2.4. Suppose { e z } z e / is a family of elements in B(R). If
X. = V{ι - βi) far all /, U^JJ

Proof. Set e = WiGlei and 7 = Uie/-Yf. Since 7 is a clopen set there
exists / in 5(i?) such that 7 = V(l - / ) . It is easily seen that the
inclusion Xt = V(l - et) Q Y = V(l - /) implies et < f for all index /.
So e < / . On the other hand we have U i € /-Xic V(l - e). Because
V(l - e) is clopen it contains 7. So / < e. D

Let / : X -* [-00, oo] be a continuous map of X into the extended
real interval [-oo, oo]. We say that / is almost finite if it is finite in a
dense open subset of X. We denote by ^{X, [-00,00]) the set of
all almost finite continuous maps of X into [-00, 00]. Assume / , g e
^(X9 [-00, 00]) and let U be a dense open set in X such that / and g are
finite in U. Consider the continuous map / + g of ί/ into [-00,00]
defined with pointwise addition. Since X is Stonian, U = X is the
Stone-Cech compactification of £/ (see [19, 1.14 Theorem]), then, in
particular, by [19, 1.11 Theorem] f+g can be extended to a unique
continuous map, also denoted by / + g, of X into [-00, 00]. With this
addition and the natural order, ^(X, [-00,00]) becomes an ordered
abelian group.

Let G be a partially ordered abelian group and let H be a subgroup
of G. Recall that H is said to be directed if it is upward directed, and
convex if whenever xv x2 Ξ H and y e G such that xλ < y < x2, then
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y ^ H. It is known (see for example [7, Proposition 15.17]) that the set of
all directed convex subgroups of G ordered by inclusion forms a lattice
denoted by L(G).

For any rng / we denote by L2(I) the lattice of ideals of /.
For the definition of the relative dimension functions on the nonsin-

gular injective right modules over regular right self-injective rings we refer
to [7, Chapter 11].

THEOREM 2.5. Let R be a regular right self-infective ring of Type 11^
and let e0 be a faithful directly finite idempotent in R. Then

(i) The rule

[eR]^Ψe, Ψe(M) = dM{eR:e0R)

defines an isomorphism of partially ordered abelian groups.

φ:K0(R0)^ ίf(JΓ, [-00,00]).

(ii) The map

L2(R0) -> L(V(X, [-oo, ool), / ~ φ(K0(J)))

is a lattice isomorphism.

Proof, (i) Denote by V(X9 [0, oo]) the set of all almost finite continu-
ous maps of X into the extended real interval [0, oo]. By [7, Lemma 11.16]
if e is an idempotent in Ro then the map

φe: X^ [0,oo], M^dM(eR: e0R)

is continuous. Now we prove that in fact <pe belongs to #(X, [0, oo]). Set
U = φ~\[09 oo)), which is an open set. Because X is Stonian, U is clopen
and so U = V(f) for some / in B(R). Suppose eg < neog for some
positive integer n and some central idempotent g. If fgΦO then
there exists a maximal ideal M in B(R) such that fg Φ. M, thus
dM(eR: e0R) < n and s o M e V(f\ which is a contradiction. Then fg =
0. Let m be a positive integer. By the general comparability axiom there
exists a central idempotent h such that efh < meofh and (1 - h)meof <
ef(l - h). Then by the above fh = 0 and so meof < ef. Since this holds
for all m we see that ej = 0, cf [7, Corollary 9.23]. Therefore / = 0 and
ί/= X.

Since R is purely infinite, for every finitely projective right i?-module
A there exists an idempotent e in R such that A « eR. Thus we have a
well-defined map

where e is any idempotent of Ro.
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Now we prove that φ is onto. For this let a be an element in

<#(X, [0, oo]). Let Xo denote the closure of the set {M e X\a(M) > 0}.

For any integers m and n such that m > 0 and n > 1 let Xmn denote the

closure of the set [M e X\a(M) > m/2n). Note that XOn = Xo and

Xmn Q Xm-ιyn f°Γ all m a n d π. It is easily seen that Xn — α'^oo) =

U™~ι(Xm-ι „ — XmΛ) for a fixed «. Since a is almost finite, Xo — α"1(oo)

= Xo. Suppose Xm_1>n - Xmn = {M e X | e w n £ M} for all m and /ι

and for some e w n in B(R). It is clear that for each n the ew w 's are

orthogonal because the sets Xm-hn — Xmn are disjoint. It follows from

Lemma 2.4 that Xo= {M G X\l - e <£ M } , where 1 - e = Vm,nemn.

For any m and n, Xm_hn = X2m-2,«+i and Xm__ln - Xmn is the

disjoint union of X2m-2,n+i ~ xim-ι,n + ι a n d xim-i,n+ι ~ xim,n+v So

Zmn = *2m-ι,n+i + ^m.π+i; L e t L b e a n idempotent such that 2π/mπΛ
« meQR. Since e o iί is directly finite it follows from [7, Proposition

11.3(έ?)] that dM(fmnR: e0R) = m/2w for all M in X. By Lemma 2.2 we

can assume that fmn < fst if m/2n < s/2*.

Let An = ym^λ{emnfm^nR) and note that An is an injective hull of

φ emnfm-ι n^ It ̂ s easily seen that ^4rt is directly finite. Now we have

I Φ f2m-2,n + ie2m-l,n + lR) φ ( φ Λm- l,n
V w > l / V m > l

= φ Jm-l,n + lem,n + lR'

So An c ^ ί n + 1 for all n. Set ̂  = U B a l i 4 n .

For any integer / > 1 define A* = (Vm>ιfm,emtR). As above ^4* is

directly finite and we have

= ( θ

£ φ

= Φ fij9t+yej,t* = Φ
>1 >1

So ^4*+1 c ^4*. Nowyίr c Λ* and then ^ c A*.

We shall prove that φ([̂ 4]) = a. Since a is almost finite we must

show that φ([A])(M) = a(M) for a l l M e l - α^oo). If e ί M then

dM(A: e0R) = dM(Ae: e0R) = 0 because yle = 0. Now suppose that e
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belongs to M. Then for each n we have that there exists an m such that
M e Xm_^n - Xm^n. So m - 1/2* < a(M) < m/l\ Since AnemnR =
fm-i,n*mn* t h e n dM^n' e0R) = m - 1/2" and so dM(A: e0R)>
(m-l)/2n. Similarly dM(A:e0R) < dM(A*n: e0R) = dM(A*nemn: e0R) =
dM(LnR' e0R) = m/l\ Then φ([A])(M) - 1/2" < a(M) < <p([A])(M)
+ 1/2" for all n. So a(M) = φ([A])(M).

Now by [7, Theorem 11.11] the map

φ: K0(R0) -> V(X, [-oo, oo]), [eΛ] - [fR] -* Ψe ~ <pf

is a group homomorphism. By [7? Theorem 11.15 (a)] φ is an order
preserving homomorphism. Because any element of <S{X9 [-oo, oc]) can
be written as a difference of two elements of ^(X9 [0, oo]), by the
preceding paragraph it is clear that φ is onto. To prove injectivity suppose
φe = φf for some idempotents e and / in K0(R0). Then by [7, Theorem
11.15 (b)] eR * fR and so [eR] = [fR] in KQ(R0).

(ii) If / is an ideal of R contained in i?0, by Lemma 2.3 K0(J) is a
subgroup of K0(R0). Now, as in the proof of [7, Theorem 15.20] one can
see that the correspondence / •-> K0(J) defines a lattice isomorphism of
L(R0) onto L(K0(R0)). Since φ is an order group isomorphism, the
result follows. D

COROLLARY 2.6. If R is a prime regular right self-injectiυe ring of Type
Π w , then Kλ{R/R,) = U{R/R,γh - K0(R0) - R.

Proof. It follows from Theorem 1.9 and Theorem 2.5. D

Now we shall consider almost finite continuous functions on
X taking its values on Z U {+ oo}. As above we shall write

U { ± oo}) for the group of all this functions.

LEMMA 2.7. Let R be a regular ring. Let A and B be finitely generated
right R-modules such that End^^4 is unit-regular. IfA/AP < B/BP for all
prime ideals P of R then A < B.

Proof. In [7, Theorem 4.19] this lemma is proved under the hypothesis
of unit-regularity. But, with the notation of [7, Lemma 4.18], it is only
necessary that the i?-module Aλ/AλK cancels from direct sums, and it is
easily seen that this also occurs if EndΛ A is unit-regular. D
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The proof of the next result is quite similar to Theorem 2.5.

THEOREM 2.8. Let R be a regular right self-injectiυe ring of Type 1^
and let e0 be a faithful abelian idempotent in R. Then

(i) the rule

[eR] -> φe, φe(M) = dM(eR: e0R)

defines a partially ordered abelian group isomorphism

(ii) the map

L2(R0) -> L(V(X,Z U{±oo})), / * φ(K0(j))

is a lattice isomorphism.

Proof, (i) First we prove that if e is an idempotent in Ro then
dM(eR: e0R)is either an integer or oo. For this we need only prove that if
nfR < mgR, where m, n are positive integers and /, g are idempotents
with g abelian, then there exists an integer s, s < m/n, such that
fR < sgR.

Let P be a prime ideal in R and let / , g e R/P the images of / and
g in R/P respectively. Then nfR/P < mgR/P. Since R/P is prime and
g is abelian in R/P we see that gR/P is a simple module and so
fR/P « rgR/P for some r e N. Hence fR/P < [m/n]gR/P, where
[m/n] denotes the integer part of m/n. By Lemma 2.7 we obtain
fR < [m/n]gR as desired.

As in the proof of Theorem 2.5 (i) we derive that φ is a well-defined
injective map.

Now we are going to prove that φ is onto. Like Theorem 2.5 (i) it
suffices to prove that for every positive a in ^(XyZU{±oo}) there
exists A in P(R0) such that φ([̂ 4]) = a. For each natural k, set Xk =
{M ^ X\a(M) = k}. Certainly Xk is a clopen set in X. Hence Xk =
{M e X\ek £ M}, for some suitable ek in B(R). Since the Xks are
pairwise disjoint we have that the corresponding eks are orthogonal.

For a given natural number w, we have, since R is purely infinite, that
ne0R < R. Thus (Bkkeke0R < R. Let A denote a principal right ideal of
R that is isomorphic to the injective hull of (Bkkeke0R. There is no
difficulty in proving that A belongs to P(i?0) Clearly ekA » keke0R and,
by [7, Proposition 11.3] we have

φ([A])(M) = dM(A: eQR) = dM(keke0R: eQR) = k = a(M),

for all M e Xk. Since a is almost finite we see φ([A]) = a.
(ii) It follows similarly to Theorem 2.5 (ii). D
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LEMMA 2.9. Let Rbe a regular right self-injective ring and I an ideal of
R. If C G P(I) is purely infinite then C ~ eR for some {purely infinite)
idempotent e in L

Proof. Suppose C = A Θ B for some directly finite right i?-module A
and some purely infinite right i?-module B. Now we prove that C ~ B.
By [7, Theorem 9.14] there exists h e B(R) such that Ah < Bh and
B(l — h) < A{\ — h). Then, since B is purely infinite, we have J?(l — h)
= 0. So C(l - h) «,4(1 - Λ) and thus also ,4(1 - h) = 0. Then J? <
A θ 5 < B θ 5 « 5 and so, by [7, Theorem 10.14] C = A ® B ~ B.

Now, suppose C « exi? θ θen2? for some idempotents el9..., en

in /. By [7, Theorem 10.32] there exists λ,. e 5(i?) such that A ,.<?,.£ is
directly finite and (1 — h^β R is purely infinite for / = 1,..., n. Then by
the preceding paragraph we can assume that each et is purely infinite.
Since JR satisfies general comparabilaity, there exists h e B(R) such that
hex < he2 and (1 - h)e2 < (1 - h)ev Then it is clear that e = (1 - h)eλ

+ he2 is a purely infinite idempotent in / such that exR θ e2R ~ eR Θ
eR ~ eR. By induction on n the result follows. D

For each ideal / of R we denote by /0 the ideal of R generated by all
directly finite idempotents in / and by 7X the ideal of R generated by all
directly finite idempotents in / that are contained in some purely infinite
idempotent in /.

If S e L(V(X, K)), where K is either [-oo, oo] or Z U { ± oo}, and Γ
is a closed set in X> then we write Sτ for the quotient S/{ a e S: a = 0
in some open set in Xcontaining Γ}.

THEOREM 2.10. Let Rbe a regular right self-injectiυe ring and I an ideal
ofR. Then

(i) K0(I) « tfo(J0)/tf0(JO.
(ii) Let Γ(7) = F({cc(g) | g is a purely infinite idempotent in I}). If R

is either Type 11^ or 1^ then K0(I) « φ(*Γ0( J 0 ) ) Γ ( / ) where φ: K0(R0) -*
, K) is the map defined in Theorem 2.5 or Theorem 2.8, respectively.

Proof, (i) First we prove that the natural map Ψ: K0(I0) -> K0(I) is
onto. Let A e P(I). By [7, Theorem 10.32] there exists a central idempo-
tent h in R such that Ah is directly finite and ,4(1 — h) is purely infinite.
Then [,4(1 - h)] = 0 in ^ 0 ( ^ ) a n ( * so we can assume that A is directly
finite, but in this case it is clear that A belongs to P( Jo).

Now we prove that KerΨ = K^IJ. Let A e P(J0 Since A is
isomorphic to a direct sum of principal right ideals, each of which is
generated by an idempotent in Il9 it is clear that in order to prove
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[A] G Ker Ψ we may assume A = eR for some idempotent e in Iv Then
there exists a purely infinite right JR-module B in P(I) such that yl < B.
Thus ^ θ B « 5. Then [Λ] = 0 in # 0 (7) and so K0{Iλ) c Ker Ψ.

Conversely, let [̂ 4] - [5] e KerΨ. Then by Proposition 1.2 and the
proof of Proposition 1.8 (i) there exists a purely infinite right i?-module C
in P(I) such that A θ C » 5 θ C. Now, by the general comparability
axiom there exists h e 5(i?) such that Bh < Ch and C(l - h) <
B{1 — h). Since B(l — h) is directly finite and C(l — h) is purely infinite
we see C(l — λ) = 0. From the relation ^ θ C « J ϊ θ C we have
A{\ - h) « 5(1 - A) so [Λ] - [5] = [̂ Λ] - [£Λ]. Then we may assume
B < C and since C is purely infinite also A < C. By Lemma 2.9 4̂ <
eR for some purely infinite idempotent e in /. Then by Lemma 1.10
A c fR for some purely infinite idempotent / in /. Hence A e P ^ ) .
Similarly 5 e P( J^ and then [Λ] - [5] e ^ ( / O .

(ii) Since R is purely infinite, every element in K0(I) can be written
in the form [eR] — [fR] for some idempotents e, f in /.

By (i) it suffices to show that 9 ( ^ ( 7 ^ ) = {a e φ(i^0(/0)): α = 0 in
some open set in X containing Γ(/)}. If [eR] e ^ 0 (Λ) then there exists a
purely infinite idempotent g in / such that e < g. Then eR @ gR ~ gR
and by [7, Theorem 11.11] dM(eR: e0R) < dM(gR: e0R) for all M in X
(here e0 is as in Theorem 2.5 or Theorem 2.8). By [7, Proposition 11.3]
dM(gR: eQR) = 0 if M e K(cc(g)). So, since Γ(7) c F(cc(g)), we have

/t)) c {a e φ(AΌ(/0))|α = 0 in an open set in X containing

Now we prove the reverse inclusion. For simplicity here we denote by
E the set of all purely infinite idempotents in /. First we shall note that
the set S = (cc(g) | g e E) is an ideal of B(R). If x e £(i?) and g e £ ,
then by [7, Lemma 11.4 (c)] xcc(g) = cc(xg). Since xg e £, we see that
xcc(g) e 5. Let gx, g2 e £ and let k = cc(gx) + cc(g2) - 2cc(g1)cc(g2).
By [7, Lemma 11.4(c)] and observing that gx(l — cc(g2)) and
g2(l — cc(gx)) are orthogonal idempotents we have

c c ( g 1 ( l - c c ( g 2 ) ) + g 2 ( l - c c ( g 1 ) ) )

= cc(gx(l - cc(g2))) + cc(g2(l - cc(gx)))

= cc(gj(l - cc(g2)) + cc(g2)(l - cc(gj) = k.

By noting that gx(l — cc(g2)) + g2(l — cc(gx)) G E we obtain that k e 5.
Then 5 is an ideal of B(R).

Let ^ G 70 be an idempotent such that φ([eR]) is zero in an open set
U containing Γ(7). For each M e Γ(7) there exists hM e B(R) with
M e V(hM) Q U. Since Γ(7) is compact we can find Ml9..., Mr e Γ(7)
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w i t h Γ ( J ) c V ( h M ι ) U ••• UV(hκ) = V ( h M i . . . h M ) ; set h =
hMi -.. hMr, then from the inclusion V(S) = Γ(7) c V(h) we obtain
A G S and so h = cc(g) for some g in £.

Let M e X If 1 - /* e M, then by [7, Proposition 11.3 (a)]

dM(e(l-h)R:e0R) = Q.

lίh^M then, sinceK(Λ) c U, dM(e(l - h)R: e0R) = φ([eR])(M) = 0.
Hence, by [7, Proposition 11.6], e(l - Λ) = 0. Let / e B(R) such that
te < tg and (1 - /)g < (1 - t)e. Because (1 - t)e is directly finite and
(1 - t)g is purely infinite, we obtain (1 - t)g = 0 and so h = cc(g) < t.
Then by multiplying the relation te < g by Λ, we obtain Ate < hg = g,
and, because ht = h and λe = e, we have e < g. By Lemma 1.10 we may
assume e < g and so [eR] e .Ko( J^ as desired. D

3. Rickart C*-algebras. Recall that a C*-algebra A is said to be
Rickart if the right annihilator of each element in A is generated by a
projection. In notation r(a) = eA where e = e2 = e*. If the annihilator
condition holds for every subset of A, then A is called an AW*-algebra.
As usual we shall write RP(α) (the right projection of a) for 1 — e. The left
projection of a, LP(a), is defined similarly. It is known [3, Proposition
1.3.7 and Lemma 1.8.2] that with the relation < the set of all projections
of a Rickart C*-algebra is a complemented χ0-complete lattice. Two
projections e and / are said to be equivalent, written e ~ /, if eA ~ fA. A
projection e is said to be finite if e ~ / < e implies e = /. We say A is
finite if 1 is a finite projection. Since A is a C*-algebra e - f if and only
if e and / are *-equivalent, that is e = xx* and / = x*x for some
x e eAfcf. [9, Proposition 19.1 (a)]. If e is an idempotent of a C*-algebra
4̂, then there exists a unique projection f in A such that eA = fA cf. [9,

proof of Proposition 19.1 (b)]. From this we see that Rickart C*-algebras
are precisely those C*-algebras that are principal projective. It seems to
be unknown whether Rickart C*-algebras are semihereditary.

For background and basic concepts on Rickart C*-algebras the
reader can consult [3].

PROPOSITION 3.1. If A is a Rickart C*-algebra and I is an ideal of A
then K0(I) = G(I) = K0(ΐ), where! is the closure of I.

Proof. Let E be the set of all projections in /. It follows from [3,
Proposition 5.22.1] that the sub-C*-algebras {eAe + Cl}e&E form a
directed system. Since 7 is the closed C-linear span of its projections [3, p.
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142, Exc. 7A] we have that C*-dirtime(=E(eAe + Cl) = / + Cl. Now it
follows from [9, Proposition 19.9] that the natural map

dir.lim KJeAe + C) -> KJΪ + C)
eeE

is a group isomorphism. Since the diagram

dir.lim K0(eAe + C) -> K0(l + C)

U •

tfo(J+C)

is commutative, where the maps are the natural ones, then the map

dir.lim. K0(eAe + C) -> K0(l + C)

is injective, and onto by [9, Proposition 19.3].
Thus, by Proposition 0.1 we have KQ(I) = K0(ϊ) = G(I). Π

Let A be a, C*-algebra and let / be an ideal of A. If m\ A -» A/I is
the natural surjection, then we set ^(I,A) = π~ι(U(A/I)). An element
of ^ ( 7 , A) is said to be a Fredholm element of A relative to I. In the case
where A = B(H) is the ring of all bounded operators on a separable
Hubert space and I = Jf is the ideal of compact operators, then the
elements of J^( JΓ, B(H)) are the usual Fredholm operators cf. [6, Chapter
5].

Let us recall briefly some basic results on index theory for Fredholm
operators. If T e ^(Jf,B(H)\ then by Atkinson's theorem [6, 5.17
Theorem] dimker T and dimKerΓ* are both finite and the map ί\
J*"(Jf, B{H)) -> Z given by T -> dimKer Γ*-dimKerΓ (the index map)
is a continuous monoid homomorphism [6, 5.36 Theorem]. Furthermore
the connected components of ^{Jίr,B{H)) are Γ\n\ n e Z [6, 5.36
Theorem]. Breuer [4] [5] generalizes this result to an arbitrary ϊF*-algebra
(here the compact ideal means the closure of the ideal generated by all
finite projections in A). More recently Olsen [15] has defined an index
map for each closed ideal 7 of a ίΓ*-algebra which permits to describe the
connected components of ^"(/, A).

Next we shall extend Breuer's theory to arbitrary Rickart C*-alge-
bras. In order to obtain an explicit index map for any closed ideal in a
Rickart C*-algebra A we will need the following additional axioms on A:

(i) A has a projection e such that e ~ 1 — e - 1
(ii) A satisfies the general comparability axiom (i.e. for each pair of

projections e, f there exists a central projection h such that he < hf and
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As we shall see this axioms are not an obstacle for constructing an
index theory for arbitrary yί W *-algebras.

The following lemma is known under the additional hypothesis of
general comparability (see [3, Lemma 1.8.3, Theorem 3.17.3]).

If A is a Rickart C*-algebra, then we denote by Jf= Jt(A) the
closure of the ideal generated by all finite projections of A. We say that X
is the compact ideal of A.

LEMMA 3.2. Every projection in Jf is finite.

Proof. Let / be the ideal generated by all finite projections in A.
Since Jf is the closure of / it is well-known that every projection in Jf

belongs to / cf [3, Chapter 5 §22 Exercise 6A]. Now let / be a projection
in J, then / = Σx/β^ , where xi9 yi e A and the e/s are finite projec-
tions. Consider now the map ψ: φetA -> fA defined by ^(Σe^) =
Σ/xzβ rz. Clearly ψ is an onto yl-module homomorphism. Thus fA <
φ etA. Now a finite Rickart C*-algebra has stable range 1 cf [10]. So the
endomorphisms rings eiAei « End#(ezyί) have stable range 1. In particu-
lar φ etA cancels from direct sums of right A -modules and, since fA is
isomorphic to a direct summand of ®etA, the same is true for fA.
Therefore / is finite. D

If M and N are right A -modules, then M *-> N means that M is
isomorphic to a submodule of N.

LEMMA 3.3. If A is a Rickart C*-algebra, then
(i) Ife^A is a finite projection, then eA does not contain an infinite

direct sum of nonzero pairwise isomorphic right ideals. In particular, every
A-module M ^ eA is directly finite.

(ϋ) If P and Q are directly finite cyclic projective right A-modules such
that P «-» QandQ<-> P, then P ~ Q.

(iii) If x is an element of A such that LP(JC) is finite, then LP(x) ~
RP(JC). Further xA » x*A.

Proof, (i) Let {An} be a sequence of pairwise isomorphic right ideals
contained in eA. Then {Ane} is a sequence of pairwise isomorphic right
ideals of eAe. Now eAe is a finite Rickart C*-algebra and so, R, its
classical ring of quotients [1, Theorem 3.1(i)] [11, Theorem 2.1] is an
K 0-continuous regular ring which contains an infinite direct sum of
pairwise isomorphic right ideals. By [8, Proposition 1.1] Ate ®eAe R = 0,
hence Ate = 0. But A is semiprime so 0 = eAt = Ai as desired.



LIFTING UNITS IN RINGS 319

(ii) We may assume P = eA and Q = fA for some finite projections e,
f in A. Let g be the supremum of e and /. By [3, Proposition 5.22.1]
g e JΓ and it follows from Lemma 3.2 that g is finite and so gAg is a
finite Rickart C*-algebra. Now e(gAg) *-> f(gAg) and f(gAg) ^ e(gAg).
If R is the classical ring of quotients of gAg, then because R is regular we
have eR < fR and fR < eR. But R is unit-regular cf [11, Theorem 3.2] so
eR « fR. Because of the unit regularity one has [7, Corollary 4.23] that eR
and fR are perspective in the lattice L(R) of principal right ideals of R.
By [11, Theorem 2.1(3)] L(R) = L(gAg) so that e ~ f in g>4g and so in
A.

(iii) Since xA « RP(JC)^4 and xA < U?(x)A, we see that RP(x) <->
LP(JC), similarly LP(x) -> RP(JC). By (i) RP(x) is finite and then from (ii)
we get LP(JC) ~ RP(JC) and xA « x*A. Ώ

LEMMA 3.4. Let e be a finite projection in a Rickart C*-algebra A. If
x e A is such that xx* and e commute then

xA Π eA « exx*A « e(xx*)1/2A.

Proof. Since LP(ex) < e w e see that LP(ex) is a finite projection. By
Lemma 3.3 (iii) exA « x*&4. Since r(x*e) = r(xx*β) and xx* commutes
with e we have xAΠeAQ exA « exx*A Q xA Γ) eA. By Lemma 3.3(i),
xA Π βyl and exx*A are directly finite right yl-modules. Moreover, left
multiplication by x induces an epimorphism from r((l - e)x) to xA Π eA,
then x4 Π ê 4 is a cyclic right ideal and so projective. Thus by Lemma 3.2
(ii) exx*A ~ xA Π eA. Since r(exx*) = r(e(xx*)ι/1) left multiplication
by (xx*)1/2 gives (^JCΛ:*)^ « ^(XJC*)X /14. D

Notice that if A has polar decomposition, then by [3, Proposition
4.21.3] xA = (xx*)1/2A for every x in A. Thus in this case the preceding
lemma is obvious. It is not known whether Rickart C*-algebras have
polar decomposition cf. [3, Chapter 4 §21 Exercise 10D]. In fact we have
the following result noted by Handelman.

LEMMA 3.5 (Handelman). A semihereditary Rickart C*-algebra has
polar decomposition.

Proof. If A is a semihereditary Rickart C*-algebra, then M2(A) is
also a Rickart C*-algebra cf. [9, Theorem 7.4, Proof of Proposition 19.1
(b)]. Now M2(A) contains two orthogonal copies of A and by using the
same techniques than in the proof of [3, Proposition 4.20.2] we see that
partial isometries are N0-addable in A. But then, as it is noted in [3, p. 276
Exercise 11 (ii)] A has polar decomposition. D
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LEMMA 3.6. Let Abe a Rickart C*-algebra and let I be an ideal of A. If
x is an element of A then the following are equivalent

(ii) There exist a positive unit y and projections e, fin I such that

eγxx*γ = yxx*ye

(1 — e)γ;oc*γ(l - e) = 1 — e

jc*γ(l — e)yx = 1 — /.

(iii) There exist projections /, g in I such that 1 - / E χ * ^ and
1-geχA.

Moreover, if either I c Jf or A is semihereditary, then for any pair of
projections e, f satisfying (ii) we have r(x*) θ fA « r(x) θ eA.

Proof, (i) => (ii). If x G #"(/, A) then xA + zA = A for some z G /
and, since A is a C*-algebra, xx* 4- zz* is a unit. By [3, Proposition
1.8.4], for a given ε > 0, there exists a projection /? e zz*.<4 with \\zz* —
pzz*\\ < ε. Thus we can choose p such that xx* + /?zz* is a unit. But then
xA + pA = A, say xx* + p = (γ" 1 ) 2 where γ = γ* is a unit. Define
e = LP(γ/?γ), since ypy is positive e = RP(γ/?γ), moreover e e /. Since
γxx*γ + ypy = 1 we see that e commutes with γxx*γ. By multiplying
the latter relation by 1 — e we get (1 - e)γxx*γ(l — e) = 1 — e. There-
fore x*γ(l — e)γx is a projection, say 1 — /. Since JC G ̂ ( 7 , ^4), we see
that / G /. The proof is complete.

(ii) => (iii) Since eyxx* = γxx*γe and(l — e)yxx*y(\ — e) = 1 — e,
we see that 1 — e G γx̂ 4, that is γ " 1 ^ — e)γ G X^4. NOW γ ' ^ l - e)yA
= (1 — g)A, where g is a projection, and because e £ / w e see that g G /
cf. [9, proof of Proposition 19.1 (b)]. Hence 1 — g G xA. On the other
hand is clear that 1 - / G X*A.

Obviously (iii) implies (i).
Suppose now that e and / are projections satisfying (ii). Since

r(x) = r{yx) and r(x*) « r(x*y) we may assume, without loss of gener-
ality, that γ = 1. Now consider the following exact sequences

0 -> r(x) -• r((l - e)x) -> x4 Π e4 -> 0

0 -> r(jc*) -> r((l - e)(xx*)1 / 2) -> (xx*) 1 / 2 ^ Π e4 -> 0

If / c Jf, then, by Lemma 3.4, xA Γ) eA ~ (xx*)ι/2A Π ê 4. In the case
where A is semihereditary we also have this isomorphism because then A
has polar decomposition (Lemma 3.5). Thus in both cases we can apply
SchanueΓs lemma to get

r(x) θ r((l - e)xx*) « r(x*) θ r((l - e)x)9



LIFTING UNITS IN RINGS 321

now

r((l - e)xx*) = r((l - e)xx*(l - e)) = r(x*(l - e)) = eA

and r((l - e)x) = fA. The proof is complete. D

PROPOSITION 3.7. Le/ A be a Rickart C*-algebra and let I be an ideal
of A. If a denotes the composite map

SF{1,A) - U(A/I) - KX(A/I) ^

then we have
(i) /// c X then

a(x)=[r(x*)]-[r(x)\

and LP(x) ~ RP( c) for all x ^&(I,A).
(ϋ) If A is semihereditary, then

a(x) = [r(x*)\ ~[r{x)] for all x G

Proof. Let β: ^(I9A) -> K0(I) be the map defined by β(x) =
[r(x*)] — [r(x)]. Then we must prove that β = a.

Let x e ^(1, A). Now let γ, e, f as in Lemma 3.6 (ϋ). Then we have
β(yx) = [r(x*γ)] - [r(γjc)] = [r(jc*)] - [r(x)] = β(x). On the other
hand it is clear that α(γ) = 0 so a(yx) = α(γ) + a(x) = a(x). Hence we
may assume γ = 1. For simplicity we shall write y = (1 — e)x, then we
have

yy* = 1 — e

y*y = l-f.

It follows from Lemma 0.2 and the remarks preceding it that

a(y) = [(09e)D] - [(<>,/)/>] e KO(I9A)

= [eA]-[fA]eK0(l).

Hence

a(x) = a(y) = [e4] -[/^] = [/•(*•)] -[r(x)] = j8(x).

Suppose now / c JΓ. Then

1 - e = LP(>) = LP((1 - e)x) ~ 1 - / = RP(j) = RP((l - e)x)

and, by Lemma 3.3 (iϋ), we obtain

e > L?{ex) ~ RP(ex).
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Since exx* = xx*e we then get

LP(x) = LP((1 - e)x) + LP(ex) ~ RP((l - e)x) + RP(ex) < RP(x),

so LP(x) < RP(x), for all x ^^(I,A). By symmetry RP(x) < LP(JC).

Now it follows from the generalized Schroder-Bernstein theorem that

RP(x) ~ LP(JC). D

COROLLARY 3.8. If A is a semihereditary Rickart C*-algebra and I is

an ideal of A, then the connecting map

δ: Kλ(A/l) - KO(I)

is defined by

δ(X)=[r(x*)]-[r(X)]

where X is any matrix over A such that modulo I is an inυertible matrix

representing X ^ KX(A/I).

Proof. Since A is semihereditary, matrix rings over A are also semi-

hereditary Rickart C*-algebras. The result follows, by using matrices, as

in the proof of Proposition 3.7 (ii). D

THEOREM 3.9. Let A be a Rickart C*-algebra and let I be a closed ideal

in A consisting of compact elements. Then

(i) Let π: ^ ( / , A) -* U(A/I) be the natrual surjection and let λ be

the composite map

Denote by U(A/I)° the connected component of 1 e U(A/I). Then

U(A/I)° = ir(U(A)) = kerλ.

(ii) If K0(I) is considered as a discrete group, then the map

x-+[r(x*)]-[r(x)]

is a continuous monoid homomorphism.

(in) a{^{I,A)) consists of those elements z e K0(I) such that z =

[eA] — [fA] where e and f are projections in I with 1 — e ~ 1 — /. More-

over, two projections e, f in I satisfy [eA] = [fA] e K0(I) if and only if

e~f.
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(iv) x, y G ̂ " ( / , A) lie in the same connected component if and only if

(x(x) = cι(y). Further a induces a group isomorphism

(v) a(x) = 0 if and only if LP(x) and RP(x) are unitary equivalent.
(vi) a(x) = 0 if and only if x + I contains a unit.

Proof. Consider any x G , f ( / , 4 Say eA = r(x*) and fA = r(x),
where e and / are projections which belong to /. By Proposition 3.7 (i)
1 - e = LP(x) ~ RP( c) = 1 - /. Conversely let z = [eA] - [fA] with
1 — e ~ 1 — f. Suppose x e A is such that xx* = I — e, X*JC = 1 — /.
Certainly x e J^(/, 4) and r(jc*) = eA, r(x) = /a. Therefore a{x) = z.

Suppose now [e/4] = [^4] e ifo( J). If for each projection g we write
Ag = g/ίg + C, then / + C is the C*-direct Umit of the Ag's for g in /.
By [9, Theorem 19.9] K0(I + C 1) = dir.lim. K0(gAg + C), so i ί o (/) =
dir.Um. K0(gAg). By Proposition 3.1 ^ 0 (g^g) = G(gAg), then there
exists a projection g in / with e, / < g and a finitely generated projective
^-module C such that eAgΘ C ~ fAg θ C.

Since ^ has stable range 1, C cancels from the direct sums and so
eA 9 » fA _. Therefore e - /. Thus (iii) follows.

(i) Now we compute Ker λ. If x e F(/, ̂ 4) then we shall denote π(x)
by x. Note that τr(t/(^4)) c Kerλ. Conversely, if λ(3c) = 0, then by (iii)
r(jc*) « r(x) and with the notation of Lemma 3.6 we have

(1 — e)γxx*γ(l — e) = 1 — e

and e ~ f. Let w be a unitary such that / = ueu*. Then it is easily seen
that

((1 - e)yx + w*/)(jc*γ(l - e) + fu) = 1

(χ γ(l - e) +/w)((l - e)yx + n*/) = 1,

so (1 - e)γjc + w*/G C (̂̂ ) Hence γx - (eyx + w*/) G U(A). Putting
/ = γ ' ^ e γ x + u*f) e / we have that x - i G ί/(̂ 4) and so 3c e 7τ(ί7(^)).

Since the unit group of a Rickart C*-algebra is connected π(U(A))
also is. If we prove that π(U(A)) is open, then it is clear that π(U(A)) =
U(A/I)°. For this let u G TΓ(C/(^)) such that \\ΰ - ϊ | | < 1. This means
that inf e / | |(w + i) - 1|| < 1. Thus there exists / G / with ||(w + /) - 1||
< 1, then u + i is a unit and therefore ϊί G π(U(A)).
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By Proposition 3.7 (i) a = λπ. So (ii) and the isomorphism

U(A/I)U(A/I)° « <x(F(I, A)) of (iv) follow. In order to end the proof

of (iv) note that ct(x) = a(y) if and only if x and y lie in the same

connected component of U(A/I). Since the map π is open and onto the

result follows.

(v) Suppose a(x) = 0, then by (iii) r(x) « r(x*) and since LP(*) ~

RP( c) we see that LP(x) and RP(x) are unitary equivalent.

(vi) By (i) it is clear that a(x) = 0 if and only if x e π(U(A)). So

a(x) = 0 if and only if x + / contains a unit. D

LEMMA 3.10. Let Mbe a 2 x 2 matrix over a ring R. If for some entry

a in M there exist b, c in R such that bac = 1, then M can be reduced by

elementary transformations to a diagonal matrix.

Proof. There is no loss of generality in assuming that M is of the form

and bac = 1. Now notice that the matrices

bP = ( 1 * °) and ρ ί \
\ 1 — acb acj \ 1 — cba c

belong to GE2(R). But then we have that PMQ is of the form

since this matrix can be reduced to a diagonal one, the same holds for

M. D

PROPOSITION 3.11. Let A be a Banach algebra satisfying the following

condition:

For each a e A and ε > 0 there exists an idempotent e G aA and a

central idempotent h £ A such that

(a) \\a — ea\\ < ε

(b) he - h and (1 - h){\ - e) - (1 - h). Then A is a GEτring.

Proof. For any Banach algebra [16, Proposition 8.7] we have

c GE2(A). Hence GE2(A) is clopen. In order to prove that GE2(A) =

GL2(A) it suffices to note that GE2(A) is a dense subset of GL2(A). For

this let
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and ε > 0. Choose an integer n such that n > 1/ε, Il-X ŷ. By hypothesis
there exist idempotents e and Λ, with h central, such that

||α — ea\ < \/n

and

he ~ h while (1 - *)(1 - e) ~ 1 - h.

Consider now the matrix

M=ίea

c d)

Then we have \\X - M\\ < \/n < \/\\X~\ Therefore M e GL2(A). We
claim that M e GE2(A). Since h induces a ring decomposition of A, by
cutting down to each part we may assume that either (i) e ~ 1 or (ii)
1 — e ~ 1. In the first case there exist x, y e A such that xey = 1 and
since e = azy for some z G i , we have x(ea)zy = 1. It follows from
Lemma 3.10 that M e GE2{A).

Now suppose that 1 — e ~ 1. From the relation &4 4- bA = A we see
that 1 - e e (1 - e)6/ί. Hence xfey = 1, for some JC, y ^ A. The result
follows again by using Lemma 3.10. D

We say that a Rickart C*-algebra A is purely infinite if 1 is the
supremum of a sequence of orthogonal projections all equivalent to 1. It is
a simple exercise to see that A is purely infinite if and only if A « A2 as
right A -modules.

LEMMA 3.12 (Pere Arά). Let A be a purely infinite Rickart C*-algebra
satisfying general comparability. Suppose e is a projection such that e ~ 1 —
e, then e ~ 1.

Proof. Denote by V and Λ the operations of taking supremum and
infimum respectively. Since A is purely infinite choose a projection / such
that / - 1 - / - 1. Define

h = LP(ef) ( = ( l - e

Since A satisfies the parallelogram law [3, Theorem 2.13.1]

(1) hΛ Θ gA = ((1 - e) V/-( l - e))Λ θ((l - e) Λf)A



326 PERE MENAL AND JAUME MONCASI

Since h < e and g < 1 - e we see that e - h and (1 - e) - g are
orthogonal projections, we have

(2) (e-h)AΘ((l-e)-g)A

= {e- h)A θ ( ( l - e) - ( 1 - e) Λf)A

* (e-h)A θ ( ( l -e)vf-f)A

= (e-h)A θ(Λ + 1 - e - / ) Λ = (1 - / ) Λ .

Now we shall prove that e ~ 1. Since 4̂ satisfies general comparability we
may assume that either g < e — h or e — h < g. In the first case we have
(by using (1)) that

l ~ / ~ Λ + g < / ι + ( e - / ι ) = e < l ,

while in the second case we have (by using (2)) that

1 ~ 1 - f~ (e - h) +((1 - e) - g) < g +((1 - e) - g)

= I - e ~ e <l.
Thus in both cases we see that 1 < e < 1. Then the generalized
Schroder-Bernstein theorem yields the result. D

THEOREM 3.13. Let A be a purely infinite Rickart C*-algebra satisfying
general comparability. If I is an ideal of A, then

(i) KX(A/I) = U(A/I)MU(A)) = U(A/iyh.
(ii) /// is closed in A, then

π(U(A)) = U(A/I)°.

(iϋ) A/I is a GE-ring.

Proof, (i) Since A2 « A we have (A/I)2 « A/I as ^//-modules. In
order to prove that KX(A/I) = U{A/iγh it suffices to show cf. [13,
Theorem 1.2 (in)] that A/I is a GE2-ήng. In proving this we first assume
that / is closed. By noting that the hypotheses in Proposition 3.11 carry
over algebra Banach factors, it suffices to verify that the algebra A
satisfies (a) and (b) of that proposition. Obviously (a) is an immediate
consequence of the spectral theorem [3, Proposition 1.8.4]. For (b), let e
be an idempotent in A. By general comparability there exists a central
idempotent h such that h(\ - e) < he(\) and (1 - h)e < (1 - h)(l - e)
(2). From the relation (1) we have hA < (heA)2. Since A is purely infinite
we have also (heA)2 < hA. So hA « (heA)2 and we can write hA = exA
θ e2A for some projections el9 e2 e hA such that ex~ e2~ he. Then
ex ~ h — ex and Lemma 3.12 yields eλ - h so he ~ h. Using the relation
(2) we have (1 — h)(l — e) - 1 — h. Thus we have shown that A/I is a
GE2-ring for any closed ideal I of A. Now assume / is an arbitrary ideal
of A. Let M G M2(A) such that M is a unit modulo /. If / denotes the
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closure of / in A, then M is a unit modulo / and by the above we may

assume, by using elementary transformations, that M is of the form

u 0N

,0

where u + / is a unit of A/I. It is easily seen that u + / must be a unit of

A/L Now by elementary transformations we can reduce M modulo / to

obtain a diagonal matrix. Thus A /I is a GJ^-ring. If A is a purely infinite

Rickart C*-algebra then A ~ M2(A) and so A is semihereditary. In

particular, by Lemma 3.5, A has polar decomposition.

Now by using that U(A) is a perfect group [13, proof of Theorem

2.10] we can proceed as in the proof of Lemma 1.7 to get π(U(A)) =

U(A/iγ and so (i) follows.

(ii) Since U(A) is connected also is π(U(A)). As in the proof of

Theorem 3.9 we can prove that π(U(A)) is clopen in U(A/I), so

ττ(U(A)) = U(A/I)°.

(in) Notice that if / = 0, then the result follows from [13, Proof of

Theorem 2.10] or [16, Theorem 2.10]. Fix n > 1. Since A is purely infinite

A « Mn(A). By applying (i) to π: Mn(A) -> Mn(A/I) we obtain

ττ(GEn(A)) = GLn(A/iγ and so GLn(A/I)' c GEn(A/I).

Let M ^ GLn(A/I). Since U(A/I) -* KX(A/I) is onto, there exists

a unit u e U(A/I) such that

M
1

But

10 1

= ί/(^//)ab implies

M

0\

\0

GLn(A/l)\

and by the above we have that M e GEn(A/I) as desired. D

THEOREM 3.14. Lei ̂ 4 6e a purely infinite Rickart C*-algebra satisfying
general comparability. If I is a closed ideal of A, then

(i) The map

a: 0(1, A) -> KO(I), x ~ [r(jc )] -[r(jc)]

is a continuous monoid homomorphism which is onto

(ii) [r(x*)] = [r(x)] if and only if there exists a projection e e /
that

r(x*) θ d = r(x) θ eA.
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(in) x9 y G J^(/, A) lie in the same connected component if and only if

ct(x) = a{y). Furthermore a induces a group isomorphism

K^A/I) = U(A/I)/U(A/I)° ^ KO(I).

(iv) a(x) = 0 if and only ifx + I contains a unit.

Proof. By Proposition 3.7 (ii) we see that a is a well-defined monoid

homomorphism. Since A is purely infinite we have [13, Theorem 2.7 (ii)

and the proof of Theorem 2.10] that KX(A) = 0. Clearly K0(A) = 0.

Therefore the connecting map δ: Kλ(A/I) -> K0(I) is an isomorphism,

in particular a is onto. By Theorem 3.13 Kλ(A/I) = U(A/I)/U(A/I)°

so a is continuous. Thus we have shown (i) and a part of (iii). The

remainder part of (iii) follows as in Theorem 3.9 (iv).

By Theorem 3.13, (iv) follows.

Now (ii) follows from Proposition 3.1. D

If A is an ^4W*-algebra, then A decomposes uniquely as a direct

product Ax X A2 where Ax is directly finite and A2 is purely infinite. Now

Ax is a ring with stable range 1 so the connecting map associated with

each ideal of Aλ is zero. Therefore we see that Theorem 3.14 is trivially

true for Av Since any ^4ίF*-algebra satisfies general comparability, Theo-

rem 3.14 also holds for A2. Thus we have

COROLLARY 3.15. The conclusions of Theorem 3.14 are true for any

closed ideal of an AW *-algebra. D

Finally we remark the following result which is an extension of

Corollary 10.7 in [15] to ,4 W*-algebras.

COROLLARY 3.16. /// is an ideal of a A W*-algebra A of Type III, then

every unit of A/I can be lifted to a unit of A. If in addition I is closed, then

U(A/I) is connected.

Proof. Let / be the closure of / in A. Then since a unit in A/I lifts

automatically to a unit of A //, we may assume without loss of generality

that / is closed. Since (eA)2 » eA for every idempotent e in / we see

from Proposition 3.1 that K0(I) = 0. By Theorem 3.14 (iii) U(A/I) =

U(A/I)° is connected; and by Theorem 3.13 (i) we get π(U(A)) =

D
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