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ANOTHER CHARACTERIZATION OF AE(O)-SPACES

VESKO M. VALOV

We prove that a space X is an absolute extensor for the class of all
zero-dimensional spaces if and only if X is an upper semi-continuous
compact-valued retract of a power of the real line.

1. Introduction. Dugundji spaces were introduced by Pelczynski
[5]. Later Haydon [4] proved that the class of Dugundji spaces coincides
with the class of all compact absolute extensors for zero-dimensional
compact spaces (briefly, AE(0)). After Haydon's paper, compact AE(0)-
spaces have been extensively studied (see Scepin's review [9]); let us note
the following result of Dranishnikov [3]: a compact X is an AE(0)-space if
and only if for every embedding of X in a Tychonoff cube Γ there exists
an upper semi-continuous compact-valued (br. usco) mapping r from Γ
to X such that r(x) = { JC}, for each x e X (such a usco mapping will be
called a usco retraction).

Chigogidze [2] extended the notion of AE(0) from the class of
compact spaces to that of completely regular spaces and gave a characteri-
zation of such AE(O)-spaces.

The aim of the present paper is to give another characterization of
completely regular AE(O)-spaces which is similar to the above mentioned
result of Dranishnikov. We prove that X e AE(0) iff X is a usco retract
of Rτ for some T, where R is the real line with the usual topology. Our
technique is different from Dranishnikov's.

The author is indebted to S. Nedev and M. Ganster for useful
discussions.

2. Notations and terminology. All spaces considered are completely
regular and all single-valued mappings are continuous. A set-valued
mapping r from X to Y is called upper semi-continuous (br. u.s.c.) if the
set r#(U) = [x G X: r(x) c U) is open in X whenever U is open in Y.
We say that a usco mapping r is minimal if every usco selection for r
coincides with r. It follows from the Kuratowski-Zorn lemma that every
usco mapping has a minimal usco selection.

A mapping / from Y to X, where Y c Z, is called Z-normal if, for
every continuous function g on X, the function g ° / is continuously
extendable to Z. A space X is called an absolute extensor for zero-dimen-
sional spaces [2], if every Z-normal mapping / from Y to X, where Y c Z
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and dim Z = 0, is continuously extendable to Z; if / is continuously
extendable only to a neighbourhood of Y in Z, the space X is called an
absolute neighbourhood extensor for 0-dimensional space, briefly ANE(0).
Here, dim stands for the dimension defined by finite functionally open
covers.

A mapping / from X to Y will be called O-soft [2], if for every
0-dimensional space Z and every two Z-normal mappings g: Z o -> X, h:
Zλ -> Y with Z o c Zx c Z and f ° g = Λ|Z0, there exists a Z-normal
mapping A:: Zx -> -Y such that g = A:|Z0 and / ° k = h. In the case Z is
paracompact and Zo and Zx are closed subsets of Z, one gets Scepin's
notion [8] of a O-soft mapping, defined earlier.

A space X is said to be a multivalued absolute (resp. neighbourhood)
extensor (br. X G MA(N)E) if every Z-normal mapping /: Z o -> X with
Z o c Z, can be extended to a usco mapping from Z (resp. from a
neighbourhood of Zo in Z) to X

A mapping /: X-* Y is said to be functionally open if f(U) is
functionally open in Y for every functionally open subset U of X.

Let 4̂ be a subset of X. We dentoe by Gδ(^4) the Gδ-closure of A in
X; i.e. the set {x e X: every Gδ-subset of X containing x intersects A}.
Finally, let X= U{XS: s e 5} and 5 c S . Then /^ stands for the
natural projection from X onto XB = Yl{Xs: s e 5}. If t/ is a subset of
X, then fc(ί/) denotes the family {B: pi\pB(U)) = U).

3. AE(0)-spaces.

LEMMA 1. Let X = Π{ Xs: s ^ S) be a product of separable metric
spaces and let U be a Gδ-set in X. Then there exists a countable set B c S
such that pB(U) is a Gδ-set in XB and Gδ(U) = XS\B X PB(U). If U is
open in X then Gδ(U) is functionally open in X.

Proof. Put M = X\ Gδ(U). By a result of R. Pol and E. Pol [6] there
exists a countable set B c S such that pB(U) is a Gδ-set in XB and
PB(U)npB(M)= 0 . Hence pB\pB(U)) n M = 0 . Since pB(Gδ(U))
= PB(U), we have 5 e k(Gδ(U)), so Gδ(U) = pB(U) X * 5 χ 5 . If 1/ is
open in Jf then pB(U) is functionally open in Xβ. Thus, Gδ(U) is
functionally open too.

The proof of the follwing (actually known) lemma is an easy exercise
on the definition of a minimal usco mapping.

LEMMA 2. Let rbe a minimal usco mapping from X to Y and let U be an
open set in Y. Then the following holds:

(i) r(x) c cl([/) for every t <Ξ Int(cl(r#(ί/)));
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(ϋ) c\(r-\U)) = cl( r*(U)), where r~\U) = { J C E I : r(x) ΠUΦ
0).

Let Y = Π{ Ys: s e S} be a product of separable metric spaces and
let X a Y. Let r be a u.s.c. mapping from Y to X. A subset 5 of £ is
called r-admissible if J5 e A:(cl(r#(ί7 Π X))) for every standard open
subset U of Y with J? e λ:(t/). The above definition is a simple modifica-
tion of the definition of ^-admissible set, given by Shirokov [11]. The
following lemma was actually proved by Shirokov [11].

LEMMA 3. Let Y = Π{YS: s e S) be a product of separable metric
spaces, X <z Y and let r be a u.s.c. mapping from Y to X. Then we have:

(i) for every set B c S there is a r-admissible set A containing B and
card A = cardi?;

(ii) α union of r-αdmissible subsets of S is r-αdmissible too.

LEMMA 4. Let Y = Π{YS: s e S} be α product of separable metric
spaces, X c Y and let r be a minimal usco mapping from Y to X. Suppose B
is a r-admissible subset of S. Then the following conditions are fulfilled:

(i) B e A:(cl(r#(Uf= 1^n X))) for every finite family {Ut: i =
1,...,«} of standard open subsets of Y with B e Γiΐ=ιk(Ui);

wheneverpB(x)=pB(y).

Proof, (i) Let U = U"=1 Ur By Lemma 2(ii) we have

cl(r#(ί/ Π X)) = c\{r-ι(U Π X)) = ell U r'1^ Π X)\

= U clir-'m Π I ) ) = U c l ( r*(^ Π

Since B is r-admissible, 5 e fc(cl(r#(ί^ Π X))) for each /. Thus, B

(ii) Let /?5(x) = pB(y) and />B(r(>0) c
 PB(V)>

 w h e r e ^ i s °P e n i n γ-
Since r(^) is compact, V can be considered as a finite union U"=1 Vt of
standard open subsets of Y with 5 e Γ\Ί=1k(Vi). Then, by (i), we have
B e /c(cl(r#(FΠ X))). Consequently, 5 G ̂ (Int(cl(r#(FΠ X)))). Thus,
x e Int(cl(r#(F Π X))) because ; G r # ( F Π X). Hence, by Lemma 2(i),
r(x) c cl(KΠ X) i.e. pB(r(x)) c cl(/?β(F)). The last inclusion shows
that pB(r(x)) a pB(r(y)). Analogously, pB(r(y)) c pB(r(x)). Therefore
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A mapping /: X -> 7 is said to have a polish kernel [2], if there exists
a polish (i.e. complete separable metric) space P such that X is C-em-
bedded in Y X P and / coincides with the restriction pγ\X, where pγ:
Y X P -> Y is the natural projection. The following lemma is proved by
Chigogidze [2].

LEMMA 5. Let the mapping f from X to Y have a polish kernel, where X
and Y are AΈ(0)-spaces. Then f is O-soft if and only if f is functionally open.

LEMMA 6. Let Y = Yl{Ys: s G S} be a product of separable metric
spaces and let r be a minimal usco retraction from Y to X. Then for every
r-admissible set B c S the following conditions are fulfilled:

(i) the restriction p B\X is functionally open;
(ii) pB{ X) is a usco retract of YB.

Proof, (i) First we prove that for every C c S the projection p c is
functionally open. Let U be a functionally open subset of Y. Then, by
Lemma 1, there exists a countable set D c S such that U = PD1(PD(U))

This permits us to present U as a countable union U ^ t ^ of standard
open subsets of Y with D G fc(φ, for each /'. Hence, pc(U) =
U?LiPc(Ui) Since every pc(Ut) is a standard open subset of Yc, the set
pc(U) is a countable union of functionally open subsets of Yc. Therefore
pc(U) is functionally open.

Now, suppose B is r-admissible and U is functionally open in X.
Since Gδ(r#({7)) is functionally open in Y (by Lemam 1), in order to
prove that pB\X is functionally open it suffices to show that pB(U) =
pB(Gδ(r#(U))) ΠρB(X). Let x e X and let pB(x) = ρB(y) f°r some
y (Ξ G δ ( r # ( C / ) ) . If we assume r(y) c X\U then >> e /*#(J*Γ\ £/). How-

ever r # ( X \ [/) is a Gδ-set in Y because X\ U is a zero-set in X Hence,

r # ( X \ £/) Π r # ( f / ) Φ 0 , which is impossible. Thus, r(y) ΠUΦ 0 . By

Lemma 4(ii), we have pB(x) = pB(r(x)) = pB(r(y))9 so pB(x) epB(U).
Therefore pB(Gδ(r#(U))) Π pB(X) c pB(U). The inverse inclusion is ob-
vious.

(ii) Let 5 be a r-admissible set. Define a compact-valued mapping rx\
YB -> pB(X) by letting r^p^x)) = pB(r(x)). Lemma 4(ii) implies that
this definition is correct and that rx(pB(x)) = pB(x) for every x 6 l i t
remains to prove that rλ is u.s.c. Let r^p^x^)) c U for some JC0 G 7,
where U is open in YB. Then, by Lemma 4(i), we have B e

1 Π X))). Consequently, 5 G k(V), where F =
Π X))). The set /?5(F) is a neighbourhood of /^(x0)
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because x 0 e r#(pB\U) Π X). Let pB{x) e /^(F). Then x e V and, by
Lemma 2(i), r(x) c cl(/7^^t/) n X); so ̂ (/^(x)) c cl(l/). Therefore, rλ

is u.s.c.

LEMMA 7. Lei 7 = Π{ Ys: s e 5} 6e α product of separable metric
spaces and let X be a usco retract of Y. Then the following conditions are
fulfilled:

(i) Xis C-embeddedin Y;
(ii) there exists a set B c S of cardinality w(X) such that ρB\X is a

homeomorphism andpB( X) is a usco retract of YB.

Proof, (i) Suppose / is a continuous function on X. Consider the
family SP of all open intervals in i? with rational endpoints. Using Lemma
1, for every U e g choose a countable set B(U) c S such that B(U) e
k(G8(r*{f~ι{U)))> where r is a minimal usco retraction from Y to X. It
follows from Lemma 3(i) that there exists a countable r-admissible set C
containing U{B(U): t/ejS?}. One can easily see that pc{x) = pc(y)
implies f(x) = f(y) for every x, y e X. Since ^ c | ^ is open, there exists a
continuous function g on pc(X) such that /(x) = gί/^cί^))? ^ o r e a c ^
x e X Since /?c( X) is a usco retract of 7C, it is closed in Yc. Hence, g is
continuously extendable on 7C; so / is continuously extendable on Y.

(ii) Suppose r is a minimal usco retraction from Y to X Let i bea
family of standard open subsets of Y such that card Ά = w( X) and
{ ί / Π l : ί / 6 i } i s a base for X Put J?x =U{m(t/): ϊ/ejg}, where
m{U) = { 5 € S : Λ(£7) # 75}. Clearly, card5x = w(X). By Lemma 3(i),
pick a r-admissible set B containing Bλ and such that card B = w( X).
Observe that pB\X is one-to-one. Since pB\X is open (by Lemma 6(i), we
conclude that pB\X is a homeomorphism. Next, by Lemma 6(ii), pB(X) is
a usco retract of YB.

THEOREM 1. For a space X, the following conditions are equivalent:
(i) X e AE(0);

(ii) X e MAE;
(iii) X w α usco retract ofRA, for some A.

Proof, (i) -> (ii) Let /: / / - ^ I be a Z-normal mapping, where
H c Z. Consider the absolute #Z of Z and the natural projection g:
aZ -* Z. Put 7 = g~\H). Observe that /° g is αZ-normaL Since dimαZ
= 0 and X e AE(0), there exists an extension h: aZ ~* X of f ° g. Then
the usco mapping r: Z -> X, defined by r(z) = ̂ (g '^z)), is an exten-
sion of /. Thus, X e MAE.
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(ii) -> (iii) Denote by C( X) the family of all continuous functions on
X. Consider l a s a C-embedded subset of RC(X\ Hence, there exists a
usco retraction from | ? c w to X.

(iii) -» (i) Let Jf be the class of all spaces Y with the following
property: Y is a usco retract of RA

9 for some A. We will prove (by
transfinite induction) that every element of X is an AE(0)-space. Let
X e X and w(X) = Ko. In this case, by Lemma 7(ii), X is a usco retract
of RH°. Hence, X is a polish space and, by a result of Chigogidze [2],
X e AE(0). Assume that T > No and that for every X e Jf with w( X) < T
we have X ^ AE(0). Consider a space X e Jf with w(X) = T. By Lemma
7(ii), X is a usco retract of Rτ = Π{i?α: a < ω(τ)}, where ω(τ) is the
initial ordinal of cardinality T. Let r be a minimal usco retraction from Rτ

to X By Lemma 3(i), for every a < ω(τ) there exists a countable
r-admissible set Ba containing α. Next, denote A(ά) = U{Bβ: β < a),
qa = pA{a)\X and Xa = #a(X) for each a < ω(τ). If α > β we put
Pβ = qβoclal Thus, we actually construct a continuous inverse system
S = {Xa, q£, β < a < Ω(τ)}, in the sense of Scepin [8], such that X
= lim S. According to Lemmas 3(ii) and 6, we have that, for every
a < ω(τ), Xa e Jf* and #α is functionally open. Hence, q"+ι is function-
ally open. But w(Xa) < r, so Xa e AE(0) for each α < ω(τ). Finally,
Lemma 7(i) implies that q*+ι has a polish kernel. Therefore, it follows
from Lemma 5 that q£+ι is O-soft for every a < ω(τ). So, all spaces Xa

and all mappings q"+ι are AE(0) and O-soft, respectively. Therefore,
X e AE(0).

LEMMA 8. Let r be a usco mapping from M to a compact space X and let
M be a dense subset of Y. Then r can be extended to a usco mapping from Y
toX.

Proof. For every j / e 7 denote by U(y) the local base at y in Y.
Then the usco mapping rl9 defined by rλ(y) = Π{cl(r(U Π M))\ U&
U(y)}9 is the required extension.

LEMMA 9. Suppose Z = Π{ Zs: s & S] is a product of separable metric
spaces and Y is closed in Z. Let r be a minimal usco mapping from Z to Y
and let X be a subset of Ysuch that r{x) — [x] for every x G X. Then the
following holds:

(i) r(x) = {x} for every x £ G8(X);
(ii) r(G8(M)) c G8{H) for every H c 7 and every M c r
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Proof, (i) Suppose r(x0) Φ x0 for some x0 e Gδ(x). Take a point
y G r(jt o )\{x o } and a countable r-admissible set ficS such that
PB(y)*PB(xo) s i n c e

 PB\PB(XO)) nXΦ 0, choose * e/^/^Xo))
n X Lemma 4(ii) implies pB(x) = pB(r(x0)). This is impossible because
x09 y e r(x 0) and pB(x0) ΦpB(y). Hence, r(x) = {*} for every x e
Gδ(X).

(ii) Assume i / c 7 a n d M cz r*(H). Let r(xo)\Gδ(H) Φ 0 for
some x 0 e Gδ(M). Take a point j> e r(xo)\Gδ(H) and a countable
r-admissible set B a S such that pB(y) & pB(H). Next choose a point
x e PB1(PB(XQ)) Π Λf. Then, by Lemma 4(ii), we have jpfi(r(x)) =

^ ( r ( ^ o ) ) B u t r ( * ) c H> s o
 PBMXO)) C ^ ( ^ ) τ h i s contradicts

). Therefore, r(Gδ(M)) c (

THEOREM 2. i w α φαce X, the following conditions are equivalent:
(i) X e ANE(0);

(ii) X e MANE;
(iϋ) X w open in its Hewitt-realcompactification vX and vX e AE(0).

Proof, (i) -> (ii) This implication can be proved as the implication
(i) -» (ii) of Theorem 1.

(ii) -» (iii) Consider X as a C-embedded subset of RA, where ί̂ is the
family of all continuous functions on X. Clearly, vX = cl(X). Since
X e MANE there exists a usco retraction rx from an open subset U of RA

to X. It is easily seen that U Π vX = X i.e. X is open in vX. Identifying
R with (0,1), we consider RA as a dense subset of IA

9 where / = [0,1]. Put
Y = C\TA(X). By Lemma 8, there exists a usco extension r2:
Int7^(cl7>i(t/)) -> 7 of r1# Let r3 be a usco mapping from IA to 7 defined
by letting r3(y) = r 2(j), for y G Int7^(cl7^(ί7)), and r3(iy) = 7, other-
wise. Denote by r a minimal usco selection for r3. Since each point
z <= IA\RA is contained in a Gδ-subset H(z) of /^ with H(z) Π RA = 0,
the Gδ-closure Gβ(-Y) of X in /^ coincides with vX. So, by Lemma 9, r is
a usco retraction from GS(U) to vX. Here, Gδ(J7) is the Gδ-closure of U
in JR .̂ It follows from Lemma 1 that there exists a countable set B c A
such that Gδ(U)= pB(U)X RA^B. The space /^(£/), being a polish
space, is an AE(0). Hence, Gδ(U) e AE(0) as a product of AE(0)-spaces.
Thus, vX is a usco retract of an AE(0)-space. Therefore, by Theorem 1,
vX e AE(0).

(iii) -> (i) This implication is obvious.
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COROLLARY 1. Let X e A(N)E(0) and let F be a G8-subset of X. Then
the enclosure of F in X is also an

Proof, Let X e ANE(O). Since vX ^ AE(0) there is a minimal usco
retraction r from RA to vX for some τ4. The set F is G8 in ?X because X
is open in vX. Hence, r#(F) is a Gg-subset of i?^. By Lemma 1,
G8(r*(F)) is a product of polish spaces, so G8(r*(F)) e AE(0). Next,
Lemma 9 implies that the Gδ-closure G8(F) of i 7 in vX is a usco retract
of G8(r#(F)). Thus, Gδ(F) is also an AE(0)-space. But G8(F) Π X is
open and dense in G8(F). Consequently G8(F) f i l e ANE(O). However,
Gδ(F) Π X is the Gδ-closure of F in X

By the same arguments one can prove that the Gδ-closure of F in X is
an AE(0)-space if X e AE(0).

THEOREM 3. Let X be a pinnate in the sense of ArhangeΓskίi [1]
ANΈ(0)-space. Then vX is Lindel'όf and Cech-complete.

Proof. First we will prove that X is Cech-complete. Consider the
Stone-Cech compactification βX of X. Denote by Z the space obtained
from βX by means of making the points of βX\ X isolated. We observe
that X is a closed C-embedded subset of Z. Since X e ANE(O), there is a
usco retraction from U to X, where U is an open set in Z containing X.
Now, to prove that X is Cech-complete one can use the arguments of
Przymusinski [7, the proof of Lemma 2].

Next, let rλ be a usco mapping from RA to vX for some 4̂. Consider
RA as a dense subset of jM by identifying R with (0,1), and put
Y = C17Λ(J>X). By Lemma 8, rx is extendable to a usco mapping r from
IA to 7. Wlog, we assume that r is minimal. Put H = r # (X). // is a
Gδ-subset of IA because X is Cech-complete. Since G8(X) = vX, it
follows from Lemma 9 that r is a usco retraction from G8(H) to J>X So,
vX is closed in G8(H). But, by Lemma 1, G8(H) is a Lindelόf Gδ-subset
of /^.Therefore, vX is Lindelόf and Cech-complete.

COROLLARY 2. Every pinnate AΈ(0)-space is LindeΓόf and Cech-com-
plete.

An embedding j of X in 7 is said to be J-regular [11] (br. a
d-embedding) if for every open subset U of j(X) there exists an open
subset e(U) of 7 such that the following conditions are fulfilled:

(3) e( ί/)Πί(K) = e(l/n V);
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Shirokov [11] proved that X is a Dugundji space if and only if every
embedding of X in a Tychonoff cube is a ^/-embedding. We give a similar
characterization of Cech-complete AE(0)-spaces.

THEOREM 4. For a Cech-complete space X the following conditions are
equivalent:

(i) vXis a Cech-complete LindeΓόf AΈ(Q)-space;
(ii) every C-embedding o/Xin any space is a d-embedding;

(iii) X is a d-embeddedsubset ofRA, for some A.

Proof, (i) -> (ii) Suppose X is a C-embedded subsert of a space Y.
Then there exists a mapping h: Y -» i ? c w such that h\X is a homeomor-
phism and clRcw(h(X)) = vX. Let r be a usco retraction from i?cW to
vX. For every open set U in X, we let e(£/) = h~\r#{V{U))\ where
F(£/) = U{ W: W is open in vX and W Π h{X) = Λ(l/)}. It is easily seen
that this operator satisfies the above three conditions. Thus, X is d-em-
bedded in Y.

(ii) -» (iii) This implication is obvious.

(iii) -> (i) Let Jf be a ^-embedded subset of i?^ for some A. So, there
exists a ^-regular operator e from the topology of X to the topology of
RA. Consider RA as a dense subset of /^ and put Y = C\JA{X). Define a
usco mapping rx from i?^ to Y by letting rλ(x) = Π{cly(J7): x e e(C/)},
for χGU{e(t/) : ί/ is open in X}, and rλ(x) = Y, otherwise. Clearly,
rx(;c) = {x} for every x G X Next, by Lemma 8, rx is extendable to a
usco mapping r from J74 to Y. We assume that r is minimal. Since X is
Cech-complete, the set H = r # ( X) is Gδ in 7Λ Lemma 9 implies that r is
a usco retraction from Gδ(H) to Gδ(X). By Lemma 1, Gδ(H) is a
Lindelόf Cech-complete AE(0)-space. Therefore, G8(X) being a usco
retract of Gδ(H), is a Lindelδf Cech-complete AE(0)-space too. It remains
to prove that G8(X) is the Hewitt-realcompactification of X. It is known
[2] that every AE(0)-space is perfectly Λ -normal in the space of Scepin [10]
and that every Gδ-dense subset of a perfectly Abnormal space Z is
C-embedded in Z [12]. Hence, X is C-embedded in G8(X). Therefore,
Gδ(X) is the Hewitt-realcompactification of X.

COROLLARY 3. For a Cech-complete realcompact space X the following
conditions are equivalent:

(i) X is a Lindelόf AΈ(0)-space;
(ii) every C-embedding ofXin any space is a d-embedding;

(iii) X is a d-embedded subset of RΛ, for some A.
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Let us note that the completeness in Theorem and Corollary 3 is
essential. Indeed, every non-complete subspace of R*° is d-embedded in
i?N° but is not an AE(0)-space.

We have been unable to decide the following problems: Is every
Lindelδf AE(0)-space Cech-complete? Is every normal AE(0)-space Lin-
delόf?
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