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THE CANONICAL BUNDLE AND REALIZABLE
CR HYPERSURFACES

HOWARD JACOBOWITZ

The canonical bundle of a realizable CR hypersurface has closed
sections. Examples are given of non-realizable hypersurfaces with closed
sections and others without such sections. If however an abstract CR
hypersurface of dimension 2 m + 1 has m strongly independent CR
functions then a closed section can be used to produce the missing
function and so assures that the hypersurface is realizable. The existence
of a closed section is equivalent to a condition on the range of d̂  acting
on functions. Some non-realizable CR hypersurfaces are shown to have
θ^cohomology groups quite different from those of realizable hyper-
surfaces.

1. We start with a real manifold M and a sub-bundle V of C ® TM.
Then (M, F) is called a CR structure (or CR manifold) if V Π V = {0}
and [F, F] c F. We will primarily be concerned with CR structures of
hypersurface type; this means dimRAf = 2 m + 1 and d i m c F = m. Such
a CR structure is realizable if there is an embedding

φ: M -> C m + 1 withφ^Fc

If Lv . . . , Lm are a basis for V then (M, V) is realizable exactly when the
homogeneous equations

(1) Ljh = 0 fory = l , . . . ,m

have m 4- 1 independent solutions. Not all abstract CR hypersurfaces are
realizable [Nl, 2], [JT1, 2, 3]. It is easy to show that (M, V) is realizable if
it admits a one-parameter group of CR diffeomorphisms transverse to V
(see below) or if V is a real analytic bundle. There seem to be no other
useful characterizations of realizable hypersurfaces. In particular, al-
though the solvability of LjU = f. is well understood there are no similar
results for (1) to have non-trivial solutions.

We now wish to define the canonical bundle K of a CR structure (of
hypersurface type). Let Ap denote the space of. C00 p-forms on M and let
ix\ Ap -> Ap~ι be inner multiplication with the vector field X (see for
instance [S]). For typographical convenience we sometimes use XJ in
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place of ix. The canonical bundle is

ί = { ί ί G Λ w + 1 : ιLΩ = 0 f o r a l l L e V)

It is easy to see that K is a complex line bundle over M. Note also that

V = {L G C ® ΓM: zLΩ = 0 for all Ω e # } .

As an example consider a realizable CR structure (and identify M

with its image in C m + 1 ) . Then dzλ A Λdzm+1 restricts to a non-zero

form Ω on M and Ω generates K. Thus in the realizable case K has a

closed non-zero section. It is natural to wonder about the converse. See

for instance remarks in [F] where the canonical bundle is used to give an

interesting construction of the Fefferman metric. Theorem 1 below shows

that the canonical bundle of a non-realizable CR manifold can admit a

closed non-zero section. (To save words, let us now use "section" to

include non-zero.) Note also that every real analytic CR manifold has

closed sections of K. But it is not true that all canonical bundles have

closed sections, (see Corollary 2.1). However, all canonical bundles do

share a somewhat weaker property which is a consequence of [V, V] c V:

PROPOSITION 1.1. For each section Ω ofKwe have some l-forrn φ such

that dΩ = φ Λ Ω.

This property can also be expressed as

(2) dKaS(K)

where J'(K) is the ideal generated by K. Note that if Ω is any section and

if Ωx is a closed section then setting Ω = λΩx for some non-zero function

λ, we have

JΩ = dλ A Ωx = φ Λ Ω

and so (2) is a weaker property than having a closed section.

A class of non-realizable CR manifolds was given by LeBrun [LeB]
using ideas related to the Penrose twistor program. It is easy to verify that

the canonical bundle of each of these manifolds admits closed sections.

We do this in a slightly different context. Let f{xΛ) be a function on

R3 X C 3 which is holomorphic in ζ. (We work locally so we actually mean

/ is holomorphic near some distinguished point.) We take / holomorphic

in order to simplify the presentation; the construction would also work for

suitable non-holomorphic functions. One could replace R3 X C by W X C"

but then the CR manifold is no longer of hypersurface type, cf. [R].
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THEOREM 1. Assume that at some point p the vector (/^, fς, /^) is not a
multiple of a real vector. Then near p, JV = {(JC, ζ)\ f(xyζ) = 0} can be
given a CR structure which has a closed section of the canonical bundle.
However for some choice offandp this structure is non-realizable.

Let x and ξ be the usual coordinates on R3 X C 3 and let ω be the
restriction to N of the 2-form dxdζ = Σ3

J==1dxj A dζj. Let V = {L e C
® 7W: iLω = 0}. To show that V gives a CR structure (of hypersurface
type) we need to show
(a) d i m c F = 3

(b) v n v = {0}

(c) [v9v]cv.
So let

The condition iLω = 0 is the same as iLdxdζ = Adf + Bdf. But since /
is holomorphic (and dj Φ 0) we must have that B = 0. Thus each α7 and
γ7 is determined up to the complex parameter A. Further since iLiLdxdζ
must be zero, we see that L(f) = 0. The condition L(f) = 0 then allows
us to eliminate one β. Thus {L e C β Γ(i?3 X C3): L(/) = L(/) = 0
and iLω = 0} has dimension three and this set clearly is the set V. So (a)
is verified.

Note that in the above γy = A(df/dξj). Thus for any non-zero A the
vector (γ1? γ2, γ3), and so also the vector field L, cannot be real. And if A
is zero then also each αy is zero and L can be real only if βj is also zero,
i.e. only if L = 0. This verifies (b).

Now note that if LλJω = 0 and L2Jω = 0 and if U is any vector in
C <8> TN then dω(LvL2,U) = -ω([Ll9L2],U). But ω is closed, thus
[Ll9 L2]jω must also be zero. This verifies (c). It should be pointed out
that whenever ω is a real closed form of any degree on some manifold M
the real bundle K = { L G TM, iLω = 0} satisfies [F,F] c V and so
defines integral submanifolds. Of course in our case V is complex and so
[F, V] c Fdoes not imply the existence of integral submanifolds.

Now let Ω = ω Λ ω e Λ4. It is easy to see that Ω is a nowhere zero
form. In fact if df/dξ3 Φ 0 then (xvx2,x3,ζvζ2 may be taken as
coordinates for N and

J J J J
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Also /LΩ = (iLω) Λ ω 4- ω Λ (/Lω) = 0 since iLω = 0. Thus Ω is a sec-
tion of K. And dΏ = 0 since dω = 0.

Finally, note that the hypothesis of Proposition 1.2 is satisfied away
from the point ξ = 0 by any function f(x, ξ) = g, y ( *)£•£,• when the
matrix g is real and positive definite. Choose g to equal the identity
matrix / to infinite order at JC = 0 but g to be not conformally equivalent
to / as germs at x = 0. Then there is no real analytic metric in the
conformal class of g. We now use [LeB] to show this implies N is not
locally realizable. Note that the fibres of N over points in R3 are complex
surfaces. This implies that the Levi form of NΊ has a zero eigenvalue. We
first find a quotient manifold N5 with signature (1,1). (It is useful to say a
matrix with p positive and q negative eigenvalues, and no zero eigenval-
ues, has signature (/?, q) rather than p — q) So let C* = C — {0} act on
the fibres of NΊ — (0 section}. It is easy to see that the quotient manifold
N5 is also a CR manifold and has CP1 as fibre. A calculation shows N5

has signature (1,1). Le Brun, op cit, uses the CP1 foliation to show that N5

cannot be locally realizable in the neighborhood of each of its points. We
now need only verify that this implies NΊ is also somewhere non-realiz-
able. Let p be some point in the fibre above O G R 3 and let [p] be the
corresponding point in N5. We claim that if NΊ is realizable at p then N5

is realizable at [p]. Thus we assume NΊ is given by a real hypersurface in
C 4 and p is the origin. Let X e V with m*X = 0, where π: NΊ -> N5.
We may assume X = 3/3z4. Then {z G C4: ZA = 0} Π iV7 = M5 is a real
hypersurface in C3.

The complex curve π'^Q] is transverse to C3 = (z 4 = 0}. So for [p]
close to [o] the complex curve π~λ[p] is also transverse to C3 and thus
intersects C 3 in a single point. Thus the map π: N7 -> N5 when restricted
to M5 c N1 gives a CR diffeomorphism (see §2 for definition) of M5 to
N5. The inverse of this map gives a CR realizable of TV5 as a hypersurface
in C3. But N5 is not locally realizable; thus there must be some p at
which NΊ is not realizable. This concludes the proof of Theorem 1. It is
not clear whether N5 also has a closed section of its canonical bundle.

Thus the existence of a closed section of K cannot by itself imply
realizability. It is natural to wonder if it suffices to add an assumption
about the signature of the Levi form. Note that strictly pseudo-convex
hypersurfaces of dimension greater than 7 are always realizable [K] and so
have closed sections.

Question: Let ( M 2 m + 1 , V) have signature (/?, m - p) with p Φ 1 or
m — 1. Must K have a closed section?
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As we have just indicated, the answer is "yes" when p = 0 or m as

long as m > 4. A positive answer in the other cases could be viewed as a

weak realizability result. It is natural to exclude p = 1 and p = m — 1

since in these cases 3 ,̂ for realizable hypersurfaces, is not solvable on

(0, l)-forms. A better reason for excluding this case would follow if our

counterexample for NΊ could be extended to N5. See also the remark after

Theorem 4.

2: We will study the realization problem and its relation to closed

sections of K using a complex vector field formally analogous to the

generator of a local one-parameter group of CR diffeomorphisms.

For a real vector field X let ££x denote the Lie derivative acting on

forms, vector fields, etc. (see for example [S] for the definition and basic

properties). Recall the identity

(3) &xω = d(ixω) + ix{dω)

where ω is any differential form. If Y = Xx + iX2 is a complex vector

field we write JS?y to mean the operator J£Xχ + iS£Xί. Then (3) is also valid

for Y in place of X.

Let ψ: M -> M be a diffeomorphism (of a neighborhood of some

point p to a neighborhood of some point q). It is called a CR diffeomor-

phism if ψ*F = F. Now let φ(t): M -> M be a local one-parameter

group of CR diffeomorphisms and let Y = (3/3/) be the real vector field

which is its generator. It follows from the definition of S£ that S£YV c V.

Conversely given a real vector field Y with J£?7F c V then the group of

diffeomorphisms generated by Y preserves the CR structure. As the

complex analogue of this real generator we will consider complex vector

fields satisfying ££YV c V. There are always such vector fields: If L is a

section of V and P is any other section of V then ££LP = [L, P] c V> i.e.

SfjV c F. We soon shall see that (Af, F) is realizable precisely when there

is a vector field transverse to V θ K which also satisfies JSPyF c F.

LEMMA 2.1. iw* any vector field Y the following are equivalent:

(a) J2VF c F.

(b) J2V# c K.

(c) For et ery section Ω of K there is some function λ such that

oS?yΩ = λΩ.

(d) There is some section Ω of K and some function λ such that

j5?yΩ = λΩ.

Proof. Since K is one dimensional (b) implies (c). And certainly (c)

implies (d). So we need only prove that (a) implies, (b) and (d) implies (a).
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Let L be a section of V and Ω a section of K. From the identity

we see that

( < £ V L ) J Ω + LjJS?yΩ = 0.

Both the desired implications follow from this equation.

In particular note that for any sections L and Ω of V and K we have

(4) JS?LΩ = λΩ.

It is well known that if a CR manifold admits a one parameter group

of CR diffeomorphisms then that CR manifold is realizable. We give a

very simple proof of this below. Of course most CR manifolds, realizable

or not, do not admit such diffeomorphisms.

Thus the next result is somewhat surprising.

PROPOSITION 2.1. The following are equivalent:

(a) (M9 V) is realizable in a neighborhood of the point p.

(b) There exists a vector field Y with <£ΎV c V and 7 ί V Θ V at p.

Proof of a => b. We may assume M2m+ι c C m + 1 with V at p given

by { 3 / 3 ^ , . . . , 3/3zw}. Necessarily, near p, dzλ A Λ dzm A dzx

A Λ dzm A dzm+ι is a non-zero form on M. This has two conse-

quences for us. First, there is a unique vector field on M satisfying

dzm + 1(Y) = l and dz^Y) = 0 = dz^Y) for j = 1,..., m.

We claim this field is transverse to V Θ V. On the contrary, assume that at

some point Y = Yλ + Y2 with Yλ e V and Y2 e V. Then dzj{Yλ) = 0 for

j = 1, . . . , m. But since r x G F, this implies Yλ = 0. Similarly Jz 7(7 2) = 0

and so Y2 e F implies 72 = 0. Here we used that also dzx dzmdzι

dzmdzm+1 is non-zero.

Second, the form Ω = dzιdz2 dzm+ι is non-zero and hence gives a

section of AT. Note that both Ω and /yΩ are closed. Hence according to

(3), JS?yΩ = 0. But then, by Lemma 2.1, S£ΎV c V.

Proof of b =» a. Let t be the coordinate on R and let ^ c C ®

Γ(i? X M ) be the subpace obtained by extending each vector of V to be

independent of /. Similarly extend Y and then take Z = Y + /(3/3/). We

may assume that R e Γ £ F θ F a t />. Thus at /?, W = Fx θ {aZ\ a G C}

satisfies W n WΓ = {0} and so gives an almost complex structure on

R X M. From £eγV c F and the fact that all extensions are independent

of /, we see that this structure is integrable, i.e. [W, W] c W. Thus by the
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Newlander-Nirenberg theorem ([NN], see also [FK] for this formulation)
W gives a complex structure. The submanifold {0} X M realizes the CR
structure (M, F) as a hypersurface in C m + 1 .

We have seen that K may have a closed section without (M, V) being
realizable. However if we already have m of the required m + 1 functions
(and they are suitably general) then we can use a closed section to
construct the missing function (Theorem 2, below). Recall that a function
/ is a CR function for (M, F) if Lf = 0 for each L e F It is easy to show
that an embedding M -> C m + 1 given by functions φ1? . . . , Φ w + i realizes
(M, F) as a hypersurface in C m + 1 if each φj is a CR function. Recall also
that φ 1 ? . . . , φn are independent at a point p if dφx Λ Λ dφrt ¥= 0 at p.
Let us say they are "strongly independent" there if also dφγ Λ Adφn

A dφx Λ Λ dφn Φ 0. As an example consider the Lewy operator L =
9/3z — ιz(9/9w) and the two solutions φ = z and ψ = w + z'|z|2. Then
dφ and dψ are each non-zero so each is an independent function at the
origin.

However φ is also strongly independent at the origin while ψ is not.
Note, as an illustration of Lemma 2.4, then dφ A dφ Λdψ Φ 0. It is
possible for a CR structure to have an independent solution (i.e. dφ Φ 0)
but no strongly independent solution (i.e. dφ A dφ = 0 for all solutions).
This is easily seen using the technique introduced in [JT1]. Specifically
one can find a perturbation function /(z, z, u) such that for the operator

3 . 3 , A 3 - 3

one has Lh = 0 implies dh A du = 0 at the origin. Thus w + i\z\2 is an
independent solution and there are no strongly independent solutions.

LEMMA 2.3. // {φ x , . . . ,φ m ) ώ α strongly independent set of CR

functions for ( M 2 m + 1 , F) /Λe« Jφ x Λ Λ J φ m w « non-zero form on V.

Proof. Let L 1 ? . . . , Lm be a basis for F. Write dφ for dφ1 Λ
and L for ( L l 9 . . . ,L m ).

Let L, L, and X be a basis for C ® ΓM at the given point with
dφj(X) = 0 = έ/φ/Jf) for each y. Let 7 = (Yv..., Y2m) be a choice of
2m vectors from the set {L, L, X} of 2m + 1 vectors. Then dφ A dφ(Y)
= 0 if X appears in Y. So dφ A dφ Φ 0 implies dφ Λ dφ(L, L) Φ 0. But
dφ A dφ(L, L) = (- l ) m + 1 | dΦ(^) | 2 and thus dφ is non-zero on V.

When (M, F) is realizable, strongly independent CR functions can be
take for coordinate functions as shown in our next proof. This lemma is a
standard result which already was pointed out by Lewy [L].
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LEMMA 2.4. // ( M 2 w + 1 , V) has m + 1 independent CR functions then

(M, V) is realizable.

Proof. We work at some fixed point p. We label the CR functions so

that at p

We claim that then

(5) dφ, Λ Λ J φ m + 1 Λ ^ Λ Λ J φ w # 0.

For if it is equal to zero at p then after relabelling we have

dφm^ {dφ1,...,dφm+ι,dφι,...,dφm_1} = ^

and so dφm+1 also is an element of W. Note dim c W < 2m. Hence there

is some non-zero vector X annihilated by W and so also by dφm and

dφm+v The hypothesis then assures X e V Π V which contradicts Jί Φ 0.

This gives (5). Thus the functions Reφ l 9 I m φ 1 ? . . . , R e φ w + 1 , I m φ w + 1

provide an embedding of M2m+1 into R2m+2. It is easy to see that (AT, F)

is realized by this as a hypersurface in Cm+1. Note that ( φ l 5 . . . , φ m ) is

strongly independent and agrees with the restrictions of {z v..., zm} to

M c C m + 1 .

THEOREM 2. If near some point p (M2m+1, V) has m strongly indepen-

dent CR functions and its canonical bundle has a closed section then

(M2m+1,V) is realizable on some neighborhood of p.

Proof. We need only modify some previous arguments. We first show

that under these hypotheses there is some vector field Y such that

d(iYil) = 0 where Ω is the closed section of K. To see this let φ l 5 . . . , φm

be strongly independent CR functions. Let θ be any non-zero one-form

which annihilates V θ V. Then θ A dφ c K. (Again we use dφ = dφλ

A Λ dφm and let L = Ll9..., Lm be a basis for V.) If X is transverse

to V θ V then

θ A dφ(X, 1) = θ(X)dφ(L) Φ 0

and

θ A dφ A dφ(X, Z, L) = 0(X) |dφ(Z) | 2 # 0.

In particular θ A dφ is a non-zero form and so gives a section of K. Now
pick some closed section Ω of K. We have Ω = fθ A dφ for some
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non-zero function /. Define Y by

0(7) = 1//, dφj(Y) = 0, dφj(Y) = 0, y = l , . . . ,m.

Certainly Y £ F θ V. And

d(iYtt) = d(dφ) = 0.

But since dΏ = 0 we then have J5?yΩ = 0 and, by Lemma 2.1 and
Proposition 2.1, (M, F) is realizable.

COROLLARY 2.1. Not all canonical bundles admit closed sections.

Proof. The first example of a non-realizable (M3, V) (see [Nl, Thm.
3']) has a strongly independent CR function z = x + iy. Thus its canoni-
cal bundle cannot have a closed section.

3. In this section we relate the existence of closed sections of K and
the range of 3 .̂ We conclude with some remarks about the 3^-cohomoloby
groups. Consider first the case of (M3,V). Choose any section L of V
and any section Ω of K. Consider the function λ defined by oS?LΩ = λΩ
(see equation (4)).

THEOREM 3. Khas a closed section if and only if there exists a function f
withL(f) = λ.

Proof. Apply (3) with ω = gΩ. Since d(gίl) is a form of top degree
we see that d(gΏ) = 0 if and only if «£?L(gΩ) = 0. If g is non-zero then
we write g = e'f and we have oS?L(gΩ) = -g(Lf - λ)Ω. Thus gΩ is a
closed section of K if and only if Lf = λ. (One could give this proof
without using JSf7 by simply relating d to L. See the proof of Theorem 4.)

We now look more closely at a special case of this theorem. Consider
the CR structure given by the operator

The function z is a strongly independent solution, so there is a second
solution φ with dφ A dz Φ 0 if and only if K has a closed section. Now,
Ω = (du + iGdz) A dz is a section of K and J^LΩ = iLdίl = -iGβ. So
the solution φ exists in a neighborhood of the origin (and hence L is
realizable) if and only if Lf = Gu(z, z, u) has a solution near the origin.
Thus we would have necessary and sufficient conditions for solving



100 HOWARD JACOBOWITZ

Lφ = 0 if we had such conditions for solving Lf = g. Unfortunately such
conditions are only known ([GKS], [H]) when L is realizable, that is when
one assumes the existence of φ. But a variation of this can be used to
construct simple non-realizable CR hypersurfaces [J],

Of course, when L is realizable one might expect that Lf = Gu has an
explicit solution. This is indeed the case. For upon differentiating φ-z

-iGφu = 0 with respect to u we obtain (ΦU)Έ -iG{φu)u - iGuφu = 0 and
so L(lnφu) = iGu. Note that Lφ = 0 and dφ A dz Φ 0 imply φM(0) Φ 0 so
we indeed have a well-defined solution.

To formulate similar results for ( M 2 m + 1 , V), m > 1, we use the
partial differential operator db acting on forms of type (p,q). See for
instance [FK] for a definition of this operator. We use the notation that
each r-form φ e Λ ' defines an equivalence class [φ] e Σp+q=r&

p'q and db

maps SSp"q into SSp-q+ι. Associated to 3̂  are the cohomology groups Hp'q

involving germs of forms near a given point p. When (M, V) is realizable
these groups have the following properties:

(a) H0*0 is infinite dimensional

(b) Hrq s Hsq

Neither of these properties need hold for non-realizable (M, V). For
fjo,o = | g e r m s a t p of CR functions) and thus if the only CR functions
are the constants (as in [JT2 and 3] and [N2]) then if0'0 is only one
dimensional. Also if (M3, V) has z = x 4- iy as a CR function but no
other CR function independent of z, then K has no closed sections and
so H°*°Φ {0}but# 2 ' °= {0}.

Let Ωx and Ω2 be sections of K and let rfΩ1 = φλ A Ωl9 dΏ,2 = φ2 A
Ω2 (cf. Prop. 1.1). Note that [φy] e ^ 0 1 is unique although φj is not. Also
[ φ j is in the range of 3̂  if and only if [φ2] is in this range. This is because
Ω2 = /Ωx and hence dΏ2 = (dh(lnf) -f φx) Λ Ω2. So our next result is
actually a statement about K rather than any particular section.

THEOREM 4. Let ( M 2 m + 1 , F ) be CR structure and let dίl = φ Λ Ω.
Then K has a closed section if and only if [φ] is in the range of db acting on
functions.

Proof. Since [Ω] is a form of type (m -h 1,0) we have, for any
function g, [(dg) A Ω] = (dhg) A [Ω]. So if dΏ, = φ A Ω then for any
non-zero function [d(gίl)] = g ^ l n g + [φ]) Λ [Ω]. The theorem now
follows from the observation that for Ωx e ^Sm+h0,d(Ω1) is zero if and
only if [dΩJ is zero.
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REMARK. It follows from this theorem that whenever K does not have
a closed section then H0Λ Φ {0}. (To see this one need only check that
9JΦ] = 0 a n d thus [φ] defines a cohomology class.)
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