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A GEOMETRIC FUNCTION DETERMINED BY
EXTREME POINTS OF THE UNIT BALL OF A

NORMED SPACE

RICHARD M. ARON AND ROBERT H. LOHMAN

A geometric function, which measures the relative distance of a
vector to an extreme point of the unit ball of a normed space, is defined.
This function is calculated explicitly for certain classical function and
sequence spaces. Radial limits and continuity properties of this function
are investigated and some applications are given.

Introduction. There are many normed spaces X, which are geometri-
cally very different, whose closed unit balls have the following geometric
property, called the λ-property, in common: each member x of the unit
ball is a convex combination of an extreme point e of the unit ball and a
vector y9 where || j>|| < 1 and e is assigned a positive weight. If we vary e
and y9 looking for the "largest possible" weight in such a representation
of x9 we obtain a geometric function of x, called the λ-function, which
measures how close x is to being an extreme point of the unit ball. In
Section 1, we make these ideas more precise and calculate explicit for-
mulas for the λ-function for the classical spaces CX(T), lλ{X), 1^{X) and
c{X). It is also shown when the "largest possible" weight is attained in
these spaces. Section 2 investigates continuity properties of the λ-function.
These include existence of radial limits (Theorem 2.2) and Lipschitz
properties (Corollaries 2.8 and 2.9). In Section 3, it is shown how the
uniform λ-property is related to uniformly convergent series expansions
of vectors in terms of infinite convex combinations of extreme points of
the unit ball (Theorem 3.1). Local boundedness of the λ-function away
from zero (Theorem 3.5) is also discussed. Section 4 contains a list of
questions and open problems.

0. Notation, If X is a normed space, the closed unit ball, open unit
ball and unit sphere will be denoted by Bx, Ux and SX9 respectively. The
symbols lλ(X), l^X) and c(X) denote the spaces of all X-valued
sequences x = (xn) which are absolutely summable, bounded and conver-
gent, respectively. lλ{X) is endowed with the norm ||x|| = E^=1||.xJ|, while
the norm in l^X) and- c(X) is given by ||JC|| = supπ||jc/l||. If T is a
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compact Hausdorff space, CX(T) denotes the space of continuous X-val-
ued functions on T endowed with the sup norm. If x, y e X, then (x: y)
denotes (λ c + (1 - λ)y\ 0 < λ < 1}, ((x: y] has the obvious corre-
sponding meaning). A point e of a convex subset A of X is an extreme
point of A if x, y e A and e ^ (x: y) imply e = x = y. The set of
extreme points of A is denoted by ext(^ί). The convex hull of a subset B
of X is denoted by co(B). Recall that X is strictly convex if ext(Bx) = Sx.
A convex set A is called a polyhedron in case ext(^4) is finite and
A = co(ext(^4)). We denote the set of positive integers by N and, if X is a
normed space, XR denotes X considered as a real vector space. The
function r: X\ {0} -> Sx is defined by r(z) = z/\\z\\. If z, zf are non-zero
vectors, then

(1) \\r{z) - r(z') || < 2|z - z'|| min{| | |Γ

1. The λ-property and computation of the λ-f unction.

DEFINITION 1.1. Let X be a normed space and x e Bx. If e e
ext(2?;r), ||j>|| < 1, 0 < λ < 1 and JC = λe + (1 — λ) j , we say the ordered
triple (e, y, λ) is amenable to x. In this case, we define

(2) λ(x) = sup{λ: (e, j>, λ) is amenable to JC}

X is said to have the λ-property if each x e Bx admits an amenable
triple. If X has the λ-property and, in addition, satisfies inf{λ(x):
x G Bx) > 0, we say X has the uniform λ-property.

There are several elementary facts which we record for future use.

PROPOSITION 1.2. Let X be a normed space.
(a) Ife e ext(J5x), then λ(e) = 1.
(b) // (e, y, λ) w amenable to x and λ < 1, \\y\\ < 1, //*ere ex/s/

λ7 > λ andy' e 5^ st/cA ίλύtf j e (^ r: x] and (e, y\ X) is amenable to x.
(c) // (e, y, λ) is amenable to x and 0 < λ' < λ, there exists y' e

(y: x) such that (e, ̂ ', λ") is amenable to x.
(d) If Xhas the λ-property, then λ(x) < (1 + ||x||)/2 for all x G 5^.
(e) // X w a strictly convex space, then λ(x) = (1 4- ||x||)/2 for all

x G Bx and λ(x) is attained.
(f) // X has the λ-property and Y is a linear subspace of X such that Y

has the λ-property, and ext(2?y) c ext(2?^), then λγ(x) < λx(x) for all x
in Y, where λY and λx are the λ-functions defined by (2) in Bγ and Bx.
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Proof, (a) This is clear since (e, e, 1) is amenable to e.
(b) Since λ < 1, x Φ e and so there is a / > 0 such that yf = y +

t(x — e) has norm one. A straightforward calculation shows that λ' =
(λ + t - ίλ)/(l + t - t\) works.

(c) We may take

λ-λ' ,/- λ-λ'

(d) This follows from the fact that if (e, y, λ) is amenable to x, then
x - λe = (1 - λ) j and so

λ —1|JC|| < ||JC — λ^|| < 1 - λ .

(e) If x*ΞBx and x Φ 0, then (x/||x||, — JC/||JC||, (1 + ||x||)/2) is
amenable to x so that λ(x) > (1 + ||x||)/2. An appeal to (d) completes
the proof. On the other hand, it is clear that λ(0) = 1/2.

(f) This is clear from (2).

Before computing the λ-function for CX(Γ), we will need the follow-
ing version of the Borsuk-Dugundji extension theorem.

LEMMA 1.3. Let T be a compact metric space, let To be a non-empty
closed subset of T and let X be an infinite-dimensional normed space. If
g: To —> Sx is a continuous mapping, there exists a continuous mapping
g: T-> Sx such that g\To = g.

Proof. This follows from Theorem 4.1 and 6.1 of [3] (a considerable
strengthening of Theorem 6.1 is found in [1]).

If e is an extreme point of the unit ball of CX(T), one cannot
conclude that e(t) e ext(Bx) for t e T (see [2] for a four-dimensional
space X in which this fails for Cx ([0,1])). However, all we need here is
the following elementary result whose proof is given for the sake of
completeness.

LEMMA 1.4. Let T be a compact Hausdorff space and let X be a normed
space. If e is an extreme point of the unit ball of CX(T), then \\e(t)\\ = 1
for all t e T.

Proof. Suppose there exists t0 e T such that | |e(ί o )l l = α < 1. Let
δ = ( l - α ) / 4 and set V = {t <E T: \\e(t)\\ < a 4- δ}, W = {t e T:
\\e(t)\\ > 1 - δ}. Then t0 e Fand, since \\e\\ = 1, W Φ 0 . By Urysohn's
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lemma, there is a continuous function /: Γ -> [0,1] such that f(V) = {1},

f(W) = {0}. Fix x0 G Sx and define u,v G C^(Γ) by w(/) = e(ί) +
8f(t)xo> v(t) = e(f) ~ δf(t)x0. Then ti, ϋ are in the unit ball of C^(Γ),

u Φ e Φ v and e = (u + υ)/29 contradicting the fact that e is an extreme

point of the unit ball of CX{T).

REMARK 1.5. If e G C X ( Γ ) and e(t) G ext(£x) for all ί G Γ, then e

is an extreme point of the unit ball of CX(T). Consequently, if X is a

strictly convex normed space, the converse of Lemma 1.4 is true.

THEOREM 1.6. Let T be a compact metric space and let X be an

infinite-dimensional strictly convex normed space. Then CX(T) has the

uniform λ-property. In fact, if x G CX(T) and \\x\\ < 1, then λ(x) =

(1 + m)/29 where m = inf{||x(/)||: t G Γ} . Moreover, if x(t) Φ 0 for all

t G Γ, λ(jc) is attained.

Proof. Suppose x = λe 4- (1 — λ)y, where 0 < λ < 1, ||y|| = 1 and e

is an extreme point of the unit ball of CX(T). By Lemma 1.4, | |e(ί)| | = 1

for all t G T. Since λe(t) = x(t) - (1 - λ).y(O, we have

Taking the infimum over all / G T yields λ < (1 4 m)/2. Taking the

supremum over all such λ yields λ(x) < (1 4- m)/2.

In order to obtain the reverse inequality, first note that if m = 1, then

||^(OII = 1 for all / G T. Therefore, x is an extreme point of the unit ball

of CX(T) and λ(x) = 1 = (1 4 m)/2. Hence, we may assume m < 1.

Next, suppose x(t) Φ 0 for all t G T. In this case, we define e j G (

by

Then β is an extreme point of the unit ball of CX(T). Also, for each t G T

we have

~ 1 - m

and

— m

proving λ ( » > (1 + m)/2.
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Finally, suppose x(t) = 0 for some t e T. Then (1 -f m)/2 = 1/2
and we want to show λ(x) > 1/2. To see this, let 0 < λ < 1/2 and
choose δ > 0 such that 4δ < 1 - 2λ. Let the closed subset To of T be
defined by

T0={t<=T:\\x(t)U8ox\\x(t)\\>2δ}.

Fix x0 e X, \\xQ\\ = 1, and define e: To -> Sx by

x0, i f | | x ( O H < δ ,

Since e is continuous on TQ, Lemma 1.3 guarantees that there exists a
continuous mapping e': T -* Sx that extends e. e' is clearly an extreme
point of the unit ball of CX{T). Define y e CX(T) by

To see that ||>Ί| < 1, observe that ||*(OII ^ 2δ implies

ιι \\x(t)-λx(t)/\\x(t)\\\\ .|||

while \\x(t)\\ < 2δ implies

O λ 2δ + λ 1/2
<ΊΓΊΓ<Ttτ1̂  i-λ < Ί Γ Ί Γ < T t τ < 1

Since x = λe' + (1 - λ)j> and 0 < λ < 1/2 is arbitrary, we have λ(x) >
1/2.

REMARK 1.7. If X is a finite-dimensional strictly convex space, the
conclusion of Theorem 1.6 may fail. In fact, CX{T) may even fail to have
the λ-property. For example, let Γ = { Z G C: \Z\ < 1} and let X = C.
Define x in the unit ball of CC(T) by x(z) = z for all z e Γ. Assume
(^, y, λ) is amenable to x. Then |β(z)| = 1 for all z e Γ and 0 < λ < 1.
If \z\ = 1, we have z = x(z) = λe(z) + (1 - λ)y(z) so that

This means that λe(z) lies in both and closed disc with center 0 and
radius λ and the closed disc with center z and radius 1 — λ. It follows
that λe(z) = λz; that is, e(z) = z for all z on the unit circle. The
contradiction is reached by observing that e must then be a retract of the
unit disc T onto the unit circle. This example clearly generahzes to show
that CRn(T) fails to have the λ-property if T is the closed unit ball of R".
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Although Remark 1.7 suggests that infinite dimensionality of X is

needed in order to obtain results similar to Theorem 1.6, this is not always

the case. If T is given stronger properties, infinite dimensionality of X can

be relaxed. To see an example of this, we will need

LEMMA 1.8. Let a < b and let X be a normed space satisfying dim XR

> 2. // u,v e Sx, there exists a continuous function f: [a, b] -» Sx such

that f(a) = u, f(b) = v. If, in addition, \\υ — u\\ < 1, then f may be

chosen so that for t, tf G [a, b]

0)
(b - fl)(l - \\u - v\ f

Proof. If v Φ -u, then (1 - s)u + sv Φ 0 for any s <= [0,1]. We let

f(t) = r(h(t)), where

a < t < b.

Then /: [a, b] -> Sx is continuous, /(«) = w, /(Z>) = f and by (1) /

satisfies

, - l
- f ( t ' ) \ \ < 2 \ \ h ( t ) - h ( t ' ) \ \ m i n { | | M 0 1 , \\h(t')

If I] v — u\\ < 1, we obtain (3) by observing that

-h{t')\\ = ^^\\u-v\\ and

WOII-
t - a , v

u + -j——(v - u) > 1 -\\u- υ\

If v = — w, choose w e 5^, w # ± M , and let c = (a + 6)/2. By the

preceding observation, there are continuous functions fx: [a,c] -> S^, / 2:

[c, Z>] -> 5 X such that /^tf) = w, fλ(c) = w = f2(c), f2(b) = ϋ. In this

case, combine fx and / 2 to obtain /.

THEOREM 1.9. Let X be a strictly convex normed space satisfying

dim XR > 2. Then Cx([0,1]) has the uniform λ-property. In fact, if

x e CV([0,1]), | | J C | | < 1 and m = ini{\\x(t)\\: ί e [ 0 , l ] } , then λ(x) =

(1 + m)/2. Moreover, ifx(t) Φ 0 for all t G [0,1], λ(x) is attained.

Proof. One proceeds exactly as in the proof of Theorem 1.6, noting

that only the case in which x(t) = 0 for some t G Γ needs to be modified.

In this case, let 0 < λ < 1/2, choose δ > 0 such that 4δ < 1 - 2λ and let
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the closed subset Γo of [0,1] be defined by To = Tλ U Γ2, where 7\ =
{ ^ [ 0 , 1 ] : | | x (/) | |<δ}, Γ 2 -{/e=[0,l] : ||x(OII > 2δ}. Fix xoeSx

and define e: To -> Sx as before. The set [0,1] \ To is a countable disjoint
union of open intervals (α, ft), where <z, ft e Γo. Extend e to e: [0,1] -* Sx>
defining e on each such interval (α, b) by e(t) =/(/) for all / e (#, Z>),
where / is chosen as in Lemma 1.8 with u = e(α), v = e(fe). By uniform
continuity of x on [0,1], there exists η > 0 such that \\x(t) - x(t')\\ < 8/2
whenever t, t' G [0,1] and \t - t'\ < η. Hence, if t, t' G TO and \t - t'\ <
η, we have t, t' e 7\ or r, ί' e Γ2. Consequently, the endpoints α, δ are
both in the same set Tx or T2 for all but finitely many of the open
intervals (α, b). By the uniform continuity of e on Γo, we may also assume
\\e(t) - e{t')\\ < 1 whenever t, tf e Γo and |ί - ί'| < η.

We now show that e is continuous. It is clear that e is continuous at
each point of [0,1]\ΓO and at each point interior to Γo. If t0 is in the
boundary of To, then t0 is an endpoint, say α, of one of the distinguished
intervals {α, b) mentioned above. Consequently e is continuous from the
right at t0. On the other hand, let (tn) be a sequence in [0,1] such that
tn 110. Since e is continuous at tθ9 we may assume that each tn lies in
[0,1]\ Γo. If t0 is also a right-hand endpoint of one of the distinguished
open intervals whose disjoint union is [0,1] \ Γo, e is continuous from the
left at t0. Thus, by taking n sufficiently large, we may assume that
tn e (αn>bn), where (αn,bn) is one of the distinguished open intervals,
t0 - η < αn < bn < t0 and αn, bn are in the same Tt. If t0 e Tl9 then

αn, bn G Tl9 which implies e{tn) = x0 = e(t0) for all n. If t0 G Γ2, then

αM, bn G Γ2 and | |β(αΛ) - e(ό π ) | | < 1 for all n. By Lemma 1.8, we may

assume

Since ||g(ί0) - e(^) | | < ||e(/0) - e(αn)| | + ||e(αn) - g(ίπ)||, the facts that
e(αn) -> β(/0) and e ( α j - e(όΛ) -> 0 imply e(tn) -> e(t0), establishing
continuity of e. The last part of the proof of Theorem 1.6 now completes
the proof.

REMARK 1.10. The conclusion of Theorem 1.9 fails if dim XR = 1. In
fact, Cx([0,1]) fails the λ-property, since in CR([0,1]), the only extreme
points of the unit ball are the constant functions ± 1 . Thus, if we define
the unit vector x G CR ([0,1]) by x(t) = 1 - It, it is easy to see that there
is no triple (e, y9 λ) amenable to x. Also, see Remark 1.7.
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THEOREM 1.11. Let X be a strictly convex normed space. Then lχ(X)
has the X-property but not the uniform X-property. In fact, if x = (xn) e
lx{X), \\x\\ < 1 andM = sup{||xj|: n e N}, then

X{x) = (1 - ||x|| + 2M)/2.

Moreover, X(x) is attained.

Proof. Suppose (e, y9 λ) is amenable to x. We may assume λ < 1.
Write e = (en), y = (yn) and observe that there is a positive integer m
such that em e ext(5^) and en = Oiί n Φ m. Therefore,

which implies 1 - λ > ||x|| + λ - 2||xJ|. It follows that

λ(x) < (1 - ||x|| + 2M)/2.

On the other hand, if x = 0, the result is clear. Hence we may assume
x Φ 0. In addition, if x has a coordinate xn with | |x j | = 1, then x is an
extreme point of the unit ball of lx(X) and the result is clear. Conse-
quently, we assume ||x J | < 1 for all n. Pick a positive integer N such that
\\xN\\ = M. Let λ = (1 - ||x|| + 2Af )/2, e = (en) and y = (yn), where

(0, nΦN9

= / Xv

|x|| - 2M

llxll - 1

x II ' '

xn9 n Φ Ny

x n = N
Λn9 n i v .1 4- ||x|| - 2M)M

Then (e, j , λ) is amenable to x. This shows that lλ{X) has the λ-property,
establishes the formula for λ(x) and proves that λ(x) is attained. In
order to see that lλ(X) does not have the uniform λ-property, fix
xf G Sx. If n is any positive integer then the unit vector

x =

of lx{X) satisfies λ(x) = \/n.

REMARK 1.12. Only a minor change in notation is required to show
that Theorem 1.11 is valid for (®ΣnXn)lχ9 where each Xn is a strictly
convex normed space.
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THEOREM 1.13. Let X be a strictly convex normed space. Then
has the uniform λ-property. In fact, if x = (xn) e l^iX), \\x\\ < 1 and
m = inf{||xj|: n <= N}, then λ(x) = (1 + m)/2. Moreover, λ(x) is at-
tained.

Proof. First, suppose xno = 0 for some index n0. If x = λe +
(1 — λ) j , where 0 < λ < 1, e = (eπ) is an extreme point of the unit ball
of l^(X) and y = (yn) has norm one, then λeno + (1 - λ)yno = xΠo = 0
implies λ/(l - λ) = \\yΛo\\ < 1. Thus, λ < 1/2 which yields λ(x) < 1/2.
On the other hand, if n Φ w0, then by (e) of Proposition 1.2, we may write
*n = Ken + ί1 " K)y*> w h e r e *» G ext(ί/x), \\yn\\ = 1 and λw =
(1 + | |JCΠ | |)/2. Since λn > 1/2, part (c) of Proposition 1.2 shows that
(en, zn, 1/2) is amenable to xn for some zn e Bx. Let

Then e is an extreme point of the unit ball of l^iX), \\z\\ = 1 and
x = 2^ + 2Z This, together with λ(x) < 1/2, yields λ(x) = 1/2 and
establishes our assertion in this case. Hence, we may assume 0 < ||JCJ| < 1
for all n. The assertion is also true if m = 1 because this implies x is an
extreme point of the unit ball of l^iX). Thus, we also assume m < 1. We
claim λ(x) < (1 + m)/2. To see this, choose a subsequence (xnk) of (xn)
such that \\xnk\\ -* HI (in case ||xw|| = m for some «, the claim is proved in
a manner similar to what follows). If e = (en) is an extreme point of the
unit ball of l^iX), y = (yn) has norm at most one, 0 < λ < 1 and
JC = λe + (1 — λ ) j , then λ < 1, since λ = 1 forces x = e and m = 1.
Then xrtΛ = λeΛyt + (1 - λ ) ^ implies

λ 1KJ1 ^ „ „ ll^Jl 1

Letting k -» oo yields

1 - λ - 1 - λ X

or λ < (1 4- m)/2, which proves the claim.
In order to see that λ(jc) > (1 + m)/2, let λ = (1 + m)/2, e = (en\

y = (yn)>where

(4) ^ = =

Λ " < ( 2 £ t - " : ? . : r ) * . . ι*.ι<i.



218 RICHARD M. ARON AND ROBERT H. LOHMAN

Then || j>|| < 1 because if ||xn|| < 1, we have

_ 12||JCJ| - 1 - m\

xΛ - m\ +\ IIJCJI -

1 — m 1 — m
Since (e, j>, λ) is amenable to x, the proof is complete.

=

REMARK 1.14. Only a minor change in notation is required to show
that Theorem 1.13 is valid for (®ΣnXn)ι , where each Xn is a strictly
convex normed space.

The next result is essentially a corollary to Theorem 1.6. Since,
however, λ(x) can be attained under more general circumstances than
indicated in Theorem 1.6, we present this result as

THEOREM 1.15. Let X be an infinite-dimensional strictly convex normed
space. Then c(X) has the uniform λ-property. In fact, if x = (xn) £ c(X),
\\x\\ < 1 and m = inf{||xj|: n e N), then λ(x) = (14- m)/2. Moreover,
if limnxn Φ 0, then λ(x) is attained.

Proof. Since c(X) is isometrically isomorphic to CX(T), where T is
the one-point compactification of N when N has the discrete topology, all
of the assertions above, except the last one, follow from Theorem 1.6. In
order to complete the proof, write JC^ = Yίvanxn and assume x^ Φ 0. We
may assume m < 1; otherwise, x is an extreme point of the unit ball of
c(X). If m > 0, define e = (en), y = (yn) as in (4). Then e, y e c(ΛΓ)
because K m / n = ôo/ll-̂ ooll a n d

As in the proof of Theorem 1.13, (e, y, λ) is amenable to x, where
λ = (1 + m)/2. Next, suppose m = 0. Fix x0 e X, ||χo | | = 1, and note
that the set D = {«: xn = 0} is finite. Define e = ( e j , .y = (yn) G C(ΛΓ)
by

"sNχfl

IKII -' — x

Then (e, y, 1/2) is amenable to x, completing the proof.
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By Theorems 1.11 and 1.13, the dual spaces lλ and /^ have the
λ-property and uniform λ-property, respectively. Since unit balls of dual
spaces are rich in extreme points, one might expect (or at least hope) that
dual spaces satisfy the λ-property. To see that this is not the case in
general, let X = CR([0,1])*, which, using the Riesz representation theo-
rem, is identified with the Banach space of regular Borel measures on the
Borel subsets of [0,1]. If m denotes Lebesgue measure on [0,1], then
m e Bx. Assume there exists a triple (e, μ, λ) that is amenable to m. Then
we can write e = ±δt for some / e [0,1], where 8t is point evaluation at /.
If A = [0,l]\{/}, we obtain 1 = m(A) = (1 - λ)μ(A) or ||μ|| > μ(A)
= 1/(1 - λ) > 1, which is a contradiction. Consequently, CR([0,1]) and
CR([0> 1])* both fail to have the λ-property.

We close this section by showing that all finite-dimensional normed
spaces have the uniform λ-property.

THEOREM 1.16. Let X be a finite-dimensional normed space. Then Xhas
the uniform λ-property. In fact, ifx e Bx, then λ(x) > 1/(1 + dim XR).

Proof. Let n = dim XR. Then each x e Bx can be written as x =
Σn

kt\λkek, where ek G ext(5x), λ^ > 0 for all k and Σn

kt\λk = 1 (see p.
10 of [4]). There is an index k0 with λ*o > \/{n + 1). If λ*o = 1, then
x e ext(2?;r) and λ(x) = 1. Otherwise,

v λk
ek0> L l _ χ Ck> Kk0

kΦk fco /

_ λ

\ kΦk0

is amenable to x9 completing the proof.

2. Continuity properties of the λ-function. The λ-functions which
were explicitly calculated for the classical normed spaces of §1 are all
continuous. However, it is not difficult to construct norms in the plane for
which the λ-function fails to be continuous on Bx. For example, in
X = R2, let un, υn denote those points having polar coordinates

a n d

"1 2(Λ + 1

respectively, for n = 0,1,2, Take || || to be the norm on X whose
unit ball is the closed convex hull of all the points ±un9 ±υn. If
wn = (un + w«+i)/2 and e has polar coordinates (1,77/2), then e e
oxt(Bx) (so that λ(e) = 1), wn -> e and λ(wn) = 1/2 for all n. Although
the λ-function may fail to be continuous at some points of Bx, it does
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possess some continuity properties in important general cases. Such
properties are investigated in this section.

LEMMA 2.1. Let X be a normed space with the λ-property. If x e Bx

and x Φ 0, then

Proof. The assertion is trivially true if ||x|| = 1, so we assume ||x|| < 1.
Write z - x/IWI, y = -x/||x||. Then ||z|| = \\y\\ = 1 and

r ( l + llxllx i 2

Given ε > 0, there is a triple (e, y', λ) that is amenable to z for which
λ(z) - ε < λ. Letting

M M ) and

a routine computation shows that (e, y", λr) is amenable to x. This shows

completing the proof.

THEOREM 2.2. Let X be a normed space satisfying the λ-property, and
let T be a Hausdorff vector topology on X which is weaker than the norm
topology. If ext(fix) is τ-sequentially compact (respectively, τ-compact)
and Bx is τ-sequentially closed (respectively, τ-closed), then radial limits of
λ satisfy

λ(x) = lim λ(rx), x e Sx.

Proof. First, assume ext(Bx) is τ-sequentially compact and Bx is
τ-sequentially closed. Let x ^ Sx and (rn) be a sequence of positive
numbers increasing to 1. It suffices to show λ(rnx) -> λ(x). For each
n G N, there is a triple (en, yn9 λn) amenable to rnx such that λ(rnx) —
\/n < λn. By Lemma 2.1, λ(rnx) > [(1 + rn)/2]λ(x) which implies
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liminf λ(rnx) > λ(x). Write λ = ]imsupλ(rnx) and choose a subse-
quence (λrtΛ) of (λn) such that λnk -> λ. By passing to a subsequence of
(enk)> w e m a Y assume there exists e e ext(J?x) such that eΛk -> e relative
to T. Then λΛΛenA -> λe relative to T, which implies (1 — λ ^ ) ^ -> x — λe
relative to T.

If λ = 1, then x = e and we have

λ( c) < liminf λ(rnx) < limsupλ(rwjc) = λ = 1 = λ(x),

implying λ(rnx) -> λ(x).
If λ < 1, then y -* (x — λe)/(l — λ) relative to T. Since J?x

is τ-sequentially closed, y = (x — λe)/(l — λ) e J5X. Then x = λe +
(1 — λ)>> implies λ( c) > λ. Therefore, λ(rnx) -> λ(x).

In case cxt(Bx) is τ-compact and Bx is τ-closed, pick λ and (λn ) as
before. Then there is a subnet (enkj of (e^) and e e ext(5^) such that
enkΰt. ~* e r e ^ a t i v e t 0 τ The argument of the preceding case now applies
(using subnets instead of subsequences).

COROLLARY 2.3. Let X be a Banach space with the λ-property. Then

radial limits of λ satisfy

λ(x) = lim λ(rx)y x e Sx
r-*\~

in the following cases
(a) X = Y*, where Y is a normed space and ext(Bx) is weak*-sequen-

tially compact {in particular, dim X < oo and ext(Bx) is norm closed).
(b) X = y*, where Y is a normed space, and ext(Bx) is weak*-com-

pact.

REMARK 2.4. If dimJΓ < oo and ex^J?^) is not norm closed, the
conclusion of Corollary 2.3 may fail. To see this, let C denote the convex
hull of the union of the sets {(x, j ,0) : |x|, \y\ < 1} and {(x,0, z):
x2 + z2 = 1, z > 0} in R3. Let C = (0,0,1) + C and let || || denote the
norm on R3 whose unit ball is B = co(C U — C). The unit vector
u = (1,0,1), which is not an extreme point of B but is a limit point of the
sequence um = (cosm, 0, 1 + sinm), m e N, from ext(J5), satisfies λ(w)
= 1/2 and lim,..^- λ(ru) = 1.

In order to consider additional results related to continuity of the
λ-function, it is necessary to introduce some auxiliary functions. If u e Sx,
we let
(5) λ(u,x) = sup{λ: 0 < λ < 1 and x = λw + ( l - λ)j;

for some j^ e Bx), JC G 5^,
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(6) a(u,x) = sup{α: a > 0, ||JC 4- a(x - u) || = l } , x G Bx\{u}9

(7) J>(w,x) = x + a(u,x)(x -u), x G # Λ { w } .

Geometrically speaking, if x G i ? x \ { w}, ^(W, X) is the unit vector which
lies on the line from u through x and is "farthest" from u. These
functions have some elementary properties which are now stated and
whose proofs are left to the reader.

LEMMA 2.5. Let u G SX.

(a) Ifx G Bx\{u}9 then λ(u,x) = a(u,x)/(l + a(u9x)).
(b) //x G ̂ \ { w } , /Λe«x = λ(u,x)u + (1 - λ(w,jc))j(w,x).
(c) //x e 1?A {ι/}, Ae/i λ(iι, x) = ||JC - y(u, x)\\/\\u - y(u, x)\\.
(d) // X has the λ-property and x G Bx, then λ(x) = sup{λ(e, x):

THEOREM 2.6. Lei X be a normed space.
(a) // ||u|| = 1 and \\x\\, \\z\\ < 1 then

\a(u,x) -a(u,z)\

\ f a(u,x)(l + a(u,z)) a(u,z)(l + a(u,x))\ ,

- [max\ Γ=Jx]\ ' Γπjly fPx ~ 2 | |

(b) // ||w|| = ||ι>|| = 1 and \\x\\ < 1, then

\ i \ i w a(u,x)a(υ,x) .,
| o ( « , x ) - α ( i 7 , * ) | < _ , | ., '\\u -

1 | |Λ | |

Proof. We provide the details for (a) and note that the proof of (b) is
similar. By (7),

y(u9z) = x + a(u,z)(x - u) +(l + a(u9z))(z - x).

It follows that

(8) \\\y(u,x)\\-\\x + a(u,z)(x-u)

<\\y(u,z)-x- a(u,z)(x - u) \\ < ( l + a(u,z))\\x - z\\.

We may assume X is a real normed space. Choose f e X* such that
= 1 and

l=f(y(u,x))=f{x) + a{u,
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We obtain

( 9 ) / ( j , ) , 2 .
a(u,x) a(u,x)

By (8),

(10) (a(u,z)-a(u,x))f(x-u)

= /(x + a(u,z){x - u)) -f(x + a(u,x)(x - u))

= f(x + a(u,z)(x - u)) -\\y(u,x)\\

<\\x + a(u,z)(x - u)|| -\\y(u,x)\\ < (1 + a(u,z))\\x - z\\.

An application of (9) to (10) yields

/-.,\ / \ / \ a(u,x)(l + a(u,z)) „ „
(11) a(u,z)-a(u,x)^ 1-11*11 l | x ~ z | 1 "

Interchanging the roles of JC and z in (11) yields a similar inequality
which, when used with (11), produces (a).

COROLLARY 2.7. Let Xbea normed space.
(a) // \\u\\ = 1 and \\x\\, \\z\\ < 1, then

\λ(u,x)-λ(u,z)\ <Ξ [ m a x ^ ^ ^ , t _ | | z | | j j l l * ~ z l

(b) // ||M|| = ||y|| = 1 and \\x\\ < 1, then

X(w,Jc)X(l7,
\λ(u,x)-λ(v,x)\<

-
1

Proof. These both follow from Theorem 2.6 and (a) of Lemma 2.5.

COROLLARY 2.8. Let X be a normed space and let 0 < r < 1. //
|u| | = IMI = 1 and ||x||, | |z| | < r9 then

\λ(u,x) - λ(v9z)\ < ̂ ZΓr)l\\x ~ ̂ 11 +11" - v\\}

Consequently, the mapping (u,x) -> λ(w, x) on Sx X Bx is a Lipschitz
mapping.

Proof. This follows from Corollary 2.7 by observing

|λ(u, jc)-λ( ι ; ,z) | rs |λ(ι ι , jc)-λ(iι ,z) | + |λ(u, z) - λ(v9 z) \

and that if ||w|| = 1 and ||>>|| < 1, then λ(w, y) < (1 + || j | | )/2.
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An immediate consequence of part (d) of Lemma 2.5 and Corollary

2.8 is

COROLLARY 2.9. Let X be a normed space with the λ-property, and let

0 < r < 1. // ||x||, ||z|| < r, then

Consequently, the λ-function is a Lipschitz mapping on rBx and is continu-

ous on Ux.

Although the λ-function is continuous on Ux when X is a finite-di-

mensional normed space, the example of Remark 2.4 shows that points of

discontinuity may exist on Sx. In that particular example, the point of

discontinuity (u = (1,0,1)) is a limit of extreme points of Bx but is not an

extreme point. We now show that this situation always leads to points of

discontinuity of the λ-function.

THEOREM 2.10. Let X be a finite-dimensional normed space. If x

e ext(Bx) \cxt(Bx), then λ(x) < 1. Consequently, the λ-function is not

continuous at x.

Proof. Assume, to the contrary, that λ(x) = 1. Since x £ ext(Bx),

there is a triple (ev yv λλ) that is amenable to x for which exΦ x Φ yx.

Choose εx > 0 such that el9 yλ £ U(x9 ε^, where U(x, εx) denotes the

open ball with center x and radius εv Since λ( c) = 1, there exists a triple

(e2, y2, λ 2 ) that is amenable to x for which λ 2 > max{λ1? (2 — ε^/2}.

The equality x = λ2e2 + (1 — λ2)jμ2 implies

| | * - e 2 | | = (1 - λ2)|Ly2 - <?2|| < 2(1 - λ 2 ) < εv

Then x is in the relative interior of co(e1? yλ) in Ml9 the one-dimensional

linear manifold containing x and el9 and e2 £ Mv

Assume that triples (ei9 yi9 λ z), 1 < / < n + 1, amenable to *, have

been selected, where λλ < < λ w + 1 < 1, the linear manifold Mn con-

taining x and ev...,en is n dimensional, en+1 & Mn and x is in the

relative interior of c o ( e 1 ? . . - 9 e n 9 y l 9 . . . 9 y n ) in Mn. Then the linear mani-

fold Mn+ι containing x and el9...9en+ι is of dimension n + 1 and there

exists εn > 0 such that Mn Π U(x, εn) c co(e l 9 ...9en9yv...9 yn). It fol-

lows that there exists 0 < εn+ι < min 1 ; g J ^Λ{| |* — ez||, | | * — y^} such that

Mn+1 Π l / ( * , β n + 1 ) c c o ( ^ , . . . , e n + l 9 y l 9 . . . 9 y n + 1 ) . Since λ ( * ) = 1, there
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exists a triple (en+2, yn+2,λn+2) amenable to x such that λ Λ + 1 <

λn+2 and ||x - en+2\\ < εn + ι. If en + 2 e Mn + l9 then en + 2 e

c o ( e l 9 . . . , en+19 yl9..., yn+ι) which implies en+2 is one of the e/s or Λ'S,

! < / < « + ! . Since this is impossible by the choice of εn+l9 we obtain

By induction, we obtain an increasing sequence (Afn) of linear sub-

manifolds of X such that Mn has dimension n for all ft. Since dim X < oo,

the contradiction establishes λ(x) < 1.

We do not yet know what general conditions will guarantee continuity

of λ on Bx. In the simplest of cases (i.e., Bx a polyhedron), however, λ is

well behaved and it is this result we now proceed to demonstrate.

LEMMA 2.11. If Bx is a polyhedron and e e ext(i^), then the λ-func-

tion is continuous at e.

Proof. Let e, el9..., em denote the distinct extreme points of Bx.

There exists δ > 0 such that \\e - y\\ > 8 for y e co(^ 1 ? . . . , em). Suppose

(xn) is a sequence in Bx such that xn -> e. For each n, write xn = \ne +

Σ*=i λ Λ / Λ , where λn, λfcπ > 0 and λn + Σ ^ = 1 λ ^ = 1. If λn < 1, then

Ί _ λ ekeco{el9...9em) and

In this case, ||JCΛ - e\\ = (1 - λ,,)! !^ - e|| > (1 - λ j δ . From this, we

have λn -> 1 which implies λ(x r t) -> 1 = λ(e).

REMARK 2.12. Let 2?^ be a polyhedron and let β 0 , e l 9 . . . , e m denote

the distinct extreme points of Bx. If x e 5 X , λ(e 0 , JC) is attained. Thus,

we may write
m

x = λ(eo,x)eo+(l - λ(e09x)) Σ λkek>
k = 0

where λ^ > 0 for all k and Σ™=oλk = 1. Suppose x £ ext( i^); that is,

λ ( e 0 , x) < 1. If λ 0 > 0, choose a positive number δ small enough so

that λ(eQ9 x) + δ < 1 and δ/(l - λ(e 0 , x) - δ) < λ 0 . Write μ =

δ/( l - λ(^ 0 , x) - δ). A direct computation shows that if y is taken to be

the convex combination
m m
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of eQ9el9...,em, then (eo,y, λ(e0, x) + δ) is amenable to x. The con-
tradiction shows λ 0 = 0. Geometrically, this means that if one considers
the line L from e0 through x, then the unit vector u on L that is farthest
from e0 lies on a face of Bx that does not contain e0.

THEOREM 2.13. // X is a finite-dimensional normed space such that Bx

is a polyhedron, then the λ-function is continuous on Bx.

Proof, By Corollary 2.9 and Lemma 2.11, it only remains to show that
the λ-function is continuous at each x e Sx\cxt(Bx). Since ext(Bx) is
finite and λ( ) = max{,λ(e, ) : e e ext(Bx)}9 it suffices to show that
each function λ(e, •) is continuous at each such x. To this end, fix
e e ext(J?x) and x e Sx\cxt(Bx). Let (xn) be a sequence in Bx such
that xn -> x. All of the numbers λ(e, c), λ(e, xn) are attained. We first
consider two special cases.

Case A. \\xn\\ = 1 for all n.
We write

x = λ(έ?,x)έ? +(1 - \(e,x))j;(e,x),

xπ = λ(e,jcje +(1 - \(e,xn))y{e9xn).

L e t ( λ ( e , J C Λ Λ ) ) b e a n y c o n v e r g e n t s u b s e q u e n c e of ( λ ( e , x n ) \ say
( λ ( e , x n ) ) c o n v e r g e s t o λ . Since xΦe, i t fol lows t h a t λ < l a n d
(y(e,xnj) converges to y = (x - λe)/(l - λ). Thus, \\y\\ = 1 and x =
λe + (1 - λ)y which implies 0 < λ < λ(e, c). Assume that λ < λ(e, x).
By (a) of Lemma 2.5, α(e, * π )-» α, where a<a(e,x) and λ =
α/(l + a). Choose ε > 0 such that

(α + β)/(l + α + ε) = (λ + λ(e,x))/2.

For each A:, write

(12) yk = xnk+(a(e,xnk) + e)(xnk - e)=y{e,xHk) + ε(xnk - e).

If F 1 ? . . . , Fp denote the distinct faces of Bx, there exist f} G X*, ||/y|| = 1,
such that Fj = ̂ Π / ^ ^ l ) , 1 <j <p. Moreover, by Remark 2.12 for
each k, there is a face FJ{k) that contains y(e, xHk) but not e. Therefore,

) < X a n d fj(k)(y(^xnk)) = !• s i n c e

we obtain from (12) that

yk) = /y(Λ)(

= l + ε(l-λ(e,xnk)){l-fΛk)(e)).
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By finiteness of the number of faces, we may assume, by (13) and by

passing to a subsequence, that there is a common index j0 among the

j(k)'s satisfying

for all k. Consequently, \\yk\\ > 1 + β(l - λ(e,xnk))(l - fk{e)) for all k.

But yk -»y + ε(x - e) = x + (a + ε)(x - e) and a + ε < a(e, x). This

implies ||j> + ε(x - e)\\ - 1 from which we obtain λ(e,xnk) -> 1. The

contradiction shows that λ(e, xnj -* λ(e, x), implying λ(e, xn)-*

λ(e,x).

Case II. \\xn\\ < 1 for all n.

The obvious notational modification of the proof of Lemma 2.1 yields

λ(e,xn)>^ψ^λ{e,xn/\\xn\\) for all ».

Case I then gives λ(e, xn/\\xn\\) -* λ(e, x). This implies liminf λ(e, xn) >

λ(ey x). On the other hand, the same argument as in the first part of the

proof of Case I shows that any cluster point λ of (λ(e,xn)) satisfies

λ < λ(e, x). Therefore, lim sup λ(e, xn) < λ(e, x) completing the proof in

this case.

The proof of the general case follows from Cases I and II.

3. Further properties of the λ-f unction.

THEOREM 3.1. Let X be a normed space having the uniform λ-property.

If 0 < λ < inf{λ(;c): i G ί^}, then for each x e Bx, there is a sequence

(ek) in QXt(Bx) such that

n

x-
k=l

<(l-λ)\ ,7 = 1,2,....

Proof. By (c) of Proposition 1.2, there is a triple (ev xl9 λ) amenable

to x; that is, x = λeλ + (1 - λ)xv Note that ||x - λ^H < 1 - λ. By the

same reasoning, there is a triple (e2, JC2, λ) amenable to xτ. This yields

- \)e2 +(1 - λ) 2χ 2,

and

< (1 - λ ) 2 .
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The sequence (ek) is obtained by repeating the preceding observations in
a simple inductive argument.

REMARK 3.2. If 0 < λ < 1, then Σ? = 1 λ(l - λ)*" 1 = 1. Thus, if X
has the uniform λ-property, Theorem 3.1 shows: (a) each x e Bx admits
an expansion T^^λ\kek as an infinite convex combination of members of
Qxt(Bx) and (b) the sequences of partial sums of these series converge
uniformly for x e Bx. It is easy to check that (a) implies X has the
λ-property. Moreover, the converse of Theorem 3.1 holds; that is, if (a)
and (b) hold, then X has the uniform λ-property. To verify the last
assertion, note that if (a) and (b) hold, then X (by (a)) has the λ-property
and (by (b)) there is a positive integer N such that if x e Bx, we can write
x = Σ^^x\kek, where (ek) is a sequence in εxt(Bx), λk > 0 for all k,
Σ * = i λ * = 1 and ||x - Σ j ^ λ ^ H < 1/2. In particular, if x e SX9 1/2 <
Σk==iλkwhich implies 1/2N < λk , for some index k0. If λk = 1, λ(x)
= 1; if λk < 1, then

is amenable to x and so λ( t) > 1/2N. By Lemma 2.1, λ(x) > 1/4N for
all x e Bx.

We do not know if the λ-property implies (a). As the following result
shows, however, it does imply a similar but weaker statement.

THEOREM 3.3. Let X be a normed space satisfying the λ-property.
(i) // a convex function f: Bx -» R attains its maximum value, then it

attains its maximum value at a member of ext( Bx).
(ii) // X is a Banach space, then Bx is the closed convex hull of its set of

extreme points.

Proof, (i) Suppose that / attains its maximum value at x. Pick a triple
(e, y, λ) that is amenable to c. Since x = λe + (l — λ)y and / is a
convex function, we have f(x) < λf(e) + (1 — λ)f(y). The fact that
0 < λ < 1 implies f(e) = f(x).

(ii) Assume, to the contrary, that there exists x e Bx\co(Qxt(Bx)).
Then there is a continuous linear functional / on XR and a number M
such that 11/11 = 1 and |/(j>)| <M< f(x) for all y e co(ext(Bx)). By the
Bishop-Phelps theorem, there is a continuous linear functional g on XR

such that ||g|| = 1, | | / - g\\ < (f(x) - M)/A and g attains its norm on
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Bx. A straightforward computation shows

\g(y)\ < M + f { x ) - M < g(x)

for all y e co(exX(Bx)). Consequently, g does not attain its maximum
value on Bx at a member of ext(Bx). This contradiction of (i) completes
the proof.

REMARK 3.4. Recall that a normed space X has the Krein-Milman
property if every closed and bounded convex subset of X is the closed
convex hull of its set of extreme points. Theorem 3.3 shows that if X
satisfies the λ-property, then X satisfies a restricted version of the
Krein-Milman property; namely, Bx is the closed convex hull of its set of
extreme points. The converse, however, is false. For example, the space
CX(T) of Remark 1.7 fails to have the λ-property. On the other hand,
since X is the set of complex numbers, the unit ball of CX(T) is the closed
convex hull of its set of extreme points (see [5]).

THEOREM 3.5. Let X be a Banach space with the λ-property. If ext(Bx)
is countable, then the λ-function is locally bounded away from 0 in the
following sense: Given any x 0 G Bx and any open neighborhood W of x0 in
Bx, there exists a point x'Q e W, a neighborhood W of x'o in Bx and
X > 0 such that λ(x) > X for all x e W.

Proof. Let (en) be an enumeration of the members of ext(2?^) and let
(rm) be an enumeration of the rational numbers in (0,1). If x e W, there
is a positive integer n and a triple (ert, y, λ) amenable to x. Choosing m
such that rm < λ, there is a triple (en, y'9 rm) amenable to x. Conse-
quently, x €Ξ WmΛ9 where Wmn = WΠ(rmen + (1 - rm)Bx\ This shows
that W = U* > n . i Wmn and, since each set Wmn is closed in W, the Baire
category theorem guarantees the existence of indices m', n' such that
Wm,nf has non-empty interior in W. Therefore, there is a point x'o e WmW

and ε > 0 such that WmW contains W = WΠ {x e Bx: \\x - x'Q\\ < ε).
It follows that if x e W\ we have λ(x) > rM,, completing the proof.

If X has the λ-property and the members of ext(Bx) are separated,
then points in Bx that are close to being extreme points of Bx possess a
unique representation property. In order to make this precise, we need the
following.
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LEMMA 3.6. Let X be a real normed space with the λ-property. Assume
there is a number 8 > 0 such that \\e — e'\\ > 8 whenever e,e' e cxt(Bχ)
and e Φ e'. If x e Bx and (e, y, λ), (e\ y', λ') are amenable to x, where
λ, X > 3/(3 + δ), then e = e'.

Proof. We have x = λe + (1 - λ)y = λV + (1 - \')y' and so

(14) λ(e - e') = (λ' - λ)e' -(1 - λ)y +(1 - λ')y'.

If e Φ e', then (14) and the fact that \\e - e'\\ > 8 imply

Y^ < λ | | e - β ' | | < | λ ' - λ | + 2 - λ - λ '

311- 3 ^ 3 δ

3 + δ

The contradiction shows e = e'.

THEOREM 3.7. Let X be a real normed space with the λ-property.
Assume there is a number 8 > 0 such that \\e — e'\\ > 8 whenever e, ef e
ext(Bx) and e Φ e\ If x e Bx\ext(Bx) and λ(x) > 3/(3 + δ), then
there exists a unique pair of vectors e e ext(J?^), y & Sx such that x =
λ(x)e + (1 - λ(x))y.

Proof. Let (en, yn, λn) be a sequence of triples that are amenable to x
and for which λn | λ(x), λn > 3/(3 + δ) for all n and \\yn\\ = 1 for all n.
By Lemma 3.6, all the en's are equal, say to e. Since x = λne 4- (1 - λn)yn

for all n, we have (1 — λn)yn -* x — λ(x)e. Also, x Φ e implies λ(x) < 1.
Thus, if we let z = x - λ(x)e, \\z\\ = 1 - λ(x). Letting y = z/\\z\\ shows
x = λ(x)^ -f (1 - λ(x))y, proving existence. If we also have x = λ(x)e/

+ (1 - λ(x))y', wher e' e ext(5^) and ||j>'|| = 1, Lemma 3.6 implies
e = ef. Since 1 — λ(x) Φ 0, we also obtain y = y'.

4. Questions and open problems. The following list of questions is
not meant to be exhaustive. Rather, it represents those questions which
are of most interest to the authors.

1. It would be useful to calculate the λ-function for other classical
spaces with the λ-property. In particular, what spaces of operators
have the λ-property and what does the λ-function look like for these
spaces?
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2. If (Xn) is a sequence of normed spaces, each having the λ-property,
when do ( θ Σ ^ = 1 Xn)iι9 ( θ Σ ^ = 1 X J ^ have the λ-property and what
do their λ-functions look like?

3. If X is a normed space having the λ-property, characterize the points
of continuity on Sx of the λ-function. Characterize those x e Bx for
which λ(x) is attained.

4. If X is a Banach space, is the λ-function of the first Baire class on
BXΊ

5. If X is a normed space having the λ-property, can X be renormed so
as to have the uniform λ-property?

6. If a normed space X has the λ-property, does X* have the λ-prop-
erty? In considering the converse, note that lx has the λ-property and
c0, one of its preduals, does not. However, c is a predual of lλ that
has the λ-property.
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