SPECIAL GENERATING SETS OF PURELY INSEPARABLE EXTENSION FIELDS OF UNBOUNDED EXPONENT

B. I. Eke

The present paper considers the problem of choosing a maximum subfield having a subbasis over K among subextensions of L/K, when L/K is purely inseparable but of unbounded exponent.

Throughout L will be a purely inseparable extension field of a field K of characteristic $p \neq 0$. For the case when L/K is of bounded exponent e > 0 Weisfeld [6, Theorem 3, p. 442] has shown that among the subfields of L having a subbasis over K there is a maximal subfield with respect to set inclusion. This theorem fails in the unbounded exponent case since such a maximal subfield would not always exist [6, p. 442]. An open problem was, therefore, posed in Weisfeld's paper regarding a necessary and sufficient condition for the theorem to hold for extensions L/K of unbounded exponent. The present paper seeks to provide a solution to this problem.

Let M be a given subset of L. The subset M will be said to be in canonical form when M is put in the form $M = A_1 \cup A_2 \cup \cdots$ where A_i consists of the elements of M having exponent i over K. M is called a canonical generating set over K if M is a minimal generating set for K(M)and when $M = A_1 \cup A_2 \cup \cdots$ in canonical form, then the subsets M_i defined by $M_i = \bigcup_{j=i+1}^{\infty} A_j$, $i = 0, 1, \ldots, M_0 = M$, satisfy $M_i^{p'}$ is a minimal generating set for $K(M^{p'})/K$. The set M is called a distinguished subset of L/K if M is a canonical generating set over K and, for each nonnegative integer $n, K \cap L^{p^n} \subseteq K^p(A_n^p \cup A_{n+1}^p \cup \cdots)$ where $M = A_1 \cup A_2 \cup \cdots$ in canonical form. Finally, M is called a subbasis over K if for every finite subset $\{a_1, \ldots, a_r\}$ of M, $K(a_1, \ldots, a_r)$ is the tensor product of the simple extensions $K(a_i)$, $i = 1, \ldots, r$, and when this happens, the extension K(M) is called an extension having a subbasis over K.

The main result is that if L/K is any purely inseparable extension, then L/K has a maximal subfield J having a subbasis over K if and only if L/K has a distinguished subset M.

LEMMA 1. If L/K has a subbasis, then every subbasis for L/K is distinguished.

B. I. EKE

Proof. Let L/K have a subbasis $B = B_1 \cup B_2 \cup \cdots$ in canonical form. Let u be any element of L with exponent n over K. Then $u^{p^{n-1}} \in K(B^{p^{n-1}}) = K(\bigcup_{i=n}^{\infty} B_i^{p^{n-1}})$ which shows that the exponent of u over $K(\bigcup_{i=n}^{\infty} B_i)$ is less than n. Hence B is distinguished.

LEMMA 2. If the subset M of L is a canonical generating set over K, then M is a subbasis over K.

Proof. Suppose M is a canonical generating set over K but M is not a subbasis over K. Let $M = A_1 \cup A_2 \cup \cdots$ in canonical form and let e be the smallest positive integer such that there exists an element $b \in A_e$ for which $b^{p^{e^{-1}}} \in K(M - b)$. Clearly $e \neq 1$ otherwise we contradict the minimality of M over K. There exists a smallest positive integer t such that

(1)
$$b^{p^{e-1}} \in K(M_{t-1} - b)$$

where $M_{t-1} = \bigcup_{j=t}^{\infty} A_j$. Also there exists an element $a \in A_t$ such that $b^{p^{e^{-1}}} \in K(M_{t-1} - b)$ but

(2)
$$b^{p^{e-1}} \notin K(M_{t-1} - \{a, b\}).$$

Let *s* be the highest integer such that

(3)
$$b^{p^{e^{-1}}} \in K(M_{t-1} - \{a, b\}, a^{p^s}).$$

Then $a^{p^s} \in K(M_{t-1} - \{a, b\}, a^{p^{s+1}}, b^{p^{e^{-1}}})$. Consequently a^{p^s} is separable and purely inseparable over $K(M_{t-1} - \{a, b\}, b^{p^{e^{-1}}})$ which says that

(4)
$$a^{p^s} \in K(M_{t-1} - \{a, b\}, b^{p^{e^{-1}}}).$$

In expression (1) above it must be the case that e > t and in (4) it is the case that $s \ge t$ both because of [3, Cor. 1.31, p. 28]. But if s > t, then in expression (3) we have $K(M_{t-1} - \{a, b\}, a^{p^s}) = K(M_{t-1} - \{a, b\})$ so that $b^{p^{e-1}} \in K(M_{t-1} - \{a, b\})$ contradicting the expression (2). Therefore s = t. So, we have s = t < e. But then (4) implies that $a^{p^t} \in K(M_{t-1} - a) \subseteq K(M - a)$ where t < e contradicting the minimality of e for this purpose. This contradiction proves the assertion.

THEOREM 3 (Main result). The extension L/K has a maximal subfield J having a subbasis over K if and only if L/K has a distinguished subset M.

Proof. Suppose L/K has a distinguished subset M. By Lemma 2 M is a subbasis over K. Moreover, M is distinguished in L/K implies that any element of L having exponent r over K must have exponent less than r over $K(\bigcup_{i=r}^{\infty} A_i)$ where $M = A_1 \cup A_2 \cup \cdots$ in canonical form.

Denote K(M) by J. Let F be any modular subfield of L over K containing J and suppose $u \in F - J$ has exponent r over k. Then one can write

(5)
$$u^{p^s} = a_1 u_1^{p^s} + \cdots + a_n u_n^{p^s}$$

where $a_1, \ldots, a_n \in K$, $u_1, \ldots, u_n \in J$, s < r, and n is chosen minimal. Using arguments similar to those of Weisfeld in [6, Theorem 4, p. 442] and the concept of *p*-freedom as defined in that paper one can get a maximal *p*-free subset $\{a_1, \ldots, a_k\}$ of $\{a_1, \ldots, a_n\}$ relative to J^p and a maximal *p*-free subset $\{a_1, \ldots, a_j\}$ of $\{a_1, \ldots, a_k\}$ relative to F^p where j < k. Consequently we have a relation

(6)
$$a_{j+1} = \sum \left\{ y_{i_1 \cdots i_j}^p a_1^{i_1} \cdots a_j^{i_j} | y_{i_1 \cdots i_j} \in F, \\ 0 \le i_m < p, m = 1, \dots, j \right\}.$$

Let B be the set consisting of the coefficients $y_{i_1 \cdots i_j}$. Let F_1 be the modular closure of K(B) as defined in [4, p. 408], and let $F_2 = F \cap F_1$. Then F_2 must have a subbasis over K. Therefore by [4, Theorem 1, p. 403] there exists a higher derivation D of F_2 relative to which K is the field of constants. Using this in (6), one can violate the p-freedom of $\{a_1, \ldots, a_j\}$ relative to F^p . Therefore J = F.

Conversely let N be a maximal subfield of L/K having a subbasis over K and let $M = A_1 \cup A_2 \cup \cdots$ (in canonical form) be any subbasis for N/K. As usual, for $i = 0, 1, \ldots$ we let $M_i = \bigcup_{j=i+1}^{\infty} A_j$. We must show that M is a distinguished subset of L/K. Clearly M is a canonical generating set over K. We shall prove, by induction, the statement P(n): If u is any element of L having exponent n over K, then the exponent of u over $K(M_{n-1})$ is less than n. Now P(1) is trivial. Hence assume P(n-1) holds and suppose an element $u \in L$ has exponent n over K and same exponent over $K(M_{n-1})$. Let $A = \{u\} \cup M_{n-1}$. Then A is a subbasis over K. Let $T^{(n-1)} = \{B \subseteq A_{n-1} \cup A | B \supseteq A$ and B is a subbasis over K}. Clearly A is in $T^{(n-1)}$. So, $T^{(n-1)} \neq \emptyset$. Let $M^{(n-1)}$ be a maximal element (with respect to set inclusion) of the set $T^{(n-1)}$. We now proceed to let $M^{(n-2)}$ be a maximal element of

$$T^{(n-2)} = \left\{ B \subseteq A_{n-2} \cup M^{(n-1)} | B \supseteq M^{(n-1)} \text{ and } B \text{ is a subbasis over } K \right\}.$$

In general, for $1 \le k < n - 1$, we let $M^{(k)}$ be a maximal element of

$$T^{(k)} = \left\{ B \subseteq A_k \cup M^{(k+1)} \, | \, B \supseteq M^{(k+1)} \text{ and } B \text{ is a subbasis over } K \right\}.$$

It is our ambition to show that $K(M^{(1)}) = N$.

Let v be an element of M and suppose $v \in A_r$ $(1 \le r < n)$. If $v \notin K(M^{(r)})$, then it must be the case that v has an exponent s < r over $K(M^{(r)})$ by the definition of $M^{(r)}$. Consequently we can write

(7)
$$v^{p^s} = c_1 v_1^{p^s} + \cdots + c_m v_m^{p^s}$$

where $c_1, \ldots, c_m \in K$, $v_1, \ldots, v_m \in K(M^{(r)})$, s < r, and *m* is minimal. This relation now allows us to apply an argument similar to that in the first part of this proof between $K(M^{(r)})$ as *J* and the modular closure of $K(M^{(r)}, v)$ as *F* (*F* and *J* in this case both contained in their composite F(J) as *L*). The contradiction which will then arise as in the first part shows that $v \in K(M^{(r)})$. Consequently, $K(M^{(1)})$ contains K(M) = N, and, by the maximality of *N*, $K(M^{(1)}) = N$. This shows that $u \in N$. By Lemma 1 the exponent of *u* over $K(M_{n-1})$ is less than *n*. This shows that *M* is a distinguished subset of L/K.

COROLLARY 4. Let J be a subfield of L/K having a subbasis over K. Then J is a maximal subfield of L/K having a subbasis over K if and only if $J \cap K^{p^{-i}}$ is a maximal subfield of $L \cap K^{p^{-i}}$ having a subbasis over K, i = 1, ...

Proof. Let J be a maximal subfield of L/K having a subbasis over K, and let $B = B_1 \cup B_2 \cup \cdots$ (in canonical form) be a subbasis for J/K. Fix the integer $i \ge 1$ and let $B_{(i)} = \{a^{p^{s-i}} | a \in B_s \text{ and } s > i\}$. Then $W = B_1 \cup \cdots \cup B_i \cup B_{(i)}$ is a subset of $J \cap K^{p^{-i}}$ which is also a subbasis over K. We shall show that W is a distinguished subset of $L \cap K^{p^{-i}}/K$. Let $u \in L \cap K^{p^{-i}}$ have exponent $e \le i$ over K. We note that by Theorem 3 the subbasis B is a distinguished subset of L/K. Let

$$u^{p^{e^{-1}}} = \sum c_{i_1 \cdots i_n} u_1^{i_1} \cdots u_n^{i_n}$$

where $0 \leq i_k < p^{e_k}$, e_k = exponent of u_k over K, and $u_k \in \bigcup_{j=e}^{\infty} B_j$. Since $u^{p^e} \in K$ it must be the case that $i_k \geq p^{e_k-1}$, and since $e_k - i \leq e_k - 1$, it must be the case that $p^{e_k-i} \leq p^{e_k-1} \leq i_k < p^{e_k}$ whenever $e_k > i$. Hence $u_k^{i_k} \in K(B_{(i)})$ when $e_k > i$ and, of course, $u_k \in B_{e_k}$ if $e_k \leq i$. This shows that if $W = \tilde{B}_1 \cup \cdots \cup \tilde{B}_i$ in canonical form, then $u^{p^{e-1}} \in K(\tilde{B}_e \cup \cdots \cup \tilde{B}_i)$. Consequently W is distinguished in $L \cap K^{p^{-i}}/K$ and, by Theorem 3, K(W) is a maximal subfield of $L \cap K^{p^{-i}}$ having a subbasis over K. Now it is obvious that $K(W) \subseteq J \cap K^{p^{-i}}$. Now let $x \in J \cap K^{p^{-i}}$. Then $x = \sum a_{i_1 \cdots i_m} v_1^{i_1} \cdots v_m^{i_m}$ where $0 \leq l_j < p^{e_j}$, e_j = exponent of v_j over K, and $v_j \in B$, $1 \leq j \leq m$. Since $x^{p^i} \in K$ we must have, for each j, $l_j \geq p^{e_j - i}$ and hence $v_j^{l_j} \in K(W)$. This shows $J \cap K^{p^{-i}} \subseteq K(W)$, and equality follows. Conversely suppose $J \cap K^{p^{-i}}$ is a maximal subfield of $L \cap K^{p^{-i}}$ having a subbasis over K. Let T be any subfield of L/K having a subbasis over K and suppose $T \supseteq J$. Then for each $i \ T \cap K^{p^{-i}} \supseteq J \cap K^{p^{-i}}$. If $T \cap K^{p^{-i}} \neq J \cap K^{p^{-i}}$ we contradict the maximality of $J \cap K^{p^{-i}}$ as stated earlier since $T \cap K^{p^{-i}}$ is also a subfield of $L \cap K^{p^{-i}}$ having a subbasis over K. Consequently J = T.

It was shown in Lemma 1 that if L/K has a subbasis over K, then that subbasis must be a distinguished subset of L/K. It is not true, however, that an extension L/K must be modular in order to have a distinguished subset as the following example shows.

EXAMPLE. Let $K = Z_p(x_1, x_2, ...)$ where the x_i are algebraically independent indeterminates over Z_p . Let

$$L = K \Big(x_1^{p^{-1}} x_3^{p^{-2}} + x_2^{p^{-1}}, x_3^{p^{-2}}, x_3^{p^{-3}}, x_4^{p^{-3}}, x_5^{p^{-4}}, \dots \Big).$$

First, we show that L/K is not modular. We note that

$$L^{p} = K^{p} \Big(x_{1} x_{3}^{p-1} + x_{2}, x_{3}^{p^{-1}}, x_{4}^{p^{-2}}, x_{5}^{p^{-3}}, \dots \Big)$$

= $Z_{p} \Big(x_{1}^{p}, x_{2}^{p}, x_{1} x_{3}^{p^{-1}} + x_{2}, x_{3}^{p^{-1}}, x_{4}^{p^{-2}}, x_{5}^{p^{-3}}, \dots \Big).$
 $K \cap L^{p} = Z_{p} \Big(x_{1}^{p}, x_{2}^{p}, x_{3}, x_{4}, \dots \Big) = K^{p} \Big(x_{3}, x_{4}, x_{5}, \dots \Big).$

Now the set $\{1, x_3^{p^{-1}}, x_1 x_3^{p^{-1}} + x_2\}$ is a subset of L^p which is linearly independent over $K \cap L^p$. For suppose $c_0 + c_1 x_3^{p^{-1}} + c_2 x_1 x_3^{p^{-1}} + c_2 x_2 = 0$, $c_i \in K \cap L^p$ and not both c_1 and c_2 are zero. We have

$$c_0^p + c_1^p x_3 + c_2^p x_1^p x_3 + c_2^p x_2^p = 0$$

or

$$(c_1^p + c_2^p x_1^p) x_3 = -(c_2^p x_2^p + c_0^p).$$

If $c_1^p + c_2^p x_1^p \neq 0$, then

$$x_3 = \frac{-(c_2^p x_2^p + c_0^p)}{c_1^p + c_2^p x_1^p} \in K^p = Z_p(x_1^p, x_2^p, x_3^p, \dots).$$

There exists a finite n such that

$$x_3 \in Z_p(x_1^p, ..., x_n^p) \subseteq Z_p(x_1, x_2, x_3^p, x_4, ..., x_n).$$

Consequently x_3 is separable algebraic over $Z_p(x_1, x_2, x_4, ..., x_n)$ violating the algebraic independence of the x_i over Z_p . Therefore $c_1^p + c_2^p x_1^p = 0$. This again leads to a contradiction unless $c_1 = c_2 = 0$. Consequently we must have $c_0 = c_1 = c_2 = 0$ as required. On the other hand, it is obvious

that the given set $\{1, x_3^{p^{-1}}, x_1 x_3^{p^{-1}} + x_2\}$ is linearly dependent over K. This shows that L/K is not modular.

Now the set $S = \{x_3^{p^{-2}}, x_4^{p^{-3}}, x_5^{p^{-4}}, \dots\}$ is a subbasis over K. Besides, S is distinguished in L/K.

DEFINITION. An extension field F/K is called Galois if it is modular and $\bigcap_{i=1}^{\infty} K(F^{p^i}) = K$.

LEMMA 5. If a purely inseparable extension F/K has a subbasis then it is Calois.

Proof. Let $M = B_1 \cup B_2 \cup \cdots$ (in canonical form) be a subbasis for F/K. Let $x \in \bigcap_{i=1}^{\infty} K(F^{p^i})$. Then $x = g(b_1^{p^1}, \ldots, b_n^{p^i})$ for some $b_1, \ldots, b_n \in M_i = \bigcup_{j=i+1}^{\infty} B_j$ and *n* is chosen minimum. Since $M = \bigcup_{j=1}^{\infty} B_j$ is part of a linear basis for F/K the set $\{b_1, \ldots, b_n\}$ must be contained in every M_i otherwise we contradict the unique representation of x relative to the said linear basis. This shows that

$$x \in K\left(\bigcap_{i=1}^{\infty} F^{p^i}\right) = K\left(\bigcap_{i=1}^{\infty} M_i^{p^i}\right) = K$$

since $\bigcap_{i=1}^{\infty} M_i = \emptyset$. This shows $\bigcap_{i=1}^{\infty} K(F^{p'}) = K$ and F/K is Galois. \Box

THEOREM 6. The purely inseparable extension L/K has a maximal subfield F having a subbasis over K, if and only if there exist in L a maximal modular subfield F which is Galois over K.

Proof. Suppose F is a maximal modular subfield of L/K which is also Galois over K. Let A_1, A_2, \ldots be subsets of F constructed in the manner of [2, Theorem 11, p. 339]. Let

$$Q = \bigcap_{i=1}^{\infty} K(F^{p^i}) \otimes K(A_1 \cup A_2 \cup \cdots)$$

as defined in [2, Theorem 13]. Then F is relatively perfect over Q and has a subbasis over Q. By Lemma 5, $F = \bigcap_{i=1}^{\infty} Q(F^{p^i}) = Q$. From the fact that F/K is also Galois we have

$$F = Q = \bigcap_{i=1}^{\infty} K(F^{p^i}) \otimes K(A_1 \cup A_2 \cup \cdots) = K(A_1 \cup A_2 \cup \cdots).$$

Consequently F has a subbasis over K. The converse is immediate.

References

- [1] G. F. Haddix, J. N. Mordeson, and B. Vinograde, On purely inseparable extensions of unbounded exponent, Canad. J. Math., XXI (1969), 1526-1532.
- [2] L. A. Kime, Purely inseparable, modular extensions of unbounded exponent, Trans. Amer. Math. Soc., 176 (1973), 335-349.
- [3] J. N. Mordeson and B. Vinograde, *Structure of Arbitrary Purely Inseparable Extension Fields*, Lecture Notes in Math. Vol. 173, Springer-Verlag, New York (1970).
- [4] M. Sweedler, Structure of inseparable extensions, Ann. of Math., 87 (1968), 401-410.
- [5] ____, Correction to "Structure of inseparable extensions", Ann. of Math., 89 (1969), 206–207.
- [6] M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc., 116 (1965), 435–449.

Received January 24, 1985.

INSTITUE OF MANAGEMENT AND TECHNOLOGY ENUGU, NIGERIA