DECOMPOSITION OF REGULAR REPRESENTATIONS FOR $U(H)_{\infty}$

Doug Pickrell

Abstract

Let G denote the infinite dimensional group consisting of all unitary operators which are compact perturbations of the identity (on a fixed separable Hilbert space). Kirillov showed that G has a discrete spectrum (as a compact group does). The point of this paper is to show that there are analogues of the Peter-Weyl theorem and Frobenius reciprocity for G. For the left regular representation, the only reasonable candidate for Haar measure is a Gaussian measure. The corresponding L^{2} decomposition is analogous to that for a compact group. If X is a flag homogeneous space for G, then there is a unique invariant probability measure on (a completion of) X. Frobenius reciprocity holds, for our surrogate Haar measure fibers over X precisely as in finite dimensions (this is the key observation of the paper). When X is a symmetric space, each irreducible summand contains a unique invariant direction, and this direction is the L^{2} limit of the corresponding (L^{2} normalized) finite dimensional spherical functions.

1. Introduction. Let H be a separable complex Hilbert space, $U(H)_{\infty}=\{g \in U(H): g=1+$ compact operator $\}$. This group is a basic example of an infinite dimensional Banach Lie group. Kirillov proved that this group is type 1 and has a discrete spectrum ([4], [6]).

Fix an orthonormal basis e_{1}, e_{2}, \ldots for H. Then $U(H)_{\infty}$ is the closure in the operator norm topology of $U(\infty)=\bigcup_{n} U(n)$, where $U(n) \cong\{g \in$ $\left.U(H): g e_{j}=e_{j}, j>n\right\}$.

Relative to this basis, view $U(H) \rightarrow M$, where M is the space of matrices $\left(E_{i j}\right)_{1 \leq i, j<\infty}$, and which we identity with the space of linear operators mapping $H^{\text {alg }}$, the algebraic span of the $\left\{e_{j}\right\}$, to \mathbf{C}^{∞}, the space of all formal linear combinations of the $\left\{e_{j}\right\}$. The left action of $U(\infty)$ on $U(H)_{\infty}$ extends to an action of $U(\infty)$ on M.

Let ν_{G} denote the Gaussian measure for the linear space $\mathscr{L}_{2}(H)$. We recall the following facts established in [8]: (a) every ergodic invariant probability measure for the left action of $U(\infty)$ on M is a linear equivariant image of ν_{G} (and itself Gaussian), (b) ν_{G} is the weak limit of the uniform distributions on the spaces $\sqrt{n} U(n)$, and (c) up to scaling ν_{G} is the only $U(\infty)$ ergodic biinvariant measure on M. For these reasons it is natural to view ν_{G} as a kind of Haar measure for $U(H)_{\infty}$, relative to its
left regular action. In this paper we will exploit the existence of this Haar type measure to decompose various regular representations of $U(H)_{\infty}$.

Of course the first step is to decompose the representation

$$
U(H)_{\infty} \rightarrow U\left(L^{2}\left(M, d \nu_{G}\right)\right)
$$

This is done in $\S 2$, and the decomposition is analogous to the Peter-Weyl decomposition for a compact group.

In §3 we use the Peter-Weyl decomposition to decompose the regular representations for $U(H)_{\infty}$ on homogeneous spaces (flag manifolds) ((3.2)). The key idea can be described in terms of the simplest example. Via the basis above view $H \cong l^{2} \rightarrow \mathbf{C}^{\infty}$. The natural projection $\pi: \mathbf{C}^{\infty} \backslash\{0\} \rightarrow$ $\mathbf{P}\left(\mathbf{C}^{\infty}\right)$ is $U(\infty)$ equivariant, and it pushes the Gaussian measure for H to the unique $U(\infty)$ invariant probability measure on $\mathbf{P}\left(\mathbf{C}^{\infty}\right)$. Now it is frequently said that Gaussian measure behaves as a uniform distribution on a sphere of infinite radius. In particular we should expect

$$
\begin{equation*}
L^{2}\left(\mathbf{P}\left(\mathbf{C}^{\infty}\right)\right) \cong L^{2}\left(\mathbf{C}^{\infty}\right)^{U(1)} \tag{1.1}
\end{equation*}
$$

where the right hand side denotes those functions invariant under the scalar action of $U(1)$. This is correct. The key ((3.8)) is to fiber the Gaussian over the invariant measure on projective space; the fiber is the Haar measure for the unitary stabilizer (in general), in this case $U(1)$. The right hand side of (1.1) is easy to understand because of the Peter-Weyl decomposition, and this leads to Frobenius reciprocity.

In §4 we consider the special case of a symmetric space, i.e. a Grassmann manifold $\operatorname{Gr}(n, H)$. In this case the decomposition is multiplicity free. Each irreducible component contains a unique invariant direction for the isotropy group, and this direction is the L^{2} limit of the corresponding (L^{2} normalized) finite dimensional spherical functions.

I thank Robert Boyer for several valuable conversations.

Notation. $d m(\cdot)$ denotes Lebesgue measure, $\mathscr{P}(\cdot)$ the polynomial algebra. If π_{i} is a representation for G_{i}, then $\pi_{1} \times \pi_{2}$ is the (outer) tensor product representation for $G_{1} \times G_{2}$. If $G_{1}=G_{2}, \pi_{1} \otimes \pi_{2}$ is the usual tensor product representation for $G_{1}=G_{2}$.
2. Peter-Weyl theorem. In this section it will be convenient to view ν_{G} as a cylinder measure (i.e. weak distribution) on $\mathscr{L}_{2}(H)$ (see [5] or [9]). A function on $\mathscr{L}_{2}(H)$ of the form $\phi(E)=\Phi(P(E))$, where P is an orthogonal projection of rank $n<\infty$ and Φ is a bounded Borel function, will be called tame; we let \mathscr{V} denote the algebra of all tame functions. If
we set

$$
E(\phi)=\int \phi d \nu_{G}=\int_{\mathscr{R}(P)} \Phi(x) \pi^{-n} e^{-|x|^{2}} d m(x)
$$

where ϕ is as above, then (\mathscr{V}, E) is an integration algebra. There is a natural representation of $O\left(\mathscr{L}_{2}(H)\right)$ as automorphisms of (\mathscr{V}, E), hence a unitary representation on $L^{2}\left(\nu_{G}\right)$, the completion of \mathscr{V} in the norm $E(\bar{\phi} \phi)$.

We view $U(H) \times U(H) \subset O\left(\mathscr{L}_{2}(H)\right)$ by $g \times h \cdot E=g \circ E \circ h^{-1}$. Our goal in this section is to decompose the action of $U(H) \times U(H)$ (and $\left.U(H)_{\infty} \times U(H)_{\infty}\right)$ on $L^{2}\left(\nu_{G}\right)$. Of course there is a natural $U(\infty) \times U(\infty)$ equivariant isomorphism of $L^{2}\left(\nu_{G}\right)$, as constructed above, and $L^{2}\left(M, \nu_{G}\right)$, when we view ν_{G} as a probability measure on M.

Let \mathscr{T} denote the transform defined by

$$
(\mathscr{T} \phi)(w)=\int \phi(L) e^{i R e(w, E)} d v_{G}(E)
$$

for $\phi \in \mathscr{V}$ and $w \in \mathscr{L}_{2}(H)^{*}$. By the corollary of Theorem 6.4 of [2], \mathscr{T} extends to a $U(H) \times U(H)$ equivariant isomorphism

$$
\begin{equation*}
L^{2}\left(\nu_{G}\right) \cong \mathbf{C} e^{-1 / 4|w|^{2}} \otimes \sum_{j=0}^{\infty} \hat{\mathscr{P}}^{J} \otimes \sum_{k=0}^{\infty} \overline{\mathscr{P}}^{k} \tag{2.1}
\end{equation*}
$$

where $\hat{\mathscr{P}}^{j}$ is $(j!)^{1 / 2}$ times the completion of $\mathscr{P}^{j}\left(\mathscr{L}_{2}(H)\right)$ in the norm it inherits from the tensor algebra.

Suppose λ is a partition, i.e. a decreasing sequence of integers $\lambda_{1} \geq \lambda_{2} \geq \cdots$ such that $\lambda_{j}=0$ for all sufficiently large j. If $\lambda_{n+1}=0$, then we denote by $\rho_{\lambda, n}$ the representation of $U\left(\mathbf{C}^{n}\right)$ with signature $\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$, by ρ_{λ} the direct limit of the $\rho_{\lambda, n}$, which extends canonically from $U(\infty)$ to a representation of $U(H)$.

In the proof of (3.1) of [8] it is shown that as a representation of $U(H)_{\infty} \times U(H)_{\infty}($ or $U(H) \times U(H))$

$$
\begin{equation*}
\hat{\mathscr{P}}^{j}\left(\mathscr{L}_{2}(H)\right)=\sum \rho_{\lambda}^{*} \times \rho_{\lambda} \tag{2.2}
\end{equation*}
$$

where the sum is over all partitions λ with $\sum \lambda_{i}=j$. This proves the following
(2.3) Proposition. As a representation of $U(H) \times U(H)$ or $U(H)_{\infty}$ $\times U(H)_{\infty}$,

$$
L^{2}\left(\nu_{G}\right)=\sum \rho_{\lambda}^{*} \otimes \rho_{\mu} \times \rho_{\lambda} \otimes \rho_{\mu}^{*}
$$

where the sum is over all partitions λ, μ.

By Kirillov's classification ([4]) of the irreducible representations of $U(H)_{\infty}$, this decomposition is analogous to the Peter-Weyl theorem for compact groups.

The physical space for $\rho_{\lambda}^{*} \times \rho_{\lambda}$, as a subrepresentation of (2.2), consists of matrix coefficients for ρ_{λ} (ρ_{λ} is a subrepresentation of the action of $U(H)$ on the tensor algebra of H, so this action extends naturally to an action of $G L(H)$; the matrix coefficients restrict to polynomials on $\mathscr{L}_{2}(H)$). Hence the physical space for $\rho_{\lambda}^{*} \otimes \rho_{\mu} \times \rho_{\lambda} \otimes \rho_{\mu}^{*}$, as a subrepresentation of the right hand side of (2.1), consists of matrix coefficients for the action of $\mathrm{GL}(H)$ on $\mathscr{L}_{2}\left(H_{\lambda}, H_{\mu}\right)$ given by $g: T \rightarrow$ $\rho_{\mu}(g) \circ T \circ \rho_{\lambda}(g)^{*}\left(\right.$ where ρ_{λ} is realized on $\left.H_{\lambda}\right)$.

To describe the corresponding subspace in $L^{2}\left(\nu_{G}\right)$, one must invert the transform \mathscr{T}. Whether this can be done in a reasonably explicit manner in general, I do not know. In the case of spherical functions, there does exist a relatively simple inversion formula (see $\S 4$, especially (4.6)).
3. Frobenius reciprocity. In this section we fix a finite set of integers $0<n_{1}<n_{2}<\cdots<n_{l}<\infty$. Let $\operatorname{Flag}(H) \subset \operatorname{Gr}\left(n_{1}, H\right)$ $\times \cdots \times \operatorname{Gr}\left(n_{l}, H\right)$ denote the set of points (flags) $\left\{W_{i}\right\}$ such that $W_{1} \subset$ $W_{2} \subset \cdots \subset W_{l}$, where $\operatorname{Gr}\left(n_{i}, H\right)$ denotes the set of all n_{i} dimensional subspaces of H. Flag (H) is a homogeneous space for $U(H)$ and $U(H)_{\infty}$. We let $\operatorname{Flag}\left(\mathbf{C}^{N}\right)$ and $\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$ denote the analogous objects for $\mathbf{C}^{N} \cong$ $\operatorname{span}\left\{e_{j}: j \leq N\right\} \quad\left(N>n_{l}\right)$ and $\mathbf{C}^{\infty} \cong\{$ formal linear combinations of $\left.e_{j}\right\}$. The action of $U(\infty)$ extends from $\operatorname{Flag}(H)$ to $\operatorname{Flag}\left(\mathrm{C}^{\infty}\right)$, and there are natural embeddings $\mathrm{GL}(N) \rightarrow \mathrm{GL}(H), \operatorname{Flag}\left(\mathbf{C}^{N}\right) \rightarrow \operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$.

Our first task is to recall why there is a unique $U(\infty)$ invariant probability measure on $\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$. In the process we will develop notation which we will employ in the remainder of the paper.

A generic flag (i.e. a point in the largest cell) of $\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$ can be characterized in two ways: (a) it is of the form $\left\{W_{j}\right\}=\left\{L \mathbf{C}^{n_{j}}\right\}$, where L is a lower triangular block matrix with identity matrices on the diagonal, the block sizes being $n_{1}, n_{2}-n_{1}, \ldots, n_{l}-n_{l-1}$ along the top, n_{1}, \ldots, n_{l} $-n_{l-1}, \infty$ along the side; (b) each W_{j} is of the form $\operatorname{graph}\left(z_{j}\right)$, where $z_{j} \in \mathscr{L}\left(\mathbf{C}^{n_{j}}, \mathbf{C}^{\infty} \ominus \mathbf{C}^{n_{j}}\right)$. The operator L and the set $\left\{z_{j}\right\}$ determine one another via the relations

$$
\gamma_{j} \alpha_{j}^{-1}=z_{j} \quad \text { where } L=\left(\begin{array}{cc}
\alpha_{j} & * \\
\gamma_{j} & *
\end{array}\right)
$$

with respect to the splittings of the domain $=\mathbf{C}^{n_{J}} \oplus\left(\mathbf{C}^{n_{I}} \ominus \mathbf{C}^{n_{J}}\right)$ and range $=\mathbf{C}^{n_{j}} \oplus\left(\mathbf{C}^{\infty} \ominus \mathbf{C}^{n_{j}}\right)$.

Let $L^{(N)}$ denote the projection of L to $\mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{N}\right)\left(L^{(N)}=Q \circ L\right.$, where $Q: \mathbf{C}^{\infty} \rightarrow \mathbf{C}^{N}$ is the obvious projection) (similarly for z). The diagram

is commutative (the cutoff is on the left, whereas the α 's act from the right). In $\S 4$ of $[8]$ it is shown how $U(N)$ equivariance of the map $Z_{j} \rightarrow Z_{j}^{(N)}$ implies uniqueness for the $U(\infty)$ invariant probability measure on $\operatorname{Gr}\left(n_{j}, \mathbf{C}^{\infty}\right)$. The above diagram shows the same argument applies to flags.

Conversely, the projection

$$
\pi: \mathscr{L}\left(\mathbf{C}^{n_{i}}, \mathbf{C}^{\infty}\right)^{\prime} \rightarrow \operatorname{Flag}\left(\mathbf{C}^{\infty}\right): E \rightarrow\left\{E\left(\mathbf{C}^{n_{j}}\right)\right\}
$$

where the prime indicates we exclude those E which are singular, is $U(\infty)$ equivariant. Thus the Gaussian measure associated to the linear space $\mathscr{L}\left(\mathbf{C}^{n_{1}}, H\right)$ will be mapped by π to a $U(\infty)$ invariant probability measure on $\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$. This proves existence.

Let μ_{0} denote the unique invariant measure on $\mathrm{Flag}\left(\mathbf{C}^{\infty}\right)$. Our task is to decompose $L^{2}\left(\operatorname{Flag}\left(C^{\infty}\right)\right)$.

Let $K_{l}=\times_{1}^{l} U\left(\mathbf{C}^{n_{j}} \ominus \mathbf{C}^{n_{j-1}}\right)$ and $K=K_{l} \times U\left(H \ominus \mathbf{C}^{n_{l}}\right.$). Let $P: M$ $\rightarrow \mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{\infty}\right)$ denote the obvious projection, and $\nu=P_{*} \nu_{G}$. In this section we will ultimately prove the following
(3.2) Proposition. The pulbacks

$$
L^{2}\left(\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)\right) \xrightarrow{\pi^{*}} L^{2}\left(\mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{\infty}\right), \nu\right)^{K_{l}{ }^{P_{*}}} L^{2}\left(M, v_{G}\right)^{K}
$$

are isomorphisms, where the superscripts indicate the sets of vectors invariant under the right action of K_{l} and K, respectively. As a representation of $U(H)_{\infty}$

$$
L^{2}\left(\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)\right)=\sum m(\lambda, \mu) \rho_{\lambda} \otimes \rho_{\mu}^{*}
$$

where the sum is over those partitions with $\lambda_{n_{l}+1}=\mu_{n_{l}+1}=0$ and

$$
m(\lambda, \mu)=\operatorname{dimn}\left(\left(\rho_{\lambda}^{*} \otimes \rho_{\mu}\right)^{K}\right)=\operatorname{dimn}\left(\left(\rho_{\lambda, n_{l}}^{*} \otimes \rho_{\mu, n_{l}}\right)^{K_{t}}\right)
$$

The proof of the analogue of this proposition for a compact group is trivial, because of the existence of Haar measure. Our proof will be trivial as well, once we understand how ν is fibered over μ_{0} (see (3.8) below). We will prove (3.2) at the end of this section.

We will need the following computational lemma.
For $E \in \mathscr{L}\left(\mathbf{C}^{r}, \mathbf{C}^{\infty}\right)$, recall that $E^{(N)}$ is the projection of E to $\mathscr{L}\left(\mathbf{C}^{r}, \mathbf{C}^{N}\right)$.
(3.3) Lemma. The scalar $\left(\operatorname{det} N^{-1} E^{(N) *} E^{(N)}\right)^{-1}$ converges to 1 and the $r \times r$ matrices $N^{-1} E^{(N) *} E^{(N)}$ and their inverses converge to the identity in $L^{p}\left(\mathscr{L}\left(\mathbf{C}^{r}, \mathbf{C}^{\infty}\right), d \nu\right)$ as $N \rightarrow \infty$, for all $1 \leq p<\infty$.

Proof. First consider $N^{-1} E^{(N) *} E^{(N)}$. For the diagonal entries

$$
\begin{aligned}
\int \mid N^{-1}\left(E^{(N)} *\right. & \left.E^{(N)}\right)_{j j}-\left.1\right|^{p} d \nu(E) \\
& =\left.\int_{\mathbf{C}^{N}}\left|N^{-1}\right| x\right|^{2}-\left.1\right|^{p} \pi^{-N} e^{-|x|^{2}} d m(x) \\
& =\sum_{0}^{p}\binom{p}{k}(-1)^{p-k} N^{-k} \int_{0}^{\infty} s^{N+k+1} e^{-s} d s / \int_{0}^{\infty} s^{N-1} e^{-s} d s \\
& =\sum_{0}^{p}\binom{p}{k}(-1)^{p-k} N^{-k}(N)_{k}
\end{aligned}
$$

and this tends to 0 .
For off diagonal entries

$$
\begin{aligned}
& \int\left|N^{-1}\left(E^{(N) *} E^{(N)}\right)_{i j}\right|^{2 p} d \nu(E) \\
&=\int_{\mathbf{C}^{N}+\mathbf{C}^{N}}\left|N^{-1} \sum_{1}^{N} x_{j} \bar{y}_{j}\right|^{2 p} \bar{\pi}^{2 N^{-}} e^{-|x|^{2}-|y|^{2}} d m(x) d m(y) \\
&=N^{-2 p} \int_{\substack{1 \leq i_{k}, j_{k} \leq N \\
1 \leq k \leq p}} \sum_{l=1}^{p} x_{i_{l}} \bar{x}_{j_{l}} y_{i_{l}} \bar{y}_{j_{l}} \\
&=N^{-2 p} \int_{\substack{1 \leq i_{k} \leq N \\
1 \leq k \leq p}}\left(\int_{\mathbf{C}}|z|^{2} \pi^{-1} e^{-|z|^{2}} d m(z)\right)^{2}=N^{-2 p} N^{p}
\end{aligned}
$$

which tends to zero.
We now consider

$$
\begin{equation*}
\int\left|\left(\operatorname{det} N^{-1} E^{(N) *} E^{(N)}\right)^{-1}-1\right|^{2 p} d \nu(E) \tag{3.4}
\end{equation*}
$$

We use the integral formula

$$
\begin{aligned}
& \int \phi\left(E^{(N)}\right) d \nu(E) \\
& =c \int_{\left(\mathbf{R}^{+}\right)^{r}}\left\{\int \phi\left(k_{1} \lambda k_{2}\right) d k_{1} d k_{2}\right\} \prod_{i<j}\left|\lambda_{i}^{2}-\lambda_{j}^{2}\right|^{2} \prod_{1}^{r} 2 \lambda_{j} \lambda_{j}^{2(N-r)} e^{-\lambda_{j}^{2}} d \lambda_{j}
\end{aligned}
$$

where $\lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right), d k_{1}$ and $d k_{2}$ denote the unitarily invariant probability measures on $\operatorname{Isom}\left(\mathbf{C}^{r}, \mathbf{C}^{N}\right)$ and $U\left(\mathbf{C}^{r}\right)$, respectively, and c is a normalization constant (see Chapter I of [1]). We now see (3.4) equals

$$
\begin{aligned}
& c \int\left|\prod_{1}^{r} N u_{j}^{-1}-1\right|^{2 p} \prod_{i<j}\left(u_{i}-u_{j}\right)^{2} \prod_{1}^{r} u_{j}^{N-r} e^{-u_{j}} d u_{j} \\
& \quad=\sum_{0}^{2 p}\binom{2 p}{k}(-1)^{2 p-k} c N^{r k} \int \prod_{i<j}\left(u_{i}-u_{j}\right)^{2} \prod_{1}^{r} u_{j}^{N-r-k} e^{-u_{j}} d u_{j}
\end{aligned}
$$

Let $s=N-r-k$. The k th integral equals

$$
\begin{aligned}
c N^{r k} \int \operatorname{det}^{2}\left(\mathscr{L}_{i}^{(s)}\right. & \left.\left(u_{j}\right)\right) \prod_{1}^{r} u_{j}^{s} e^{-u} d u_{j} \\
& =c N^{r k} \operatorname{det}\left(\int \mathscr{L}_{i}^{(s)}(u) \mathscr{L}_{j}^{(s)}(u) u^{s} e^{-u} d u\right) \\
& =N^{r k} \prod_{1}^{r}\left(\int \mathscr{L}_{i}^{(s) 2} u^{s} e^{-u} d u / \int \mathscr{L}_{i}^{(N-r) 2} u^{N-r} e^{-u} d u\right)
\end{aligned}
$$

where the $\mathscr{L}_{i}^{(s)}$ are the Laguerre polynomials. The lemma now follows from

$$
\int\left|\mathscr{L}_{i}^{(s)}\right|^{2} u^{s} e^{-u} d u=\Gamma(s+1)\binom{s+i}{i}
$$

(see Chapter 5 of [10]).
(3.5) Lemma. For a generic flag $\left\{W_{j}\right\}=\left\{L \mathbf{C}^{n_{j}}\right\}$ in $\operatorname{Flag}\left(\mathbf{C}^{\infty}\right)$, let $g^{(N)}(L)$ be the isometry from $\mathbf{C}^{n_{1}}$ to \mathbf{C}^{N} obtained by applying the (block) Gram-Schmidt orthonormalization process to $L^{(N)}$. Then entry by entry $N^{1 / 2} g_{N}(L)$ has a limit in probability $g(L)\left(\in \mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{\infty}\right)\right)$. In the case $l=1$, we actually have $L^{p}\left(\mu_{0}\right)$ convergence, for each $1 \leq p<\infty$.

Remark. It is almost certainly the case that the limit above is $L^{p}\left(\mu_{0}\right)$ in general. However, for $l>1$ this seems to complicate the proof immensely. The reason is essentially that the function $\left\{W_{j}\right\} \rightarrow L$, which is well-defined a.e. $\left[\mu_{0}\right.$], does not have integrable entries. It would be desirable to establish L^{p} convergence, because this would yield a second
proof of (3.8) below (see the remark following the proof of (3.8)). The meaning of the convergence when $l=1$ is explored in the next section.

Proof of (3.5). Let $E \in \mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{\infty}\right), E \cdot \mathbf{C}^{n_{J}}=W_{J}$, so that $E=L U$ where U is (block) upper triangular. Note $E^{(N)}=L^{(N)} U$. Write $E=$ [E_{1}, \ldots, E_{l}], where the E_{j} are the columns (similarly for L, etc.).

Let $\alpha=\alpha_{1}(E)$. Then, as a function of E,

$$
g_{1}^{(N)}=L_{1}^{(N)}\left|L_{1}^{(N)}\right|^{-1}=E_{1}^{(N)} \alpha^{-1}\left(\alpha\left(E_{1}^{(N) *} E_{1}^{(N)}\right)^{-1} \alpha^{*}\right)^{1 / 2} .
$$

The entries of E_{1} are in all $L^{p}(\nu)$, and

$$
\operatorname{tr}\left|\alpha^{-1}\left(\alpha\left(E_{1}^{(N) *} E_{1}^{(N)}\right)^{-1} \alpha^{*}\right)^{1 / 2}\right|^{2}=\operatorname{tr}\left(E_{1}^{(N) *} E_{1}^{(N)}\right)^{-1}
$$

By (3.3) we have L^{p} convergence

$$
N^{1 / 2} g_{1}^{(N)} \rightarrow L_{1}\left(\alpha_{1}(E) \alpha_{1}(E)^{*}\right)^{1 / 2}
$$

entry by entry as $N \rightarrow \infty$ (note the existence of the limit shows the RHS is equal to a function of L, a.e. $[\nu]$).

Now suppose we have established that $g_{i}^{(N)}$ has a limit g_{i} in probability for $1 \leq i \leq j$. We have

$$
\begin{equation*}
g_{j}^{(N)}=\left(1-\sum_{i<j} g_{i}^{(N)} g_{i}^{(N) *}\right) L_{j}^{(N)}\left|\left(1-\sum g_{\imath}^{(N)} g_{l}^{(N) *}\right) L_{j}^{(N)}\right|^{-1} \tag{3.6}
\end{equation*}
$$

(here 1 is the $N \times N$ identity matrix).
Consider the $N \times\left(n_{j}-n_{j-1}\right)$ matrix $g_{i}^{(N)} g_{i}^{(N) *} L_{j}^{(N)}$. The HilbertSchmidt norm is dominated by

$$
\begin{equation*}
\left(\operatorname{tr}\left(g_{i}^{(N) *} g_{i}^{(N)}\right)^{2}\right)^{1 / 2}\left(\operatorname{tr} L_{j}^{(N) *} L_{j}^{(N)}\right)^{1 / 2} \tag{3.7}
\end{equation*}
$$

By induction the first factor is $O\left(N^{-1}\right)$ in probability. On the other hand $L_{j}^{(N) *} L_{j}^{(N)}$ is the (j, j) (block) entry of $U^{-1^{*}} E^{(N)^{*}} E^{(N)} U^{-1}$, which is $O(N)$ by (3.3). Therefore (3.7) is $O\left(N^{-1 / 2}\right)$ in probability. So we certainly have $\left(1-\sum_{i<j} g_{i}^{(N)} g_{i}^{(N) *}\right) L_{j}^{(N)} \rightarrow L$, in probability, entry by entry.

Now let $\phi_{N}=N^{-1 / 2} L_{j}^{(N)}, \psi_{N}=-N^{-1 / 2} \sum_{i<j} g_{i}^{(N)} g_{\imath}^{(N) *} L_{j}^{(N)}$. We know that $\phi_{N}^{*} \phi_{N} \rightarrow\left(\left(U U^{*}\right)^{-1}\right)_{j j}$ and $\psi_{N}^{*} \psi_{N} \rightarrow 0$ in probability. The generalized Holder inequality

$$
\operatorname{tr}\left|\psi_{N}^{*} \phi_{N}\right| \leq\left(\operatorname{tr}\left|\psi_{N}^{*}\right|^{2}\right)^{1 / 2}\left(\operatorname{tr}\left|\phi_{N}\right|^{2}\right)^{1 / 2}
$$

shows that $\psi_{N}^{*} \phi_{N}$ and $\phi_{N}^{*} \psi_{N}$ tend to zero in probability as well. This implies that $\left|\phi_{N}+\psi_{N}\right|^{2} \rightarrow\left(\left(U U^{*}\right)^{-1}\right)_{j j}$, which is strictly positive. This implies

$$
N^{1 / 2}\left|\left(1-\sum g_{i}^{(N)} g_{i}^{(N) *}\right) L_{j}^{(N)}\right|^{-1}=\left|\phi_{N}+\psi_{N}\right|^{-1}
$$

has a limit in probability. Hence (3.6), scaled by $N^{1 / 2}$, has a limit in probability, entry by entry. This completes the induction.
(3.8) Proposition. The decomposition of the Gaussian measure ν with respect to the projection $\pi: \mathscr{L}\left(\mathbf{C}^{n_{1}}, \mathbf{C}^{\infty}\right)^{\prime} \rightarrow \mathrm{Flag}\left(\mathbf{C}^{\infty}\right)$ is given by

$$
\int \phi d \nu=\int_{\mathrm{Flag}\left(\mathbf{C}^{\infty}\right)} \int_{K_{l}} \phi(g(w) k) d k d \mu_{0}(w)
$$

Proof. Assume ϕ is a bounded continuous function based on $\mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{m}\right)$. For $N>m$, we have

$$
\begin{aligned}
\int_{\operatorname{Isom}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{N}\right)} & \phi\left(N^{1 / 2} E\right) d \omega_{N}(E) \\
& =\int_{\mathrm{Flag}_{\left(\mathbf{C}^{N}\right)}} \int_{K_{l}} \phi\left(N^{1 / 2} g_{N}(W) k\right) d k d \mu_{0, N}(W) \\
& =\int_{\left.\mathrm{Flag}_{\left(\mathbf{C}^{\infty}\right)}\right)} \int_{K_{l}} \phi\left(N^{1 / 2} g_{N}(W) k\right) d k d \mu_{0}(W)
\end{aligned}
$$

where $\omega_{N}\left(\mu_{0, N}\right)$ denotes the unique invariant probability measure for $U(N)$. Take the limit as $N \rightarrow \infty$. By (2.1) of [8] the LHS converges to the LHS of (3.8). By (3.5) the RHS converges to the RHS of (3.8). This proves (3.8).
(3.9) Remark. It is possible to give a more direct, but formal, argument for (3.8) as follows.

First, via direct calculation, we fiber the Gaussian on $\mathscr{L}\left(\mathbf{C}^{n_{1}}, \mathbf{C}^{N}\right)$ over $\mu_{0, N}$ on $\operatorname{Flag}\left(\mathbf{C}^{N}\right)\left(\right.$ we let $\left.L=L^{(N)}\right)$.

$$
\begin{equation*}
\int_{\mathscr{L}\left(\mathbf{C}^{n_{l}}, \mathbf{C}^{N}\right)} \phi d \nu(E)=c \int \phi(L U) e^{-\mathrm{tr}|L U|^{2}} d m(L U) \tag{3.10}
\end{equation*}
$$

Now $d m(L U)=\Pi_{1}^{l}\left(\operatorname{det}\left|U_{j j}\right|^{2}\right)^{N-n_{j}} d m(L) d m(U)$. To separate the L and U variables in the exponential in (3.10), we (block) orthonormalize L, which amounts to multiplying L on the right by a (block) upper triangular matrix, and then we change the U variable:

$$
\begin{gathered}
U=L^{-1} g_{N}(L) V, \quad U_{j j}=\left(L^{-1} g_{N}(L)\right)_{j j} V_{j j} \\
d m(U)=\prod_{1}^{l}\left(\operatorname{det}\left|\left(L^{-1} g_{N}(L)\right)_{j j}\right|^{2}\right)^{n_{l}-n_{j-1}} d m(V) \quad\left(n_{0}=0\right)
\end{gathered}
$$

This implies (3.10) equals

$$
\int_{\text {Flag }\left(\mathbf{C}^{N}\right)} \int \phi\left(g_{N}(W) V\right) d v_{0, N}(V) d \mu_{0, N}(W)
$$

where

$$
d v_{0, N}(V)=c \prod_{1}^{l}\left(\operatorname{det}\left|V_{j j}\right|^{2}\right)^{N-n_{j}} e^{-\operatorname{tr} V^{*} V} d m(V)
$$

is a probability measure on the (block) upper triangular matrices. The formula (3.8) then formally follows from the fact that
(i) $c e^{-\operatorname{tr} N\left|V_{i j}\right|^{2}} d m\left(N^{1 / 2} V_{i j}\right) \rightarrow \delta_{0}$ as $N \rightarrow \infty$ for $1 \leq i<j \leq l$, and
(ii) $c\left(\operatorname{det} N\left|V_{j j}\right|^{2}\right)^{N-n_{j}} e^{-\operatorname{tr} N\left|V_{j j}\right|^{2}} d m\left(N^{1 / 2} V_{j j}\right) \rightarrow d k_{j}$, the Haar invariant probability measure on $U\left(\mathbf{C}^{n_{J}} \ominus \mathbf{C}^{n_{j-1}}\right)$, which can be verified using the integral formulae in the proof of (3.3).

Proof of (3.2). We first consider P^{*}. We have $L^{2}\left(\nu_{G}\right)=$ $L^{2}(\nu) y x L^{2}\left(\nu^{\perp}\right)$, where $\nu^{\perp}=(1-P)_{*} \nu$. Thus

$$
L^{2}\left(\nu_{G}\right)^{U\left(H \ominus \mathbf{C}^{n l}\right)}=L^{2}(\nu) \otimes L^{2}\left(\nu^{\perp}\right)^{U\left(H \ominus \mathbf{C}^{n l}\right)}=L^{2}(\nu)
$$

This shows P^{*} induces an isomorphism
The fact π^{*} induces an isomorphism follows immediately from (3.8).
(2.2) implies the claims about the multiplicity.
4. Symmetric space. In this section we consider the special case of a Grassmannian, $\operatorname{Gr}\left(n, \mathbf{C}^{\infty}\right)$. Recall that if z is the graph coordinate, the map

$$
\begin{equation*}
\operatorname{Gr}\left(n, \mathbf{C}^{\infty}\right) \rightarrow \operatorname{Gr}\left(n, \mathbf{C}^{N}\right): z \rightarrow z^{(N)} \tag{4.1}
\end{equation*}
$$

which is defined almost everywhere, is $U\left(\mathbf{C}^{N}\right)$ equivariant. This is equivalent to saying that the pullback defines a $U\left(\mathbf{C}^{N}\right)$ equivariant isometric map

$$
L^{2}\left(\operatorname{Gr}\left(n, \mathbf{C}^{N}\right)\right) \rightarrow L^{2}\left(\operatorname{Gr}\left(n, \mathbf{C}^{\infty}\right)\right)
$$

We want to study how the decomposition for $\operatorname{Gr}\left(n, \mathbf{C}^{N}\right)$ converges to that for $\operatorname{Gr}\left(n, \mathbf{C}^{\infty}\right)$.

Because the irreducible summands of $L^{2}\left(\operatorname{Gr}\left(n, \mathbf{C}^{N}\right)\right)$ consist of algebraic functions and the projection

$$
\operatorname{Gr}\left(n, \mathbf{C}^{N+k}\right) \rightarrow \operatorname{Gr}\left(n, \mathbf{C}^{N}\right)
$$

defined by (4.1) is not globally continuous, it is not the case that the irreducible summands coherently embed as $N \rightarrow \infty$. Thus the convergnce is somewhat subtle. It is most easily understood in terms of spherical functions.

Now $\operatorname{Gr}(n, H)=U / K$, where $U=U(H), K=U\left(\mathbf{C}^{n}\right) \times U\left(\mathbf{C}^{n^{\perp}}\right)$. It is a symmetric space of rank n. The Cartan involution is given by $\theta(x)=\left(\begin{array}{ll}\alpha & \delta\end{array}\right)-\left(\begin{array}{c}\gamma_{\gamma}\end{array}\right)$, where $x=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ relative to $H=\mathbf{C}^{n} \oplus\left(\mathbf{C}^{n}\right)^{\perp}$, $x \in \operatorname{gl}(H)$. Let \square denote the set of all operators of the form $T=$ $\sum_{1}^{n} t_{j}\left(e_{j} \otimes e_{n+j}^{*}+e_{n+j} \otimes e_{j}^{*}\right)$ with $t_{j} \in \mathbf{R}$. This set is a maximal abelian subalgebra of $P=\left\{\left({ }_{x^{*}}{ }^{x}\right): x \in \mathscr{L}\left(\mathbf{C}^{n^{\perp}}, \mathbf{C}^{n}\right)\right\}$, the real "noncompact" part of the $\theta=-1$ eigenspace.

Suppose $T \in \square$. Then

$$
\begin{aligned}
\exp (i t)= & \sum_{1}^{n}\left(\cos t_{j}\left(e_{j} \otimes e_{j}^{*}+e_{n+j} \otimes e_{n+j}^{*}\right)\right. \\
& \left.+i \sin t_{j}\left(e_{j} \otimes e_{n+j}^{*}+e_{n+j} \otimes e_{j}^{*}\right)\right)
\end{aligned}
$$

plus the identity on $\left\{e_{j}: 1 \leq j \leq 2 n\right\}^{\perp}$. Hence generically we have $\exp (i t)=\operatorname{graph}(z)$, where $z=\sum_{1}^{n} i \tan t_{j} e_{j} \otimes e_{j}^{*}$. Note the spectrum of $\left(1+z^{*} z\right)^{-1}$ is $\left\{u_{j}\right\}$, where $u_{j}=\cos ^{2} t_{j}$.

We now recall the formulae of Berezin-Karpelevic for the spherical functions (these are proven by Hoogenboom in [3]). Let $N \geq 2 n$.
(4.2) Lemma. The spherical functions of $\operatorname{Gr}\left(n, \mathbf{C}^{N}\right)$ are parameterized by partitions μ with $\mu_{n+1}=0$. The funcion corrsponding to μ is a multiple of the function

$$
\psi(z)=\frac{\operatorname{det}\left\{L_{i-1+\bar{\mu}_{i}}^{(k)}\left(u_{j}\right)\right\}}{\operatorname{det}\left\{u_{j}^{i-1}\right\}}
$$

where u_{1}, \ldots, u_{n} is the spectrum of $\left(1+z^{*} z\right)^{-1}$, the $L_{i}^{(k)}$ are the (Legendre) orthogonal polynomials for the probability measure $(k+1)(1-x)^{k} d x$ on $[0,1], k=N-2 n$, and $\bar{\mu}_{j}=\mu_{n+1-j}$.

Using integration in polar coordinates (see Chapter I of [1]), it is easily checked that the L^{2} normalized spherical function corresponding to the partition μ is given by

$$
\psi_{\mu, N}(z)=\frac{\operatorname{det}\left\{\tilde{L}_{i-1+\bar{\mu}_{i}}^{(k)}\left(u_{j}\right)\right\}}{\operatorname{det}\left\{\tilde{L}_{i-1}^{(k)}\left(u_{j}\right)\right\}}
$$

where \tilde{L}_{i} denotes the L^{2} normalization of L_{i}.
(4.3) Proposition. For each partition μ with $\mu_{n+1}=0$, the functions $\psi_{\mu, N}$ have a limit ψ_{μ} in all $L^{p}\left(\mu_{0}\right), 1 \leq p<\infty$. As a function of $E \in$ $\mathscr{L}\left(\mathbf{C}^{n}, \mathbf{C}^{\infty}\right)$,

$$
\psi_{\mu}(E)=\frac{\operatorname{det}\left\{\tilde{\mathscr{L}}_{i-1+\bar{\mu}_{i}}\left(v_{j}\right)\right\}}{\operatorname{det}\left\{\tilde{\mathscr{L}}_{t-1}\left(v_{j}\right)\right\}}
$$

where $\left\{v_{i}\right\}$ is the spectrum of $\alpha(E)^{*} \alpha(E)$ and the $\tilde{\mathscr{L}}_{i}$ are the L^{2} normalized Laguerre polynomials.

Proof. $\left\{\tilde{L}_{i}^{(k)}\left(k^{-1} y\right)\right\}$ is the system of L^{2} normalized orthogonal polynomials for the probability measure $(k+1) / k(1-y / k)^{k} d y$ on $0 \leq$ $y \leq k$, which tends to $e^{-y} d y$ as k (or N) $\rightarrow \infty$. From this it follows easily (or one can check the well-known formulae directly) that the coefficients of $\tilde{L}_{i}^{(k)}\left(k^{-1} y\right)$ converge to those of $\tilde{\mathscr{L}}_{i}(y)$ as $k \rightarrow \infty$.

We also know that $k\left(1+Z^{(N) *} Z^{(N)}\right)^{-1}\left(\cong N\left|L_{1}^{(N)}\right|^{-2}\right.$ in the notation of (3.5)) converges to the $n \times n$ matrix $\left(\alpha \alpha^{*}\right)(E)$ in all L^{p}. Hence we have L^{p} convergence

$$
\sigma\left(k u_{1}^{(N)}, \ldots, k u_{n}^{(N)}\right) \rightarrow \sigma\left(v_{1}, \ldots, v_{n}\right)
$$

for any symmetric polynomial. This implies

$$
\psi_{\mu, N}=\frac{\operatorname{det}\left\{\tilde{L}_{i-1+\bar{\mu}_{i}}^{(k)}\left(k u_{i}^{(N)} / k\right)\right\}}{\operatorname{det}\left\{\tilde{L}_{i-1}^{(k)}\left(k u_{i}^{(N)} / k\right)\right\}} \rightarrow \psi_{\mu}
$$

in all $L^{p}, 1 \leq p<\infty$.
By (3.2) we know that

$$
\begin{aligned}
L^{2}\left(\operatorname{Gr}\left(n, \mathbf{C}^{\infty}\right)\right) & \cong \sum \rho_{\lambda}^{*} \otimes \rho_{\mu} \times\left(\rho_{\lambda} \otimes \rho_{\mu}^{*}\right)^{K} \\
& =\sum \rho_{\lambda}^{*} \otimes \rho_{\mu} \times\left(\rho_{\lambda, n} \otimes \rho_{\mu, n}^{*}\right)^{U(n)} \cong \sum \rho_{\mu}^{*} \otimes \rho_{\mu}
\end{aligned}
$$

where the second and third sums are over those partitions with $(n+1)$ th term $=0$.
(4.4) Proposition. For each partition μ with $\mu_{n+1}=0, \psi_{\mu}$ is, up to a multiple, the unique K invariant vector in $\rho_{\mu}^{*} \otimes \rho_{\mu}$.

Proof. We will use the transform \mathscr{T} of $\S 2$, which induces an equivariant isometry

$$
L^{2}\left(\mathscr{L}\left(\mathbf{C}^{n}, \mathbf{C}^{\infty}\right)\right) \cong \mathbf{C} e^{-1 / 4|w|^{2}} \otimes \sum_{0}^{\infty} \hat{\mathscr{P}}^{j} \otimes \sum_{0}^{\infty} \overline{\mathscr{P}}^{k}
$$

where $\hat{\mathscr{P}}^{j}=(j!)^{1 / 2} \mathscr{P}^{j}\left(\mathscr{L}\left(\mathbf{C}^{n}, H\right)\right)$. We must show that $\mathscr{T} \psi_{\mu}$ is in the one dimensional space

$$
\begin{align*}
\mathbf{C} e^{-1 / 4|w|^{2}} \otimes & \left(\rho_{\mu}^{*} \otimes \rho_{\mu} \times \rho_{\mu, n} \otimes \rho_{\mu, n}^{*}\right)^{K \times U(n)} \tag{4.5}\\
& =\mathbf{C} e^{-1 / 4|w|^{2}} \otimes\left(\rho_{\mu, n}^{*} \times \rho_{\mu, n} \otimes \rho_{\mu, n} \times \rho_{\mu, n}^{*}\right)^{U(n) \times U(n)}
\end{align*}
$$

Let $\rho=\rho_{\lambda, n}$. One vector in the space $\rho^{*} \times \rho$ is the character $\chi=$ trace ρ (where we have holomorphically extended ρ to a representation of $\mathrm{GL}(n)$). Thus $|\chi|^{2}$ is a vector in $\rho^{*} \times \rho \otimes \rho \times \rho^{*}$. Let $\left\{\varepsilon_{i}\right\}$ be an orthonormal basis for a realization V of ρ. Any hermitian form on V is a multiple of a fixed $U(n)$ invariant positive form \langle,$\rangle . A standard argu-$ ment shows that this implies

$$
\int_{U(n)}\left\langle v_{1}, \rho(k)^{*} \varepsilon_{i}\right\rangle\left\langle v_{2}, \rho(k)^{*} \varepsilon_{j}\right\rangle d k=\delta(i-j) \operatorname{dimn}(V)^{-1}\left\langle v_{1}, v_{2}\right\rangle
$$

for $v_{1}, v_{2} \in V$. Thus

$$
\begin{aligned}
\int_{U(n)}|\chi|^{2}(k w) d k & =\sum_{i, j} \int\left\langle\rho(w) \varepsilon_{i}, \rho(k)^{*} \varepsilon_{j}\right\rangle\left\langle\rho(w) \varepsilon_{i}, \rho(k)^{*} \varepsilon_{j}\right\rangle d k \\
& =\sum_{j} \operatorname{dimn}(V)^{-1}\left\langle\rho\left(w^{*} w\right) \varepsilon_{j}, \varepsilon_{j}\right\rangle .
\end{aligned}
$$

Thus, by the Weyl character formula, a nonzero vector spanning the space in (4.5) is

$$
\begin{aligned}
\phi_{\lambda}(w) & =\exp \left(-\frac{1}{4}|w|^{2}\right) \operatorname{tr} \rho\left(w^{*} w\right) \\
& =\exp \left(-\frac{1}{4}|w|^{2}\right) \frac{\operatorname{det}\left(v_{j}^{i-1+\mu_{1}}\right)}{\operatorname{det}\left(v_{j}^{i-1}\right)},
\end{aligned}
$$

where $\left\{v_{j}\right\}$ is the spectrum of $w^{*} w$.
Any K invariant vector in the range of \mathscr{T} must be a linear combination of the ϕ_{λ}, in particular, $\psi_{\mu}=\sum c_{\lambda} \psi_{\lambda}$ (where a priori we only know $\lambda_{n+1}=0$). Now asymptotically,

$$
\operatorname{tr} \rho_{\lambda, n}\left(\operatorname{diag}\left(t_{j}\right)\right) \sim\left\langle\rho_{\lambda, n}\left(\operatorname{diag}\left(t_{j}\right)\right) v_{0}, v_{0}\right\rangle=\prod_{1}^{n} t_{j}^{\lambda_{j}}
$$

where v_{0} is a highest weight vector, we set $t=t_{1}=\cdots=t_{k}, t_{k+j}=1$, and we let $t \rightarrow \infty$. This is also the asymptotic behavior of ψ_{μ} (with $\mu=\lambda$ above). The theory of homogeneous chaos (Section 6.3 of [2]) shows that if f is a polynomial of degree (p, q) (in $E, \bar{E})$, then $\exp \left(\frac{1}{4}|w|^{2}\right) \mathscr{T} f$ is of the same degree. Since ψ_{μ} is a symmetric function in the eigenvalues of $\alpha(E)^{*} \alpha(E)$, it follows that $\mathscr{T} \psi_{\mu}$ has the same asymptotic behavior above as ϕ_{μ}. Thus we must have

$$
\begin{equation*}
\mathscr{T} \psi_{\mu}=c \phi_{\mu} \tag{4.6}
\end{equation*}
$$

which proves (4.4).

References

[1] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
[2] T. Hida, Brownian Motion, Springer-Verlag, 1980.
[3] B. Hoogenboom, Spherical functions and differential operators on complex Grassmann manifolds, Ark. Nat., 20 (1982), 69-85.
[4] A. A. Kirillov, Representations of an infinite dimensional unitary group, Soviet Math. Dokl., 14 (1973), No. 5.
[5] H. Kuo, Gaussian Measures in Banach Spaces, Springer-Verlag, 1975.
[6] G. Olshanetski, Unitary representations of the infinite dimensional groups $U(p, \infty)$, $S p_{0}(p, \infty), S p(p, \infty)$ and the corresponding motion groups, Functional Anal. Appl., 12 (1978), 185-191.
[7] D. Pickrell, Measures on infinite dimensional Grassmann manifolds, to appear in J. Functional Anal.
[8] , On $U(\infty)$ invariant measures, submitted to Duke Math. J.
[9] I. E. Segal, Algebraic integration theory, Bull. Amer. Math. Soc., 71 (1965), 419-489.
[10] G. Szego, Orthogonal polynomials, AMS colloquium publications, Vol. XXIII, Fourth edition, 1978.

Received February 11, 1986. Partially supported by NSF grant DMS-8506130.

Yale University
New Haven, CT 06520

