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DECOMPOSITION OF REGULAR
REPRESENTATIONS FOR

DOUG PICKRELL

Let G denote the infinite dimensional group consisting of all unitary
operators which are compact perturbations of the identity (on a fixed
separable Hubert space). Kirillov showed that G has a discrete spectrum
(as a compact group does). The point of this paper is to show that there
are analogues of the Peter- Weyl theorem and Frobenius reciprocity for
G. For the left regular representation, the only reasonable candidate for
Haar measure is a Gaussian measure. The corresponding I? decomposi-
tion is analogous to that for a compact group. If X is a flag homogeneous
space for G, then there is a unique invariant probability measure on (a
completion of) X. Frobenius reciprocity holds, for our surrogate Haar
measure fibers over X precisely as in finite dimensions (this is the key
observation of the paper). When X is a symmetric space, each irreduci-
ble summand contains a unique invariant direction, and this direction is
the Lr limit of the corresponding (L2 normalized) finite dimensional
spherical functions.

1. Introduction. Let if be a separable complex Hubert space,
= { S G U(H): g = 1 + compact operator}. This group is a basic

example of an infinite dimensional Banach Lie group. Kirillov proved that
this group is type 1 and has a discrete spectrum ([4], [6]).

Fix an orthonormal basis el9 e2, .. for H. Then 11(11)^ is the closure
in the operator norm topology of ί/(oo) = UnU(n), where U(n) = {g e

j J

Relative to this basis, view U(H) -> M, where M is the space of
matrices (Eij)ι<ij<^ and which we identity with the space of linear
operators mapping H^, the algebraic span of the {e,}, to C00, the space
of all formal linear combinations of the {βj}. The left action of £/(oo) on
UiH)^ extends to an action of ί/(oo) on M.

Let vG denote the Gaussian measure for the linear space «5?2(if). We
recall the following facts established in [8]: (a) every ergodic invariant
probability measure for the left action of t/(oo) on M is a linear
equivariant image of vG (and itself Gaussian), (b) vG is the weak limit of
the uniform distributions on the spaces ]fnU(n), and (c) up to scaling vG

is the only £/(oo) ergodic biinvariant measure on M. For these reasons it
is natural to view vG as a kind of Haar measure for [/(ϋΓ)^, relative to its
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left regular action. In this paper we will exploit the existence of this Haar
type measure to decompose various regular representations of

Of course the first step is to decompose the representation

This is done in §2, and the decomposition is analogous to the Peter-Weyl
decomposition for a compact group.

In §3 we use the Peter-Weyl decomposition to decompose the regular
representations for U(H)^ on homogeneous spaces (flag manifolds) ((3.2)).
The key idea can be described in terms of the simplest example. Via the
basis above view H s I2 -> C00. The natural projection ir. C00 \ {0} ->
P(C°°) is I/(oo) equivariant, and it pushes the Gaussian measure for H to
the unique ί/(oo) invariant probability measure on P(C°°). Now it is
frequently said that Gaussian measure behaves as a uniform distribution
on a sphere of infinite radius. In particular we should expect

(1.1) L2(P(C™)) = L2(C™)ua\

where the right hand side denotes those functions invariant under the
scalar action of [/(I). This is correct. The key ((3.8)) is to fiber the
Gaussian over the invariant measure on projective space; the fiber is the
Haar measure for the unitary stabilizer (in general), in this case ί/(l). The
right hand side of (1.1) is easy to understand because of the Peter-Weyl
decomposition, and this leads to Frobenius reciprocity.

In §4 we consider the special case of a symmetric space, i.e. a
Grassmann manifold Gr(«, H). In this case the decomposition is multipl-
icity free. Each irreducible component contains a unique invariant direc-
tion for the isotropy group, and this direction is the L2 limit of the
corresponding (L 2 normalized) finite dimensional spherical functions.

I thank Robert Boyer for several valuable conversations.

Notation. dm( ) denotes Lebesgue measure, ^ ( ) the polynomial
algebra. If mi is a representation for Gi9 then irλ X π2 is the (outer) tensor
product representation for GλX G2. If Gλ = G2, πx ® π2 is the usual
tensor product representation for Gι = G2.

2. Peter-Weyl theorem. In this section it will be convenient to view
vG as a cylinder measure (i.e. weak distribution) on J?2(H) (see [5] or [9]).
A function on &2{H) of the form φ(E) = Φ(P(£)), where P is an
orthogonal projection of rank n < oo and Φ is a bounded Borel function,
will be called tame; we let *K denote the algebra of all tame functions. If
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we set

E(φ) = ί φdvG = ί

where φ is as above, then (iΓ,E) is an integration algebra. There is a
natural representation of O(J?2(H)) as automorphisms of (ô ~, E), hence
a unitary representation on L2(vG), the completion of Ψ* in the norm
E ( φ φ ) .

W e v i e w U(H) X U(H) c 0{&2{H)) b y gXhΈ = goE<> h'\

Our goal in this section is to decompose the action of U(H) X U(H) (and
UiH)^ X UiH)^) on L2(vG). Of course there is a natural ί/(oo) X £/(oo)
equivariant isomoφhism of L2(vG), as constructed above, and L2(M, vG),
when we view vG as a probability measure on M.

Let SΓ denote the transform defined by

for φ G r and w e o5f2(i/)*. By the corollary of Theorem 6.4 of [2], ZΓ
extends to a U(H) X ί7(i/) equivariant isomorphism

(2.1) L2(*g s ce~1/4H2 0 f ; ^ ® f # ^

where ΦJ is (y!) 1 / 2 times the completion of ^J(^2(H)) in the norm it
inherits from the tensor algebra.

Suppose λ is a partition, i.e. a decreasing sequence of integers
λx > λ 2 > such that λj = 0 for all sufficiently large j . If λ n + 1 = 0,
then we denote by p λ n the representation of U(Cn) with signature
(λx > > λ J , by p λ the direct limit of the p λ „, which extends
canonically from ί/(oo) to a representation of U(H).

In the proof of (3.1) of [8] it is shown that as a representation of
! / ( # ) „ X */(#)„ (or U(H) X £/(fΓ))

(2.2) ^ ( ^ 2 ( ^ ) ) = ΣP*Λ X Px

where the sum is over all partitions λ with ΣA, =j. This proves the
following

(2.3) PROPOSITION. AS a representation of U(H) X U(H) or

w over all partitions λ, μ.



322 DOUG PICKRELL

By Kirillov's classification ([4]) of the irreducible representations of
U{H)^ this decomposition is analogous to the Peter-Weyl theorem for
compact groups.

The physical space for p\X pλ, as a subrepresentation of (2.2),
consists of matrix coefficients for p λ (p λ is a subrepresentation of the
action of U(H) on the tensor algebra of H, so this action extends
naturally to an action of GL(H); the matrix coefficients restrict to
polynomials on ££2(H)). Hence the physical space for pi® pμx ρλ® p*,
as a subrepresentation of the right hand side of (2.1), consists of matrix
coefficients for the action of GL(H) on ^2(Hλ,Hμ) given by g: T ->
Pμ(g) ° τ ° Px(g)* (where p λ is realized on Hλ).

To describe the corresponding subspace in L2(vG), one must invert
the transform &. Whether this can be done in a reasonably explicit
manner in general, I do not know. In the case of spherical functions, there
does exist a relatively simple inversion formula (see §4, especially (4.6)).

3. Frobenius reciprocity. In this section we fix a finite set of
integers 0 < nx < n2 < < nι < oo. Let Flag(i/) c Gr(« l9 H)
X xGτ(nl9H) denote the set of points (flags) {Wt) such that Wx c
W2 c c Wh where Gτ(ni9 H) denotes the set of all ni dimensional
subspaces of H. Flag(//) is a homogeneous space for U(H) and {/(i/)^.
We let FlagίC*) and Flag(C°°) denote the analogous objects for C* s
span{^: j < N) (N > nt) and C°° s (formal linear combinations of
βj). The action of U(oo) extends from Flag(if) to Flag(C°°)? and there are
natural embeddings GL{N) ^ GL(#), Flag(C*) -> Flag(C°°).

Our first task is to recall why there is a unique l/(oo) invariant
probability measure on Flag(C°°). In the process we will develop notation
which we will employ in the remainder of the paper.

A generic flag (i.e. a point in the largest cell) of Flag(C°°) can be
characterized in two ways: (a) it is of the form {Wj} = {LCnj), where L
is a lower triangular block matrix with identity matrices on the diagonal,
the block sizes being n 1 ? n 2 — n 1 ? . . . ,n, — nI_ι along the top, nι,...,nι

— «/_!, oo along the side; (b) each Wj is of the form graph(zy), where
Zj e&{Cnj,C°° θ Qnj). The operator L and the set {zj} determine one
another via the relations

with respect to the splittings of the domain = C ^ Θ ( C r t / θ D ) and
range = CnJ Φ (C00 θ CnJ).
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Let L(N) denote the projection of L to &(CH',CN) (L ( J V ) = Q°L,
where Q: C°° -> C^ is the obvious projection) (similarly for z). The
diagram

L ->

(3.1) J-

is commutative (the cutoff is on the left, whereas the α's act from the
right). In §4 of [8] it is shown how U(N) equivariance of the map
Zj -» ZJN) implies uniqueness for the ί/(oo) invariant probability measure
on Gτ(nj, C00). The above diagram shows the same argument applies to
flags.

Conversely, the projection

π: &(Cn'9C°°Y -> Flag(C°°): E -* {E(Cnή}9

where the prime indicates we exclude those E which are singular, is £/(oo)
equivariant. Thus the Gaussian measure associated to the linear space
JS?(CW/, H) will be mapped by TΓ to a ί/(oo) invariant probability measure
on Flag(C°°). This proves existence.

Let μ0 denote the unique invariant measure on Flag(C°°). Our task is
to decompose L2(Flag(C°°)).

Let Kι = X[U(C"J θ C"J-I) and K= K,X U(H θ C11')- Let P: M
-> oS?(CW/,C°°) denote the obvious projection, and v = P*vG. In this
section we will ultimately prove the following

(3.2) PROPOSITION. Thepullbacks

L2(Flag(C«0) S L2(J?(C-', C«), v)κ< 5 L2(M, vG)
κ

are isomorphisms\ where the superscripts indicate the sets of vectors invariant
under the right action of Kt and K, respectively. As a representation of

L2(Flag(C°°)) =

where the sum is over those partitions with λΠ / + 1 = μΛi+ι = 0 and

m(λ,μ) = dimn((pt ®

The proof of the analogue of this proposition for a compact group is
trivial, because of the existence of Haar measure. Our proof will be trivial
as well, once we understand how v is fibered over μQ (see (3.8) below). We
will prove (3.2) at the end of this section.
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We will need the following computational lemma.
For E e^(C r,C°°), recall that E(N) is the projection of E to

(3.3) LEMMA. The scalar (det ΛΓlE** 0 *^* 0 )" 1 converges to 1
r X r matrices 7V~1£r(ΛΓ)*£'(ΛΓ) tmd *Aez> inverses converge to the identity in
L*(J2?(CΓ, C00), </*>) asN -+ oo, /or α//1 < /? < oo.

Proof. First consider N~ιE(N)*E(N\ For the diagonal entries

Γ

and this tends to 0.
For off diagonal entries

dv{E)

-i
N

1

which tends to zero.
We now consider

l<ιk,Jk<N /==i
l<k<p

if
\JC

l<k<p

(3.4)
/

1 2P'dv(E).
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We use the integral formula

(1C )

where λ = diag(λ l 9 . . . , λ r ), dkx and dk2 denote the unitarily invariant

probability measures on Isom(Cr, C^) and t/(C r), respectively, and c is a

normalization constant (see Chapter I of [1]). We now see (3.4) equals

cf UNuJ1 - 1
1

o

Let s = N — r — k. The kth integral equals

cN rk

= cNrkdctl f &M(u)&W(u)use-u

= Nrkf\lf ^s)2use~udu

where the JS^(5) are the Laguerre polynomials. The lemma now follows

from

(see Chapter 5 of [10]). D

(3.5) LEMMA. For a generic flag {Wj} = {LCnJ} in Flag(C°°), let

g(N\L) be the isometry from CΠ/ to CN obtained by applying the (block)

Gram-Schmidt orthonormalization process to L^N\ Then entry by entry

Nι/2gN(L) has a limit in probability g(L)( e j ^ C ^ C 0 0 ) ) . In the case

I = 1, we actually have Lp(μ0) convergence, for each 1 < p < oo.

REMARK. It is almost certainly the case that the hmit above is Lp(μ0)

in general. However, for / > 1 this seems to complicate the proof im-

mensely. The reason is essentially that the function {Wj} -> L, which is

well-defined a.e. [μ0], does not have integrable entries. It would be

desirable to establish Lp convergence, because this would yield a second
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proof of (3.8) below (see the remark following the proof of (3.8)). The
meaning of the convergence when / = 1 is explored in the next section.

Proof of (3.5). Let E e J§?(C"', C°°)? E O = WJ9 so that E = LU
where U is (block) upper triangular. Note E(N) = L{N)U. Write E =
[Ev . . . , Ef]9 where the Ej are the columns (similarly for L, etc.).

Let a = ax{E). Then, as a function of £,

The entries of Eλ are in all Lp(v)y and

tr

By (3.3) we have Lp convergence

entry by entry as iV -> oo (note the existence of the limit shows the RHS
is equal to a function of L, a.e. [*>]).

Now suppose we have established that gfN) has a limit gi in probabil-
ity for 1 < / < y. We have

(3.6) gw = (i - Σ ^

(here 1 is the N X N identity matrix).
Consider the N X (rij - Πj^) matrix g}iV)g}ΛΓ)*Lj;v). The Hilbert-

Schmidt norm is dominated by

(3.7)

By induction the first factor is O(N~ι) in probability. On the other hand
Lψ)*Lψ) is the (j, j) (block) entry of U~ι*E{NrE{N)U'1, which is O(N)
by (3.3). Therefore (3.7) is O(N~ι/2) in probability. So we certainly have
(1 - Σi<JgίN)glN)*)L(}N) -> Lj in probability, entry by entry.

Now let φM = N-ι'2Lψ\ φM = -N'^Σ^ ;rtN)z^N)*Lψ\ We
know that φ%φN -> ((C/t/*)"1)^ and ψ%ψN^>0 in probability. The
generalized Holder inequality

,2\ 1/2/ , ,2\l/2

* | ) ( t l φ l )
i / i

l < ( t r | ψ | )

shows that ψ%φN and φ%ψN tend to zero in probability as well. Thisimplies that |φ^ + ψ^l2 -> ((UU*) ι)jj, which is strictly positive. Thism α i \ΨN ' ΨN\ ~^ VV*̂ ^

implies

N^2\(l -
- l
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has a limit in probability. Hence (3.6), scaled by Nι/1, has a limit in
probability, entry by entry. This completes the induction. D

(3.8) PROPOSITION. The decomposition of the Gaussian measure v with
respect to the projection π: oS?(C% C0 0)' -> Flag(C°°) is given by

ί φdv = [ ί φ(g(w)k)dkdμo(w).
J •ΉagCC00) JK,

Proof. Assume φ is a bounded continuous function based on
JS?(CΠ', Cm). For N > m, we have

φ{N^2gN(W)k)dkdμ0(W)

where ωN(μQN) denotes the unique invariant probability measure for
U(N). Take the limit as N -> oo. By (2.1) of [8] the LHS converges to the
LHS of (3.8). By (3.5) the RHS converges to the RHS of (3.8). This proves
(3.8). α

(3.9) REMARK. It is possible to give a more direct, but formal,
argument for (3.8) as follows.

First, via direct calculation, we fiber the Gaussian on J?(Cn',CN)
over μ0N on Flag(C*) (we let L = L(Λr)).

(3.10) ί φdv(E) =

Now dm(LU) = Π{(det\Ujj\2)N'nJdm(L)dm(U). To separate the L and
U variables in the exponential in (3.10), we (block) orthonormalize L,
which amounts to multiplying L on the right by a (block) upper triangular
matrix, and then we change the U variable:

U - L-%(L)V, UJJ = (L-%(L))JJVJJ,

dm(U) = n(M{L-ίgN(L))jJ\
2)'"~nj~1 dm(V) (n0 = 0).



328 DOUG PICKRELL

This implies (3.10) equals

/ / φ(gN(W)V) dvOiN(V) dμOfN
JF\2Lg(CN) J

where

is a probability measure on the (block) upper triangular matrices. The
formula (3.8) then formally follows from the fact that

(i) ce-*NW2 dmίN^Vij) -> δ0 as N -> oo for 1 < i <j < I, and
(ϋ) c(det JV r |l^ : / |

2)Λ Γ"Λ>e" t r i V |^1 2 ΛwίJV1/2!^.) -> dfĉ -, the H a a r in-
variant probability measure on U(CnJ θ C"/-1), which can be verified
using the integral formulae in the proof of (3.3).

Proof of (3.2). We first consider P*. We have L2(vG) =
L2(v)yxL2{v-1), where v±=(l- P)+v. Thus

L2(vG)
U(HθCni) = L2{v) β L 2 ^ ) " ^ " 0 = L\v).

This shows P* induces an isomorphism
The fact 77* induces an isomorphism follows immediately from (3.8).
(2.2) implies the claims about the multiplicity. D

4. Symmetric space. In this section we consider the special case of
a Grassmannian, Gr(n,C°°). Recall that if z is the graph coordinate, the
map

(4.1) Gr(n,C°°) -> G φ i , C " ) : z -» z<"\

which is defined almost everywhere, is U(CN) equivariant. This is equiva-
lent to saying that the pullback defines a U(CN) equivariant isometric
map

L2{Gv(n,CN)) ^ L2(Gτ(n,C^)).

We want to study how the decomposition for Gr(«, C^) converges to that
forGr(«,C°°).

Because the irreducible summands of L2(Gr(n,CN)) consist of alge-
braic functions and the projection

Gr(nXN+k)->Gr{n,CN)

defined by (4.1) is not globally continuous, it is not the case that the
irreducible summands coherently embed as N -> 00. Thus the convergnce
is somewhat subtle. It is most easily understood in terms of spherical
functions.
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Now Gr(π, H) = U/K, where U = U(H\ K = U(Cn) X U(Cn±). It
is a symmetric space of rank n. The Cartan involution is given by

Θ(X) = (« 5 ) - ( γ *), where JC = (« £) relative to 7/ = C n Θ ( C n ) ± ,

x e gl(i/). Let Q denote the set of all operators of the form T =

Σιtj(ej Θ e*+j + en+J ® ef) with ίy. e R. This set is a maximal abelian

subalgebra of P = {(^ *) : x e JSf(Cn ±,C")}, the real "noncompact"

part of the β = - 1 eigenspace.

Suppose Γ G Q Then

exp(/0 = L(cos(,.(*; ® e* + ^ n + 7 <̂  β
1

+ ιsin/ y.(^ 0 e*+J + en+J ® e

plus the identity on {^: l^j^ln}1-. Hence generically we have

exp(/7) = graph(z), where z = Σ"/ tant ej 0 ^ . Note the spectrum of

(1 + z*z)~ 1 is {Wy}, where Uj = cos2/y.

We now recall the formulae of Berezin-Karpelevic for the spherical

functions (these are proven by Hoogenboom in [3]). Let N > In.

(4.2) LEMMA. The spherical functions of G r ^ C ^ ) are parameterized

by partitions μ with μn+1 = 0. The funcion corrsponding to μ is a multiple of

the function

1? . . . , ww w /Λe spectrum of (1 + z*z) x, /Λe L ^ } are the (Legendre)

orthogonal polynomials for the probability measure (k + 1)(1 — x)k dx on

[0,1], k = N - In, and μy = μπ + 1_ y.

Using integration in polar coordinates (see Chapter I of [1]), it is

easily checked that the L2 normalized spherical function corresponding to

the partition μ is given by

where L, denotes the L 2 normalization of L ;.

(4.3) PROPOSITION. For each partition μ with μn+1 = 0, the functions

\pμN have a limit \pμ in all Lp(μ0), 1 < p < oo. v4ί α function of E e
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where {v() is the spectrum of a{E)*a{E) and the J^ are the L2 normal-
ized Laguerre polynomials.

Proof. {L^k\k~ιy)} is the system of L2 normalized orthogonal
polynomials for the probability measure (k + ΐ)/k(l — y/k)k dy on 0 <
y < k, which tends to e~y dy as k (or N) -> oo. From this it follows easily
(or one can check the well-known formulae directly) that the coefficients
of L\k){k~ιy) converge to those of ̂ (y) as k -> oo.

We also know that k(l + Z^Z^y1 (= N\L{N)\~2 in the nota-
tion of (3.5)) converges to the n X n matrix (aa*)(E) in all Lp. Hence we
have Lp convergence

for any symmetric polynomial. This implies

in all Lp, 1 < p < oo. D

By (3.2) we know that

,-)^ = ΣP*

where the second and third sums are over those partitions with (n 4- l)th
term = 0.

(4.4) PROPOSITION. For each partition μ with μn+ι = 0, ψμ is, up to a
multiple, the unique K invariant vector in p* Θ pμ.

Proof. We will use the transform ^" of §2, which induces an equiv-
ariant isometry

00 OO _

o o
where ^ = (j\)l/20>j(&(Cn

9 H)). We must show that ^ ψ μ is in the one
dimensional space

(4.5) C e - 1 " " " 2 β ( p ; ® p, X pμ,π 9 p .
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Let p = ρ λ n. One vector in the space p* X p is the character χ =
trace p (where we have holomorphically extended p to a representation of
GL(«)). Thus |χ | 2 is a vector in p* X p ® p X p*. Let {ε,} be an
orthonormal basis for a realization V of p. Any hermitian form on V is a
multiple of a fixed U(n) invariant positive form ( , ). A standard argu-
ment shows that this implies

/
U(n)

for vv v2 e V. Thus

U(n)

Thus, by the Weyl character formula, a nonzero vector spanning the space
in (4.5) is

φλ(w) = exp|-^-|w| Jtrp(w*w)

= exp - τ hv

where { υ } is the spectrum of w*w.
Any Γ̂ invariant vector in the range of & must be a linear combina-

tion of the φ λ, in particular, ψ^ = Σc λ ψ λ (where a priori we only know
λ r t + 1 = 0). Now asymptotically,

ήJ
trpλ>π(diag(ίy.)) - (pλfΠ(diag(ίy.))^o^o) = YlήJ

where v0 is a highest weight vector, we set t = ^ = = /̂ , /^+y = 1,
and we let * -> oo. This is also the asymptotic behavior of ψμ (with μ = λ
above). The theory of homogeneous chaos (Section 6.3 of [2]) shows that if
/ is a polynomial of degree (/?, q) (in E, E), then exp(^|w|2)^7 is of the
same degree. Since ψμ is a symmetric function in the eigenvalues of
a{E)*a{E), it follows that 3Γ ̂ μ has the same asymptotic behavior above
as φμ. Thus we must have

(4.6) Γφμ = cφμ

which proves (4.4). D
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