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ONE PARAMETER SUBSEMIGROUPS IN LOCALLY
COMPLETE DIFFERENTIABLE SEMIGROUPS

J. P. HOLMES

We present here some theorems concerning the existence of one
parameter subsemigroups in the generalized differentiate semigroups
introduced by Graham. These semigroups are based on a type of gener-
alized differentiable manifold and include as examples many semigroups
of matrices and subsemigroups of Lie groups which are not ordinary
manifolds. The multiplication function is required to be strongly differen-
tiable (a generalization of Frechet differentiability). We shed some light
on a question of Graham by showing that such locally complete Ck

monoids which contain C2 curves starting at 1 must contain Ck one
parameter subsemigroups. The argument shows that closed submonoids
of Lie groups which contain C2 curves with one end at 1 contain one
parameter subsemigroups.

Preliminaries. The notion of semigroup with differentiable multipli-
cation based on an ordinary differentiable manifold was studied in
[HI, H2]. If such a Ck semigroup S has an idempotent e then there is an
open subgroup of eSe which has e as its identity element [H2, Theorem
1]. Thus one may appeal to Lie theory for the existence of one parameter
subsemigroups. Indeed, each one parameter subsemigroup is contained in
a one parameter subgroup. This is not the case with the differentiable
semigroups defined by Graham.

The definitions in this paragraph are due to Graham in [Gl, G2]. A
subset A of the Banach space E is said to be admissible provided that
each point of A is a limit point of the interior of A. A function, / , with
domain the admissible set A and range in the Banach space F is
differentiable at the point p in A provided that there is a continuous
linear function T from E to F so that for each positive number c there is
a positive number d so that if each of x and y is within d of p then

\f(x)-f(y)-T(x-y)\<c\x-yl
In this case T is unique and is denoted by f'(p). As usual, the statement
that / is C1 on A means that / is differentiable at each point of A and
the function / ' is continuous as a function from A into L(E,F), the
space of linear transformations from E to F with the usual norm
topology. The statement that / is Ck means that f{k~l) is C1. A
Hausdorff topological space S is a Ck manifold based on the Banach
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space E provided that for each point p of S there is a homeomorphism
gp from a neighborhood U of p onto an admissible subset A of E
containing 0 so that gp(p) = 0 and the composition gp ° g~ι is Ck on its
domain for each choice of p and q in S. The theory of these manifolds
including the definition of product manifold is elucidated in [G2]. Finally,
according to Graham, a topological semigroup is said to be Ck provided
that it is based on a Ck manifold and the multiplication function is Ck as
a function from S X S into S.

This notion of differentiable semigroup includes as examples such
things as the closed interval [0,1] under ordinary real multiplication, the
unit disk D under ordinary complex multiplication, and certain closed
subsemigroups of Lie groups studied in [HL] which were excluded under
the definition in [HI].

Much of the calculus on Ck manifolds mimics the standard theory.
An exception is the possible nonexistence of solutions to differential
equations (vector fields may point outside of the manifold).

EXAMPLES. Example 1. A C * monoid need have no nontrivial one
parameter subsemigroups. For example from [Gl] let S be the subset of
the plane to which (x, y) belongs if and only if (x, y) is (0,0) or x > 0
and y is between 0 and x2. S forms a Ck monoid under vector addition
for each positive k. There is no non-constant homomorphism from R+

into S.
Example 2. Local Ck groups must have some neighborhood of the

identity element covered with one parameter subsemigroups (actually
subroups). The following example shows that some differentiability is
needed for this conclusion.

Let S be the Banach space of continuous real valued functions on R
with limit at 4-oc and -oo. For each / and g in S define fg by
fs(x) = f(s(x) + x) + S(x)' This multiplication is obtained by mapping
/ and g to / + id and g + id, composing, then subtracting id from the
result. Thus, S is isomorphic to a subsemigroup of the semigroup under
composition of continuous functions from R to R. S is a Banach space
when equipped with the supremum norm. The multiplication is continu-
ous but not differentiable relative to the Banach space topology. The
constantly zero function is the only idempotent and is also an identity
element.

There are elements arbitrarily close to the identity element which have
no square root and hence are in no one parameter subsemigroup. To see
this consider for a positive number c the function / defined by f(x) = c if
x < 0, f(x) = -2x if x is in [0, c/2], and f(x) = 0 if x > c/2. It is fairly
easy to see that if g is in S and gg = f then g(x) = c/2 if x < 0 and
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g(x) = 0 if x > c/2. But this implies that

c = /(0) = g(g(O) + 0) + g(0) = g(c/2) + c/2 = c/2.

thus there is no g so that gg = /. These properties of this example are

explicated in [H3].
There are also elements arbitrarily close to the identity element which

are in uncountably many one parameter subgroups. To see this consider
the isomorphism into the semigroup of functions from R to R noted
above. If a function agrees with id outside the interval [0, c] (c > 0) then it
is in the image of the isomorphism.

Suppose c > 0 and / is a homeomorphism from R to R which agrees
with id outside (0, c) and so that f(x) > x if x is in (0, c). We can build
an increasing homeomorphism g from (0, c) onto R satisfying g(f(x)) =
g(x) 4- 1 in the following way. Choose a in (0, c) and note that the
sequence

...,f-\a),f-\a),a,f{a),p{a),...
is increasing and converges to 0 on the left and c on the right. Define g on
[a, f(a)] to be an arbitrary increasing homeomorphism onto [0,1]. There
is exactly one way to define g on [f(a),f2(a)] to make g(f(x)) = g(x)
+ 1 for x in [a, f(a)] since each y in [f(a), f2(a)] is f(x) for exactly one
x in [a,f(a)]. This extension of g is continuous, increasing, and maps
[a,f2(a)] onto [0,2]. Continuing in this way we obtain a g with the
desired property. If T is defined from R into S + id by T(s)(x) = x if x
is not in (0,c) and T(s)(x) = g~\g(x) + s) if x is in (0,c) then the
function Q defined from R into S by Q(s) = T(s) - id is a continuous
isomorphism. The norm of each Q(s) is no more than c and

β(lW-id.

The arbitrariness of g on [a, f(a)] accounts for the existence of uncounta-
bly many such g's. The author was introduced to this construction by
Gordon Johnson.

Locally complete semigroups. We now turn our attention to Ck mono-
ids in which k is at least 2 and which have a neighborhood, £/, of 1 so that
gx(ί7) is a closed subset of E. We say that such a monoid is locally
complete. The main result is that if such a monoid contains a C2 arc with
one end at 1 then it has a Ck one parameter subsemigroup. The examples
show that some completeness near 1 is needed and indicate that some
differentiability hypothesis may be needed. On the other hand we are not
aware of a locally complete connected C1 monoid with no one parameter
subsemigroups. Our argument implies that if a closed submonoid of a Lie
group contains a C2 arc with one end at 1 then it contains a one
parameter subsemigroup.
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THEOREM 1. Suppose k > 2, S is a Ck locally complete monoid, and
there is a C2 function, h, from [0,1] into S with h(0) = 1. Then there is a
Ck function, Γ, from R+ to S so that T(s)T(t) = T(s + t) whenever each
ofs and t is in R+ and Γ'(0) = h'(0).

In [Nl] Neuberger showed for C2 local groups that if y is the solution
of the initial value problem y1 = L(y) and y(0) = I, for L a left
invariant vector field, then y(t) can be approximated by products of
scalar multiples of L(l) with the coefficients adding to /. The existence of
y is assured because L must be C1. Of course this y is a local one
parameter subgroup of the local group.

In [M] Marsden gives sufficient conditions for the pointwise conver-
gence of K(t/n)n where, for each t, K(t) is a self map of the ordinary
Banach manifold M and composition is the operation used in forming
K(t/n)n. If we interpreted K(t) as left multiplication by h(t) (which is a
one-to-one correspondence for t near 0) we could obtain Theorem 1 as a
consequence of a translation of Marsden's argument for [M, Theorem 2.1]
to the present setting of generalized Banach manfolds. Our Lemmas 1.1
and 1.3 would serve as the non-trivial part of verifying that this version of
K satisfies a translated version of the hypotheses of [M, Theorem 2.1].
The argument we present here is more straightforward in the present
setting and shows that left multiplication by T(t) is approximated, for t
near 0, by products of the form K(tn)K(tn_ι) K(t0) where the t/s are
non-negative and sum to t.

In our setting, solutions to the initial value problem y' = L(y),
y(0) = 1 for L a left invariant vector field are not guaranteed by standard
existence and uniqueness theorems because such an L might point outside
of 5. Thus, we resort to product integrals which stay in S because S is a
semigroup.

The author appreciates the help of the referee in pointing out refer-
ence [M].

To formulate an argument choose a closed (in E) neighborhood, D,
of Oin gλ(S) so that

exists whenever each of x and y is in D. We may slow h down if
necessary so that it maps into gϊ\D) and let / be defined by f(t) =
gλ(h(t)) for each t in [0,1]. Since h is C2 so is /. The first lemma is a sort
of Taylor's theorem for V.



ONE PARAMETER SEMIGROUPS 311

LEMMA 1.1. There are positive numbers M9 r, and d so that if s is in
[0, r]9 q is in 2), and \q\ < d then

V{f{s),q) = q+ V'(09q)(f(s),0)+A(s,q)

where \A(s, q)\ < Ms2 and

\V{f(s),q)\<\q\+M(s + s2).

Proof. Choose, by continuity of V and V" at (0,0), positive numbers
d and N so that if each of p and q is in D and each has norm not
exceeding d then \V'(ρ9q)\ < N and \V"(p9q)\ < N. Choose N' so that
|/ '(0l ^ W f o r each t in [0,1]. Note that

\f(x)-f(t)\<N'\s-t\

whenever each of s and t is in [0,1]. Choose r in (0,1) so that rN' < d
and let M = NN'2 + NN'.

Suppose s is in [0, r], q is in D, an \q\ <, d. Then

V(f(s),q)-q=V(f(s),q)-V(0,q)

= f1 da[V'(f(0),q)(f'(as)(s),0)]

+ f da[V'(f(as),q) - V'(f(0),q)](f'(aS)(s),0)

= V'(0,q)(f(s)-f(0),0)

+ f daf db[V"{f(bas),q)((f'(as)(s),0), (f'(bas)(as),0))]

= V'(0,q)(f(S),0)+A(s,q).
By choice of r, \f(bas)\ < N'bas < d if each of a and b is in [0,1] and
moreover each of | / / (^)(^) | and \f'(bas)(s)\ is bounded by N's. Hence
the integrand in A(s9 q) is bounded in norm by N/2s2. It follows that
\A(s9 q)\ < Ms2. Finally, since \q\ < d and \f(s)\ < sN'9 we have

\V(f(s),q)\<\q\+M(s + s2).

COROLLARY 1.2. There are positive numbers B and e so that if each of
sl9...9sn is a positive number and a = Σί^ < e then

V{f(sn),V(f(sn_1),...,V(f(s2)J(Sι))...))
exists and has norm not exceeding aB.

Proof. Choose M9 r, and d as in Lemma 1.1, let B = 2M9 and choose
e positive so that e < r and eB < d. Suppose each of sλ and s2 is positive
and sλ 4- s2 < e. Each of s2 < r and f(sλ) has norm not exceeding d so
by Lemma 1.1 we have

\V{f(s2)J(Sl))\<s2(M + s2M)+\f(Sι)\< B(s2 + S ι ) .
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Assume that n is an integer which is at least 2 and suppose induc-
tively that if and each of s l 9...,sn is positive and b = Σί.sz < e then
q = V(f(sn), V(f(sn_v..., V(f(s2),f(sλ))...)) exists and has norm not
exceeding bB.

Suppose that each of sl9..., sn+ι is positive and a = Σ " + 1 ^ < e. By
the inductive hypothesis we have the existence of q as above with norm
not exceeding Bb < Be < d. Moreover, sn+1 is in [0, r] so Lemma 1.1
implies that

\V(f(sn+ι),q)\< sn+1(M + sn+1M) +\q\< aB.

LEMMA 1.3. There are positive numbers a, b, and C so that if p is in D
and \p\ < b and each ofu, s, and t = u + s is in [0, a] then

\V(f(t)9p) - V(f(s),V(f(u),p))\< Cst.

Proof. Choose M9 r, and d as in Lemma 1.1. Choose N" to be an
upper bound for |/"(.x;)| for each x in [0,1]. Choose a' positive so that if
each of JC, y9 p, and q is in D and each has norm not exceeding a' then

\ V ( x f y ) - V'(p,q) - F " ( 0 , 0 ) ( x -p9y - q)\<\(x-p,y- q ) \ .

Choose b positive and less than each of a'/2 and d/2. Choose the
number a positive and less than r so that 2aM is less than each of b and
r and so that aN' is less than a'. Choose C so that C/3 exceeds each of
[|F"(0,0)| + \]2[N' + M]N\ MN'\ and M.

If p is in Z), \p\ < b, and each of w, s, an t = u + s is in [0, a] then
from Lemma 1.1 we have \V(f(u), p)\ < \p\ + 2Mu which by choice of a
and b is smaller than each of d and a'.

Suppose p is in Z>, \p\ < b, and each of w, s, and t = u + s is in
[0, a]. Then

\V(f(t),p)-V(f(s),V{f(u)9p))\

= \V(f(t)9p) ~ V(f(u),p) + V(f(u),p) - V(f(s)9V(f(u),p))\.

Since u is in [0, r] and \V(f(u), p)\ < d we have by Lemma 1.1 that the

last term is

f dv[V'(f'(u + vs),p)(f'(u + os)(s),0)]

-f dv[V'(0,V(f(u),p))(f'(vs)(s),0)] -A(s,V(f(u),p))

dv[V'(f(u + υs),p) - V'(0,V(f(u),p))](f'(u + vs)(s),0)

dυ[V'(0,V(f(u),p)(Πu + vs) -f'(ϋS))(s),0

\A(s,V(f(u),p))\.
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We consider the three summands separately. For each v in [0,1] each of
w), p), p, and f(u + vs) has norm not exceeding a' so

\[V(f(u + vs),p) - F(0,F(/(«),/>))](/'(« + vs)(s),0)\
<[\V"(0,0)\+l][\f(u + vs)\ + \p-V(f(u),p)\]N's

< [ |F'(0,0) + l][N't + N'u + 2Mu]N's

< [ |F"(0,0) + l]2[N' + M]N'st < (C/3)st.

Thus the first summand does not exceed (C/3)st. The second summand
is, since \V{f(u\p)\< d,

V'(0,V(f(u),p)l ίl dv ί1 dw[f"(wu + vs)(u,s)],θ)
wo yo /

< MN"us < {C/3)st.

Finally, since s is in [0, r] and \V(f(u), p)\ < d,

\A{s,V(f(u),p))\< Mss < (C/3)st.
By a subdivision, H, of the interval [0, x] we mean a finite non-de-

creasing sequence 0 = tλ < t2 < < tn = x. By mesh(/ί) we mean the
length of the largest interval formed by adjacent t's. Finally, by P(H) we
mean the product

v{f{tn - tn^),...,v{f{t, - t2),f(t2 - O)...)

provided it exists. The next lemma provides for convergence of the

COROLLARY 1.4. There are positive numbers F and c so that if x is in
[0,c], H is a subdivision of [0, JC], and Hr refines H then each of P(H) and
P(H') exist and \P(H) - P(H')\ < Fmesh(H).

Proof. Let B and e be chosen as in Corollary 1.2 and α, b, and C be
chosen as in Lemma 1.3. Choose a' > 0 as in the proof of Lemma 1.3 so
that if each of x, y, p, and q is in D and has norm not exceeding a' then

Note that for such x, y, p, an q we have

\V(x,y)-V(p9q)\zG\(x-p9y-q)\

where G = |F'(0,0)| + 1. Choose c not exceeding each of e and a so that
Be is smaller than each of b and a' and let F = GCc.
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Suppose x is in [0, c]9

H={t1,...,tn)

is a subdivision of [0, x], and s is between ti and ti_1 for some i between
0 and n. The product, P(H), exists by Corollary 1.2. Let uj = tj - tj_x

for j = 1,...,«, y = 5 — ̂ _1? and w = /, — 5. Note that by choice of c
each of υ9 w9 and ut = v + w is in [0, #]. Let

P =

and

q = V((tH- tH_1),...,V{f(ti+2- ti+1),f(ti+ι- t,))...).

By Corollary 1.2 \p\ < Bti_1 < b, \V(f(u), p)\ < Bs < a',
\V(f(w),V(f(υ),p))\ < Bt, < a', and \q\ < B(tn - tt) < a'.

Note that P(H) = V(q, V(/(«,), p)). We wish to compare this with
β = V(q,V(f(w),V(f(υ),p))).

\P(H)-Q\ by choice of a'

Z G\V{f(ui),p)-VU{w),{f(v),p))\ by Lemma 1.3

< MCutw =

Now suppose H' refines H. Let sv...,Sj be an increasing sequence
of numbers so that H' = H U { sv..., Sj}. Let H' = Hj, H = Ho and

for i = j , . . . , 1 and let r, be the next larger member of Hi to st for
i = 1,..., j . The intervals [st, η] are nonoverlapping and fill up less than
[0, c]. The mesh of each Hj is no larger than mesh(H). Thus we have

1

j

z - s,) < Fmesh(i/).
1

Now it is clear by completeness of D that for each t in [0, c] there is a
unique Λ(ί) in ΰ so that if ε is a positive number there is a positive
number 8 so that if H is a subdivision of [0, t] with mesh less than 8 then
P(/f) is within ε of i?(/). From Corollary 1.2 we have \R(t)\ < Bt and
from construction it is clear that V(R(t), R(s)) = R(t + s) whenever
each of s, t, and s + ί is in [0, c]. From these observations and continuity
of V we have R continuous on [0, c].
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We comment that associativity was used in the proof of Corollary 1.4
for convenience and the proof of the existence of the product integral
R(t) can be carried out for nonassociative V. Of course, in the nonassocia-
tive situation we do not obtain a local homomorphism of [0, c] into D.

Let T be defined on [0,c] into S by T{t) = g{\R(t)). It is easy to
see that there is a unique extension of T to R+ which is continuous. It
remains to show that T is Ck and JΓ'(O) can be made to be Λ'(0).

LEMMA 1.5. With f and R defined above, R is Ck andR\ϋ) = /'(()).

Proof, Suppose cr is a positive number and choose d positive so that
if each of p and q is in D X D and each of p and q is within d of (0,0)
then

\V(p) - V(q) - V ' ( 0 , 0 ) ( p - q ) \ < c'\p - q\.

If each of x and y is in D and each is within d of 0 then

\ x - y - F ( 0 , 0 ) ( X - J > , 0 ) | < C ' | J C - - H -

Since 0 is a limit point of the interior of D, x — y can be taken in any
direction. This implies that F(0,0)(x,0) = F'(0,0)(0,x) = JC for each x
in E.

Suppose a is a positive number, choose M an upper bound for |/r(jc)|
for x in [0,1], choose F and c as in Corollary 1.4, and choose B and e as
in Corollary 1.2.

Using differentiability of V at (0,0) and using F(0,0)(x, y) = x + y
choose d positive so that if each of p and q is in D and each has norm
not exceeding d then

\V(p,q) - V(0,q) -p\< (a/3M)\p\.

Choose t positive and less than each of c, e, and d/B and choose ./V so
that if n > N then 3F/n < a. Choose such an n and for each / = 1,..., n
let

qi=V{f{t/n),...,V{f{t/n),f{t/n))...)

where the product has i factors.
Note that qn = P(H) where H is the subdivision of [0, t] with n

equal length subintervals. It follows from the choice of t in [0, e] that each
q has norm less than Bt which is smaller than d. It follows from the
choice of F and c that since t is in [0, c] we have

\R(t)-qn\<Ft/n<at/3.
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But

\qH - nf{t/n)\<\V(f{t/n),qn^) - qn_x - f{t/n)\

+ \V{f{t/n),qn_2) - qn_2- f(t/n)\

+ \V(f(ί/n),f(t/n)) -f(t/n) -f(t/n)\

<n(a/3M)\f(t/n)\<at/3.

Thus we have for each n > N and each t sufficiently small that

\R(t) -nf(t/n) I <at.

Hence R'(0) exists and is /'(0). Since R(t + s) = V(R(t), R(s)) for / in
[0,1) and s sufficiently small the chain rule implies that R'(t) exists for t
in [0,1) and

Thus R is Ck on [0,1). This implies that T is Ck on R+ and we are done
with Theorem 1.

COROLLARY 1.6. If S is a closed submonoid of a Ck group with k at

least 2 and S contains a C2 curve with one end at 1 then S has a Ck one

parameter subsemigroup.

This is immediate from the above argument. The product integral
may be carried out in the group but the fact that S is a closed set which is
closed under products implies that the one parameter subsemigroup
constructed maps into S.

In [HL] Hofmann and Lawson study certain subsemigroups of Lie
groups which they term Lie semigroups. They are Ck monoids in the
present sense. These monoids are generated by one parameter subsemi-
groups and the structure of such a monoid is connected with that of its
Lie wedge (an analogue of Lie algebra in this setting). In view of Theorem
1 one might hope to obtain geometric conditions on a Ck monoid which
imply that it is a Lie semigroup in this sense.
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