DERIVATION ALGEBRAS
 OF FINITELY GENERATED WITT RINGS

Robert W. Fitzgerald

Abstract

We consider derivations of an abstract Witt ring R. Denote the collection of derivations by $\operatorname{Der}(R)$; it is a Lie algebra under the usual bracket operation. The structure of $\operatorname{Der}(R)$ is closely related to the structure of the torsion part of R, which is the part least understood. After a lengthy computation of $\operatorname{Der}(R)$ for finitely generated Witt rings of elementary type, we classify the Witt rings in the following cases: (i) $\operatorname{Der}(R)=0$, (ii) $\operatorname{Der}(R)$ is a simple algebra, and (iii) the fundamental ideal of R is not differentiable.

All Witt rings considered here will be finitely generated abstract Witt rings (in the sense of Marshall [5]). The most important examples are the Witt rings $W F$ of non-degenerate quadratic forms over a field F with char $F \neq 2$ and \dot{F} / \dot{F}^{2} a finite group. The basic problem is to classify these Witt rings. To date this has been done only for Witt rings that are small in some sense (e.g., the number of generators is ≤ 32) and for torsion-free Witt rings. Indeed the part of a Witt ring R that is least understood is its torsion ideal R_{t}.

We study here the derivations of a Witt ring R, namely, additive maps $D: R \rightarrow R$ such that $D(r s)=s D(r)+r D(s)$ for all $r, s \in R$. We denote by $\operatorname{Der}(R)$ the collection of all derivations of R. $\operatorname{Der}(R)$ is a Lie algebra, called the derivation algebra of R, under the usual bracket operation: if $D, D^{\prime} \in \operatorname{Der}(R)$ then $\left[D, D^{\prime}\right]=D \circ D^{\prime}-D^{\prime} \circ D \in \operatorname{Der}(R)$.

The usefulness of derivations appears to stem from the (easily checked) fact that the image of any derivation of R lies in R_{t}. Thus the structure of the derivation algebra $\operatorname{Der}(R)$ sheds some light on the structure of R_{t}. We have obtained only some partial results however. We do classify the Witt rings in the following cases: (i) $\operatorname{Der}(R)=0$, (ii) $\operatorname{Der}(R)$ is a simple algebra, (iii) the fundamental ideal I_{R} is not differentiable (i.e., $D\left(I_{R}\right) \not \subset I_{R}$ for some $D \in \operatorname{Der}(R)$), and (iv) every derivation on R is integrable (but here we require some restrictions on R).

All of our classification results are special cases of a general classification of finitely generated Witt rings proposed by Marshall. We describe this. Start with the fundamental Witt rings $\mathbf{Z} / 2 \mathbf{Z}, \mathbf{Z} / 4 \mathbf{Z}, \mathbf{Z}$ and certain

Witt rings of local type, namely, $L_{2 n, 0}, L_{2 n, 1}$ and $L_{2 n-1},(n \geq 2)$. The last three families arise as the Witt rings of suitable local fields (see [5] for details). We can form new Witt rings from old in two ways. If R is a Witt ring and Δ is a (finite) group of exponent 2 then the group ring $R[\Delta]$ is again a Witt ring. If R_{1}, R_{2} are Witt rings then the Witt product (or fibre product over $\mathbf{Z} / 2 \mathbf{Z}$) is $R_{1} \times{ }_{w} R_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in R_{1}, r_{2} \in R_{2}\right.$ and $\operatorname{dim} r_{1}$ $\left.\equiv \operatorname{dim} r_{2}(\bmod 2)\right\}$, which is also a Witt ring. A Witt ring is of elementary type if it can be built up from the fundamental Witt rings listed above by a sequence of group ring extensions and Witt products. The proposed classification is simply that every finitely generated Witt ring is of elementary type.

The first section of this paper presents elementary results and reduction theorems. The second section computes the derivation algebra for any Witt ring of elementary type. An important step here is deriving some short exact sequences relating $\operatorname{Der}\left(L_{2 n, 0}\right), \operatorname{Der}\left(L_{2 n, 1}\right)$ and $\operatorname{Der}\left(L_{2 n-1}\right)$.

The third section examines some examples. We give an example of two non-isomorphic Witt rings on 8 generators with Lie isomorphic derivation algebras. We also give an example of derivations arising naturally in the theory of quadratic forms. Let $F \subset K$ be a quadratic field extension and let s_{*} denote the usual Scharlau transfer and i_{*} denote the map on Witt rings induced by inclusion. Then, in many cases $i_{*} s_{*}$: $W K \rightarrow W K$ is a derivation.

The fourth section is devoted to proving $L=\operatorname{Der}(R)$ is a simple algebra iff R is a group ring over $\mathbf{Z} / 2 \mathbf{Z}$ and $L=W_{n}$, the generalized Witt algebra, for some n.

The fifth section examines when a derivation on a Witt ring R is integrable (in the sense of Matsumura [6]). We show that if R is of elementary type then every derivation is integrable iff R is not a group ring extension of a ring of characteristic two.

The notation for Witt rings generally follows [5]. R will always denote a finitely generated Witt ring. There is an associated group G (of one dimensional forms) with distinguished element -1 . Every element of R may be expressed as a form $\left\langle g_{1}, \ldots, g_{n}\right\rangle$ with each $g_{i} \in G$. There is also an associated linked quaternionic mapping $q: G \times G \rightarrow B$, where B is some set. If there is a group H and a linked quaternionic mapping q : $H \times H \rightarrow B^{\prime}$ onto some set B^{\prime}, then there is induced a Witt ring which we will denote $W H$. I_{R} denotes the fundamental ideal of R, that is, the collection of even dimensional forms.

If $r=\left\langle g_{1}, \ldots, g_{n}\right\rangle \in R$ then $D\left\langle g_{1}, \ldots, g_{n}\right\rangle$ (or $D_{R}\left\langle g_{1}, \ldots, g_{n}\right\rangle$ if the ring R needs to be specified) is the set of elements of G represented by r.

This should be distinguished from $D\left(\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)$-note the parentheses - which will indicate the image of r under the derivation D.

We will write \mathbf{Z}_{n} for $\mathbf{Z} / n \mathbf{Z}$. Δ_{n} will always denote a group of exponent 2 and order 2^{n}. A universal round form in R is a form $r \in R$ such that $g r=r$ for all g in the associated group G. We let $\operatorname{ur}(R)$ denote the collection of all universal round forms; $\operatorname{ur}(R)$ is an ideal. If $I \subset R$ is an ideal, $\operatorname{ann}_{R} I$ denotes the annihilator of I in R.

1. Reductions. We begin an elementary observation:

Lemma 1.1. Let $D \in \operatorname{Der}(R)$. Then:
(1) $D(1)=D(-1)=0$;
(2) $D(R) \subset \operatorname{ann}(\langle 1,1\rangle)$.

Proof. (1) $D(1)=D(1 \cdot 1)=D(1)+D(1)$, so $D(1)=0$. And $0=$ $D(0)=D(\langle 1,-1\rangle)=D(1)+D(-1)$, so $D(-1)=0$.
(2) It suffices to show $D(x) \in \operatorname{ann}(\langle 1,1\rangle)$ for all $x \in G$. Now $0=$ $D(1)=D(x \cdot x)=x D(x)+x D(x)$. Hence $\langle 1,1\rangle D(x)=0$.

It will frequently be easier to define a map on G and show it extends to a derivation on R. The appropriate restrictions on the map on G are in the following:

Definition. Let R be a Witt ring and G its associated group. A G-derivation is a map $d: G \rightarrow R$ such that
(i) $d(-1)=0$;
(ii) $d(x y)=x d(y)+y d(x)$, for all $x, y \in G$;
(iii) $d(x y)=d(x)+d(y)$ if $x \in D\langle 1, y\rangle$.

Let $\operatorname{Der}(G)$ denote the collection of G-derivations. Note that for $d \in \operatorname{Der}(G), d(1)=0$ and $d(G) \subset \operatorname{ann}(\langle 1,1\rangle)$ (namely, the proof of (1.1) carries over).

Proposition 1.2. Every G-derivation induces a derivation on R. In particular, there is a bijection $\operatorname{Der}(G) \leftrightarrow \operatorname{Der}(R)$.

Proof. Let $d \in \operatorname{Der}(G)$ and define $D: R \rightarrow R$ by $D\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=$ $d\left(a_{1}\right)+\cdots+d\left(a_{n}\right)$. Note that $D(\langle 1,-1\rangle)=0$. To show D is welldefined it suffices to check on binary forms (cf. [5, p. 31]). Suppose $\left\langle x_{1}, x_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle$ in R. Then $x_{1} x_{2}=y_{1} y_{2}$ and $x_{1} y_{1} \in D\left\langle 1, x_{1} x_{2}\right\rangle$. Then
$d\left(x_{2} y_{1}\right)=d\left(x_{1} y_{1} \cdot x_{1} x_{2}\right)=d\left(x_{1} y_{1}\right)+d\left(x_{1} x_{2}\right)$, and $d\left(x_{2} y_{1}\right)=d\left(x_{1} y_{2}\right)$. Expanding these equations yields:

$$
\begin{aligned}
& x_{1} d\left(y_{2}\right)+y_{2} d\left(x_{1}\right)=x_{1} d\left(y_{1}\right)+y_{1} d\left(x_{1}\right)+x_{1} d\left(x_{2}\right)+x_{2} d\left(x_{1}\right), \\
& x_{1}\left(d\left(y_{1}\right)+d\left(y_{2}\right)\right)=\left\langle y_{1}, y_{2},-x_{2}\right\rangle d\left(x_{1}\right)+x_{1} d\left(x_{2}\right), \\
& x_{1} D\left(\left\langle y_{1}, y_{2}\right\rangle\right)=x_{1} D\left(\left\langle x_{1}, x_{2}\right\rangle\right), \\
& D\left(\left\langle y_{1}, y_{2}\right\rangle\right)=D\left(\left\langle x_{1}, x_{2}\right\rangle\right) .
\end{aligned}
$$

(In the second step we have used $d(z)=-d(z)$ for any $z \in G$.)
Now D is clearly additive. And

$$
\begin{array}{r}
D\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle y_{1}, \ldots, y_{m}\right\rangle\right)=\sum d\left(x_{i} y_{j}\right)=\sum\left(x_{i} d\left(y_{j}\right)+y_{j} d\left(x_{i}\right)\right) \\
=\left\langle x_{1}, \ldots, x_{n}\right\rangle D\left(\left\langle y_{1}, \ldots, y_{m}\right\rangle\right)+\left\langle y_{1}, \ldots, y_{m}\right\rangle D\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)
\end{array}
$$

Hence $D \in \operatorname{Der}(R)$.
Lastly, suppose $D \in \operatorname{Der}(R)$ and set $d=\left.D\right|_{G}$. Then d is a G-derivation. Namely, condition (i) holds by (1.1), condition (ii) holds by definition and if $x \in D\langle 1, y\rangle$ then $D(x)+D(x y)=D(x \cdot\langle 1, y\rangle)=D(\langle 1, y\rangle)$ $=D(y)$. Thus $d(x y)=d(x)+d(y)$, since $D(x)=-D(x)$ by (1.1).

Remarks. (1) We will identity G-derivations with derivations on R.
(2) Combining conditions (ii) and (iii) for a G-derivation yields:

If $x \in D\langle 1, y\rangle$ then $\langle 1, x\rangle d(y)=\langle 1, y\rangle d(x)$. This will be used frequently.

Definition. Let β be a Pfister form of R such that $i_{G}(D(\beta)) \leq 2$ and $\langle 1,1\rangle \beta=0$. Let H be a subgroup of index 2 in G containing -1 and contained in $D(\beta)$. For $x, y \in G$ define:

$$
d(H, x \beta)(y)= \begin{cases}x \beta & \text { if } y \notin H \\ 0 & \text { if } y \in H\end{cases}
$$

The derivation (induced by) $d(H, x \beta)$ is the derivation of H and $x \beta$.
We check this definition makes sense.
Lemma 1.3. $d(H, x \beta)$ is a derivation.
Proof. Let d denote $d(H, x \beta) ; d(-1)=0$. Let $y_{1}, y_{2} \in G$. We check conditions (ii) and (iii) for a G-derivation at the same time. Since we may switch the roles of y_{1}, y_{2} there are three cases to consider:

Case 1. $y_{1}, y_{2} \in H$.
Here $d\left(y_{1}\right)=d\left(y_{2}\right)=d\left(y_{1} y_{2}\right)=0$. So $d\left(y_{1} y_{2}\right)=y_{1} d\left(y_{2}\right)+y_{2} d\left(y_{1}\right)$ $=d\left(y_{1}\right)+d\left(y_{2}\right)$.

Case 2. $y_{1} \notin H, y_{2} \in H$.
Here $d\left(y_{1}\right)=x \beta, d\left(y_{2}\right)=0$ and $d\left(y_{1} y_{2}\right)=x \beta$. Note that since $y_{2} \in H \subset D(\beta), y_{2} x \beta=x \beta$. Thus we have:

$$
d\left(y_{1} y_{2}\right)=y_{1} d\left(y_{2}\right)+y_{2} d\left(y_{1}\right)=d\left(y_{1}\right)+d\left(y_{2}\right)
$$

Case 3. $y_{1} \notin H, y_{2} \notin H$.
Here $y_{1} y_{2} \in H$ since $i_{G}(H)=2$. We hae $d\left(y_{1}\right)=x \beta=d\left(y_{2}\right)$ and $d\left(y_{1} y_{2}\right)=0=x \cdot\langle 1,1\rangle \beta=d\left(y_{1}\right)+d\left(y_{2}\right)$. Since $y_{1} y_{2} \in D(\beta), y_{1} d\left(y_{2}\right)$ $+y_{2} d\left(y_{1}\right)=y_{1}\left(d\left(y_{2}\right)+d\left(y_{1}\right)\right)=0=d\left(y_{1} y_{2}\right)$.

Proposition 1.4. $\operatorname{Der}(R)=0$ iff R is reduced or $R \cong \mathbf{Z}_{2}$ or $R \cong \mathbf{Z}_{4}$. In particular, R is of elementary type.

Proof. If R is reduced then $\operatorname{Der}(R)=0$ by (1.1)(2), and if $R \cong \mathbf{Z}_{2}$ or \mathbf{Z}_{4} then $G \subset\{ \pm 1\}$ and so $\operatorname{Der}(R)=0$ by (1.1)(1). Now suppose R is not reduced, \mathbf{Z}_{2} or \mathbf{Z}_{4}.

Since R is not reduced we can choose $w \in D\langle 1,1\rangle \backslash\{1\}$. Then $\beta_{0}=\langle 1,-w\rangle \in \operatorname{ann}(\langle 1,1\rangle)$ and $\beta_{0} \neq 0$. We can find a non-zero Pfister form β, divisible by β_{0}, such that $D(\beta)=G$. Namely, suppose otherwise and choose a non-zero Pfister form β with $D(\beta)$ maximal among those divisible by $\beta_{0}(\beta$ exists since $|G|<\infty)$. If $D(\beta) \neq G$ take $x \in G \backslash D(\beta)$. Then $\langle 1,-x\rangle \beta \neq 0, \quad \beta_{0}$ divides $\langle 1,-x\rangle \beta$ and $-1,-x, D(\beta) \subset$ $D(\langle 1,-x\rangle \beta)$, so $\{1, x\} D(\beta) \subset D(\langle 1,-x\rangle \beta)$, contradicting the maximality of β.

Now $G \not \subset\{1,-1\}$, since $G \subset\{1,-1\}$ implies R is isomorphic to \mathbf{Z}_{2}, \mathbf{Z}_{4} or \mathbf{Z} [5, p. 41-42] and \mathbf{Z} is reduced. Choose $a \in G \backslash\{1,-1\}$ and choose H a subgroup of index 2 in G containing -1 but not a. Then $d(H, \beta)$ is a derivation (1.3) and non-zero since $d(H, \beta)(a)=\beta$. Thus $\operatorname{Der}(R) \neq 0$.

We begin the computation of $\operatorname{Der}(R)$ for R of elementary type by decomposing $\operatorname{Der}(R)$ when R is a group ring or a Witt product.

Proposition 1.5. Let $R=R_{0}\left[\Delta_{1}\right]$ with $\Delta=\{1, t\}$ and let G_{0} be the group associated to R_{0}. Set:

$$
\begin{aligned}
& L_{0}=\left\{D \in \operatorname{Der}(R) \mid D(t)=0 \text { and } D\left(G_{0}\right) \subset R_{0}\right\}, \\
& L_{1}=\left\{D \in \operatorname{Der}(R) \mid D\left(G_{0}\right)=0 \text { and } D(t) \in R_{0}\right\}
\end{aligned}
$$

Then: (1) L_{0} is a subalgebra of $\operatorname{Der}(R)$ isomorphic to $\operatorname{Der}\left(R_{0}\right)$;
(2) L_{1} is an abelian subalgebra isomorphic to $\operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$;
(3) $\operatorname{Der}(R)=L_{0} \oplus t L_{0} \oplus L_{1} \oplus t L_{1}$.

Proof. (1) L_{0} is closed under addition and if $D_{1}, D_{2} \in L_{0}$ then $\left(D_{1} \circ D_{2}\right)(t)=0$ and $\left(D_{1} \circ D_{2}\right)\left(G_{0}\right) \subset D_{1}\left(R_{0}\right) \subset R_{0}$. So L_{0} is a subalgebra. If $D \in L_{0}$ then $\left.D\right|_{R_{0}} \in \operatorname{Der}\left(R_{0}\right)$. Let $d \in \operatorname{Der}\left(R_{0}\right)$ and define $D\left(r_{0}+t r_{1}\right)=d\left(r_{0}\right)+t d\left(r_{1}\right)$, for $r_{0}, r_{1} \in R_{0}$. This is well-defined since each $r \in R$ uniquely determines $r_{0}, r_{1} \in R_{0}$ with $r=r_{0}+t r_{1}$. It is straightforward to check $D \in \operatorname{Der}(R)$. Since $D(t)=t d(1)=0$ and $d\left(G_{0}\right)$ $\subset R_{0}$ we have $D \in L_{0}$. Also $\left.D\right|_{R_{0}}=d$ and so L_{0} is isomorphic to $\operatorname{Der}\left(R_{0}\right)$.
(2) L_{1} is closed under addition and if $D_{1}, D_{2} \in L_{1}$ then $\left(D_{1} \circ D_{2}\right)(G)$ $=D_{1}\left(D_{2}\left(t G_{0}\right)\right) \subset D_{1}\left(R_{0}\right)=0$. Thus L_{1} is an abelian subalgebra.

For $w \in \operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$ define $d(w): G \rightarrow R$ by $d(w)\left(g_{0}\right)=0$ and $d(w)\left(g_{0} t\right)=g_{0} w$, for all $g_{0} \in G_{0}$. We check that $d(w)$ is a derivation. First, $d(w)(-1)=0$. Next, let $x, y \in G$. If $x, y \in G_{0}$ then $y d(w)(x)+$ $x d(w)(y)=0+0=d(w)(x y)$. If $x=g_{0} t \in t G_{0}, y \in G_{0}$ then $y d(w)(x)$ $+x d(w)(y)=y g_{0} w=d(w)(x y)$. And if $x=g_{0} t, y=g_{1} t$, with $g_{0}, g_{1} \in$ G_{0} then $y d(w)(x)+x d(w)(y)=g_{0} g_{1} t w+g_{0} g_{1} t w=0=d(w)(x y)$, since $\langle 1,1\rangle w=0$.

Now suppose $x, y \in G$ and $x \in D\langle 1, y\rangle$. Then either $x, y \in G_{0}$ or $x=y \in t G_{0}$, since t is 2 -sided rigid [5, 5.19]. If $x, y \in G_{0}$ then $d(w)(x)$ $+d(w)(y)=0=d(w)(x y)$. And if $x=y$ then $d(w)(x)+d(w)(y)=$ $\langle 1,1\rangle d(w)(x)=0=d(w)(x y)$. Thus $d(w)$ is a derivation.

We have inverse homomorphisms $L_{1} \rightarrow \operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$ by $D \mapsto D(t)$ and $\operatorname{ann}_{R_{0}}(\langle 1,1\rangle) \rightarrow L_{1}$ by $w \mapsto d(w)$. Hence L_{1} is isomorphic to $\operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$.
(3) It suffices to show $\operatorname{Der}(R)=L_{0}+t L_{0}+L_{1}+t L_{1}$ since the sum can easily be shown to be direct. Let $D \in \operatorname{Der}(R)$. If $r \in R_{0}$ there exist unique $r_{1}, r_{2} \in R_{0}$ such that $D(r)=r_{1}+t r_{2}$. Let $d_{1}(r)=r_{1}$ and $d_{2}(r)=$ r_{2}. Extend these maps to R by setting $d_{i}\left(r+r^{\prime} t\right)=d_{i}(r)+t d_{i}\left(r^{\prime}\right)$, where $i=1,2$ and $r, r^{\prime} \in R_{0}$. Also, by (1.1), there exist unique $w_{1}, w_{2} \in$ $\operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$ such that $D(t)=w_{1}+t w_{2}$. Then $D=d_{1}+t d_{2}+d\left(w_{1}\right)+$ $\operatorname{td}\left(w_{2}\right)$, where the $d\left(w_{i}\right), i=1,2$, are the derivations defined in (2). So it suffices to show $d_{1}, d_{2} \in L_{0}$.

Now d_{1} and d_{2} are additive and $d_{i}(t)=0, d_{i}\left(G_{0}\right) \subset R_{0}(i=1,2)$. Let $r, r^{\prime} \in R_{0}$. Then:

$$
\begin{aligned}
D\left(r r^{\prime}\right) & =r D\left(r^{\prime}\right)+r^{\prime} D(r), \\
d_{1}\left(r r^{\prime}\right)+t d_{2}\left(r r^{\prime}\right) & =r d_{1}\left(r^{\prime}\right)+t r d_{2}\left(r^{\prime}\right)+r^{\prime} d_{1}(r)+t r^{\prime} d_{2}(r) \\
d_{i}\left(r r^{\prime}\right) & =r d_{i}\left(r^{\prime}\right)+r^{\prime} d_{i}(r), \quad(i=1,2)
\end{aligned}
$$

Hence $\left.d_{i}\right|_{R_{0}} \in \operatorname{Der}\left(R_{0}\right)$ and, as in (1), $d_{i} \in L_{0}(i=1,2)$.
Corollary 1.6. $\left|\operatorname{Der}\left(R_{0}\left[\Delta_{1}\right]\right)\right|=\left|\operatorname{Der}\left(R_{0}\right)\right|^{2}\left|\operatorname{ann}_{R_{0}}(\langle 1,1\rangle)\right|^{2}$.

Definition. An ideal $I \subset R$ is differentiable if $D(I) \subset I$ for all $D \in \operatorname{Der}(R)$.

Theorem 1.7. I_{R} is not differentiable iff $\operatorname{char}(R)=2$ and R is a group ring.

Proof. (\rightarrow). Let $r=\left\langle a_{1}, \ldots, a_{2 n}\right\rangle$ and $d \in \operatorname{Der}(R)$ such that $D(r) \notin$ I_{R}. Then for some a_{i}, say $a_{1}, D\left(a_{1}\right) \notin I_{R}$. By (1.1), $\langle 1,1\rangle D\left(a_{1}\right)=0$. Since $\operatorname{dim} D\left(a_{1}\right)$ is odd, $\langle 1,1\rangle=0$ [4, p. 250] and so $\operatorname{char}(R)=2$. Now let $x \in D\left\langle 1, a_{1}\right\rangle$. Then

$$
\left\langle 1, a_{1}\right\rangle D(x)=\langle 1, x\rangle D\left(a_{1}\right)
$$

Since $D\left(a_{1}\right)$ is odd dimensional, the discriminant of $\langle 1, x\rangle D\left(a_{1}\right)$ is x. But the discriminant of $\left\langle 1, a_{1}\right\rangle D(x)$ is 1 or a_{1}. Hence $x=1$ or a_{1}. So $D\left\langle 1, a_{1}\right\rangle=\left\{1, a_{1}\right\}$.

Further, $\quad D\left(a_{1}\right)=D\left(-a_{1}\right) \notin I_{R}$ so the same argument shows $D\left\langle 1,-a_{1}\right\rangle=\left\{1,-a_{1}\right\}$. Hence a_{1} is two-sided rigid and by $[5,51.9] R$ is a group ring.
(\leftarrow) Let $R=R_{0}\left[\Delta_{1}\right]$ where $\Delta_{1}=\{1, t\}$; note that t is two-sided rigid. Now $\operatorname{char}(R)=2$ implies $1 \in \operatorname{ann}_{R_{0}}(\langle 1,1\rangle)$. Let $D=t d(1)$, where $d(1)$ is the derivation constructed in (1.5) with $d(1)\left(R_{0}\right)=0$ and $d(1)(t)$ $=\langle 1\rangle$. Then $D(\langle 1,1\rangle)=\langle t\rangle \notin I_{R}$.

We next consider Witt products. Let $R=R_{1} \times{ }_{w} R_{2}$ with corresponding groups $G=G_{1} \times G_{2}$. Let $L=\operatorname{Der}(R)$. We form the following subsets of L :

$$
\begin{aligned}
& L_{1}=\left\{D \in L \mid D\left(1 \times G_{2}\right)=0, D\left(G_{1} \times 1\right) \subset I_{R_{1}} \times 0\right\} \\
& L_{2}=\left\{D \in L \mid D\left(G_{1} \times 1\right)=0, D\left(1 \times G_{2}\right) \subset 0 \times I_{R_{2}}\right\} \\
& E_{1}=\left\{D \in L \mid D\left(1 \times G_{2}\right)=0, D\left(G_{1} \times 1\right) \subset 0 \times I_{R_{2}}\right\} \\
& E_{2}=\left\{D \in L \mid D\left(G_{1} \times 1\right)=0, D\left(1 \times G_{2}\right) \subset I_{R_{1}} \times 0\right\}
\end{aligned}
$$

Suppose $\operatorname{char}(R) \neq 2 . R_{1}$ and R_{2} cannot both have characteristic 2 ; we will assume $\operatorname{char}\left(R_{1}\right) \neq 2$. Then $(-1,1) \neq(1,1)$ in G. Fix a subgroup B of index 2 in G with $(-1,1) \notin B$. Set:

$$
F=\{D \in L \mid D(B)=0\}
$$

Proposition 1.8. Let $R=R_{1} \times{ }_{w} R_{2}$ and $L=\operatorname{Der}(R)$. With the notations given above, we have:
(1) L_{i} is a subalgebra isomorphic to

$$
\left\{D \in \operatorname{Der}\left(R_{i}\right) \mid D\left(R_{0}\right) \subset I_{R_{t}}\right\} \text { for } i=1,2
$$

(2) E_{1} and E_{2} are abelian subalgebras and

$$
\begin{aligned}
& E_{1} \cong \operatorname{Hom}\left(G_{1} /\{ \pm 1\}, \operatorname{ur}\left(R_{2}\right)\right) \\
& E_{2} \cong \operatorname{Hom}\left(G_{2} /\{ \pm 1\}, \operatorname{ur}\left(R_{1}\right)\right)
\end{aligned}
$$

(3) If $\operatorname{char}(R) \neq 2$ then F is a subalgebra isomorphic (as a group) to $\operatorname{ur}(R)$.
(4) If $\operatorname{char}(R) \neq 2$ then $L=L_{1} \oplus L_{2} \oplus E_{1} \oplus E_{2} \oplus F$.
(5) If $\operatorname{char}(R)=2$ then $L=L_{1} \oplus L_{2} \oplus E_{1} \oplus E_{2}$.

Proof. (1) Straightforward.
(2) We prove the result for E_{1}; the case for E_{2} is similar. Let $D, D^{\prime} \in E_{1}$. Then $\left(D \circ D^{\prime}\right)(G) \subset D\left(0 \times I_{R_{2}}\right)=0$. Thus E_{1} is an abelian subalgebra. Now $D(-1,1)=D(1,-1)=0$ and $D(G) \subset 0 \times \operatorname{ur}\left(R_{2}\right)$. Namely, if $h \in G_{1}$ and $k \in G_{2}$ then since $(1, k) \in D\langle(1,1),-(h, 1)\rangle$ we have

$$
\langle(1,1),-(1, k)\rangle D(h, 1)=\langle(1,1),-(h, 1)\rangle D(1, k)=0 .
$$

So if $D(h, 1)=(0, r)$, with $r \in I_{R_{2}}$, then $\langle 1,-k\rangle r=0$ for all $k \in G_{2}$ and so $r \in \operatorname{ur}\left(R_{2}\right)$.

We thus have $D(-1,1)=0$ and $D\left(G_{1} \times 1\right) \subset 0 \times \operatorname{ur}\left(R_{2}\right)$. So D induces a map $e: G_{1} /\{ \pm 1\} \rightarrow \operatorname{ur}\left(R_{2}\right)$. Lastly,

$$
\begin{aligned}
0 \times e\left(h h^{\prime}\right) & =D\left(h h^{\prime}, 1\right)=(h, 1) D\left(h^{\prime}, 1\right)+\left(h^{\prime}, 1\right) D(h, 1) \\
& =D\left(h^{\prime}, 1\right)+D(h, 1)=0 \times e\left(h^{\prime}\right)+0 \times e(h) .
\end{aligned}
$$

Hence $e \in \operatorname{Hom}\left(G_{1} /\{ \pm 1\}, \operatorname{ur}\left(R_{2}\right)\right)$.
Conversely, let $e \in \operatorname{Hom}\left(g_{1} /\{ \pm 1\}, \operatorname{ur}\left(R_{2}\right)\right) ; e$ lifts to a unique map \bar{e} in $\operatorname{Hom}\left(G_{1}, \operatorname{ur}\left(R_{2}\right)\right)$ sending -1 to 0 . Define $D\left(g_{1}, g_{2}\right)$ to be $\left(0, \bar{e}\left(g_{1}\right)\right)$, for all $g_{1} \in G_{1}, g_{2} \in G_{2}$. Then $D(-1)=0$ and

$$
\begin{aligned}
& D\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}\right)=\left(0, \bar{e}\left(g_{1} g_{1}^{\prime}\right)\right)=\left(0, \bar{e}\left(g_{1}\right)\right)+\left(0, \bar{e}\left(g_{1}^{\prime}\right)\right) \\
& \quad=D\left(g_{1}, g_{2}\right)+D\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1}^{\prime}, g_{2}^{\prime}\right) D\left(g_{1}, g_{2}\right)+\left(g_{1}, g_{2}\right) D\left(g_{1}^{\prime}, g_{2}^{\prime}\right)
\end{aligned}
$$

since $D(G) \subset 0 \times \operatorname{ur}\left(R_{2}\right)$. By (1.2) $D \in L$ and clearly D induces e.
(3) That F is a subalgebra follows from the definitions. We map $\operatorname{ur}(R) \rightarrow F$ by $w \mapsto d(B, w)$, where $d(B, w)$ is the derivation of B and w. The map is additive and injective. To show the map is surjective we first
prove the

Claim. If $D \in L$ then $D(-1,1) \in \operatorname{ur}(R)$.
Let $h \in G_{1}$ and let $D(h, 1)=\left(r_{1}, r_{2}\right)$ with $r_{i} \in R_{i}$. Then $(h, 1) \in$ $D\langle(1,1), \quad(-1,1)\rangle \quad$ implies $\langle(1,1), \quad(h, 1)\rangle D(-1,1)=$ $\langle(1,1), \quad(-1,1)\rangle D(h, 1)=\left(\langle-1,1\rangle r_{1},\langle 1,1\rangle r_{2}\right)=0$, using (1.1). Similarly, if $k \in G_{2}$ then $(1, k) \in D\langle(1,1),(1,-1)\rangle, \quad D(1,-1)=$ $D(-1,1)$ and $\langle(1,1),(1, k)\rangle D(-1,1)=\langle(1,1),(1,-1)\rangle D(1, k)=0$. Thus $\langle 1, g\rangle D(-1,1)=0$ for all $g \in G_{1} \times 1 \cup 1 \times G_{2}$ and hence for all $g \in G$. Then $D(-1,1) \in \operatorname{ur}(R)$ as claimed.

Now if $D \in F$ and $D(-1,1)=w$ then for any $b \in G, D(b)=0$ and $(b \cdot(-1,1))=b w=w$, since $w \in \operatorname{ur}(R)$. Hence $D=d(B, w)$ with $w \in$ $\operatorname{ur}(R)$ and the map is surjective.
(4), (5) It is easily verified that the sums involved are direct. Let $D \in L$. If $D(-1,1) \neq 0$ then $\operatorname{char}(R) \neq 2$ and $D(-1,1) \in \operatorname{ur}(R)$ by the claim in (3). By (3) we can find $D_{5} \in F$ such that $D(-1,1)=D_{5}(-1,1)$. It thus remains to show that if $D \in L$ and $D(-1,1)=0$ then $D \in L_{1}+$ $L_{2}+E_{1}+E_{2}$.

The only Witt product that is also a group ring is $\mathbf{Z} \times{ }_{w} \mathbf{Z}[5,5.22]$ which is reduced. Hence by (1.7), $D(G) \subset I_{R}$. Let π_{1}, π_{2} be the projections from I_{R} to $I_{R_{1}} \times 0,0 \times I_{R_{2}}$, respectively. Let ρ_{1}, ρ_{2} be the projections from G to $G_{1} \times 1,1 \times G_{2}$, respectively. Set $D_{1}=\pi_{1} D \rho_{1}, D_{2}=$ $\pi_{2} D \rho_{2}, D_{3}=\pi_{2} D \rho_{1}$ and $D_{4}=\pi_{1} D \rho_{2}$. Then we claim $D_{1} \in L_{1}, D_{2} \in L_{2}$, $D_{3} \in E_{1}$ and $D_{4} \in E_{2}$. We check this only for D_{1} and D_{3}.

For $g, g^{\prime} \in G$,

$$
\begin{aligned}
D_{1}\left(g g^{\prime}\right) & =\pi_{1} D\left(\rho_{1}(g) \rho_{1}\left(g^{\prime}\right)\right) \\
& =\pi_{1}\left(\rho_{1}\left(g^{\prime}\right) D\left(\rho_{1}(g)\right)+\rho_{1}(g) D\left(\rho_{1}\left(g^{\prime}\right)\right)\right) \\
& =\rho_{1}\left(g^{\prime}\right) D_{1}(g)+\rho_{1}(g) D_{1}\left(g^{\prime}\right)=g^{\prime} D_{1}(g)+g D_{1}\left(g^{\prime}\right)
\end{aligned}
$$

since $D_{1}(G) \subset I_{R_{1}} \times 0 \operatorname{implies}(1, y) D(x)=D(x)$ for any $y \in G_{2}, x \in G$. If $g \in D\left\langle 1, g^{\prime}\right\rangle$ then $\rho_{1}(g) \in D\left\langle 1, \rho_{1}\left(g^{\prime}\right)\right\rangle$ and so

$$
D_{1}\left(g g^{\prime}\right)=\pi_{1}\left(D\left(\rho_{1}(g)\right)+D\left(\rho_{2}\left(g^{\prime}\right)\right)\right)=D_{1}(g)+D_{1}\left(g^{\prime}\right)
$$

Thus $D_{1} \in L_{1}$.
Now

$$
\begin{aligned}
D_{3}\left(g g^{\prime}\right) & =\pi_{2}\left(D\left(\rho_{1}(g)\right) \rho_{1}\left(g^{\prime}\right)\right) \\
& =\pi_{2}\left(\rho_{1}\left(g^{\prime}\right) D\left(\rho_{1}(g)\right)+\rho_{1}(g) D\left(\rho_{1}\left(g^{\prime}\right)\right)\right)=D_{3}(g)+D_{3}\left(g^{\prime}\right)
\end{aligned}
$$

We thus only need to show that $g^{\prime} D_{3}(g)=D_{3}(g)$ for all $g, g^{\prime} \in G$. Fix $g \in G$. Since $D_{3}(g) \subset 0 \times I_{R_{2}}, g^{\prime} D_{3}(g)=D_{3}(g)$ if $g^{\prime} \in G_{1} \times 1$. If $g^{\prime}=$ $\left(1, k^{\prime}\right) \in 1 \times G_{2}$ then $g^{\prime} \in D\left\langle 1,-\rho_{1}(g)\right\rangle$ so $\left\langle 1,-g^{\prime}\right\rangle D\left(\rho_{1}(g)\right)=$ $\left\langle 1,-\rho_{1}(g)\right\rangle D\left(g^{\prime}\right)$. Now $\pi_{1}\left(\left\langle 1,-g^{\prime}\right\rangle D\left(\rho_{1}(g)\right)\right)=\langle 1,-1\rangle\left(\pi_{1} D \rho_{1}\right)(g) \times 0$ $=0$. And

$$
\begin{aligned}
\pi_{2}\left(\left\langle 1,-g^{\prime}\right\rangle D\left(\rho_{1}(g)\right)\right) & =\pi_{2}\left(\left\langle 1,-\rho_{1}(g)\right\rangle D\left(g^{\prime}\right)\right) \\
& =0 \times\langle 1,-1\rangle\left(\pi_{2} D\right)\left(g^{\prime}\right)=0 .
\end{aligned}
$$

Hence $g^{\prime} D\left(\rho_{1}(g)\right)=D\left(\rho_{1}(g)\right)$ if $g^{\prime} \in 1 \times G_{2}$. That is, we have $g^{\prime} D_{3}(g)$ $=D_{3}(g)$ for all $g^{\prime} \in G_{1} \times 1 \cup 1 \times G_{2}$ and hence for all $g^{\prime} \in G$. Thus, $D_{3} \in E_{1}$.

Lastly, we show $D=D_{1}+D_{2}+D_{3}+D_{4}$. For any $g \in g . \rho_{1}(g) \in$ $D\left\langle 1,-\rho_{2}(g)\right\rangle$. So $D(g)=D\left(\rho_{1}(g) \rho_{2}(g)\right)=D\left(\rho_{1}(g)\right)+D\left(\rho_{2}(g)\right)$. That is,

$$
\begin{aligned}
D & =D \rho_{1}+D \rho_{2}=\pi_{1} D \rho_{1}+\pi_{2} D \rho_{1}+\pi_{1} D \rho_{2}+\pi_{2} D \rho_{2} \\
& =D_{1}+D_{3}+D_{4}+D_{2}
\end{aligned}
$$

The simplest case of (1.8) yields
Corollary 1.9. Suppose char $R_{1} \neq 2$, and char $R_{2} \neq 2$. Let $R=$ $R_{1} \times{ }_{w} R_{2}$ and let G be the group associated to R. Then taking \mathbf{Z}_{2}-dimensions:

$$
\operatorname{dim} \operatorname{Der}(R)=\operatorname{dim} \operatorname{Der}\left(R_{1}\right)+\operatorname{dim} \operatorname{Der}\left(R_{2}\right)+(\operatorname{dim} G)(\operatorname{dim} \operatorname{ur}(R)) .
$$

Proof. We use the notations of (1.8). By (1.7), $L_{i}=\operatorname{der}\left(R_{i}\right)$ for $i=1,2$. We have by (1.8)

$$
\begin{aligned}
\operatorname{dim} E_{1} & =(\operatorname{dim} G-1) \operatorname{dim} \operatorname{ur}\left(R_{1}\right) \\
\operatorname{dim} E_{2} & =(\operatorname{dim} G-1) \operatorname{dim} \operatorname{ur}\left(R_{2}\right) \\
\operatorname{dim} F & =\operatorname{dim} u r\left(R_{1}\right)+\operatorname{dim} u r\left(R_{2}\right)
\end{aligned}
$$

(This last since $\operatorname{ur}(R)=\operatorname{ur}\left(R_{1}\right) \times \operatorname{ur}\left(R_{2}\right)$). The decomposition $\operatorname{Der}(R)=$ $L_{1} \oplus L_{2} \oplus E_{1} \oplus E_{2} \oplus F$ then yields the result.
2. Derivation algebras for fundamental Witt rings. To complete the computation of $\operatorname{Der}(R)$ for R of elementary type we need to consider derivations on the fundamental Witt rings. These Witt rings are (cf. [5, 5.24]) $\mathbf{Z}, \mathbf{Z}_{2}, \mathbf{Z}_{4}$ and $L_{2 n, 0}, L_{2 n, 1}, L_{2 n-1}$ for $n \geq 2$. The latter three classes are Witt rings of local type.

By (1.4), $\operatorname{Der}(R)=0$ for $R=\mathbf{Z}_{1} \mathbf{Z}_{2}$ and \mathbf{Z}_{4}. So for the rest of this section we will consider Witt rings of local type. Such Witt rings possess a unique non-trivial 2-fold Pfister form, to be denoted ρ throughout this section. Further, for each $x \neq-1, D\langle 1, x\rangle$ is a subgroup of index 2 in G. The converse also holds, which we separate for future reference:

Lemma 2.1. Let R be a Witt ring of local type with (finite) group G. For every subgroup H of index 2 in G there exists an $x \in G$ with $H=$ $D\langle 1, x\rangle$.

Proof. There are $|G|-1$ subgroups of index 2 in G. There are $|G|-1$ elements $x \in G \backslash\{-1\}$, each of which yields a (distinct) subgroup $D\langle 1, x\rangle$ of index 2 . Hence the result holds.

Lemma 2.2. Let R be a Witt ring of local type with group G. Assume $R \neq \mathbf{Z}$.
(1) If $\operatorname{char}(R) \neq 2$ then $\operatorname{ann}_{R}\langle 1,1\rangle=\{0, \rho\} \cup\{\langle 1, x\rangle, y\langle 1, x\rangle \mid-x$ $\in D\langle 1,1\rangle \backslash\{0\}$ and $y \notin D\langle 1, x\rangle\}$. In particular, $\left|\operatorname{ann}_{R}\langle 1,1\rangle\right|=|G|$.
(2) If $\operatorname{char}(R)=2$ then $\operatorname{ann}_{R}\langle 1,1\rangle \cap I_{R}=\{0, \rho\} \cup\{\langle 1, x\rangle$, $y\langle 1, x\rangle \mid x \in G \backslash\{1\}, y \notin D\langle 1, x\rangle\}$. In particular, $\left|\operatorname{ann}_{R}\langle 1,1\rangle \cap I_{R}\right|=$ $2|G|$.

Proof. If $\operatorname{char}(R) \neq 2$ then $\operatorname{ann}_{R}\langle 1,1\rangle \subset I_{R}$. Thus it suffices to find $\operatorname{ann}_{R}\langle 1,1\rangle \cap I_{R}$ in both cases. We will show I_{R} consists of $0, \rho$ and binary forms. From this (1) and (2) follow quickly.

Let $q \in I_{R}$, and let $d=d(q)$. If $d=1$ then $q \in I_{R}^{2}=\{0, \rho\}$. Otherwise, we may write $q=\langle 1,-d\rangle+q_{0}$, with $q_{0} \in I_{R}^{2}$. If $q_{0}=0$ we are done. If $q_{0}=\rho$, let $e \notin D\langle 1,-d\rangle$. Then $\langle\langle-d,-e\rangle\rangle=\rho$ and we obtain

$$
q=\langle 1,-d\rangle \cdot\langle 1,1,-e\rangle=e \cdot\langle 1,-d\rangle+\langle\langle 1,-e,-d\rangle\rangle=e \cdot\langle 1,-d\rangle
$$

since $\langle\langle 1,-e,-d\rangle\rangle \in I_{r}^{3}=0$.

Lemma 2.3. Let R be a Witt ring of local type with group G and $\operatorname{char}(R) \neq 2$. Let $D \in \operatorname{Der}(R)$ and $g \in G$. If $D(g)=0$ then $\langle 1,-g\rangle D(x)=0$ for all $x \in G$.

Proof. Let $x \in G$. By (1.1), $D(x) \in \operatorname{ann}_{R}\langle 1,1\rangle$ and the result is clear if $D(x)=0$ or ρ. (Note that $D \equiv 0$ if $R=\mathbf{Z}$.) By (2.2) we may thus assume $D(x)=\langle 1,-y\rangle$ for some $y \in D\langle 1,1\rangle$. If $x \in D\langle 1,-g\rangle$ then
$\langle 1,-g\rangle D(x)=\langle 1,-x\rangle D(g)=0$. We thus suppose $x \notin D\langle 1,-g\rangle$; in particular, $g \neq 1$.

Now $\operatorname{char}(R) \neq 2$ implies $D\langle 1,1\rangle \neq G$. We claim that $D\langle 1, x\rangle \cap$ $D\langle 1, g\rangle \backslash D\langle 1,1\rangle \neq \varnothing$. Otherwise, $D\langle 1, x\rangle \cap D\langle 1, g\rangle \subset D\langle 1,1\rangle$. But $D\langle 1, x\rangle \cap D\langle 1, g\rangle$ is a subgroup of index 4 in G, thus contained in only three subgroups of index 2 . These three subgroups are $D\langle 1, x\rangle, D\langle 1, g\rangle$ and $D\langle 1,-x g\rangle$. This implies that one of $x, g,-x g$ is 1 . Each possibility contradicts our previous assumptions, which proves the claim.

Let $z \in D\langle 1, x\rangle \cap D\langle 1, g\rangle \backslash D\langle 1,1\rangle$. Then $z \notin D\langle 1,-g\rangle$ lest $z \in$ $D\langle 1, g\rangle \cap D\langle 1,-g\rangle \subset D\langle 1,1\rangle$. Also, since $x \notin D\langle 1,-g\rangle$ and $D\langle 1,-g\rangle$ is a group of index 2, we have $x z \in D\langle 1,-g\rangle$. Lastly, $x, z \in$ $D\langle 1, x\rangle$ implies $x z \in D\langle 1, x\rangle \cap D\langle 1,-g\rangle \subset D\langle 1, g x\rangle$, so $-g x \in$ $D\langle 1,-x z\rangle$. We have:

$$
\begin{aligned}
\langle 1,-x z\rangle D(x g) & =\langle 1,-x g\rangle D(x z) \\
\langle 1,-x z\rangle D(x) & =\langle 1,-x g\rangle D(x)+\langle 1,-x g\rangle D(z),
\end{aligned}
$$

since $D(x g)=g D(x),\langle 1,-x z\rangle D(x)=0$ or ρ and so $g\langle 1,-x z\rangle D(x)=$ $\langle 1,-x z\rangle D(x)$. Also, $z \in D\langle 1, x\rangle$ implies $D(x z)=D(x)+D(z)$. Now

$$
\begin{aligned}
\langle 1,-x z\rangle D(x) & =x \cdot\langle x,-z\rangle D(x)=\langle x,-z\rangle D(x) \\
& =\langle 1,-x\rangle D(x)+\langle 1,-z\rangle D(x),
\end{aligned}
$$

since $\langle 1,1\rangle D(x)=0$. Working the same way with $\langle 1,-x g\rangle D(x)$ and $\langle 1,-x g\rangle D(z)$ yields:

$$
\begin{aligned}
& \langle 1,-x\rangle D(x)+\langle 1,-z\rangle D(x) \\
& \quad=\langle 1,-x\rangle D(x)+\langle 1,-g\rangle D(x)+\langle 1,-x\rangle D(z)+\langle 1,-g\rangle D(z) .
\end{aligned}
$$

(*) $\langle 1,-z\rangle D(x)=\langle 1,-g\rangle D(x)+\langle 1,-x\rangle D(z)+\langle 1,-g\rangle D(z)$.
But $z \in D\langle 1, x\rangle$ implies $\langle 1,-z\rangle D(x)=\langle 1,-x\rangle D(z)$, and $z \in D\langle 1, g\rangle$ implies $\langle 1,-g\rangle D(z)=\langle 1,-z\rangle D(g)=0$. Then (*) yields $\langle 1,-g\rangle D(x)=0$.

Remark. Lemma 2.3 does not hold for Witt rings R of local type and characteristic 2 . For example, we may describe $L_{4,0}$ by taking $G=$ (a, b, c, d)-here (S) denotes the group generated by S-and $D\langle 1, a\rangle=$ $(a, b, c), \quad D\langle 1, b\rangle=(a, b, c d), \quad D\langle 1, c\rangle=(a, c, b d)$ and $\quad D\langle 1, d\rangle=$ $(a b, a c, d)$. The map given by $D(a)=\langle 1, a\rangle, D(b)=\langle 1, b\rangle, D(c)=$ $\langle 1, a\rangle$ and $D(d)=0$ induces a derivation. But $D(d)=0$ while $\langle 1,-d\rangle D(a) \neq 0$.

Proposition 2.4. Let R be $L_{2 n, 1}$ or $L_{2 n+1},(n \geq 1)$ and let G be the associated group. Then $\operatorname{Der}(R)$ is generated by the derivations $d(H, \beta)(c f$. (1.3)). Here H is a subgroup of index 2 in G containing -1 and β is a scalar multiple of a Pfister form with $H \subset x D(\beta)$, for some $x \in G$.

Proof. Let $0 \neq D \in \operatorname{Der}(R)$ and let $K=\operatorname{ker}\left(\left.D\right|_{G}\right)$. Suppose first that $i_{G}(K)=2$. Let $x \notin K$ and $\beta=D(x)$. Note that β is a scalar multiple of a Pfister form by (1.1) and (2.2). By (2.3), if $k \in K$ then $\langle 1,-k\rangle D(x)=0$ so that K is contained in a multiple of the value set of β. Also, $D(k)=0$ and $D(k x)=k D(x)=D(x)$. Thus $D=d(K, \beta)$.

Now suppose $i_{G}(K) \geq 4$. Fix $x \notin K$ and let $D(x)=\beta$. We will complete the proof by showing there exists D^{\prime}, a sum of $d(H, \alpha)$'s, such that $\operatorname{ker}\left(\left.\left(D-D^{\prime}\right)\right|_{G}\right) \supset K \cup x K$.

By (2.2), $\beta=\rho,\langle 1,-y\rangle$ or $z\langle 1,-y\rangle$, where $y \in D\langle 1,1\rangle$ and $z \notin$ $D\langle 1,-y\rangle$. If $\beta=\rho$, write $G=\{1, x\} H$, with $K \subset H$ and $i_{G}(H)=2$. Then $K \cup x K \subset \operatorname{ker}\left(\left.(D-d(H, \rho))\right|_{G}\right)$. If $\beta=\langle 1,-y\rangle$ and $x \notin\langle 1,-y\rangle$ then (2.3) implies $K \subset D\langle 1,-y\rangle$ and so

$$
K \cup x K \subset \operatorname{ker}\left(\left.(D-d(D\langle 1,-y\rangle,\langle 1,-y\rangle))\right|_{G}\right)
$$

Now suppose $\beta=\langle 1,-y\rangle$ and $x \in D\langle 1,-y\rangle$. Let H be a subgroup of index 2 in G, containing K but not x. Then $H=D\langle 1,-w\rangle$, for some $w \in G$, by (2.1). We have $x \notin D\langle 1,-w\rangle$ and so $x \notin D\langle 1,-w y\rangle$. Also $K \subset D\langle 1,-y\rangle \cap D\langle 1,-y w\rangle$ by (2.3). Set $D^{\prime}=d(D\langle 1,-w y\rangle$, $\langle 1,-w y\rangle)+d(H,-y\langle 1,-w\rangle)$. Then $D^{\prime}(x)=\langle 1,-w y\rangle \perp-y\langle 1,-w\rangle$ $=\langle 1,-y\rangle=\beta$ and $D^{\prime}(K)=0$. So $\operatorname{ker}\left(\left.\left(D-D^{\prime}\right)\right|_{G}\right) \supset K \cup x K$.

Lastly, suppose $\beta=z\langle 1,-y\rangle$. By the above argument, there exists D^{\prime}, a sum of $d(H, \alpha)$'s, such that $K \cup x K \subset \operatorname{ker}\left(\left.\left(z D-D^{\prime}\right)\right|_{G}\right)$. But $z D^{\prime}$ is still a sum of $d(H, \alpha)$'s and $K \cup x K \subset \operatorname{ker}\left(\left.\left(D-z D^{\prime}\right)\right|_{G}\right)$.

Corollary 2.5. Let R be $L_{2 n, 1}$ or $L_{2 n+1},(n \geq 1)$ with associated group G. Then $\operatorname{Der}(R) \subset \operatorname{Hom}(G, R)$. That is, if $D \in \operatorname{Der}(R)$ and $x, y \in$ G then $D(x y)=D(x)+D(y)$.

Proof. This holds for $D=d(H, \beta)$ and hence for all derivations by (2.4).

Remarks. (1) (2.4) and (2.5) fail for Witt rings of local type and characteristic 2. The example given after (2.3) has $d(a d)=d D(a) \neq D(a)$ $+D(d)$, contradicting (2.5) and hence (2.4).
(2) There are relations among the $d(H, \beta)$'s which are difficult to determine explicitly. We will compute $\operatorname{Der}\left(L_{2 n, 1}\right), \operatorname{Der}\left(L_{2 n+1}\right), n \geq 1$, by an inductive argument instead.

We note that $L_{1}=\mathbf{Z}$.
Lemma 2.6. Let R be $L_{2 n, 1}$ or $L_{2 n+1},(n \geq 1)$ and let G be the group associated to R. Let S be the Witt ring of local type with group K where $2|K|=|G|$ and $\operatorname{char}(S) \neq 2$ (i.e. S is $L_{2 n-1}$ or $\left.L_{2 n, 1}\right)$. Fix $a \in G \backslash\{1\}$ with $-1 \notin D\langle 1, a\rangle$.
(1) $D\langle 1, a\rangle$ has the induced quaternionic structure and $S \cong$ $W(D\langle 1, a\rangle)$.
(2) There is a (group) isomorphism:

$$
\alpha: \operatorname{ann}_{S}\langle 1,1\rangle \rightarrow \operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle
$$

with $\alpha(k q)=k \alpha(q)$ for all $q \in \operatorname{ann}_{S}\langle 1,1\rangle$ and $k \in K(K$ is identified with $D\langle 1, a\rangle$).

Proof. There is an orthogonal decomposition $G=\{1,-a\} \perp D\langle 1, a\rangle$ and so $D\langle 1, a\rangle$ inherits a quaternionic structure with a as the distinguished element (cf. [1]). The Witt ring of $D\langle 1, a\rangle$ clearly is of local type, $a \neq 1$ and $2|D\langle 1, a\rangle|=|G|$, so $S \cong W(D\langle 1, a\rangle)$. We now identify S with $W(D\langle 1, a\rangle)$ and K with $D\langle 1, a\rangle$.

Define $\alpha_{0}: I_{S} \rightarrow I_{R}$ by $\sum_{i}\left\langle y_{2 i-1}, y_{2 i}\right\rangle \mapsto \sum_{i}\left\langle y_{2 i-1},-a y_{2 i}\right\rangle$. To show α_{0} is well-defined, it suffices to check on binary forms, by Witt's theorem on chain equivalence [5, p. 31]. Suppose $\left\langle y_{1}, y_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle$ in S. Then $y_{1} y_{2}=x_{1} x_{2}$ and $x_{1} y_{1} \in D_{S}\left\langle 1, y_{1} y_{2}\right\rangle$. Since $x_{1}, y_{1} \in K=D_{R}\langle 1, a\rangle$ we have $x_{1}, y_{1} \in D_{R}\left\langle 1, y_{1} y_{2}\right\rangle \cap D_{R}\langle 1, a\rangle \subset D_{R}\left\langle 1,-a y_{1} y_{2}\right\rangle$. Thus $\left\langle y_{1},-a y_{2}\right\rangle=\left\langle x_{1},-a x_{2}\right\rangle$ in R. Note that α_{0} is clearly a (group) homomorphism and that $\alpha_{0}(k q)=k \alpha_{0}(q)$ for all $k \in K, q \in I_{S}$. Further,

$$
\langle 1, a\rangle \alpha_{0}\left(\sum_{i}\left\langle y_{2 l-1}, y_{2 l}\right\rangle\right)=\sum_{i} y_{2 l-1}\left\langle\left\langle a,-y_{2 i-1} y_{2 i}\right\rangle\right\rangle=0
$$

since $y_{2 \iota-1} y_{2 i} \in D\langle 1, a\rangle$. Hence $\alpha_{0}\left(I_{S}\right) \subset \operatorname{ann}_{R}\langle 1, a\rangle$.
Let α be the restriction of α_{0} to $\operatorname{ann}_{S}\langle 1,1\rangle$. Then $\alpha: \operatorname{ann}_{S}\langle 1,1\rangle \rightarrow$ $\operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle$. Now $\left|\operatorname{ann}_{S}\langle 1,1\rangle\right|=|K|=\frac{1}{2}|G|$, by (2.2). Using (2.2) again shows $\operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle$ consists of $0, \rho$ and pairs $\langle 1, x\rangle, x^{\prime}\langle 1, x\rangle$ where $-x \in D_{R}\langle 1,1\rangle \cap D_{R}\langle 1, a\rangle \backslash\{1\}, x^{\prime} \notin D\langle 1, x\rangle$. Thus

$$
\left|\operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle\right|=2\left|D_{R}\langle 1,1\rangle \cap D_{R}\langle 1, a\rangle\right|=\frac{1}{2}|G|
$$

To complete the proof then, we need only show α is injective.

Suppose $y, y^{\prime} \in K$ with $\langle 1, y\rangle \in \operatorname{ann}_{S}\langle 1,1\rangle$ and $\alpha\left(y^{\prime}\langle 1, y\rangle\right)=0$. Then $\langle 1,-a y\rangle=0$ in $R, a=y$ and $\langle 1, y\rangle=0$ in S. Let $y, y^{\prime} \in K$, $q=\left\langle\left\langle y,-y^{\prime}\right\rangle\right\rangle$ and suppose $\alpha(q)=0$. Then $\langle 1,-a y\rangle \perp-y^{\prime}\langle 1,-a y\rangle$ $=0, y^{\prime} \in D_{R}\langle 1,-a y\rangle \cap D_{R}\langle 1, a\rangle \subset D_{R}\langle 1, y\rangle$. But then $y^{\prime} \in D_{S}\langle 1, y\rangle$ and $q=0$ in S. By (2.2), $\operatorname{ann}_{S}\langle 1,1\rangle$ consists of such $y^{\prime}\langle 1, y\rangle,\left\langle\left\langle y,-y^{\prime}\right\rangle\right\rangle$ and so α is injective.

Denote the inverse of α by β. Note that $\beta(k q)=k \beta(q)$ for all $k \in D_{R}\langle 1, a\rangle$ and $q \in \operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle$. Note also under the identification of K with $D\langle 1, a\rangle, S$ is a subring of R. We continue with the notations of (2.6).

Corollary 2.7. Let $A=\{D \in \operatorname{Der}(R) \mid D(a)=0\}$. Then $\beta_{*}: A \rightarrow$ $\operatorname{Der}(S)$ is a Lie algebra isomorphism, where $\beta_{*}(D)=\beta\left(\left.D\right|_{S}\right)$.

Proof. We first show β_{*} is well-defined. If $x \in G$ and $D \in A$ then $\langle 1, a\rangle D(x)=0$ by (2.3). Thus $D(R) \subset \operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle$, the domain of β. Further, if $q_{1}, q_{2} \in S$ then

$$
\begin{aligned}
\beta_{*}(D)\left(q_{1} q_{2}\right) & =\beta\left(D\left(q_{1} q_{2}\right)\right)=\beta\left(q_{1} D\left(q_{2}\right)+q_{2} D\left(q_{1}\right)\right) \\
& =q_{1} \beta_{*}(D)\left(q_{2}\right)+q_{2} \beta_{*}(D)\left(q_{1}\right)
\end{aligned}
$$

since $\beta(k q)=k \beta(q)$ for any $k \in K, q \in \operatorname{ann}_{R}\langle 1,1\rangle \cap \operatorname{ann}_{R}\langle 1, a\rangle$. Thus $\beta_{*}(D) \in \operatorname{Der}(S)$ for all $D \in A$.

Now β_{*} is additive and if $D_{1}, D_{2} \in A$ and $k \in K$ write $D_{2}(k)=$ $\sum_{i}\left\langle y_{2 i-1}, y_{2 i}\right\rangle \in S$. Then:

$$
\begin{aligned}
\beta_{*}\left(D_{1}\right) \circ \beta_{*}\left(D_{2}\right) & (k)=\beta_{*}\left(D_{1}\right)\left(\beta\left(\sum_{i}\left\langle y_{2 i-1}, y_{2 i}\right\rangle\right)\right) \\
& =\beta_{*}\left(D_{1}\right)\left(\sum_{i}\left\langle y_{2 i-1},-a y_{2 i}\right\rangle\right)=\beta\left(\sum D_{1}\left\langle y_{2 i-1},-a y_{2 i}\right\rangle\right) \\
= & \beta\left(\sum D_{1}\left\langle y_{2 i-1}, y_{2 i}\right\rangle\right)
\end{aligned}
$$

since $D_{1}\left(a y_{2 i}\right)=a D_{1}\left(y_{2 i}\right)=D_{1}\left(y_{2 i}\right)$ by (2.3). Thus $\beta_{*}\left(D_{1}\right) \circ \beta_{*}\left(D_{2}\right)=$ $\beta_{*}\left(D_{1} \circ D_{2}\right)$. In particular, $\beta_{*}\left(\left[D_{1}, D_{2}\right]\right)=\left[\beta_{*} D_{1}, \beta_{*} D_{2}\right]$ and β_{*} is a Lie algebra homomorphism.

If, for $D \in A, \beta_{*}(D)=0$ then $\left.D\right|_{K}=0$, since β is an isomorphism. Hence $G=\{1,-a\} K \subset \operatorname{ker}\left(\left.D\right|_{G}\right)$ and $D=0$. Thus β_{*} is injective. To show β_{*} is surjective it suffices to show that the generators $d(H, \alpha)$ of $\operatorname{Der}(S)$ (2.4) are in the image of β. Let H be a subgroup of index 2 in K containing a. By (2.1), $H=D_{S}\langle 1, x\rangle$. Let α be $\langle 1, x\rangle, x^{\prime}\langle 1, x\rangle$ or ρ,
where $x^{\prime} \notin D_{S}\langle 1, x\rangle$ and $\rho=\left\langle\left\langle x, a x^{\prime}\right\rangle\right\rangle$. We need to show $d(H, \alpha)$ is in the image of β_{*}. We check this only for $\alpha=\langle 1, x\rangle$, the other cases being similar.

Set $H^{\prime}=D_{R}\langle 1,-a x\rangle$. Note that $H\{1,-1\} \subset H^{\prime}$, since $H \subset$ $D_{R}\langle 1, a\rangle \cap D_{R}\langle 1, x\rangle$ and $x \in K=D_{R}\langle 1, a\rangle, a \in H \subset D_{R}\langle 1, x\rangle$ implies $-1 \in D_{R}\langle 1,-a x\rangle$. Then $\beta_{*}\left(d\left(H^{\prime},\langle 1,-a x\rangle\right)=d(H,\langle 1, x\rangle)\right.$.

Theorem 2.8. Let R be $L_{2 n, 1}$ or $L_{2 n+1}$ with $n \geq 1$, and let G be the associated group. Let $a \in G$ with $-a \notin D\langle 1,1\rangle$. Let $A=\{D \in$ $\operatorname{Der}(R) \mid D(a)=0\}$. Let $S=L_{2 n-1}$ if $R=L_{2 n, 1}$ and $S=L_{2 n, 1}$ if $R=$ $L_{2 n+1}$.
(1) There is an exact sequence of groups:

$$
0 \rightarrow A \rightarrow \operatorname{Der}(R) \xrightarrow{e} \operatorname{ann}_{R}\langle 1,1\rangle \rightarrow 0
$$

where $e(D)=D(a)$ and A is Lie isomorphic to $\operatorname{Der}(S)$.
(2) $\operatorname{dim} \operatorname{Der}(R)=\frac{1}{2}(n+2)(n-1)$.

Proof. (1) We need only show e is surjective by (2.7). Let $\alpha \in$ $\operatorname{ann}_{R}\langle 1,1\rangle$. If $\alpha=\rho,\langle 1,-x\rangle$ or $x^{\prime}\langle 1,-x\rangle$ where $x^{\prime} \notin D_{R}\langle 1,-x\rangle$ and $a \notin D_{R}\langle 1,-x\rangle$ then $e(d(D\langle 1,-x\rangle, \alpha))=\alpha$. By (2.2) we may thus assume $\alpha=\langle 1,-x\rangle$ with $a \in D_{R}\langle 1,-x\rangle$. Choose z such that $a \notin$ $D_{R}\langle 1,-z\rangle$. Then

$$
\begin{aligned}
e(d(D\langle 1,-x z\rangle,\langle 1,-x z\rangle)-x d & (D\langle 1,-z\rangle,\langle 1,-z\rangle)) \\
& =\langle 1,-x z\rangle+-x\langle 1,-z\rangle=\alpha
\end{aligned}
$$

(2) $\operatorname{dim}(\operatorname{Der}(R))=\operatorname{dim}(\operatorname{Der}(S))+n$, by (1) and (2.2). Since $\operatorname{Der}\left(L_{1}\right)$ $=\operatorname{Der}(\mathbf{Z})=0$ we have

$$
\operatorname{dim}(\operatorname{Der}(R))=n+(n-1)+\cdots+2=\frac{1}{2}(n+2)(n-1)
$$

We turn now to the Witt rings $L_{2 n, 0}$ with $n \geq 2$. Let G be the group associated to $L_{2 n, 0}$ and let $q: G \times G \rightarrow \mathbf{Z}_{2}$ be the associated linked quaternionic map. We require the following construction:

Fix $a, b \in G$ with $a \notin D\langle 1, b\rangle$. There is an orthogonal sum $G=$ $\{1, a, b, a b\} \perp D\langle 1, a\rangle \cap D\langle 1, b\rangle$. Set $H=\{1, a, b, a b\}$ and $K=$ $D\langle 1, a\rangle \cap D\langle 1, b\rangle$. By [1] G induces a quaternionic structure on H and K. In particular, for $k \in K$ we write $D_{K}\langle 1, k\rangle=D_{R}\langle 1, k\rangle \cap K$.

Embed K into a group \bar{K} with $|\bar{K}|=2|K|$; say $\bar{K}=\{1, c\} K$. For $k \in K \backslash\{1\}$ define:

$$
\begin{aligned}
& D_{\bar{K}}\langle 1, k\rangle=\left\{1, c k^{\prime}\right\} D_{K}\langle 1, k\rangle, \quad \text { where } k^{\prime} \in K \backslash D_{K}\langle 1, k\rangle \\
& D_{\bar{K}}\langle 1, c k\rangle=\{1, c\} D_{K}\langle 1, k\rangle .
\end{aligned}
$$

We also set $D_{\bar{K}}\langle 1,1\rangle=K$ and $D_{\bar{K}}\langle 1, c\rangle=\bar{K}$. We further define \bar{q} : $\bar{K} \times \bar{K} \rightarrow \mathbf{Z}_{2}$ by $\bar{q}(x, y)=0$ iff $y \in D_{\bar{K}}\langle 1, c x\rangle$. (We are thus taking c to be the distinguished element of \bar{K}.)

Lemma 2.9. (1) \bar{q} is a linked quaternionic mapping.
(2) $W \bar{K} \cong L_{2 n-1}$.

Proof. (1) Note that $x \in D_{\bar{K}}\langle 1, x\rangle$ for all $x \in \bar{K}$. Suppose $x \in$ $D_{\bar{K}}\langle 1, y\rangle$. We will show $c y \in D_{\bar{K}}\langle 1, c x\rangle$ for the case $y \in K$ (the case $y \in c K$ is similar). If $x \in D_{K}\langle 1, y\rangle$ then $x \in D_{R}\langle 1, y\rangle, y \in D_{R}\langle 1, x\rangle$ since $-1=1$ in G, and so $y \in D_{K}\langle 1, x\rangle$. Hence $c y \in D_{\bar{K}}\langle 1, c x\rangle$. If $x=c y^{\prime} x^{\prime}$ with $y^{\prime} \in K \backslash D_{K}\langle 1, y\rangle$ and $x^{\prime} \in D_{K}\langle 1, y\rangle$ then $y \in$ $K \backslash D_{K}\left\langle 1, x^{\prime} y^{\prime}\right\rangle$. So $c y \in D_{\bar{K}}\left\langle 1, x^{\prime} y^{\prime}\right\rangle=D_{K}\langle 1, c x\rangle$.

We lastly check \bar{q} is linked. Suppose $\bar{q}\left(x_{1}, y_{1}\right)=\bar{q}\left(x_{2}, y_{2}\right)$, with $x_{i}, y_{j} \in \bar{K},(i, j=1,2)$. If $\bar{q}\left(x_{i}, y_{i}\right)=0, i=1,2$, then $\bar{q}\left(x_{1}, y_{1}\right)=\bar{q}\left(x_{1}, 1\right)$ $=\bar{q}\left(x_{2}, 1\right)=\bar{q}\left(x_{2}, y_{2}\right)$. If $\bar{q}\left(x_{i}, y_{i}\right) \neq 0$, for $i=1,2$, then $y_{1} \neq 1$ and $y_{2} \neq 1$. Since \bar{K} cannot be written as the union of two proper subgroups, there exists $w \notin D_{\bar{K}}\left\langle 1, c x_{1}\right\rangle \cup D_{\bar{K}}\left\langle 1, c x_{2}\right\rangle$. Then $\bar{q}\left(x_{1}, y_{1}\right)=\bar{q}\left(\bar{x}_{1}, w\right)=$ $\bar{q}\left(x_{2}, w\right)=\bar{q}\left(x_{2}, y_{2}\right)=1$.
(2) \bar{q} has a range of two elements, so the Witt ring $W \bar{K}$ it induces is of local type. Since the distinguished element c is not 1 and $|\bar{K}|=2|K|$ $=\frac{1}{2}|G|, W \bar{K} \cong L_{2 n-1}$.

We continue with all of the notations introduced before (2.9) but now writing \bar{R} for $W \bar{K} \cong L_{2 n-1}$.

Lemma 2.10. There is an additive group isomorphism

$$
\alpha: \operatorname{ann}_{\bar{R}}\langle 1,1\rangle \rightarrow \operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle
$$

such that $\alpha(y q)=y \alpha(q)$ for all $y \in \bar{K}, q \in \operatorname{ann}_{\bar{R}}\langle 1,1\rangle$.
Proof. Since $D_{\bar{K}}\langle 1,1\rangle=K$, a form in $\operatorname{ann}_{\bar{R}}\langle 1,1\rangle$ looks like $\sum_{i}\left\langle y_{2 i-1}, c y_{2 i}\right\rangle$, with each $y_{j} \in K(2.2)$. Define α by:

$$
\alpha\left(\sum_{i}\left\langle y_{2 i-1}, c y_{2 i}\right\rangle\right)=\sum_{i}\left\langle y_{2 i-1}, y_{2 i}\right\rangle .
$$

To show α is well-defined it suffices to check on binary forms. Suppose $\left\langle y_{1}, c y_{2}\right\rangle=\left\langle y_{3}, c y_{4}\right\rangle$ in \bar{R}. Then $y_{1} y_{2}=y_{3} y_{4}$ and $y_{1} y_{3} \in D_{\bar{K}}\left\langle 1, c y_{1} y_{2}\right\rangle=$ $\{1, c\} D_{K}\left\langle 1, y_{1} y_{2}\right\rangle$. Since $y_{1} y_{3} \in K$ we get $y_{1} y_{3} \in D_{K}\left\langle 1, y_{1} y_{2}\right\rangle \subset$ $D_{R}\left\langle 1, y_{1} y_{2}\right\rangle$, so $\left\langle y_{1}, y_{2}\right\rangle=\left\langle y_{3}, y_{4}\right\rangle$ in R. Also, since each $y_{j} \in K=$ $D\langle 1, a\rangle \cap D\langle 1, b\rangle,\langle 1, a\rangle \cdot\left\langle y_{2 i-1}, y_{2 i}\right\rangle=0=\operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle$.

Now α is clearly a homomorphism and $\alpha(y q)=y \alpha(q)$ for all $y \in \bar{K}$ and $q \in \operatorname{ann}_{\bar{R}}\langle 1,1\rangle$. To show α is an isomorphism we first

Claim. $\operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle=\{0, \rho\} \cup\left\{\langle 1, k\rangle, k^{\prime}\langle 1, k\rangle \mid k \in K\right.$ and $\left.k^{\prime} \in K \backslash D_{R}\langle 1, k\rangle\right\}$.

Let S be the set on the right-hand side. Since $K=D\langle 1, a\rangle \cap D\langle 1, b\rangle$ and $-1=1$ in G we have $S \subset \operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle$. Let $q \in$ $\operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle$. If q is not a binary form then $q=0$ or ρ, since $q \in I_{R}$. So suppose $q=y \cdot\langle 1, x\rangle$, with $x, y \in G$. Then $\langle 1, a\rangle \cdot\langle 1, x\rangle=$ $0=\langle 1, b\rangle \cdot\langle 1, x\rangle$ implies $x \in K$. If $y \in D\langle 1, x\rangle$ then $y\langle 1, x\rangle=\langle 1, x\rangle$ $\in S$. Suppose then that $y \notin D\langle 1, x\rangle$. Now K is a subgroup of index 4 in G. K is then contained in precisely three subgroups of index 2 , namely $D\langle 1, x\rangle, D\langle 1, b\rangle$ and $D\langle 1, a b\rangle$. If $K \subset D\langle 1, x\rangle$ then $x \in\{a, b, a b\}=$ $H \backslash\{1\}$, which is impossible since $x \in K$ and $K \cap H=\{1\}$. Thus $K \not \subset$ $D\langle 1, x\rangle$. Choose $k^{\prime} \in K \backslash D\langle 1, x\rangle$. Then $q=y\langle 1, x\rangle=k^{\prime}\langle 1, x\rangle \in S$. This proves the claim.

The claim quickly yields that α is surjective since fror $k, k^{\prime} \in K$, $\alpha\left(\left\langle k^{\prime}, k^{\prime} k c\right\rangle\right)=k^{\prime}\langle 1, k\rangle$, and if $k^{\prime} \notin D\langle 1, k\rangle$ then $\alpha\left(\langle 1, c k\rangle+k^{\prime}\langle 1, c k\rangle\right)$ $=\left\langle\left\langle k, k^{\prime}\right\rangle\right\rangle=\rho$. Further the claim shows $\left|\operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle\right|=$ $2|K|=|\bar{K}|$. By (2.2), $\left|\operatorname{ann}_{\bar{R}}\langle 1,1\rangle\right|=|\bar{K}|$ also. Thus α is an isomorphism.

Lemma 2.11. Let $R=L_{2 n, 0}$ and $\bar{R}=W \bar{K} \cong L_{2 n-1}(n \geq 2)$ as before. Let $A=\{D \in \operatorname{Der}(R) \mid D(a)=D(b)=0\}$. Then A is Lie isomorphic to $\operatorname{Der}(\bar{R})$.

Proof. We first show that for $D \in A, D(R) \subset \operatorname{ann}_{R}\langle 1, a\rangle \cap$ $\operatorname{ann}_{R}\langle 1, b\rangle$. For $g \in G$, if $g \in D\langle 1, a\rangle$ then $\langle 1, a\rangle D(g)=\langle 1, g\rangle D(a)=$ 0 . If $g \notin D\langle 1, a\rangle$ then $b g \in D\langle 1, a\rangle$, since $b \notin D\langle 1, a\rangle$. Hence $\langle 1, a\rangle D(b g)=\langle 1, b g\rangle D(a)=0$. So $0=b\langle 1, a\rangle D(g)+g\langle 1, a\rangle D(b)$. Since $D(b)=0$ also $\langle 1, a\rangle D(g)=0$. Thus in each case $D(g) \in$ $\operatorname{ann}_{R}\langle 1, a\rangle$. Similarly, $D(\underline{g}) \in \operatorname{ann}_{R}\langle 1, b\rangle$.

For $D \in A$ define $\bar{D}: \bar{K} \rightarrow \operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle$, by $\bar{D}(k)=$ $\bar{D}(c k)=D(k)$, for all $k \in K$. Let $\beta=\alpha^{-1}$, where α is the isomorphism of (2.10). Note $\beta(k q)=k \beta(q)$ for all $k \in K, q \in \operatorname{ann}_{R}\langle 1, a\rangle \cap$ $\operatorname{ann}_{R}\langle 1, b\rangle$. Define $\beta_{*}: A \rightarrow \operatorname{Der}(\bar{R})$ by:

$$
\beta_{*}(D)=\beta \circ \bar{D} .
$$

Note that we have already shown the image of \bar{D} is in the domain of β.
We next show $\beta_{*}(D) \in \operatorname{Der}(\bar{R})$. First, $\beta_{*}(D)(c)=\beta_{*}(\bar{D}(c))=$ $\beta(D(1))=0$. Let $x_{1}, x_{2} \in \bar{K}$ and write $x_{i}=c^{\varepsilon_{1}} y_{i}$, where $\varepsilon_{l} \in\{0,1\}$ and
$y_{i} \in K$. Then

$$
\begin{aligned}
& \beta_{*}(D)\left(x_{1} x_{2}\right)=\beta\left(D\left(y_{1} y_{2}\right)\right)=\beta\left(y_{1} D\left(y_{2}\right)+y_{2} D\left(y_{1}\right)\right) \\
& \quad=y_{1} \beta\left(D\left(y_{2}\right)\right)+y_{2} \beta\left(D\left(y_{1}\right)\right)=y_{1} \beta_{*}(D)\left(x_{2}\right)+y_{2} \beta_{*}(D)\left(x_{1}\right) \\
& \quad=x_{1} \beta_{*}(D)\left(x_{2}\right)+x_{2} \beta_{*}(D)\left(x_{1}\right)
\end{aligned}
$$

since $\langle 1,1\rangle \beta(D(z))=0$ in \bar{R}, for any $z \in \bar{K}$, implies $c \beta(D(z))=$ $\beta(D(z))$.

Next suppose $x_{1} \in D_{\bar{R}}\left\langle 1, x_{2}\right\rangle$. Then, by our construction, $y_{1} \in$ $D_{K}\left\langle 1, y_{2}\right\rangle$ unless $x_{1}=c y_{1}, x_{2}=y_{2}$. If $y_{1} \in D_{K}\left\langle 1, y_{2}\right\rangle$ then $D\left(y_{1} y_{2}\right)=$ $D\left(y_{1}\right)+D\left(y_{2}\right)$ and so $\beta_{*}(D)\left(x_{1} x_{2}\right)=\beta_{*}(D)\left(x_{1}\right)+\beta_{*}(D)\left(x_{2}\right)$. So suppose $y_{1}, y_{2} \in K$ with $c y_{1} \in D_{\bar{R}}\left\langle 1, y_{2}\right\rangle$ and $y_{1} \notin D_{\bar{R}}\left\langle 1, y_{2}\right\rangle$. Then $y_{1} \notin$ $D_{R}\left\langle 1, b y_{2}\right\rangle$, since $y_{1} \in K \subset D_{R}\langle 1, b\rangle$. Also, $a \in D_{R}\left\langle 1, y_{2}\right\rangle, a \notin D_{R}\langle 1, b\rangle$ imply $a \notin D_{R}\left\langle 1, b y_{2}\right\rangle$. Thus $a y_{1} \in D_{R}\left\langle 1, b y_{2}\right\rangle$ and $D\left(a b y_{1} y_{2}\right)=D\left(a y_{1}\right)+$ $D\left(b y_{2}\right)$. Now $D(a b)=0$ implies $D\left(a b y_{1} y_{2}\right)=a b D\left(y_{1} y_{2}\right)$. And $a b D\left(y_{1} y_{2}\right)$ $=D\left(y_{1} y_{2}\right)$ since $D(R) \subset \operatorname{ann}_{R}\langle 1, a\rangle \cap \operatorname{ann}_{R}\langle 1, b\rangle$. Thus $D\left(a b y_{1} y_{2}\right)=$ $D\left(y_{1} y_{2}\right)$ and similarly $D\left(a y_{1}\right)=D\left(y_{1}\right)$ and $D\left(b y_{2}\right)=D\left(y_{2}\right)$. We thus have $D\left(y_{1} y_{2}\right)=D\left(y_{1}\right)+D\left(y_{2}\right)$ and $\beta_{*}(D)\left(x_{1} x_{2}\right)=\beta_{*}(D)\left(x_{1}\right)+$ $\beta_{*}(D)\left(x_{2}\right)$. By (1.2) this completes the proof that $\beta_{*}(D) \in \operatorname{Der}(\bar{R})$.

Clearly β_{*} is an additive map. Let $D_{1}, D_{2} \in A$ and $x=c^{\varepsilon} y \in \bar{K}$, with $\varepsilon \in\{0,1\}$ and $y \in K$. Let $D_{2}(y)=\sum_{i}\left\langle z_{2 i-1}, z_{2 i}\right\rangle$, with all $z_{j} \in K$. Then

$$
\begin{aligned}
\beta_{*}\left(D_{1}\right) \circ \beta_{*}\left(D_{2}\right)(x) & =\beta_{*}\left(D_{1}\right)\left(\beta\left(\sum_{i}\left\langle z_{2 i-1}, z_{2 i}\right\rangle\right)\right) \\
& =\beta_{*}\left(D_{1}\right)\left(\sum_{i}\left\langle z_{2 i-1}, c z_{2 i}\right\rangle\right)=\beta\left(D_{1}\left(\sum\left\langle z_{2 \iota-1}, z_{2 i}\right\rangle\right)\right) \\
& =\beta_{*}\left(D_{1} \circ D_{2}\right)(x)
\end{aligned}
$$

Hence $\beta_{*}\left[D_{1}, D_{2}\right]=\left[\beta_{*} D_{1}, \beta_{*} D_{2}\right]$.
Since β is an isomorphism, β_{*} is clearly injective. To show β_{*} is surjective, it suffices to show the generators of $\operatorname{Der}(\bar{R})$ given in (2.4) are in the image of β_{*}. A generator is $d(L, \gamma)$, where $\gamma \in \bar{R}$ and L is a subgroup of index 2 in \bar{K} containing c and contained in a scalar multiple of $D_{\bar{R}}(\gamma)$. By (2.1) $L=D_{\bar{R}}\langle 1, x\rangle$, for some $x \in \bar{K}$ and $c \in D_{\bar{K}}\langle 1, x\rangle$, hence $c x \in D_{\bar{R}}\langle 1,1\rangle=K$. Then γ is either $\langle 1, x\rangle, x^{\prime}\langle 1, x\rangle$ where $x^{\prime} \notin$ $D\langle 1, x\rangle$, or ρ the unique non-trivial 2-fold Pfister form in \bar{R} (2.2).

We will show $d(L, \gamma)$ with $\gamma=\langle 1, c y\rangle, y \in K$ and $L=D_{\bar{R}}\langle 1, c y\rangle$ is in the image of β_{*}. The other cases are similar. Let $D=d(D\langle 1, y\rangle$, $\langle 1, y\rangle) \in \operatorname{Der}(r)$. Since $y \in D\langle 1, a\rangle \cap D\langle 1, b\rangle, a, b \in D\langle 1, y\rangle$ and so
$D \in A$. For $\varepsilon \in\{0,1\}$ and $x \in K$ we have $\beta_{*}(D)\left(c^{\varepsilon} x\right)=\beta(D(x))$, which is 0 if $x \in D_{R}\langle 1, y\rangle \cap K$, and is $\beta(\langle 1, y\rangle)=\gamma$ if $x \notin D_{R}\langle 1, y\rangle$. Thus the image $\beta_{*}(D)(\bar{K})$ is $\{0, \gamma\}$ and the kernel (in $\left.\bar{K}\right)$ is $\{1, c\} D_{K}\langle 1, y\rangle=$ $D_{\bar{R}}\langle 1, c y\rangle$. Hence $\beta_{*}(D)=d(L, \gamma)$.

Lemma 2.12. Let G be the group associated to $R=L_{2 n, 0}$ where $n \geq 1$. Then there exist subgroups G_{1}, G_{2} of G such that:
(1) $G=G_{1} \times G_{2}$;
(2) $x_{1} \in D_{R}\left\langle 1, x_{2}\right\rangle$, for all $x_{1}, x_{2} \in G_{1}$;
(3) $y_{1} \in D_{R}\left\langle 1, y_{2}\right\rangle$, for all $y_{1}, y_{2} \in G_{2}$.

Further, if we fix $x_{0}, y_{0} \in G$ with $x_{0} \notin D_{R}\left\langle 1, y_{0}\right\rangle$ then we may assume $x_{0} \in G_{1}$ and $y_{0} \in G_{2}$.

Proof. If $n=1$ then $G=\left\{1, x_{0}, y_{0}, x_{0} y_{0}\right\}$ and the result is clear. Let $n \geq 2$ and fix $x_{0}, y_{0} \in G$ with $x_{0} \notin D_{R}\left\langle 1, y_{0}\right\rangle$. There is an orthogonal decomposition $G=\left\{1, x_{0}, y_{0}, x_{0} y_{0}\right\} \perp D_{R}\left\langle 1, x_{0}\right\rangle \cap D_{R}\left\langle 1, y_{0}\right\rangle$. Here $K=$ $D_{R}\left\langle 1, x_{0}\right\rangle \cap D_{R}\left\langle 1, y_{0}\right\rangle$ inherits a quaternionic structure and its Witt ring is $L_{2 n-2,0}$. By induction there exist $K_{1}, K_{2} \subset K$ satisfying conditions (1)-(3). Set $G_{1}=\left\{1, x_{0}\right\} K_{1}$ and $G_{2}=\left\{1, y_{0}\right\} K_{2}$. Then $G=G_{1} \times G_{2}$.

We check condition (2) (the proof of (3) is similar). Let $x_{1}, x_{2} \in G_{1}$ and write $x_{i}=x_{0}^{\varepsilon_{i}} x_{i}^{\prime}$ where, for $i=1,2, \varepsilon_{i} \in\{0,1\}$ and $x_{i}^{\prime} \in K_{1}$. Then $x_{1}^{\prime} \in D_{K}\left\langle 1, x_{2}^{\prime}\right\rangle$ and so $x_{1}^{\prime} \in D_{R}\left\langle 1, x_{2}^{\prime}\right\rangle$. Since $x_{1}^{\prime}, x_{2}^{\prime} \in K \subset D\left\langle 1, x_{0}\right\rangle$ we also have $x_{1} \in D_{R}\left\langle 1, x_{2}\right\rangle$ as desired.

Theorem 2.13. Let $R=L_{2 n, 0}$ with $n \geq 2$ and let G be the associated group. Fix $a, b \in G$ with $a \notin D_{R}\langle 1, b\rangle$. Let $A=\{D \in \operatorname{Der}(R) \mid D(a)=$ $D(b)=0\}$.
(1) There is an exact sequence of groups

$$
0 \rightarrow A \rightarrow \operatorname{Der}(R) \xrightarrow{e} I_{R} \times I_{R} \rightarrow 0
$$

where $e(D)=(D(a), D(b))$ and A is a subalgebra Lie isomorphic to $\operatorname{Der}\left(L_{2 n-1}\right)$.
(2) $\operatorname{dim}(\operatorname{Der}(R))=(2 n+2)(2 n+1) / 2$.

Proof. (1) By (2.11) we need only show e is surjective. By symmetry it is enough to show $0 \times I_{R} \subset \operatorname{im}(e)$. Then, since e is additive and $x D \in$ $\operatorname{Der}(R)$ for all $x \in G, D \in \operatorname{Der}(R)$, it suffices to show $(0,\langle 1, g\rangle) \in \operatorname{im}(e)$ for all $g \in G$.

If $g \in D\langle 1, a\rangle \backslash D\langle 1, b\rangle$ then $e(d(D\langle 1, g\rangle,\langle 1, g\rangle))=(0,\langle 1, g\rangle)$, where $d(D\langle 1, g\rangle,\langle 1, g\rangle)$ is the derivation of (1.3). If $g \in D\langle 1, a\rangle \cap$ $D\langle 1, b\rangle$ then $a g \in D\langle 1, a\rangle \backslash D\langle 1, b\rangle$ and

$$
\begin{aligned}
e(d(D\langle 1, a\rangle & ,\langle 1, a\rangle)+d(D\langle 1, a g\rangle,\langle 1, a g\rangle)) \\
& =(0,\langle 1, a\rangle)+(0,\langle 1, a g\rangle)=(0,\langle a, a g\rangle)=(0,\langle 1, g\rangle)
\end{aligned}
$$

since $a \in D\langle 1, g\rangle$. Thus $(0,\langle 1, g\rangle) \in \operatorname{im}(e)$ for all $g \in D\langle 1, a\rangle$. Since $D\langle 1, a\rangle$ has index 2 in G and $b \notin D\langle 1, a\rangle$ it suffices to show (0 , $\langle 1, b\rangle) \in \operatorname{im}(e)$.

Write $G=G_{1} \times G_{2}$ with subgroups G_{1}, G_{2} satisfying (2.12) and with $a \in G_{1}, b \in G_{2}$. Define $D: G \rightarrow I_{R}$ by $D(x y)=x\langle 1, y\rangle$, for all $x \in G_{1}$, $y \in G_{2}$. Note that $D(a)=0$ and $D(b)=\langle 1, b\rangle$. We will be done if we show D is a derivation.

We check the conditions of (1.2). Clearly $D(1)=0$. If $x_{1}, x_{2} \in G_{1}$ and $y_{1}, y_{2} \in G_{2}$ then

$$
\begin{aligned}
x_{1} y_{1} D\left(x_{2} y_{2} S\right)+x_{2} y_{2} D\left(x_{1} y_{1}\right) & =x_{1} x_{2} y_{1}\left\langle 1, y_{2}\right\rangle+x_{1} x_{2} y_{2}\left\langle 1, y_{1}\right\rangle \\
= & x_{1} x_{2}\left\langle y_{1}, y_{2}, y_{1} y_{2}, y_{1} y_{2}\right\rangle=x_{1} x_{2}\left\langle 1, y_{1} y_{2}\right\rangle
\end{aligned}
$$

since $\langle 1,1\rangle=0$ in I_{R} and $y_{1} \in D\left\langle 1, y_{1} y_{2}\right\rangle$. Thus $D\left(x_{1} y_{1} x_{2} y_{2}\right)=$ $x_{1} y_{1} D\left(x_{2} y_{2}\right)+x_{2} y_{2} D\left(x_{1} y_{1}\right)$. Now suppose $x_{1} y_{1} \in D\left\langle 1, x_{2} y_{2}\right\rangle$. We have:

$$
\begin{gather*}
D\left(x_{1} y_{1} x_{2} y_{2}\right)=x_{1} x_{2}\left\langle 1, y_{1} y_{2}\right\rangle \\
D\left(x_{1} y_{1}\right)+D\left(x_{2} y_{2}\right)=x_{1} x_{2}\left(x_{2}\left\langle 1, y_{1}\right\rangle+x_{1}\left\langle 1, y_{2}\right\rangle\right) \tag{*}
\end{gather*}
$$

There are two cases. If $x_{1} \in D\left\langle 1, y_{2}\right\rangle$ then since $x_{1} \in D\left\langle 1, x_{2}\right\rangle$ we have $y_{1} \in D\left\langle 1, x_{2} y_{2}\right\rangle$. So $x_{1} y_{1} \in D\left\langle 1, x_{2} y_{2}\right\rangle$ implies $y_{1} \in D\left\langle 1, x_{2} y_{2}\right\rangle \cap$ $D\left\langle 1, y_{2}\right\rangle \subset D\left\langle 1, x_{2}\right\rangle$, and $x_{2} \in D\left\langle 1, y_{1}\right\rangle$. Using (*) gives $D\left(x_{1} y_{1}\right)+$ $D\left(x_{2} y_{2}\right)=x_{1} x_{2}\left\langle 1,1, y_{1}, y_{2}\right\rangle=D\left(x_{1} y_{1} x_{2} y_{2}\right)$.

Lastly, if $x_{1} \notin D\left\langle 1, y_{2}\right\rangle$ then, arguing as above, we obtain $x_{2} \notin$ $D\left\langle 1, y_{1}\right\rangle$. Choose $z \notin D\left\langle 1, y_{1}\right\rangle \cup D\left\langle 1, y_{2}\right\rangle$, which is possible since G cannot be the union of two proper subgroups. Since $D\langle 1, x\rangle$ has index 2 in G we have $y_{1} y_{2} \in D\langle 1, z\rangle$ and $z=D\left\langle 1, y_{1} y_{2}\right\rangle$. Then $x_{2}\left\langle 1, y_{1}\right\rangle=$ $z\left\langle 1, y_{1}\right\rangle$, and $x_{1}\left\langle 1, y_{2}\right\rangle=z\left\langle 1, y_{2}\right\rangle$. Using $\left.(*)\right\}$ gives

$$
D\left(x_{1} y_{1}\right)+D\left(x_{2} y_{2}\right)=x_{1} x_{2}\left\langle y_{1}, y_{2}, z, z\right\rangle=D\left(x_{1} y_{1} x_{2} y_{2}\right) .
$$

(2) We apply (2.8):

$$
\begin{aligned}
\operatorname{dim} \operatorname{Der}(R) & =\operatorname{dim} \operatorname{Der}\left(L_{2 n-1}\right)+2 \operatorname{dim} I_{R} \\
& =\frac{1}{2}(2 n+1)(2 n-2)+2(2 n+1)=\frac{1}{2}(2 n+2)(2 n+1)
\end{aligned}
$$

3. Examples. Sections 1 and 2 can be used to compute the derivation algebra for any Witt ring of elementary type. Below we give $\operatorname{dim}(\operatorname{Der}(R))$ for every non-reduced Witt ring R where the associated group has order at most 8 (cf. [5, p. 122-124]).

\mathbf{Z}_{2}	0	$\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}$	6
\mathbf{Z}_{4}	0	$\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}\left[\Delta_{1}\right]$	5
$\mathbf{Z}_{2}\left[\Delta_{1}\right]$	2	$\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]$	
$\mathbf{Z} \times_{w} \mathbf{Z}_{4}$	1	$\mathbf{Z}_{2}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{2}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{2}\left[\Delta_{1}\right]$	8
$\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}$	2	$\mathbf{Z}_{2}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]$	9
$\mathbf{Z}_{2}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{2}\left[\Delta_{1}\right]$	4	$\left(\mathbf{Z} \times_{w} \mathbf{Z}_{4}\right)\left[\Delta_{1}\right]$	4
$\mathbf{Z}_{4}\left[\Delta_{1}\right]$	2	$\left(\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}\right)\left[\Delta_{1}\right]$	8
$\mathbf{Z}_{2}\left[\Delta_{2}\right]$	8	$\left(\mathbf{Z}_{2}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{2}\left[\Delta_{1}\right]\right)\left[\Delta_{1}\right]$	14
$\mathbf{Z}\left[\Delta_{1}\right] \times_{w} \mathbf{Z}_{4}$	2	$\mathbf{Z}_{4}\left[\Delta_{2}\right]$	8
$\mathbf{Z} \times{ }_{w} \mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}$	4	$\mathbf{Z}_{2}\left[\Delta_{3}\right]$	28
$\mathbf{Z} \times{ }_{w} \mathbf{Z}_{4}\left[\Delta_{1}\right]$	3	L_{3}	5
$\mathbf{Z} \times{ }_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]$	6		

Any two reduced Witt rings have Lie isomorphic derivation algebras, namely 0 (1.4). To get a non-trivial example we consider the four Witt rings listed above with 2 -dimensional derivation algebras.

Proposition 3.1. (1) $\left(\operatorname{Der}\left(\mathbf{Z}_{4}\left[\Delta_{1}\right]\right)\right.$ is abelian.
(2) $\operatorname{Der}\left(\mathbf{Z}_{2}\left[\Delta_{1}\right]\right), \operatorname{Der}\left(\mathbf{Z}_{4} \times_{w} \mathbf{Z}_{4}\right)$ and $\operatorname{Der}\left(\mathbf{Z} \times{ }_{w} \mathbf{Z} \times{ }_{w} \mathbf{Z}_{4}\right)$ are nonabelian and Lie isomorphic.

Proof. Up to isomorphism there is a unique non-abelian 2-dimensional Lie algebra [2, p. 11], so we need only check if the algebras are abelian or not.
$\mathbf{Z}_{4}\left[\Delta_{1}\right]$ can be realized by $W\left(\mathbf{Z}_{3}((t))\right)$, hence by (1.5), $\operatorname{Der}\left(\mathbf{Z}_{4}\left[\Delta_{1}\right]\right)$ is generated by $d(\langle 1,1\rangle)$ and $d(t\langle 1,1\rangle)$ (where $d(w)$ sends ± 1 to 0 and $\pm t$ to w). Then

$$
[d(\langle 1,1\rangle), d(t\langle 1,1\rangle)](t)=d(\langle 1,1\rangle)(t\langle 1,1\rangle)=t\langle\langle 1,1\rangle\rangle=0 .
$$

So $\operatorname{Der}\left(\mathbf{Z}_{4}\left[\Delta_{1}\right]\right)$ is abelian.
$\mathbf{Z}_{2}\left[\Delta_{1}\right]$ can be realized by $W\left(\mathbf{Z}_{5}\right)$. Let $\bar{a}=a+5 \mathbf{Z}$ for $a \in \mathbf{Z}$. Then $\operatorname{Der}\left(\mathbf{Z}_{2}\left[\Delta_{1}\right]\right)$ is generated by $d(\overline{1})$ and $d(\overline{2})$ (where $d(\bar{a})$ sends $\overline{1}$ to 0 and $\overline{2}$ to $\bar{a})$. Then $[d(\overline{1}), d(\overline{2})]=d(\overline{1})$ and $\operatorname{Der}\left(\mathbf{Z}_{2}\left[\Delta_{1}\right]\right)$ is non-abelian.
$\mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4}$ can be realized by the Witt ring of the group $G=\{ \pm 1$, $\pm a\}$ with $D\langle 1, g\rangle=G$ for all $g \in G$. Using (1.8) we get $\operatorname{Der}\left(\mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4}\right)$
is generated by $d(\langle 1,1\rangle)$ and $d(\langle 1, a\rangle)$, where $d(w)$ sends ± 1 to 0 and $\pm a$ to w. Then $[d(\langle 1,1\rangle), d(\langle 1, a\rangle)]=d(\langle 1,1\rangle)$ and the algebra is non-abelian.

Lastly, $\mathbf{Z} \times{ }_{w}, \mathbf{Z} \times{ }_{w} \mathbf{Z}_{4}$ can be realized by the Witt ring of the group $G=\{ \pm 1, \pm a, \pm b, \pm a b\} \quad$ with $\quad D\langle 1,1\rangle=\{1,-a b\}, \quad D\langle 1, a\rangle=$ $\{1, a,-b,-a b\}$ and $D\langle 1, b\rangle=\{1, b,-a,-a b\}$. Using (1.8) we get $\operatorname{Der}\left(\mathbf{Z} \times{ }_{w} \mathbf{Z} \times{ }_{w} \mathbf{Z}_{4}\right)$ is generated by D_{1} which sends a to $\langle 1, a b\rangle, b$ to 0, and by D_{2} which sends a to 0 and b to $\langle 1, a b\rangle$. Then $\left[D_{1}, D_{2}\right]=D_{1}+D_{2}$ and the algebra is non-abelian.

Note that the Witt rings of $(3.1)(2)$ with Lie isomorphic derivation algebras have non-isomorphic associated groups. However, it is possible for non-isomorphic Witt rings to have isomorphic associated groups and non-trivial Lie isomorphic derivation algebras. An example is $\mathbf{Z} \times{ }_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]$ and $\mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4}$. We sketch the computations required to verify this.
$\mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4}$ can be realized by the Witt ring of $G=$ $\{ \pm 1, \pm a, \pm b, \pm a b\}$, where $D\langle 1, g\rangle=G$ for all $g \in G$. The following is a basis for the derivation algebra:

$$
\begin{array}{ll}
D_{1}: a \mapsto\langle 1,1\rangle, b \mapsto 0, & D_{4}: a \mapsto 0, b \mapsto\langle 1,1\rangle, \\
D_{2}: a \mapsto\langle 1, a\rangle, b \mapsto 0, & D_{5}: a \mapsto 0, b \mapsto\langle 1, a\rangle, \\
D_{3}: a \mapsto\langle 1, b\rangle, b \mapsto 0, & D_{6}: a \mapsto\langle 1, a\rangle, b \mapsto\langle 1, b\rangle .
\end{array}
$$

$\mathbf{Z} \times{ }_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]$ can be realized by the Witt ring of the same G but with $D\langle 1,1\rangle=\{1, a, b, a b\}, \quad D\langle 1, a\rangle=\{1, a\}, \quad D\langle 1, b\rangle=\{1, b\} \quad$ and $D\langle 1, a b\rangle=\{1, a b\}$. The following is a basis for the derivation algebra:

$$
\begin{array}{ll}
d_{1}: a \mapsto\langle\langle-a,-b\rangle\rangle, b \mapsto 0, & d_{4}: a \mapsto 0, b \mapsto\langle\langle-a, b\rangle\rangle, \\
d_{2}: a \mapsto\langle\langle-a, b\rangle\rangle, b \mapsto\langle 1,-b\rangle, & d_{5}: a \mapsto 0, b \mapsto b\langle 1,-a\rangle \\
d_{3}: a \mapsto\langle 1,-b\rangle, b \mapsto 0, & d_{6}: a \mapsto b\langle 1,-a\rangle, b \mapsto\langle 1,-b\rangle .
\end{array}
$$

The map $D_{i} \mapsto d_{i}$ gives a Lie isomorphism from $\operatorname{Der}\left(\mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4} \times{ }_{w} \mathbf{Z}_{4}\right)$ to $\left.\operatorname{Der} \mathbf{Z} \times{ }_{w} \mathbf{Z}_{2}\left[\Delta_{2}\right]\right)$ as can be easily, if not quickly, checked.

We close this section with an example of a derivation which arises naturally in the theory of quadratic forms. We use the following set-up: Let F be a field of characteristic not $2, e \in \dot{F} \backslash \dot{F}^{2}$ and $E=F(\sqrt{e})$. Let - denote the involution on E with $\overline{a+b \sqrt{e}}=a-b \sqrt{e}$, and also the induced involution on $W E$. Let $s: E \rightarrow F$ be the F-linear functional defined by $s(1)=0, s(\sqrt{e})=1$. We denote the Scharlau transfer of s by s_{*}, and the map $W F \rightarrow W E$ induced by inclusion by i_{*}.

Lemma 3.2. Let $E=F(\sqrt{e})$ and $s^{*}=i_{*} s_{*}: W E \rightarrow W E$. Then for all $q_{1}, q_{2} \in W E:$

$$
s^{*}\left(q_{1} q_{2}\right)=\bar{q}_{1} s^{*}\left(q_{2}\right)+q_{2} s^{*}\left(q_{1}\right)
$$

Proof. We need only check this for $x, y \in \dot{E}$ since s^{*} is additive. Let $t: E \rightarrow F$ be the trace functional. If $z=\frac{1}{2} \sqrt{e}$ then $t(x z)=s(x)$ for all $x \in \dot{E}$. Let $t^{*}=i_{*} t_{*}$. By the trace formula of Scharlau-Knebusch [4, p. 212], $t^{*}(q)=q+\bar{q}$ for all $q \in W E$. We obtain:

$$
\begin{aligned}
\bar{y} s^{*}(x)+x s^{*}(y) & =\bar{y} t^{*}(x z)+x t^{*}(y z) \\
& =\bar{y}\langle x z, \overline{x z}\rangle+x\langle y z, \overline{y z}\rangle=\langle x y z, \overline{x y z}\rangle+x \bar{y}\langle z, \bar{z}\rangle \\
& =t^{*}(x y z)+x \bar{y}\left\langle\frac{1}{2} \sqrt{e},-\frac{1}{2} \sqrt{e}\right\rangle=s^{*}(x y)
\end{aligned}
$$

Corollary 3.3. Let $E=F(\sqrt{e})$ and suppose that for all $x, y \in \dot{E}$ $N_{E / F}(y) \in D_{E}\left\langle 1,-N_{E / F}(x)\right\rangle$. Then $s^{*}=i_{*} s_{*}: W E \rightarrow W E$ is a derivation.

Proof. By an easy computation (cf. [4, p. 202]), if $x \in \dot{E}$ then $s^{*}(x)=z\left\langle 1,-N_{E / F}(x)\right\rangle$, for some $z \in \dot{F}$. By assumption, for all $y \in \dot{E}$, $\left\langle 1,-N_{E / F}(y)\right\rangle s^{*}(x)=0$ and so $\bar{y} s^{*}(x)=y s^{*}(x)$. The result thus follows from (3.2).

Examples. We give some examples of fields F for which the condition of (3.3) is satisfied for all quadratic extensions.
(i) Finite fields. In this case binary forms represent all of \dot{F}.
(ii) Local fields. here either $\left\langle\left\langle-N_{E / F}(x),-N_{E / F}(y)\right\rangle\right\rangle$ is 0 in $W F$ or $\langle\langle-e,-f\rangle\rangle$ for some $f \in \dot{F} \backslash D_{F}\langle 1,-e\rangle$, since $W F$ has a unique non-trivial 2-fold Pfister form. In either case, $\left\langle\left\langle-N_{E / F}(x),-N_{E / F}(y)\right\rangle\right\rangle$ $\otimes E=0$ gives the condition of (3.3).
(iii) If the condition of (3.3) holds for every quadratic extension of F_{1} and F_{2} then it holds for every quadratic extension of the field F constructed by Kula [3] with $W F=W F_{1} \times{ }_{w} W F_{2}$.
4. Simple derivation algebras. We begin with a simple observation:

Lemma 4.1. Let R be a Witt ring, $D \in \operatorname{Der}(R)$ and suppose $D\left(I_{R}\right) \subset$ I_{R}^{m}, for some $m \geq 1$. Then for all $k \geq 1, D\left(I_{R}^{k}\right) \subset I_{R}^{m+k-1}$.

Proof. We use induction on k, the case $k=1$ being trivial. Suppose $k>1$; we need only check the value of D on k-fold Pfister forms.

$$
\begin{aligned}
D\left(\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle\right)= & \left\langle 1, a_{k}\right\rangle D\left(\left\langle\left\langle a_{1}, \ldots, a_{k-1}\right\rangle\right\rangle\right) \\
& +\left\langle\left\langle a_{1}, \ldots, a_{k-1}\right\rangle\right\rangle D\left(\left\langle 1, a_{k}\right\rangle\right)
\end{aligned}
$$

Now $D\left(\left\langle 1, a_{k}\right\rangle\right) \subset I_{R}^{m}$ and by induction $D\left(\left\langle\left\langle a_{1}, \ldots, a_{k-1}\right\rangle\right\rangle\right) \subset I_{R}^{m+k-2}$. Thus $D\left(\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle\right) \in I_{R}^{m+k-1}$ as desired.

The generalized Witt algebra W_{n} is the derivation algebra of $\mathbf{Z}_{2}\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{2}, \ldots, t_{n}^{2}\right)$ (cf. [7]). Since the Witt ring $\mathbf{Z}_{2}\left[\Delta_{n}\right]$ is isomorphic to $\mathbf{Z}_{2}\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{2}, \ldots, t_{n}^{2}\right)$ we have $W_{n}=\operatorname{Der}\left(\mathbf{Z}_{2}\left[\Delta_{n}\right]\right)$. We will show this is the only example of a simple derivation algebra of a finitely generated Witt ring.

Theorem 4.2. Let R be a finitely generated Witt ring and suppose $L=\operatorname{Der}(R) \neq 0$. The following are equivalent:
(1) L is simple;
(2) L is semi-simple;
(3) L has no (non-zero) abelian ideals;
(4) $L \cong W_{n}$ and $R \cong \mathbf{Z}_{2}\left[\Delta_{n}\right]$, for some n.

Proof. We need only show (3) \rightarrow (4). So suppose L has no (non-zero) abelian ideals. Let G be the group associated to R. Write $R=R_{0}[\Delta]$, for some group Δ of exponent 2 and Witt ring R_{0} which is not a group ring. Let G_{0} be the group associated to R_{0}.

Step 1. $I_{R_{0}}^{2}$ is torsion-free.
Suppose otherwise and choose $m \geq 2$ such that $I_{R_{0}}^{m}$ is not torsion-free but $I_{R_{0}}^{m+1}$ is torsion-free (this is possible as R_{0} is finitely generated, cf. [5, 9.4]). Note that a torsion form in $I_{R_{0}}^{m}$ is universally round. Let $J=R \cdot I_{R_{0}}^{m}$ and $I=\{D \in L \mid D(R) \subset J\}$. $I \neq 0$ by (1.3). We will obtain a contradiction by showing I is an abelian ideal.

Clearly I is closed under addition. Choose $D \in I, D^{\prime} \in L$ and $g \in G$. By (1.5) $L=\Delta L_{1}+L_{2}$, where $L_{1}=\left\{D \in L \mid D(\Delta)=0, D\left(R_{0}\right)\right.$ $\left.\subset R_{0}\right\}$ and $L_{2}=\left\{D \in L \mid D\left(R_{0}\right)=0\right\}$. Since R_{0} is not a group ring extension, (1.7) implies $D\left(R_{0}\right) \subset I_{R_{0}}$ for $D \in L_{1}$. Write $D^{\prime}=\left(\sum \delta_{i} D_{i}\right)+$ $D^{\prime \prime}$, with $\delta_{i} \in \Delta, D_{i} \in L_{1}$ and $D^{\prime \prime} \in L_{2}$. Write $D(g)=\sum \gamma_{i} \varphi_{i}$, with $\gamma_{i} \in \Delta$ and $\varphi_{i} \in I_{R_{0}}^{m}$. We obtain:

$$
\begin{aligned}
{\left[D, D^{\prime}\right](g) } & =D\left(D^{\prime}(g)\right)+\sum D^{\prime}\left(\gamma_{i} \varphi_{i}\right) \\
& =D\left(D^{\prime}(g)\right)+\sum \varphi_{i} D^{\prime}\left(\gamma_{i}\right)+\sum_{i} \gamma_{i}\left(\sum_{j} \delta_{j} D_{j}\left(\varphi_{i}\right)\right)+D^{\prime \prime}\left(\varphi_{i}\right) .
\end{aligned}
$$

Now $D\left(D^{\prime}(g)\right) \in J$ since $D \in I, \varphi_{i} D^{\prime}\left(\gamma_{i}\right) \in R \cdot I_{R_{0}}^{m}=J, D^{\prime \prime}\left(\varphi_{i}\right)=0$ since $D^{\prime \prime} \in L_{2}$ and $\gamma_{i} \delta_{j} D_{j}\left(\varphi_{i}\right) \in R \cdot I_{R_{0}}^{m}=J$ by (4.1). Hence $\left[D, D^{\prime}\right] \in I$ and I is an ideal.

Lastly, we show I is abelian. If $D_{1}, D_{2} \in I$ and $g \in D$ then
$D_{1}\left(D_{2}(g)\right) \in D_{1}\left(R \cdot I_{R_{0}}^{m}\right) \subset R D_{1}\left(I_{R_{0}}^{m}\right)+I_{R_{0}}^{m} D_{1}(R) \subset R \cdot I_{R_{0}}^{2 m-1}$
by (4.1). Then since $m \geq 2$, (1.1) implies $D_{1}\left(D_{2}(g)\right) \subset R \cdot I_{R_{0}}^{2 m-1} \cap R_{t}=$ 0 . Hence $[I, I]=0$.

Step 2. $R \neq R_{0}$.
Suppose $R=R_{0}$. If I_{R} is torsion-free then either R is reduced or \mathbf{Z}_{2}, and in both cases $L=\operatorname{Der}(R)=0$ by (1.4). So we may assume I_{R} is not torsion-free, in particular, that $D\langle 1,1\rangle \neq\{1\}$. If $x \in D\langle 1,1\rangle$ then $\langle 1,-x\rangle \in \operatorname{ur}(R)$ since $\langle 1,-x\rangle$ is torsion and I_{R}^{2} is torsion-free by Step 1. We consider four cases. In each case we obtain a contradiction by construction of non-zero abelian ideal.

Case 1. $G \neq\{1,-1\} D\langle 1,1\rangle$ and $1 \neq-1$.
Fix a subgroup H of index 2 in G such that H contains $\{1,-1\} D\langle 1,1\rangle$. Set $I=\{d(H,\langle 1,-x\rangle) \mid x \in D\langle 1,1\rangle\}$, using the notation of (1.3). $I \neq 0$ since $D\langle 1,1\rangle \neq\{1\}$:

Now $d(H,\langle 1,-x\rangle)+d(H,\langle 1,-y\rangle)=d(H,\langle 1,-x y\rangle)$, so I is closed under addition. Let $D \in L$ and $g \in G$. Then $D(g) \in \operatorname{ann}_{R}\langle 1,1\rangle$ $=I_{R} \cap R_{t}$, since $-1 \neq 1$. We can find an $e \in G$ such that $D(g)+$ $\langle 1,-e\rangle \in I_{R}^{2}$. Then $\langle\langle 1,-e\rangle\rangle=\langle 1,1\rangle D(g)+\langle\langle 1,-e\rangle\rangle \in I_{R}^{3}$ and so $\langle\langle 1,-e\rangle\rangle=0$. Thus $D(g)+\langle 1,-e\rangle \in I_{R}^{2} \cap R_{t}=0$, by Step 1. Hence for every $g \in G$ there exists an $e \in D\langle 1,1\rangle$ such that $D(g)=\langle 1,-e\rangle$.

We now complete the proof that I is an ideal. $[D, d(H,\langle 1,-x\rangle)](g)$ $=D(d(H,\langle 1,-x\rangle)(g))$, since $D(g)=\langle 1,-e\rangle$ with $e \in D\langle 1,1\rangle \subset H$. In particular, $[D, d(H,\langle 1,-x\rangle)](g)=0$ if $g \in H$. If $g \notin H$ and $D(x)=$ $\langle 1,-y\rangle$ for some $y \in D\langle 1,1\rangle$ then $[D, d(H,\langle 1,-x\rangle)](g)=D(\langle 1,-x\rangle)$ $=\langle 1,-y\rangle$. Hence $[D, d(H,\langle 1,-x\rangle)]=d(H,\langle 1,-y\rangle) \in I$.

Lastly, we show I is abelian. Since the image of $d(H,\langle 1,-x\rangle)$ is $\{0$, $\langle 1,-x\rangle\}$ and $x \in D\langle 1,1\rangle \subset H$, the composition of any two derivations in I is 0 . Thus $[I, I]=0$.

Case 2. $G=\{1,-1\} D\langle 1,1\rangle$ and $-1 \notin D\langle 1,1\rangle$.
For $g \in G$ define $D(g)=D\langle 1,-g\rangle$ if $g \in D\langle 1,1\rangle$, and $D(g)=$ $\langle 1, g\rangle$ if $-g \in D\langle 1,1\rangle$. Note that $D(g)=D(-g)$ for all g and $D(-1)$ $=0$. To show $D \in L$ we need only check $D\left(g g^{\prime}\right)=D(g)+D\left(g^{\prime}\right)$ for all $g, g^{\prime} \in G$, since $D(g) \in \operatorname{ur}(R)$ for all $g \in G$. Now:

$$
\begin{aligned}
D(g) & \perp D\left(g^{\prime}\right)=\left\langle 1, \varepsilon_{1} g\right\rangle+\left\langle 1, \varepsilon_{2} g^{\prime}\right\rangle, \quad \text { for some } \varepsilon_{1}, \varepsilon_{2} \in\{1,-1\} \\
& =\left\langle-\varepsilon_{2} g^{\prime},-\varepsilon_{1} \varepsilon_{2} g g^{\prime}\right\rangle+\left\langle 1, \varepsilon_{2} g^{\prime}\right\rangle, \quad \text { as }\left\langle 1, \varepsilon_{1} g\right\rangle \in \operatorname{ur}(R) \\
& =\left\langle 1,-\varepsilon_{1} \varepsilon_{2} g g^{\prime}\right\rangle=D\left(g g^{\prime}\right)
\end{aligned}
$$

Let $D^{\prime} \in L$ and $g \in G$ be arbitrary. As in Case $1 D^{\prime}(g)=\langle 1,-x\rangle$ for some $x \in D\langle 1,1\rangle$. Then

$$
\begin{aligned}
{\left[D^{\prime}, D\right](g) } & =D^{\prime}(\langle 1, \varepsilon g\rangle)+D(\langle 1,-x\rangle)=D^{\prime}(g)+D(x) \\
& =\langle 1,-x\rangle+\langle 1,-x\rangle=0 \quad(\text { where } \varepsilon \in\{1,-1\})
\end{aligned}
$$

Hence $\{0, D\}$ is an abelian ideal.
Case 3. $G=D\langle 1,1\rangle$ and $-1 \neq 1$.
Here we have $\langle 1,1\rangle \in \operatorname{ur}(R)$. Set $I=\{D \in L \mid D(R) \subset\{0,\langle 1,1\rangle\}\}$. $I \neq 0$ by (1.3). Since for any derivation $D^{\prime} \in L, D^{\prime}(1)=0$, we have for $D \in I$ that $\left[D, D^{\prime}\right](R) \subset D\left(D^{\prime}(R)\right) \subset\{0,\langle 1,1\rangle\}$. Thus I is an ideal. Further, I is abelian since the composition of any two derivations in I is 0.

Case 4. $-1=1$.
Since $R=R_{0}$ by assumption and $I_{R_{0}}^{2}$ is torsion-free by Step 1 , we have $I_{R}^{2}=0$ and $\operatorname{ann}_{R}\langle 1,1\rangle=\{\langle 1, x\rangle \mid x \in G\} \subset \operatorname{ur}(R)$. We define D : $G \rightarrow R$ by $D(x)=\langle 1, x\rangle$. Then $D(1)=0$ and $D(x y)=\langle 1, x y\rangle=\langle 1, x\rangle$ $+\langle 1, y\rangle=D(x)+D(y)=y D(x)+x D(y)$, since $\langle 1, x\rangle,\langle 1, y\rangle \in$ $\operatorname{ur}(R)$. So D is a derivation. Further, for any $D^{\prime} \in L, g \in G$ we have $\left[D, D^{\prime}\right](g)=D\left(D^{\prime}(g)\right)+D^{\prime}(D(g))=D^{\prime}(g)+D^{\prime}(g)=0$ by (1.1). Thus $\{0, D\}$ is an abelian ideal.

Step 3. $I_{R_{0}}$ is torsion-free.
By Step 2, $|\Delta|=2^{n}$ with $n \geq 1$. Let t_{1}, \ldots, t_{n} generate Δ. By (1.5), $L=\Delta L_{1}+L_{2}$ where $L_{1}=\left\{D \in L \mid D(\Delta)=0, D\left(R_{0}\right) \subset R_{0}\right\}$ and $L_{2}=$ $\left\{D \in L \mid D\left(R_{0}\right)=0\right\}$. Note that if $D \in L_{1}$ then $D\left(R_{0}\right) \subset I_{R_{0}}$ by (1.7). For $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{ann}_{R}\langle 1,1\rangle$ let $d\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the derivation sending R_{0} to 0 and t_{i} to $\alpha_{i}(1 \leq i \leq n)$. Then $L_{2}=\left\{d\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in\right.$ $\left.\operatorname{ann}_{R}\langle 1,1\rangle\right\}$.

Suppose $I_{R_{0}}$ is not torsion-free. Then $I_{R_{0}} \cap R_{t} \subset \operatorname{ann}_{R}\langle 1,1\rangle$, since $I_{R_{0}}^{2}$ is torsion-free by Step 1. Set $J=R\left(I_{R_{0}} \cap R_{t}\right)$ and $I=$ $\left\{d\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in J\right\} . I$ is closed under addition. We will obtain a contradiction by showing I is an abelian ideal.

First, if $\delta \in \Delta, D \in L_{1}$ and $d\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in I$ then for $g \in G_{0}$ we have

$$
\begin{aligned}
& {\left[\delta D, d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right](g)=d\left(\alpha_{1}, \ldots, \alpha_{n}\right)(\delta D(g))} \\
& \quad=D(g) d\left(\alpha_{1}, \ldots, \alpha_{n}\right)(\delta) \in I_{R_{0}} \cdot R\left(I_{R_{0}} \cap R_{t}\right) \subset R\left(I_{R_{0}}^{2} \cap R_{t}\right)=0
\end{aligned}
$$

And $\left[\delta D, d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right]\left(t_{i}\right)=\delta D\left(\alpha_{i}\right) \in R\left(I_{R_{0}} \cap R_{t}\right)=J$. Hence $\left[\delta D, d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right]=d\left(\delta D\left(\alpha_{1}\right), \ldots, \delta D\left(\alpha_{n}\right)\right) \in I$ and $\left[\Delta L_{1}, I\right] \subset I$.

Next, choose $d\left(\beta_{1}, \ldots, \beta_{n}\right) \in L_{2}$ and $d\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in I$. Write $\alpha_{i}=$ $\sum_{j} \delta_{i j} \varphi_{i j}$, for some $\delta_{i j} \in \Delta$ and $\varphi_{i j} \in I_{R_{0}} \cap R_{t}$. Then [$d\left(\beta_{1}, \ldots, \beta_{n}\right)$, $d\left(\alpha_{1}, \ldots, \alpha_{n}\right)$] sends R_{0} to 0 and sends t_{i} to

$$
\begin{aligned}
d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\beta_{i}\right)+ & d\left(\beta_{1}, \ldots, \beta_{n}\right)\left(\alpha_{i}\right) \\
& =d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\beta_{i}\right)+\sum_{j} \varphi_{i j} d\left(\beta_{1}, \ldots, \beta_{n}\right)\left(\delta_{i j}\right)
\end{aligned}
$$

Now $d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\beta_{i}\right) \in J$ and $\varphi_{i j} d\left(\beta_{1}, \ldots, \beta_{n}\right)\left(\delta_{i j}\right) \in\left(I_{R_{0}} \cap R_{t}\right) \cdot R=$ J. Thus $\left[L_{2}, I\right] \subset I$ and so $[L, I] \subset I$.

Lastly, to show I is abelian choose $d\left(\alpha_{1}, \ldots, \alpha_{n}\right), d\left(\beta_{1}, \ldots, \beta_{n}\right) \in I$. Then $d\left(\alpha_{1}, \ldots, \alpha_{n}\right) \circ d\left(\beta_{1}, \ldots, \beta_{n}\right)$ sends R_{0} to 0 and t_{t} to $d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\beta_{i}\right)$. Write $\beta_{i}=\sum \delta_{j} \varphi_{j}$ with $\delta_{j} \in \Delta$ and $\varphi_{j} \in I_{R_{0}} \cap R_{i}$. Then

$$
\begin{aligned}
d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\beta_{i}\right) & =\sum_{j} \varphi_{j} d\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\delta_{j}\right) \\
& \in\left(I_{R_{0}} \cap R_{t}\right) \cdot R\left(I_{R_{0}} \cap R_{t}\right) \subset R\left(I_{R_{0}}^{2} \cap R_{t}\right)=0
\end{aligned}
$$

Hence $\left[d\left(\alpha_{1}, \ldots, \alpha_{n}\right), d\left(\beta_{1}, \ldots, \beta_{n}\right)\right]=0$ and $[I, I]=0$.
We now complete the proof. We have $R=R_{0}\left[\Delta_{n}\right]$ with $n \geq 1$ and $I_{R_{0}}$ torsion-free. In particular, $D\langle 1,1\rangle=\{1\}$. Thus either R_{0} is reduced or $R_{0} \cong \mathbf{Z}_{2}$. But if R_{0} is reduced so is R and $L=\operatorname{Der}(R)=0$. So $R_{0} \cong \mathbf{Z}_{2}, R \cong \mathbf{Z}_{2}\left[\Delta_{n}\right]$ and $L=\operatorname{Der}(R) \cong W_{n}$.

Remark. Manin has shown [7, p. 106] that every restricted Lie algebra can be embedded in a generalized Witt algebra. Hence if R is a finitely generated Witt ring there exists an n such that $\operatorname{Der}(R)$ embeds in $\operatorname{Der}\left(\mathbf{Z}_{2}\left[\Delta_{n}\right]\right)$.
5. Integrable derivations. We follow the terminology of Matsumura [6]. If R is a commutative ring with identity then a derivation D of R into itself is integrable if there exists a homomorphism $E: R \rightarrow R[[t]]$ such that $E(r) \equiv r+t D(r)\left(\bmod t^{2}\right)$ for all $r \in R$. The map E is an integral of D. An integral E arises from a collection of maps $\underline{D}=\left(D_{0}, D_{1}, D_{2}, \ldots\right)$ where $D_{0}=\mathrm{id}_{R}, D_{1}=D$ and $E(r)=\sum_{i} D_{l}(r) t^{i}$ for all $r \in R$. If $\underline{D}=$ $\left(1, D_{1}, D_{2}, \ldots\right)$ and $\underline{D}^{\prime}=\left(1, D_{1}^{\prime}, D_{2}^{\prime}, \ldots\right)$ yield integrals for the derivations D and D^{\prime} then:

$$
\underline{D D^{\prime}}=\left(1, D_{1}+D_{1}^{\prime}, D_{2}+D_{1} D_{1}^{\prime}+D_{2}^{\prime}, \ldots, \sum_{i} D_{i} D_{n-i}^{\prime}, \ldots\right)
$$

yields an integral for $D+D^{\prime}$. Indeed the set of integrable derivations form an R-submodule of $\operatorname{Der}(R)$.

Let R be a Witt ring and let $D \in \operatorname{Der}(R)$. We say D is I_{R}-integrable if D has an integral E such that $E(r)-r \in I_{R}[[t]]$ for all $r \in R$. Equivalently, we require $\underline{D}=\left(1, D_{1}, D_{2}, \ldots\right)$ to give an integral of D with $D_{i}(R) \subset I_{R}$ for $i \geq 2$. The composition $D D^{\prime}$ above shows the set of I_{R}-integrable derivations also forms a subgroup of $\operatorname{Der}(R)$.

Lemma 5.1. Let R be a Witt ring and $D \in \operatorname{Der}(R)$. If $D(R)^{2}=0$ then D is I_{R}-integrable.

Proof. $D(R)^{2}=0$ implies $D(R) \subset I_{R}$. Define $E: R \rightarrow R[[t]]$ by $E(r)=r+\sum_{i=1}^{\infty} D(r) t^{i} . E$ is additive, $E(r)-r \in I_{R}[[t]]$ and for $r, s \in$ R_{i} :

$$
\begin{aligned}
E(r) E(s) & =r s+\sum_{i}\left(r D(s)+\sum_{j=1}^{i-1} D(r) D(s)+s D(r)\right) t^{i} \\
& =r s+\sum_{i} D(r s) t^{i}=E(r s)
\end{aligned}
$$

using that $D(r) D(s)=0$.
Lemma 5.2. Let R be $\mathbf{Z}_{2}, \mathbf{Z}_{4}$ or an indecomposable finitely generated Witt ring of local type. Then every derivation of R is I_{R}-integrable.

Proof. If R is $\mathbf{Z}_{2}, \mathbf{Z}_{4}$ or \mathbf{Z} then $\operatorname{Der}(R)=0$ (1.4). Suppose $R=L_{2 n, 1}$ or $L_{2 n-1}$ for $n \geq 2$. Then, by (2.4), $\operatorname{Der}(R)$ is generated by derivations of the form $d(H, \beta)\left(\mathrm{cf}\right.$. (1.3)). Here $d(H, \beta)(R)=R \beta$, with $\beta \in \operatorname{ann}_{R}\langle 1,1\rangle$. Hence (2.2) implies β is $y\langle 1, x\rangle$ or ρ, where $-x \in D\langle 1,1\rangle, y \in G$ and ρ is the unique non-trivial 2 -fold Pfister form of R. In either case $\beta^{2}=0$. So $d(H, \beta)$ is I_{R}-integrable by (5.1) and then every derivation of R is I_{R}-integrable.

Now suppose $R=L_{2 n, 0}$ with $n \geq 2$. Let G be the group associated to R and fix $a_{0}, b_{0} \in G$ with $a_{0} \notin D\left\langle 1, b_{0}\right\rangle$. Write $G=A \times B$ with $a_{0} \in A$, $b_{0} \in B$ and satisfying $a_{1} \in D\left\langle 1, a_{2}\right\rangle, b_{1} \in D\left\langle 1, b_{2}\right\rangle$ for all $a_{1}, a_{2} \in A$, $b_{1}, b_{2} \in B$. This is possible by (2.12). Define D_{A} on G by $D_{A}(a b)=b\left\langle 1, a^{*}\right\rangle$, with $a \in A, b \in B$. This is a derivation, as shown in the proof of (2.13). Note that $D_{A}(R)^{2}=\left\{\left\langle\left\langle a_{1}, a_{2}\right\rangle\right\rangle \mid a_{i} \in A\right\}=0$ so that D_{A} is I_{R}-integrable by (5.1).

Let $D \in \operatorname{Der}(R)$. The proof of (2.13) shows that there exists a derivation D_{1} in the subgroup generated by D_{A} and $\{d(D\langle 1, x\rangle$, $\left.y\langle 1, x\rangle) \mid y \in G, x \in D\left\langle 1, b_{0}\right\rangle\right\}$ such that $D_{1}\left(a_{0}\right)=D\left(a_{0}\right)$ and $D_{1}\left(b_{0}\right)=0$.

Further, D_{1} is I_{R}-integrable. Similarly, there exists I_{R}-integrable D_{2} such that $D_{2}\left(a_{0}\right)=0$ and $D_{2}\left(b_{0}\right)=D\left(b_{0}\right)$.

By replacing D by $D-D_{1}-D_{2}$ if necessary, we see it suffices to show if $D \in L=\left\{D \in \operatorname{Der}(R) \mid D\left(a_{0}\right)=D\left(b_{0}\right)=0\right\}$ then D is I_{R}-integrable. Now L is isomorphic to $\operatorname{Der}\left(L_{2 n-1}\right)$ by (2.11). Let $\gamma_{*}: \operatorname{Der}\left(L_{2 n-1}\right)$ $\rightarrow L$ be an isomorphism (take the inverse of the map in (2.11)). The proof of (2.11) showed that $\gamma_{*}(d(H, \alpha))=d(K, \beta)$, where $d(H, \alpha), d(K, \beta)$ are of the type discussed in (1.3). Thus the derivations $d(K, \beta) \in L$ generate L by (2.4). As argued above, $d(K, \beta)$ is I_{R}-integrable. Hence D is I_{R}-integrable.

Lemma 5.3. Let R_{0} be a (finitely generated) Witt ring and let $R=R_{0}\left[\Delta_{1}\right]$. Suppose every derivation of R_{0} is $I_{R_{0}}$-integrable and $D \in$ $\operatorname{Der}(R)$ satisfies $D\left(R_{0}\right) \subset I_{R_{0}}$. Then D is I_{R}-integrable.

Proof. Let $\Delta_{1}=\{1, t\}$. By (1.5) $D=D^{\prime}+t D^{\prime \prime}+D^{\prime \prime \prime}$, where $D^{\prime}, D^{\prime \prime}$ $\in L_{1}=\left\{D \in \operatorname{Der}(R) \mid D\left(\Delta_{1}\right)=0, \quad D\left(R_{0}\right) \subset R_{0}\right\} \quad$ and $\quad D^{\prime \prime \prime}\left(R_{0}\right)=0$. The restriction to R_{0} gives an isomorphism between L_{1} and $\operatorname{Der}\left(R_{0}\right)$ so D^{\prime} and $D^{\prime \prime}$ are I_{R}-integrable. We may thus assume $D=D^{\prime \prime \prime}$.

Let $w=D(t)$. By assumption, $w \in \operatorname{ann}_{R}\langle 1,1\rangle \cap I_{R}$. For $r \in R_{0}$, $D(r)=0$ and $D(r t)=r w$. If char $R=2$ then since $w^{2} \in 2 I_{R}=0, D(R)^{2}$ $=(w R)^{2}=0$ and D is I_{R}-integrable by (5.1). So we may assume char R $\neq 2$. For non-negative even integers k we dfine $w_{k} \in I_{R}$ inductively by:
(i) $w_{0}=w$
(ii) If $k=4 i$ then $w_{2 i} \in I_{R}$ and $w_{2 i}^{2} \in 2 I_{R}$. Choose $w_{k} \in I_{R}$ such that:

$$
-2 t w_{k}=w_{2 i}^{2}+2\left(\sum_{j=1}^{i-1} w_{2 j} w_{k-2 \jmath}\right)
$$

(iii) If $k=4 i+2$ then $w_{0}^{2} \in 2 I_{R}$. Choose a $w_{k} \in I_{R}$ such that:

$$
-2 t w_{k}=w_{0}^{2}+2\left(\sum_{j=1}^{i} w_{2,} w_{k-2 j}\right) .
$$

We note the following identities:

$$
\begin{array}{ll}
-2 t w_{k}=\sum_{j=1}^{k / 2-1} w_{2 j} w_{k-2 j} & \text { if } k \equiv 0(\bmod 4) \\
-2 t w_{k}=w_{0}^{2}+\sum_{j=1}^{k / 2} w_{2 j} w_{k-2 j} & \text { if } k \equiv 2(\bmod 4)
\end{array}
$$

For odd integers k, set $D_{k}=D$. Let $D_{0}=\mathrm{id}_{R}$ and for even $k \geq 2$ define $D_{k}: R \rightarrow R$ by $D_{k}\left(r_{1}+r_{2} t\right)=r_{2} w_{k}$, for all $r_{1}, r_{2} \in R_{0}$. Note that $D_{i}(R) \subset I_{R}$ for $i \geq 1$. Define $E: R \rightarrow R[[s]]$ by $E(r)=\sum D_{k}(r) s^{k}$. To show E is the integral of D it suffices to check for all $x, y \in G$ (G the group associated to R) that:

$$
\begin{equation*}
D_{k}(x y)=\sum_{i=0}^{k} D_{i}(x) D_{k-i}(y) \tag{*}
\end{equation*}
$$

Suppose k is odd.Then $D_{k}(x y)=x D(y)+y D(x)=D_{0}(x) D_{k}(y)+$ $D_{0}(y) D_{k}(x)$. Thus ($*$) becomes:

$$
0=D(x)\left(\sum_{j=1}^{(k-1) / 2} D_{2 j}(y)\right)+D(y)\left(\sum_{j=1}^{(k-1) / 2} D_{2 j}(x)\right)
$$

This clearly holds if x or y are in G_{0}, the group associated to R_{0}. So suppose $x=g t, y=g^{\prime} t$ for some $g, g^{\prime} \in G_{0}$. Then:

$$
\begin{aligned}
& D(x)\left(\sum D_{2 j}(y)\right)+D(y)\left(\sum D_{2 j}(x)\right) \\
& =g w_{0}\left(g^{\prime} \sum w_{2 j}\right)+g^{\prime} w_{0}\left(g \sum w_{2 j}\right) \\
& \quad=2 g g^{\prime} w_{0}\left(\sum w_{2 j}\right)=0 .
\end{aligned}
$$

Now suppose k is even. Let $\varepsilon_{k}=0$ if $k \equiv 0(\bmod 4)$ and $\varepsilon_{k}=1$ if $k \equiv 2(\bmod 4)$. Then $(*)$ becomes
(**)

$$
\begin{aligned}
D_{k}(x y)= & \sum_{j \text { odd }} D_{j}(x) D_{k-j}(y)+\sum_{j \text { even }} D_{j}(x) D_{k-j}(y) \\
D_{k}(x y)= & \varepsilon_{k} D(x) D(y)+x D_{k}(y)+y D_{k}(x) \\
& +\sum_{j=1}^{k / 2-1} D_{2 j}(x) D_{k-2 j}(y)
\end{aligned}
$$

The equation $(* *)$ holds if x or y are in G_{0}. So suppose $x=g t, y=g^{\prime} t$ for some $g, g^{\prime} \in G_{0}$. We want to show the right hand side of ($* *$) is 0 since $D_{k}(x y)=D_{k}\left(g g^{\prime}\right)=0$. First consider the case $k \equiv 0(\bmod 4)$. The right hand side of $(* *)$ is:

$$
\begin{aligned}
g \operatorname{tg}^{\prime} w_{k}+g^{\prime} \operatorname{tg} w_{k}+\sum g w_{2 j} g^{\prime} w_{k-2 j} & =g g^{\prime}\left(2 t w_{k}+\sum w_{2,} w_{k-2 j}\right) \\
& =0, \quad \text { by construction of } w_{k}
\end{aligned}
$$

If $k \equiv 2(\bmod 4)$ the right hand side of $(* *)$ is:

$$
\begin{array}{r}
g g^{\prime} w_{0}^{2}+g t g^{\prime} w_{k}+g^{\prime} t g w_{k}+g g^{\prime} \sum w_{2 j} w_{k-2 J} \\
=g g^{\prime}\left(w_{0}^{2}+2 t w_{k}+\sum w_{2 \jmath} w_{k-2 \jmath}\right) \\
=0, \quad \text { again by construction of } w_{k}
\end{array}
$$

Lemma 5.4. Let R_{1}, R_{2} be (finitely generated) Witt rings and let $R=R_{1} \times{ }_{w} R_{2}$. Let $L_{i}^{*}=\left\{D \in \operatorname{Der}\left(R_{t}\right) \mid D\left(R_{i}\right) \subset I_{R_{t}}\right\}$ for $i=1,2$. Suppose every derivation in L_{i}^{*} is $I_{R_{i}}$-integrable $(i=1,2)$. Then every derivation of R is I_{R}-integrable.

Proof. Let G_{i} be the group associated to $R_{i}(i=1,2) ; G=G_{1} \times G_{2}$ is the group associated to R. We use the notation of (1.8). If $D \in L_{1}$ then there exists $D^{\prime} \in L_{1}^{*}$ such that for all $\left(g_{1}, g_{2}\right) \in G, D\left(g_{1}, g_{2}\right)=$ ($\left.D^{\prime}\left(g_{1}\right), 0\right)$. Let $\underline{D}^{\prime}=\left(1, D_{1}^{\prime}, D_{2}^{\prime}, \ldots\right)$ yield an integral for D^{\prime} with $D_{i}^{\prime}\left(R_{1}\right)$ $\subset I_{R_{1}}$ for $i \geq 2$. Define, for $i \geq 2, D_{i}: R \rightarrow R$ by $D_{i}\left(r_{1}, r_{2}\right)=\left(D_{i}^{\prime}\left(r_{1}\right), 0\right)$. Then $\underline{D}=\left(1, D, D_{2}, \ldots\right)$ yields an integral for D. Similarly, if $D \in L_{2}$ then D is I_{R}-integrable.

If D is in E_{1}, E_{2} or F then $D(R) \subset u r(R)$ by (1.8). Hence, $D(R)^{2}=0$ and D is I_{R}-integrable by (5.1). Since $L_{1}, L_{2}, E_{1}, E_{2}$ and F generate $\operatorname{Der}(R)$, by (1.8), we have that every derivation on R is I_{R}-integrable.

Theorem 5.5. Let R be a finitely generated Witt ring of elementary type. The following are equivalent:
(1) There exists $D \in \operatorname{Der}(R)$ with $D\left(I_{R}\right) \not \subset I_{R}$;
(2) There exists $D \in \operatorname{Der}(R)$ that is not integrable;
(3) There exists $D \in \operatorname{Der}(R)$ that is not I_{R}-integrable;
(4) R is a group ring and $\operatorname{char}(R)=2$.

Proof. (1) $\leftrightarrow(4)$ is (1.7) and (2) \rightarrow (3) is clear.
(4) $\rightarrow(2)$: Write $R=R_{0}\left[\Delta_{1}\right]$ with $\Delta_{1}=\{1, t\}$. There is a derivation D with $D\left(R_{0}\right)=0$ and $D(t)=1$ (cf. (1.5)). Suppose $\underline{D}=\left(1, D, D_{2}, \ldots\right)$ yields an integral of D. Then $D_{2}(1)=0$ and

$$
\begin{aligned}
& 0=D_{2}(t \cdot t)=t D_{2}(t)+D(t) D(t)+t D_{2}(t) \\
& 0=\langle 1\rangle+2 t D_{2}(t)
\end{aligned}
$$

which is impossible, as $2 t D_{2}(t) \in I_{R}$ but $\langle-1\rangle \notin I_{R}$.
(3) \rightarrow (4): We use induction on $|G|$, where G is the group associated to R. By (5.2), R is not indecomposable. Suppose R is a product $R_{1} \times{ }_{w} R_{2} \times{ }_{w} \cdots \times{ }_{w} R_{n}$, with each R_{i} indecomposable or a group ring. If R_{i} is indecomposable then every derivation on R_{i} is $I_{R_{t}}$-integrable. If R_{i} is a group ring then $R_{i}=S_{i}[\Delta]$ with S_{i} indecomposable or a Witt product. By induction, every derivation on S_{l} is $I_{S_{l}}$-integrable. Hence any derivation on R_{i} mapping $I_{R_{t}}$ into itself is $I_{R_{t}}$-integrable (5.3). Then (5.4) implies every derivation on R is I_{R}-integrable, a contradiction.

We thus have that R is a group ring extension. Write $R=S[\Delta]$, with S indecomposable or a Witt product. Again induction yields that every derivation on S is I_{S}-integrable. If $\operatorname{char}(R) \neq 2$ then any derivation on R maps I_{R} into itself (1.7). So (5.3) implies every derivation on R is I_{R}-integrable, contrary to our assumption. Thus R is a group ring and $\operatorname{char}(R)=2$.

References

[1] A. Carson and M. Marshall, Decomposition of Witt rings, Canad. J. Math., 34 (6) (1982), 1276-1302.
[2] N. Jacobson, Lie Algebras, Dover Pub., New York, 1979.
[3] M. Kula, Fields with prescribed quadratic form schemes, Math. Zeit., 167 (1979), 201-212.
[4] T. Y. Lam, The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Reading, Massachusetts, 1973.
[5] M. Marshall, Abstract Witt Rings, Queen's Papers in Pure and Applied Math. 57, Queen's University, Kingston, Ontario, 1980.
[6] H. Matsumura, Integrable derivations, Nagoya Math. J., 87 (1982), 227-245.
[7] G. Seligman, Modular Lie Algebras, Springer, New York, 1967.
Received March 28, 1986.

Southern Illinois University
Carbondale, IL 62901

