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DERIVATION ALGEBRAS
OF FINITELY GENERATED WITT RINGS

ROBERT W. FITZGERALD

We consider derivations of an abstract Witt ring R. Denote the
collection of derivations by Der(R); it is a Lie algebra under the usual
bracket operation. The structure of Der(R) is closely related to the
structure of the torsion part of R, which is the part least understood.
After a lengthy computation of Der(R) for finitely generated Witt rings
of elementary type, we classify the Witt rings in the following cases: (i)
Der(R) = 0, (ii) Der(R) is a simple algebra, and (iii) the fundamental
ideal of R is not differentiable.

All Witt rings considered here will be finitely generated abstract Witt
rings (in the sense of Marshall [5]). The most important examples are the
Witt rings WF of non-degenerate quadratic forms over a field F with
char F # 2 and F/F? a finite group. The basic problem is to classify these
Witt rings. To date this has been done only for Witt rings that are small in
some sense (e.g., the number of generators is < 32) and for torsion-free
Witt rings. Indeed the part of a Witt ring R that is least understood is its
torsion ideal R,.

We study here the derivations of a Witt ring R, namely, additive
maps D: R — R such that D(rs) = sD(r) + rD(s) for all r,s € R. We
denote by Der(R) the collection of all derivations of R. Der(R) is a Lie
algebra, called the derivation algebra of R, under the usual bracket
operation: if D, D’ € Der(R) then [D, D] = Do D’ — D’° D € Der(R).

The usefulness of derivations appears to stem from the (easily checked)
fact that the image of any derivation of R lies in R,. Thus the structure of
the derivation algebra Der( R) sheds some light on the structure of R,. We
have obtained only some partial results however. We do classify the Witt
rings in the following cases: (i) Der(R) = 0, (ii) Der(R) is a simple
algebra, (iii) the fundamental ideal I, is not differentiable (i.e., D(IR) & I
for some D € Der(R)), and (iv) every derivation on R is integrable (but
here we require some restrictions on R).

All of our classification results are special cases of a general classifica-
tion of finitely generated Witt rings proposed by Marshall. We describe
this. Start with the fundamental Witt rings Z/2Z, 7/4Z, Z and certain
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Witt rings of local type, namely, L,,,, L,,; and L,,_,, (n > 2). The last
three families arise as the Witt rings of suitable local fields (see [5] for
details). We can form new Witt rings from old in two ways. If R is a Witt
ring and A is a (finite) group of exponent 2 then the group ring R[A] is
again a Witt ring. If R;, R, are Witt rings then the Witt product (or fibre
product over Z/2Z)is Ry X , R, = {(r;,r;)|r, € Ry, r, € R, and dimr,
= dim r, (mod 2)}, which is also a Witt ring. A Witt ring is of elementary
type if it can be built up from the fundamental Witt rings listed above by
a sequence of group ring extensions and Witt products. The proposed
classification is simply that every finitely generated Witt ring is of
elementary type.

The first section of this paper presents elementary results and reduc-
tion theorems. The second section computes the derivation algebra for any
Witt ring of elementary type. An important step here is deriving some
short exact sequences relating Der(L,, o), Der(L,, ;) and Der(L,, ;).

The third section examines some examples. We give an example of
two non-isomorphic Witt rings on 8 generators with Lie isomorphic
derivation algebras. We also give an example of derivations arising natu-
rally in the theory of quadratic forms. Let F C K be a quadratic field
extension and let s, denote the usual Scharlau transfer and i, denote the
map on Witt rings induced by inclusion. Then, in many cases i,sy:
WK — WK is a derivation.

The fourth section is devoted to proving L = Der(R) is a simple
algebra iff R is a group ring over Z/2Z and L = W,, the generalized Witt
algebra, for some n.

The fifth section examines when a derivation on a Witt ring R is
integrable (in the sense of Matsumura [6]). We show that if R is of
elementary type then every derivation is integrable iff R is not a group
ring extension of a ring of characteristic two.

The notation for Witt rings generally follows [5]. R will always denote
a finitely generated Witt ring. There is an associated group G (of one
dimensional forms) with distinguished element —1. Every element of R
may be expressed as a form {(g,,...,g,) with each g, € G. There is also
an associated linked quaternionic mapping ¢: G X G — B, where B is
some set. If there is a group H and a linked quaternionic mapping g:
H X H — B’ onto some set B’, then there is induced a Witt ring which
we will denote WH. I, denotes the fundamental ideal of R, that is, the
collection of even dimensional forms.

Ifr={(g,...,8,) € R then D(g,...,8,) (or Dg(gy,..., g, if the
ring R needs to be specified) is the set of elements of G represented by r.
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This should be distinguished from D({g,,..., g,))—note the parentheses
—which will indicate the image of r under the derivation D.

We will write Z, for Z/nZ. A, will always denote a group of
exponent 2 and order 2". A universal round form in R is a form r € R
such that gr = r for all g in the associated group G. We let ur( R) denote
the collection of all universal round forms; ur(R) is an ideal. If / C R is
an ideal, ann ; I denotes the annihilator of I in R.

1. Reductions. We begin an elementary observation:

LemMa 1.1. Let D € Der(R). Then:
(1) D(1) = D(-1) = 0;
(2) D(R) C ann({1,1)).

Proof. 1) D(1)=D(1 -1)= D() + D(1), so D(1)=0. And 0 =
D(0) = D({1, —-1)) = D(1) + D(—1),s0 D(—1) = 0.

(2) It suffices to show D(x) € ann({1,1)) for all x € G. Now 0 =
D(1) = D(x - x) = xD(x) + xD(x). Hence (1,1)D(x) = 0. a

It will frequently be easier to define a map on G and show it extends
to a derivation on R. The appropriate restrictions on the map on G are in
the following;:

DEFINITION. Let R be a Witt ring and G its associated group. A

G-derivation is a map d: G — R such that
@) d(=1) = 0;

(ii) d(xy) = xd(y) + yd(x), for all x, y € G;

(i) d(xy) = d(x) + d(y) if x € D{1, y).

Let Der(G) denote the collection of G-derivations. Note that for
d € Der(G), d(1) = 0 and d(G) C ann({1,1)) (namely, the proof of (1.1)
carries over).

PROPOSITION 1.2. Every G-derivation induces a derivation on R. In
particular, there is a bijection Der(G) < Der(R).

Proof. Let d € Der(G) and define D: R - R by D({a,,...,a,)) =
d(a,) + --- +d(a,). Note that D({1, —1)) = 0. To show D is well-
defined it suffices to check on binary forms (cf. [S, p. 31]). Suppose
{x1,%X,) =<y, y,)in R. Then x;x, = y,», and x;y; € D(1, x,x,). Then
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d(xy31) = d(x,p1 - X1%3) = d(x, 1) + d(x,x5), and d(x,y,) = d(x,,).
Expanding these equations yields:
x,d(yy) + pad(x;) = x,d(y;) + y1d(x;) + x,d(x,) + x,d(xy),
x(d(y,) + d()’z)) = <)’1, Y2s —x2>d(x1) + x,d(x,),
xlD(<J’1, )’2>) = xlD(<x1’x2>)’
D(<)’1, J’2>) = D((xl,x2>).

(In the second step we have used d(z) = —d(z) forany z € G.)
Now D is clearly additive. And

D(<x1"- "xn> : <y1’--~a)’m>) = Zd(xiyj) = Z(x'd(y]‘) +J’jd(x‘))

={(x1,ee s X)D((y1s- s y)) + (Vis ey Yd D({ X152, X))
Hence D € Der(R).

Lastly, suppose D € Der(R) and set d = D|;. Then d is a G-deriva-
tion. Namely, condition (i) holds by (1.1), condition (ii) holds by defini-
tion and if x € D(1, y) then D(x) + D(xy) = D(x - (1, y)) = D({1, y))
= D(y). Thus d(xy) = d(x) + d(y), since D(x) = —D(x) by (1.1). O

REMARKS. (1) We will identity G-derivations with derivations on R.

(2) Combining conditions (ii) and (iii) for a G-derivation yields:

If x € D{(1,y) then (1,x)d(y)= (1, y)d(x). This will be used
frequently.

DEeFINITION. Let B be a Pfister form of R such that i (D(B)) <2
and (1,1)B = 0. Let H be a subgroup of index 2 in G containing —1 and
contained in D(B). For x, y € G define:

i) 10

The derivation (induced by) d( H, xf) is the derivation of H and xp.
We check this definition makes sense.

LemMa 1.3. d(H, xf) is a derivation.

Proof. Let d denote d(H, xB); d(—1) = 0. Let y,, y, € G. We check
conditions (ii) and (iii) for a G-derivation at the same time. Since we may
switch the roles of y,, y, there are three cases to consider:

Casel. y,, y, € H.

Here d(y,) = d(y,) = d(»,,) = 0. So d(y,y,) = »1d(y,) + y,d(»,)
=d(y) +d(»,)-
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Case2. y, ¢ H, y, € H.

Here d(y,) = xB, d(y,) =0 and d(y,y,) = xB. Note that since
¥, € H C D(B), y,xB = xf. Thus we have:

d()’1)’2) = Y1d()’z) +)’2d()’1) = d()’l) + d()’z)-
Case 3. y, ¢ H, y, € H.

Here y,y, € H since iz(H) = 2. We hae d(y,) = xB = d(y,) and
d(y,y,) =0=x-(1,1)B =d(y,) + d(y,). Since y,y, € D(B), y,d(y,)
+y,d(y1) = »i(d(y,) +d(y,)) = 0 =d(yy,). O

ProOPOSITION 1.4. Der(R) = 0 iff R is reduced or R =Z, or R = Z,.
In particular, R is of elementary type.

Proof. If R is reduced then Der(R) = 0 by (1.1)(2), and if R = Z, or
Z,then G C {+1} and so Der(R) = 0 by (1.1)(1). Now suppose R is not
reduced, Z, or Z,.

Since R is not reduced we can choose w € D(1,1)\ {1}. Then
By = (1, —w) € ann((1,1)) and B, # 0. We can find a non-zero Pfister
form B, divisible by B,, such that D(B8) = G. Namely, suppose otherwise
and choose a non-zero Pfister form B with D(B) maximal among those
divisible by B, (B exists since |G| < o0). If D(B) # G take x € G\ D(B).
Then (1, —x)B # 0, B, divides (1, —x)B and -1, —x, D(B) C
D({1, —=x)B), so {1,x}D(B) € D({1, —x)B), contradicting the maximal-
ity of B.

Now G ¢ {1, —1}, since G C {1, —1} implies R is isomorphic to Z,,
Z,or Z [5, p. 41-42] and Z is reduced. Choose a € G\ {1, —1} and
choose H a subgroup of index 2 in G containing —1 but not a. Then
d(H,B) is a derivation (1.3) and non-zero since d(H, B)(a) = B. Thus
Der(R) # 0. ]

We begin the computation of Der(R) for R of elementary type by
decomposing Der(R) when R is a group ring or a Witt product.

PROPOSITION 1.5. Let R = Ry[A,] with A = {1,t} and let G, be the
group associated to R ,. Set:

L,= {D € Der(R)|D(t) = 0 and D(G,) C R},
L, = {D < Der(R)|D(G,) = 0and D(t) € R,}.
Then: (1) L is a subalgebra of Der(R) isomorphic to Der(R);

(2) L, is an abelian subalgebra isomorphic to anng ((1,1));
(3)Der(R)=L,®tL,® L, ® tL,.
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Proof. (1) L, is closed under addition and if D,, D, € L, then
(D;°D,)(t) =0 and (D, ° D,)(G,) € D,(Ry) C R,. So L, is a subalge-
bra. If D € L, then D|, € Der(R,). Let d € Der(R,) and define
D(ry + try) = d(ry) + td(r,), for ry,r, € R,. This is well-defined since
each r € R uniquely determines r,,r, € R, with r=ry+ tr. It is
straightforward to check D € Der(R). Since D(t) = td(1) = 0 and d(G,)
C R, we have D € L,. Also D|p =d and so L, is isomorphic to
Der(R,).

(2) L, is closed under addition and if D;, D, € L, then (D, ° D,)(G)
= D,(D,(tG,)) € D,(R,) = 0. Thus L, is an abelian subalgebra.

For w € anng ((1,1)) define d(w): G —» R by d(w)(g,) =0 and
d(w)(got) = 8w, for all g, € G,. We check that d(w) is a derivation.
First, d(w)(—1) = 0. Next, let x, y € G. If x, y € G, then yd(w)(x) +
xd(w)(y) =0+ 0 =d(w)(xy). If x = gyt € tG,, y € G, then yd(w)(x)
+ xd(w)(y) = ygow = d(w)(xy). And if x = got, y = g¢, with gy, g, €
G, then yd(w)(x) + xd(w)(y) = 8o&1tW + 8o&1tw = 0 = d(w)(xy), since
(1,1)w = 0.

Now suppose x, y € G and x € D(1, y). Then either x,y € G, or
x =y € tG,, since ¢ is 2-sided rigid [S, 5.19]. If x, y € G, then d(w)(x)
+ d(w)(y) =0 = d(w)(xy). And if x =y then d(w)(x) + d(w)(y) =
(1,1)d(w)(x) = 0 = d(w)(xy). Thus d(w) is a derivation.

We have inverse homomorphisms L; — anng ((1,1)) by D = D(r)
and anng ((1,1)) > L; by w— d(w). Hence L, is isomorphic to
anng ((1,1)).

(3) It suffices to show Der(R) = L, + tL, + L, + tL, since the sum
can easily be shown to be direct. Let D € Der(R). If r € R, there exist
unique r,, 7, € R, such that D(r) = r, + tr,. Let di(r) = r, and d,(r) =
r,. Extend these maps to R by setting d,(r + r't) = d,(r) + td,(r’), where
i=1,2 and r,r’ € R,. Also, by (1.1), there exist unique w;,,w, €
anng ((1,1)) such that D(z) = w, + tw,. Then D = d, + td, + d(w,) +
td(w,), where the d(w;), i = 1,2, are the derivations defined in (2). So it
suffices to show d,, d, € L,.

Now d, and d, are additive and d,(¢) =0, d,(G,) C R, (i = 1,2).
Let r,r’ € R,. Then:

D(rr’) =rD(r") + r'D(r),
d,(rr') + tdy(rr’) = rdy(r') + trd,(r') + r'd,(r) + tr'd,(r),

d(rry=rd(r)+rd(r), (i=1,2).
Hence d,|, € Der(R,) and, asin (1), d; € L, (i = 1,2). O

COROLLARY 1.6. [Der(R[A,])] = [Der(Ry)|*janng ({1, 1)) O
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DEFINITION. An ideal I C R is differentiable if D(I) C I for all
D € Der(R).

THEOREM 1.7. I is not differentiable iff char(R) = 2 and R is a group
ring.

Proof. (—). Let r = {a,,...,a,,) and d € Der(R) such that D(r) &
I. Then for some a;, say a,, D(a,) & I. By (1.1), (1,1)D(a,) = 0. Since
dim D(a,) is odd, (1,1) = 0 [4, p. 250] and so char(R) = 2. Now let
x € D(1, a;). Then

<1’ ‘11>D(x) = <1’ x>D(a1),

Since D(a,) is odd dimensional, the discriminant of (1, x)D(a,) is x. But
the discriminant of (1,a,)D(x) is 1 or a,. Hence x =1 or a,. So
D(1,a;) = (1,ay).

Further, D(a;) = D(—a,) ¢ Iz so the same argument shows
D(1, —a,) = {1, —a,}. Hence q, is two-sided rigid and by [5, 51.9] R is
a group ring.

(<) Let R = Ry[A;] where A, = {1,¢}; note that ¢ is two-sided
rigid. Now char(R) = 2 implies 1 € anng ((1,1)). Let D = rd(1), where
d(1) is the derivation constructed in (1.5) with d(1)(R,) = 0 and d(1)(¢)
= (1). Then D({1,1)) = (t) & I. O

We next consider Witt products. Let R = R, X, R, with correspond-
ing groups G = G; X G,. Let L = Der(R). We form the following sub-
sets of L:

De L|D(1XG,)=0,D(G, x1)c I X0j,

2

)
y
)
J-

= {
={DeL|D(G,x1)=0,D(1xXG,)Cc0xI,
= {

DeL|D(1XG,)=0,D(G, x1)c0X I

2

E,={De€L|D(G,x1)=0,D(1xXG,)CI X0

Suppose char(R) # 2. R, and R, cannot both have characteristic 2; we
will assume char(R;) # 2. Then (—1,1) # (1,1) in G. Fix a subgroup B of
index 2 in G with (=1,1) & B. Set:

F={D e L|D(B) = 0).
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ProrosITION 1.8. Let R= R, X, R, and L = Der(R). With the
notations given above, we have:
(1) L, is a subalgebra isomorphic to

{D € Der(R,)|D(R,) C I } fori=1,2.
(2) E, and E, are abelian subalgebras and
E, = Hom(G,/{ £1}, ur(R,))
E, = Hom(G,/{ +1}, ur(R,)).
(3) If char(R) # 2 then F is a subalgebra isomorphic (as a group) to
ur( R).

(4) If char(R) # 2 then L= L, ® L, ® E, ® E, & F.
(5) If char(R) = 2 then L=L, ® L, ® E, ® E,.

Proof. (1) Straightforward.
(2) We prove the result for E;; the case for E, is similar. Let
D, D’ € E,. Then (D> D’)(G) € D(0 X I ) = 0. Thus E; is an abelian
subalgebra. Now D(—1,1)= D(1,—-1) =0 and D(G) C 0 X ur(R,).
Namely, if & € G, and k € G, then since (1, k) € D{(1,1), —(h,1)) we
have
<(1’ 1)’ - (1’ k)>D(h’ 1) = <(1’ 1)9 - (h7 1)>D(1’ k) =0.

Soif D(h,1) = (0,r), with r € Iz, then (1, —k)r =0 for all kK € G, and
so r € ur(R,).

We thus have D(—1,1)=0 and D(G;, X 1) € 0 X ur(R,). So D
induces a map e: G,/{+1} — ur(R,). Lastly,

0 X e(hh’) = D(hW',1) = (h,1)D(H’,1) +(H’,1)D(h,1)
=D(W,1) + D(h,1) =0 X e(h’) + 0 X e(h).
Hence e € Hom(G,/{ £1}, ur(R,)).
Conversely, let e € Hom(g,/{ £1}, ur(R,)); e lifts to a unique map

e in Hom(G,, ur(R,)) sending —1 to 0. Define D(g;, g,) to be (0, e(g,)),
forall g, € Gy, g, € G,. Then D(—1) = 0 and

D(glgfagzgé) = (0’5(318{)) = (0»5(81)) +(0,é(g{))

=D(g;,8) + D(g{,gﬁ) = (g{’gé)D(gl’gZ) +(g1,g2)D(g{, gé)?

since D(G) € 0 X ur(R,). By (1.2) D € L and clearly D induces e.

(3) That F is a subalgebra follows from the definitions. We map
ur(R) —» F by w = d(B,w), where d(B,w) is the derivation of B and w.
The map is additive and injective. To show the map is surjective we first
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prove the

Claim. If D € L then D(—1,1) € ur(R).

Let h € G; and let D(h,1) = (r,r,) with r, € R,. Then (h,1) €
D{((1,1), (—1,1)) implies ((1,1), (h,1))D(-1,1) =
(1, 1), (=L 1))YD(h,1)=(—-11r, (1,1)r,) =0, using (1.1).
Similarly, if k€ G, then (1,k) € D((1,1), (1,-1)), D(, -1) =
D(—-1,1) and {((1,1), (1, k))D(—1,1)={((1,1), (1, —-1))D(,k)=0.
Thus (1,g)D(-1,1)=0 for all g€ G, X1 U1 X G, and hence for
all g € G. Then D(—1,1) € ur(R) as claimed.

Now if D € F and D(—1,1) = w then for any b € G, D(b) = 0 and
(b-(—1,1)) = bw = w, since w € ur(R). Hence D = d(B,w) with w €
ur(R) and the map is surjective.

(4), (5) It is easily verified that the sums involved are direct. Let
D € L. If D(—1,1) # 0 then char(R) # 2 and D(—1,1) € ur(R) by the
claim in (3). By (3) we can find D € F such that D(—1,1) = Dy(—1,1).
It thus remains to show that if D € L and D(—1,1) = 0Othen D € L, +
L,+ E, +E,.

The only Witt product that is also a group ring is Z X, Z [5, 5.22]
which is reduced. Hence by (1.7), D(G) C I. Let =, m, be the projec-
tions from I to I X 0, 0 X I, respectively. Let p,, p, be the projec-
tions from G to G; X 1, 1 X G,, respectively. Set D, = 7 Dp,, D, =
@y, Dp,, Dy = m,Dp, and D, = m Dp,. Then we claim D, € L, D, € L,,
D, € E| and D, € E,. We check this only for D, and D,.

For g, g’ € G,

Dl(gg,) = WID(pl(g)pl(g,))
= m(0:(8) D(py(g)) + pr(g) D(p4(8")))

= p,(g")Di(g) + p(g) Di(8") = g'Dyi(g) + gDy(g'),

since D(G) C Iy X Oimplies (1, y)D(x) = D(x) forany y € G,, x € G.
If g € D(1,g’) then py(g) € D(1, py(g’)) and so

Dl(gg,) = Wl(D(Px(g)) + D(Pz(g,))) = Dy(g) + Dl(g,)‘

Thus D, € L,.
Now

Dy(gg’) = m(D(p:(8))e:(g"))

= Wz(Pl(gl)D(h(g)) + P1(g)D(Pl(g'))) = D3(g) + D;(g').
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We thus only need to show that g’D;(g) = D;(g) for all g, g’ € G. Fix
g € G.Since Dy(g) C 0 X Iz, g’Dy(g) = Dy(g)if g’ € G, X 1. If g' =
(LK) €1X G, then g € D(1, —py(g)) so (1, —g")D(py(g)) =
(1, =p1(8))D(g"). Now m((1, =g’y D(py(8))) = (1, —1)(m Dp,)(g) X 0
= 0. And

m((1, —g")D(p:(8))) = m({1, —p:(g)) D(g))
=0 x(1,—-1)(7,D)(g’) = 0.
Hence g’D(p,(g)) = D(p,(g)) if g’ €1 X G,. That is, we have g’D,(g)
= D,(g) for all g’ € G; X1 U1 X G, and hence for all g’ € G. Thus,
D, € E,.
Lastly, we show D =D, + D, + D; + D,. For any g € g. p,(g) €

D(1, —pa(8))- So D(g) = D(pi(8)p2(8)) = D(pi(8)) + D(py(8)). That
1S,

D = Dp, + Dp, = mDp, + m,Dp, + m Dp, + m,Dp,
=D, +D,+ D, + D,. a

The simplest case of (1.8) yields

COROLLARY 1.9. Suppose charR, # 2, and charR, # 2. Let R =
R, X, R, and let G be the group associated to R. Then taking Z,-dimen-
sions:

dim Der(R) = dim Der(R;) + dim Der(R,) + (dim G )(dimur( R)).

Proof. We use the notations of (1.8). By (1.7), L, = der(R,;) for
i = 1,2. We have by (1.8)

dim E, = (dimG — 1)dimur(R,)
dim E, = (dimG — 1)dimur(R,)
dim F = dimur(R,) + dimur(R,)

(This last since ur(R) = ur(R;) X ur(R,)). The decomposition Der(R) =
L, ®L,® E, ®E, ® F then yields the result. O

2. Derivation algebras for fundamental Witt rings. To complete the
computation of Der(R) for R of elementary type we need to consider
derivations on the fundamental Witt rings. These Witt rings are (cf. [5,
524)2,2,,Z,and L,,, L,,,, L,, , for n > 2. The latter three classes
are Witt rings of local type.
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By (1.4), Der(R) = 0 for R = Z,Z, and Z,. So for the rest of this
section we will consider Witt rings of local type. Such Witt rings possess a
unique non-trivial 2-fold Pfister form, to be denoted p throughout this
section. Further, for each x # —1, D{1, x) is a subgroup of index 2 in G.
The converse also holds, which we separate for future reference:

LEMMA 2.1. Let R be a Witt ring of local type with ( finite) group G.
For every subgroup H of index 2 in G there exists an x € G with H =
D(1, x).

Proof. There are |G| — 1 subgroups of index 2 in G. There are |G| — 1
elements x € G\ {—1}, each of which yields a (distinct) subgroup
D(1, x) of index 2. Hence the result holds. o

LeMMA 2.2. Let R be a Witt ring of local type with group G. Assume
R +*Z.

(1) If char(R) # 2 then anng(1,1) = {0,p} U {(1,x), y(1,x)| — x
€ D(1,1) \ {0} andy & D{1, x)}. In particular, Jann x(1,1)| = |G|.

(2) If char(R) = 2 then anng(l,1) N I, = {0,p} U {(1, x),
WL, xylx € G\ {1}, y & D{1,x)}. In particular, lann(1,1) N I| =
2|G|.

Proof. If char(R) # 2 then anng(1,1) C I,. Thus it suffices to find
anng(1,1) N I, in both cases. We will show I, consists of 0, p and
binary forms. From this (1) and (2) follow quickly.

Let g€ I, and let d=d(q). If d=1 then qe I} ={0,p}.
Otherwise, we may write ¢ = (1, —d) + g,, with g, € I3. If ¢, = 0 we
are done. If g, = p, let e € D(1, —d). Then (( — d, —e)) = p and we
obtain

g=(1,-d)-(1,1,—e)=e-(1,-d) + ({1, —e,—d)) = e - (1, —d),
since ((1, —e, —d)) € I} = 0. O

LemMA 2.3. Let R be a Witt ring of local type with group G and
char(R) # 2. Let D € Der(R) and g € G. If D(g) =0 then
(1, —g)D(x) =0 forall x € G.

Proof. Let x € G. By (1.1), D(x) € anng(1,1) and the result is clear
if D(x)=0 or p. (Note that D =0 if R = Z.) By (2.2) we may thus
assume D(x) = (1, —y) for some y € D(1,1). If x € D(1, —g) then
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(1, —g)D(x) = (1, —x)D(g) = 0. We thus suppose x & D(1, —g); in
particular, g # 1.

Now char(R) # 2 implies D(1,1) # G. We claim that D{1,x) N
D(1,g)\ D{(1,1) # @. Otherwise, D(1,x) N D(1,g) < D(1,1). But
D(1,x) N D{1, g) is a subgroup of index 4 in G, thus contained in only
three subgroups of index 2. These three subgroups are D(1,x), D(1, g)
and D{1, —xg). This implies that one of x, g, —xg is 1. Each possibility
contradicts our previous assumptions, which proves the claim.

Let z € D(1,x) N D(1,g) \ D{1,1). Then z & D(1, —g) lest z €
D(1, g) N D(1, —g) € D(1,1). Also, since x & D(1, —g) and
D(1, —g) is a group of index 2, we have xz € D(1, —g). Lastly, x,z €
D(1,x) implies xz € D(1,x) N D{(1, —g) C D{1,gx), so —gx €
D(1, —xz). We have:

(1, =xz)D(xg) = (1, —xg) D(xz),

(1, —xz)D(x) = (1, —xg) D(x) +(1, —xg)D(2),
since D(xg) = gD(x), (1, —xz)D(x) = 0 or p and so g(1, —xz)D(x) =
(1, =xz)D(x). Also, z € D(1, x) implies D(xz) = D(x) + D(z). Now
(1, =xz)D(x) = x - {x, —z)D(x) =(x, —z)D(x)

=(1, —x)D(x) +{1, —z) D(x),

since (1,1)D(x) = 0. Working the same way with (1, —xg)D(x) and
(1, —xg)D(z) yields:

(1, =x)D(x) +(1, —z)D(x)
=(1, —x)D(x) +(1, —g)D(x) + (1, —x)D(z) + (1, —g)D(z).

() (1, =2)D(x) =(1, —g)D(x) +(1, —x)D(z) +(1, —g)D(z2).

But z € D(1, x) implies (1, —z)D(x) = (1, —x)D(z), and z € D(1, g)
implies (1, —g)D(z) = (1, —z)D(g) = 0. Then (*) yields
(1, —g)D(x) = 0. O

REMARK. Lemma 2.3 does not hold for Witt rings R of local type and
characteristic 2. For example, we may describe L,, by taking G =
(a, b, c, d)—here (S) denotes the group generated by S—and D(1,a) =
(a,b,c), D{1,b) = (a,b,cd), D(l,c) = (a,c,bd) and D(1l,d) =
(ab, ac,d). The map given by D(a) = (1,a), D(b)=(1,b), D(c)=
(1,a) and D(d) =0 induces a derivation. But D(d) = 0 while
(1, —d)D(a) # 0.
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PROPOSITION 2.4. Let R be L,,, or L,,.,, (n > 1) and let G be the
associated group. Then Der(R) is generated by the derivations d( H, B) (cf.
(1.3)). Here H is a subgroup of index 2 in G containing —1 and B is a
scalar multiple of a Pfister form with H C xD(f), for some x € G.

Proof. Let 0 # D € Der(R) and let K = ker(D|;). Suppose first that
ic(K)=2. Let x ¢ K and B = D(x). Note that S is a scalar multiple of
a Pfister form by (1.1) and (2.2). By (2.3), if k € K then (1, —k)D(x) =0
so that K is contained in a multiple of the value set of B. Also, D(k) = 0
and D(kx) = kD(x) = D(x). Thus D = d(K, B).

Now suppose i;(K) > 4. Fix x € K and let D(x)= . We will
complete the proof by showing there exists D’, a sum of d(H, a)’s, such
that ker((D — D')|;) D K U xK.

By (2.2), B=0p, (1, —y) or z{1, —y), where y € D(1,1) and z &
D{(1, —y). If B=p, write G ={1,x}H, with KC H and iz(H) = 2.
Then K U xK C ker((D — d(H, p))|s)- If B=(1, —y) and x & (1, —y)
then (2.3) implies K € D{1, —y) and so

KU xK C ker((D — d(D(1, =), (1, =y)))|).

Now suppose 8 = (1, —y) and x € D(1, —y). Let H be a subgroup
of index 2 in G, containing K but not x. Then H = D{1, —w), for some
w € G, by (2.1). We have x & D(1, —w) and so x & D(1, —wy). Also
K c© D{(1, —y) N D{1, —yw) by (2.3). Set D’ = d(D{1, —wy),
(1, =wy)) + d(H, —y{1, —w)). Then D'(x) = (1, —wy) L —p(1, —w)
= (1,—-y) = B and D'(K) = 0. Soker((D — D")|;) D K U xK.

Lastly, suppose 8 = z{1, —y). By the above argument, there exists
D’, a sum of d(H,a)’s, such that K U xK C ker((zD — D’)|;). But zD’
is still a sum of d(H, a)’s and K U xK C ker((D — zD’")|s). O

COROLLARY 2.5. Let R be L,,, or L,,,,, (n>1) with associated
group G. Then Der(R) € Hom(G, R). That is, if D € Der(R) and x, y €
G then D(xy) = D(x) + D(y).

Proof. This holds for D = d(H, 8) and hence for all derivations by
(2.4). O

REMARKS. (1) (2.4) and (2.5) fail for Witt rings of local type and
characteristic 2. The example given after (2.3) has d(ad) = dD(a) # D(a)
+ D(d), contradicting (2.5) and hence (2.4).
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(2) There are relations among the d(H, )’s which are difficult to
determine explicitly. We will compute Der(L,, ), Der(L,,,,), n > 1, by
an inductive argument instead.

We note that L, = Z.

LEMMA 2.6. Let R be L,,, or L,,,,, (n > 1) and let G be the group
associated to R. Let S be the Witt ring of local type with group K where
2|K| = |G| and char(S) # 2 (i.e. Sis L,, | or L,,,). Fix a € G\ {1}
with —1 & D(1,a).

(1) D{1,a) has the induced quaternionic structure and S =
W(D{1, a)).

(2) There is a ( group) isomorphism:

a:anng(1,1) - anng(1,1) N ann (1, a)

with a(kq) = ka(q) for all g € anng(1,1) and k € K (K is identified
with D(1, a)).

Proof. There is an orthogonal decomposition G = {1, —a} L D(1,a)
and so D(1,a) inherits a quaternionic structure with a as the dis-
tinguished element (cf. [1]). The Witt ring of D(1, a) clearly is of local
type, a # 1 and 2|D(1, a)| = |G|, so S = W(D(1, a)). We now identify S
with W(D(1, a)) and K with D(1, a).

Define a,: Ig = Iz by X(»2i 15 Y2i) = Li{ V21, —@;). To show
a, is well-defined, it suffices to check on binary forms, by Witt’s theorem
on chain equivalence (S, p. 31]. Suppose ( y;, »,) = (x;,x,) in S. Then
Y1V, = X1x, and x;y; € Dg(1, y,y,). Since x,, y; € K = Dg(1,a) we
have x;, ¥, € Dp(1, y1y,) N Dg(1l, a) C Dg(1, —ay,y,). Thus
(y1, —ay,y = (x4, —ax,) in R. Note that a is clearly a (group) homo-
morphism and that a,(kq) = kay(q) for all k € K, q € I. Further,

(L a)ao| £ (oo )| = Eraa((as =m0} =0,

since y,,_1¥,; € D(1,a). Hence ay(Is) C ann (1, a).

Let a be the restriction of a, to anng(1,1). Then a: ann (1,1) —
ann (1,1) N anng(1, a). Now lanng(1,1)| = |K| = 3|G|, by (2.2). Using
(2.2) again shows anng(1,1) N anng(1,a) consists of 0, p and pairs
(1,x), x{(1,x) where —x € Dg(1,1) N Dg(1,a) \ {1}, x" & D{1, x).
Thus

lann z(1,1) N anng(1,a)| = 2| Dr(1,1) N Dx(1,a)| = }|G|.

To complete the proof then, we need only show « is injective.
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Suppose y, y’ € K with (1, y) € anng(1,1) and «(y(1,y))=0.
Then (1, —ay) =0in R, a=y and (1,y) =0 in §. Let y,y' € K,
q = {({y, —y’)) and suppose a(gq) =0. Then (1, —ay) L —y(1, —ay)
=0, y' € Dp{1, —ay) N Dg{1,a) C Dg(1, y). But then y’ € D,(1, y)
and g = 0in S. By (2.2), ann4(1,1) consists of such y(1, y), {({y, —=y"))
and so «a is injective. O

Denote the inverse of a by B. Note that B(kq) = kB(q) for all
k € Dg{1,a) and q € anng(1,1) N anng(1,a). Note also under the
identification of K with D(1, a), S is a subring of R. We continue with
the notations of (2.6).

COROLLARY 2.7.Let A = { D € Der(R)|D(a) = 0}. Then By: A —
Der(S) is a Lie algebra isomorphism, where B,(D) = B(D|y).

Proof. We first show B, is well-defined. If x € G and D € A4 then
(1,a)D(x) = 0 by (2.3). Thus D(R) C anng(1,1) N anng(1, a), the do-
main of 8. Further, if g;,q, € S then

B+(D)(4:9,) = B(D(q,4,)) = B(4:D(g,) + 4,D(q;))

= ¢:8+(D)(q,) + ¢,8+(D)(q,),

since B(kq) = kB(q) for any k € K, g € anng(1,1) N anng(1, a). Thus
B«(D) € Der(S) forall D € A.

Now B, is additive and if D,, D, € A and k € K write D,(k) =
L 2i-1 V) € S. Then:

Ba(D1) Bl D)(K) = Bu(D,) B (3210320

= B*(D1)(Z<Y2i—1v _ay2i>) = IB(ZD1<Y21'—1’ _‘WZi>)

= B(ZD1<y2i—1’y2i>>

since Di(ay,;) = aDy(y,;) = Di(y,;) by (2.3). Thus Bu(D;)e B«(D,) =
B«(D; ° D,). In particular, B,(D,, D,]) = [B«D;, B«D,] and B, is a Lie
algebra homomorphism.

If, for D € 4, B4(D) = 0 then D|, = 0, since B is an isomorphism.
Hence G = {1, —a}K C ker(D|;) and D = 0. Thus B, is injective. To
show B, is surjective it suffices to show that the generators d(H, a) of
Der(S) (2.4) are in the image of 8. Let H be a subgroup of index 2 in K
containing a. By (2.1), H = D¢(1,x). Let a be (1,x), x’(1,x) or p,
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where x” & Dy(1,x) and p = ({x,ax")). We need to show d(H, ) is in
the image of B,. We check this only for a = (1, x), the other cases being
similar.

Set H’ = Dg(1, —ax). Note that H{1l, —1} Cc H', since H C
Dx(1,a) N\ D(1,x) and x € K = Dg(1,a), a € H C Dg(1, x) implies
—1 € Dg(1, —ax). Then B(d(H',{1, —ax)) = d(H, {1, x)). a

THEOREM 2.8. Let R be L,,, or L,,., with n > 1, and let G be the
associated group. Let a € G with —a & D(1,1). Let A ={D €
Der(R)|D(a)=10}. Let S=L,, , if R=L,,, and S=1L,,, if R=
L1

(1) There is an exact sequence of groups:

0 — A — Der(R) > anng(1,1) - 0

where e(D) = D(a) and A is Lie isomorphic to Der(S).
(2) dim Der(R) = 3(n + 2)(n — 1).

Proof. (1) We need only show e is surjective by (2.7). Let a €
ann(1,1). If @ = p, (1, —x) or x’(1, —x) where x” & Dg(1, —x) and
a & Dp(1, —x) then e(d(D{1, —x),a)) = a. By (2.2) we may thus as-
sume a = (1, —x) with a € Dg(1, —x). Choose z such that a &
Dg(1, —z). Then

e(d(D{1, —=xz), (1, —xz)) — xd(D(1, —z), (1, —z)))
=(1,-xz) + —x(1,-z) = a.
(2) dim(Der(R)) = dim(Der(S)) + n, by (1) and (2.2). Since Der(L,)
= Der(Z) = 0 we have
dim(Der(R))=n+(n—1)+ --- +2=3(n + 2)(n — 1). O

We turn now to the Witt rings L,,, with n > 2. Let G be the group
associated to L,,, and let g: G X G —> Z, be the associated linked
quaternionic map. We require the following construction:

Fix a,b € G with a & D(1,b). There is an orthogonal sum G =
{1,a,b,ab} L D{1,a) " D{1,b). Set H = {1,a,b,ab} and K =
D(1,a) N D{1,b). By [1] G induces a quaternionic structure on H and
K. In particular, for k € K we write Dg(1, k) = Dg(1,k) N K.

Embed K into a group K with |K|=2|K|; say K = {1,c}K. For
k € K\ {1} define:

D(1,k) = {1,ck’} Dy(1,k), where k' € K\ Di(1, k),
D{1,ck) = {1,c} Di(1,k).
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We also set Dg(1,1) = K and Dg(l,¢) = K. We further define g:
K X K — Z, by g(x,y) = 0iff y € Dg(1,cx). (We are thus taking c to
be the distinguished element of K.)

LEMMA 2.9. (1) g is a linked quaternionic mapping.
QWK=L,, .

Proof. (1) Note that x € Dg(1,x) for all x € K. Suppose x €
Dg(1, y). We will show ¢y € Dg(l,cx) for the case y € K (the case
y € ¢cK is similar). If x € D(1, y) then x € Dp(1,y), y € Dg(1,x)
since ~1=1 in G, and so y € D(1,x). Hence cy € Dg(1,cx).
If x=cy'x’ with y"€ K\ Dg(l,y) and x’ € Di(1,y) then y €
K\ Dg(1,x’y"y.So ¢y € Dg(1,x’y") = Dg(1, cx).

We lastly check ¢ is linked. Suppose g(x,, y;) = q(x,, y,), with
%y, € K, (i, j = 1,2). 1 §(x,, ) = 0, i = 1,2, then q(xy, ;) = (x,1)
= q(x,,1) = g(x,, y,). If g(x;,y,)+#0, for i =1,2, then y, # 1 and
y, # 1. Since K cannot be written as the union of two proper subgroups,
there exists w & Dg(1,cx;) U Dg(1,cx,). Then g(x,, y;) = g(X;,w) =
g(x3,w) = G(x,, ;) = 1. _

(2) g has a range of two elements, so the Witt ring WK it induces is
of local type. Since the distinguished element ¢ is not 1 and |K| = 2|K]|
= 4G, WK=1L,,_,. O

We continue with all of the notations introduced before (2.9) but now
writing R for WK = L,, ;.

LemMMA 2.10. There is an additive group isomorphism
a: annzx(1,1) — anng(1,a) N anng(1, b)
such that a(yq) = ya(q) forally € K, q € anng(1,1).

Proof. Since Dg(1,1) = K, a form in anngx(1l,1) looks like
L ¥2i-15 ;) With each y; € K (2.2). Define a by:

“(; (Pri-1s cy2i>) = ZI: <y2i~b Y2

To show a is well-defined it suffices to check on binary forms. Suppose
(Y1) = (¥s:¢V) in R.Then y,py, = y,y, and y,y; € Dg(1, 0y ) =
{L, e} Dx(1, yyy,). Since y1y3 € K we get yy3 € D1, y1yy) C
Dp(1, y17,), 80 {(y1, ) = (¥, ¥4y In R. Also, since each y,€EK=
D(1,a) N D(1,b), (1,8) - (yi_1, y2;y = 0 =anng(l,a) N anng(1, b).
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Now « is clearly a homomorphism and «( yg) = ya(q) for all y € K
and g € anng(1,1). To show a is an isomorphism we first

Claim. anng(1,a) N anng(1,b) = {0,p} U {(1, k), k{1, k) |k € K
and kK’ € K\ Dg(1,k)}.

Let S be the set on the right-hand side. Since K = D(1,a) N D(1,b)
and —1 =1 in G we have S Canng(l,a) Nanng1l,b). Let g€
ann {1, a) N anng(1, b). If g is not a binary form then ¢ = 0 or p, since
q € Ix. So suppose ¢ =y - (1,x), with x, y € G. Then (1,a) - {1,x) =
0=<(1,b)-(1,x) implies x € K. If y € D(1,x) then y(1,x) = (1, x)
€ S. Suppose then that y & D(1, x). Now K is a subgroup of index 4 in
G. K is then contained in precisely three subgroups of index 2, namely
D{1,x), D{1,b) and D{(1,ab). If K € D{1,x) then x € {a,b,ab} =
H \ {1}, which is impossible since x € K and K N H = {1}. Thus K ¢
D(1,x). Choose k"€ K\ D(1,x). Then g = y(1,x) = k'(1,x) € S.
This proves the claim.

The claim quickly yields that a is surjective since fror k, k' € K,
a({k’,k'ke)) = k'{(1,k), and if k" & D(1, k) then a((1,ck) + k'(1, ck))
= ((k,k’)) = p. Further the claim shows [anng(1,a) N anng1,b)| =
2|K| = |K|. By (2.2), J]anng(1,1)| = |K| also. Thus « is an isomorphism. [I

LEmMMmA 2.11. LetR=L,,, and R = WK = L,, | (n > 2) as before.
Let A = { D € Der(R)|D(a) = D(b) = 0}. Then A is Lie isomorphic to
Der(R).

Proof. We first show that for D € A, D(R) C anng{1l,a) N
anng(1,b). For g € G, if g € D(1,a) then (1,a)D(g) = (1,g)D(a) =
0. If g¢& D(1,a) then bg € D(1,a), since b ¢& D(1,a). Hence
(1,a)D(bg) = (1,bg)D(a) = 0. So 0= b(1,a)D(g) + g{1, a)D(b).
Since D(b) =0 also (1,a)D(g)=0. Thus in each case D(g) €
ann (1, a). Similarly, D(g) € ann (1, b).

For D € A define D: K — anng(1,a) N anng(1,b), by D(k) =
D(ck) = D(k), for all k € K. Let 8 = o™}, where a is the isomorphism
of (2.10). Note B(kq) = kB(q) for all k € K, g € anng(l,a) N
ann x(1, b). Define B,: 4 — Der(R) by:

.B*(D) = :8°E

Note that we have already shown the image of D is in the domain of B.
We next show ,B*(D)_E Der(R). First, B.(D)(c) = B«(D(c)) =
B(D(1)) = 0. Let x;,x, € K and write x, = c*y,, where ¢, € {0,1} and
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y; € K. Then
B+(D)(x1x,) = B(D(y13,)) = B(»D(,) + y,D(»))
= »B(D(,)) +».8(D(11)) = »Bs(D)(x;) + y2B+(D)(x;)

= x;84(D)(x,) + x,B:(D)(x,),
since (1,1)B(D(z))=0 in R, for any z € K, implies cB(D(z)) =
B(D(z)).
Next suppose x; € Di(1,x,). Then, by our construction, y, €
D(1, y,) unless x; = cyy, x, = y;. If y; € Dg(1, y,) then D(yy,) =
D(y,) + D(»,) and 50 By(D)(x,%,) = Bu(D)(x,) + Bu(D)(x,). So sup-
pose y,, y, € K with ¢y, € Dg(1, y,) and y, € Dg1, y,). Then y, &
Dg(1, by, ), since y; € K C Dg(1,b). Also, a € Dg(1, y,), a & Dg(1,b)
imply a & Dg(1, by,). Thus ay, € Dg(1, by,) and D(aby,y,) = D(ay,) +
D(by,). Now D(ab) = 0 implies D(aby,y,) = abD(y,y,). And abD(y,y,)
= D(y,y,) since D(R) C anng(1,a) N anng(1, b). Thus D(aby,y,) =
D(y,y,) and similarly D(ay,) = D(y,) and D(by,) = D(y,). We thus
have D(y,y,) = D(y,) + D(y,) and Bu(D)(x,x,) = B*(D_)(x1) +
B«(D)(x,). By (1.2) this completes the proof that 8,(D) € Der(R).
Clearly B, is an additive map. Let D,, D, € 4 and x = ¢y € K, with
e € {0,1} and y € K. Let D,(y) = L,(25;_1, Z5;), With all z; € K. Then

Bx(D;)° B4(D,)(x) = B« D)( (Z<221 1’221>))

= B*(Dl)(z<zzi—1’czzi>) = B(A(Z(Zz,_p Z2i>))

i

= B«(Dy° D,)(x).

Hence B[ Dy, D,] = [B«D1, B+ D, ].

Since B is an isomorphism, B, is clearly injective. To show B, is
surjective, it suffices to show the generators of Der(R) given in (2.4) are in
the image of B,. A generator is d(L,y), where y ER and L is a
subgroup of index 2 in K containing ¢ and contained in a scalar multiple
of Dz(v). By (2.1) L = Dg(1,x), for some x € K and c € Dg(1, x),
hence cx € Dg(1,1) = K. Then v is either (1, x), x’(1, x) where x" &
D(1, x), or p the unique non-trivial 2-fold Pfister form in R (2.2).

We will show d(L,y) withy = (1,¢y), y € K and L = Dg{1,cp) is
in the image of B,. The other cases are similar. Let D = d(D(1, y),
(1, y)) € Dex(r). Since y € D(1,a) N D{1,b), a,b € D(1, y) and so



284 ROBERT W. FITZGERALD

D € A.For ¢ € {0,1} and x € K we have B,(D)(c*x) = B(D(x)), which
is0if x € Dg(1,y) N K, and is B({1, y)) = v if x & Dg(1, y). Thus the
image B4(D)(K) is {0,y} and the kernel (in K) is {1,c¢}Dy(1, y) =
Dy(1,cy). Hence B(D) = d(L,v). 0O

LeMMA 2.12. Let G be the group associated to R = L,, , where n > 1.
Then there exist subgroups G,, G, of G such that:

1) G =G, X Gy;

(2) x; € Dg(1, x,), forall x;,x, € Gy;

(3) »1 € DK(1, yy), for all y,, y, € G,.
Further, if we fix x,, y, € G with x, & Dg(1, y,) then we may assume
Xy € Gy and y, € G,.

Proof. If n =1 then G = {1, x, yy, X¢¥,} and the result is clear. Let
n > 2 and fix xy, y, € G with x4, & Dg(1, y,). There is an orthogonal
decomposition G = {1, xq, ¥, XoYo} L Dr{1, xo) N D1, y,). Here K =
Dg(1, x4y N Dg(1, y,) inherits a quaternionic structure and its Witt ring
is L,,_,o. By induction there exist K,, K, C K satisfying conditions
(1)=(3). Set G, = {1, x4} K, and G, = {1, y,} K,. Then G = G, X G,.

We check condition (2) (the proof of (3) is similar). Let x;, x, € G,
and write x; = x{x; where, for i = 1,2, ¢, € {0,1} and x] € K,. Then
x{ € Dg(1,x5) and so x| € Dg(1, x3). Since x{, x5 € K C D(1,x,) we
also have x; € Dg(1, x,) as desired. O

THEOREM 2.13. Let R = L,,, with n > 2 and let G be the associated
group. Fix a,b € G with a & Dg(1,b). Let A = { D € Der(R)|D(a) =
D(b) = 0}.

(1) There is an exact sequence of groups

0—>A - Der(R) > Iy X Iy >0

where e(D) = (D(a), D(b)) and A is a subalgebra Lie isomorphic to
Dex(L,, ;).
(2) dim(Der(R)) = 2n + 2)2n + 1) /2.

Proof. (1) By (2.11) we need only show e is surjective. By symmetry it
is enough to show 0 X I, C im(e). Then, since e is additive and xD €
Der(R) for all x € G, D € Der(R), it suffices to show (0, (1, g)) € im(e)
forall g € G.
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If g& D(1,ay\D(1,b) then e(d(D(L g), (Lg)) = (0, (1g)),
where d(D(1, g), (1, g)) is the derivation of (1.3). If g € D(1,a) N
D(1,b) then ag € D(1,a) \ D(1,b) and

e(d(D(1,a), (1,a)) + d(D(1, ag), (1,ag)))
=(0,(1,a)) +(0,(1,4g)) = (0, {a,ag)) = (0, (1, 8)),
since a € D(1, g). Thus (0, (1, g)) € im(e) for all g € D(1,a). Since
D(1,a) has index 2 in G and b & D(1,a) it suffices to show (0,
(1, b)) € im(e).

Write G = G, X G, with subgroups G,, G, satisfying (2.12) and with
a € G, b € G,. Define D: G - I by D(xy) = x(1, y), for all x € G,
y € G,. Note that D(a) = 0 and D(b) = (1,b). We will be done if we
show D is a derivation.

We check the conditions of (1.2). Clearly D(1) = 0. If x;,x, € G,
and y,, y, € G, then

xl)ﬁD(sz’zS) + xz)’zD(x1J’1) = x1x2y1<1, )’2> + xlxz)’2<1’ )’1>
= xl"z()’p Yas Y1)as Y1J’2> = x1x2<1, )’1)’2>a

since (1,1) =0 in I and y, € D(1, y,y,). Thus D(x,y,x,y,) =
x, 0 D(x,y,) + x,y,D(x,y;). Now suppose x,y; € D(1, x,y,). We have:

(+)

D(x,y1%,9;) = %131, 112),
D(x1) + D(x,9,) = xx,(x,(1, 1) + x:(1, 3)).
There are two cases. If x; € D(1, y,) then since x, € D(1, x,) we have
y1 € D{1,x,y,). So x;y; € D(1,x,y,) implies y, € D(1,x,p,) N
D{1,y,) € D{1,x,), and x, € D(1,y;). Using (*) gives D(x,y,) +
D(x,,) = x;x(L, 1, y1, y2) = D(x131%,y,)-

Lastly, if x, &€ D(1, y,) then, arguing as above, we obtain x, &
D(1, y;). Choose z & D(1, y;) U D(1, y,), which is possible since G
cannot be the union of two proper subgroups. Since D(1, x) has index 2
in G we have y,y, € D(1,z) and z = D(1, y;y,). Then x,(1,y,) =

z{1, y;), and x,(1, y,) = z(1, y,). Using ()} gives
D(x,1) + D(x,0,) = x:%5( Y1, Y2, 2, 2) = D(x;01%23,).
(2) We apply (2.8):
dim Der(R) = dim Der(L,,_,) + 2dim I
=12n+1)2n~2)+202n+ 1) = 12n + 2)2n + 1).
O
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3. Examples. Sections 1 and 2 can be used to compute the deriva-
tion algebra for any Witt ring of elementary type. Below we give
dim(Der(R)) for every non-reduced Witt ring R where the associated
group has order at most 8 (cf. [5, p. 122-124]).

Z, 0 | Z,X,Z,X,Z, 6
Z, 0 | ZyX,ZA] 5
Z,[4,] 2 | ZyX, Zy[A,] 8
ZX,Z, 1 ! Z,[A] X, Z,[A] X, Z,[A] 9
Z,X,Z, 2 ! Z,[A] X, Z,[A,] 10
Z,[A,]1 %, Z,[4] 4 : (Z X, Zy)[A] 4
Z4[A1] 2 0 (Zg X, Z4)[A1] 8
Z,[A,) 8 | (Z,1A] X, Z,[AD[A] 14
ZiA) X, Z, 2 | Z,4;] 8
ZXx,Z,X,Z, 4 | Z,[4,] 28
Z X, Z,[A] 3 : L, 5
Zx,Z,[A,] 6 !

Any two reduced Witt rings have Lie isomorphic derivation algebras,
namely 0 (1.4). To get a non-trivial example we consider the four Witt
rings listed above with 2-dimensional derivation algebras.

PROPOSITION 3.1. (1) (Der(Z,[A,]) is abelian.
(2) Der(Z,[A,]), Dex(Z, X,, Z,) and Der(Z X, Z X 1Z1,) are non-
abelian and Lie isomorphic.

Proof. Up to isomorphism there is a unique non-abelian 2-dimen-
sional Lie algebra [2, p. 11], so we need only check if the algebras are
abelian or not.

Z,[A,] can be realized by W(Z,((?))), hence by (1.5), Der(Z,[A,]) is
generated by d({1,1)) and d(#(1,1)) (where d(w) sends +1 to 0 and +¢
to w). Then

[4((1,1)), d(K1,1))](2) = d((1.1))(«(1,1)) = £(1,1)) = 0.

So Der(Z,[A,]) is abelian.

Z,[A,] can be realized by W(Z,). Let a = a + 5Z for a € Z. Then
Der(Z,[A,]) is generated by d(1) and d(2) (where d(&) sends 1 to 0 and 2
to ). Then [d(1), d(2)] = d(1) and Der(Z,[A,]) is non-abelian.

Z, X, Z, can be realized by the Witt ring of the group G = {+1,
+a} with D(1, g) = G for all g € G. Using (1.8) we get Der(Z, X, Z,)



DERIVATION ALGEBRAS 287

is generated by d({1,1)) and d((1, a)), where d(w) sends +1 to 0 and
+a to w. Then [d({1,1)), d({1,a))]=d((1,1)) and the algebra is
non-abelian.

Lastly, Z X ,Z X, Z, can be realized by the Witt ring of the group
G = {1, ta, £b, £ab} with D(1,1) = {1, —ab}, D(l,a) =
{1,a, —b, —ab} and D(1,b) = {1,b, —a, —ab}. Using (1.8) we get
Der(Z X, Z X, Z,) is generated by D, which sends a to (1, ab), b to 0,
and by D, which sends a to 0 and b to (1, ab). Then [D,, D,] = D, + D,
and the algebra is non-abelian. O

Note that the Witt rings of (3.1)(2) with Lie isomorphic derivation
algebras have non-isomorphic associated groups. However, it is possible
for non-isomorphic Witt rings to have isomorphic associated groups and
non-trivial Lie isomorphic derivation algebras. An exampleis Z X, Z,[A,]
and Z, X, Z, X Z,. We sketch the computations required to verify this.

Z,X,Z,X,7Z, can be realized by the Witt ring of G =
{£1, +a, £b, +ab}, where D(1,g) = G for all g € G. The following is
a basis for the derivation algebra:

Di:a~(1,1),b~>0, D,:a~0,b~ (1,1),
D,-a—- (l,a), b~ 0, Ds:a—0,b— (1,a),
Dy:aw— (1,b),b—> 0, Dg:aw~ (1,a), b (1,b).

Z X, Z,[A,] can be realized by the Witt ring of the same G but with
D(1,1) = {1, a, b,ab}, D{(1,a) = {1,a}, D(1,b) = {1,b} and
D(1,ab) = {1, ab}. The following is a basis for the derivation algebra:

di:a—{({(—a,—b)),b~0, di:a—0,b- ({ —a,b)),
dy:a- ((—a,by),b~(1,-b), ds:a—0,b~b(1,—a),
dy:a- (1,-b), b~ 0, de:a~ b{(1,—a), b (1, —b).

The map D, — d,; gives a Lie isomorphism from Der(Z, X, Z, X, Z,) to
DerZ X, Z,[A,)) as can be easily, if not quickly, checked.

We close this section with an example of a derivation which arises
naturally in the theory of quadratic forms. We use the following set-up:
Let F be a field of characteristic not 2, e € F\ F? and E = F(Je). Let
~ denote the involution on E with a + b/e = a — by/e, and also the
induced involution on WE. Let s: E — F be the F-linear functional
defined by s(1) = 0, s(Ve) = 1. We denote the Scharlau transfer of s by
S, and the map WF — WE induced by inclusion by i,.
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LEMMA 3.2. Let E = F(Ve) and s* = i,s,: WE — WE. Then for all
4,9, € WE:

s*(q19,) = §5*(42) + 455*(q1)-
Proof. We need only check this for x, y € E since s* is additive. Let
t: E — F be the trace functional. If z = e then #(xz) = s(x) for all
x € E. Let t* = i t,. By the trace formula of Scharlau-Knebusch [4, p.
212}, t*(q) = q + g for all ¢ € WE. We obtain:

ys*(x) + xs*(y) = yt*(xz) + xt*(yz)
=f<xz,x—z> + x<yz,)_zz> = <xyz,E> + x}(z,f)
= t*(xyz) + xi(%\/g, -1 e> = s*(xy). O

COROLLARY 3.3. Let E = F(Ye) and suppose that for all x,y € E
Ng,r(y) € Dg(1l, —Ng,p(x)). Then s* = iys,: WE — WE is a deriva-
tion.

Proof. By an easy computation (cf. [4, p. 202]), if x € E then
s*(x) = z{1, = Ng p(x)), for some z € F. By assumption, for all y € E,
(1, =Ng,r(y))s*(x) = 0 and so ys*(x) = ys*(x). The result thus fol-
lows from (3.2).

ExamMpLEs. We give some examples of fields F for which the condition
of (3.3) is satisfied for all quadratic extensions.

(i) Finite fields. In this case binary forms represent all of F.

(i) Local fields. here either .(( — Ng,p(X), =Ng,p(¥))) is 0 in WF
or {{ —e, —f)) for some f & F\ Dy(1, —e), since WF has a unique
non-trivial 2-fold Pfister form. In either case, (( —Ng, z(x), = Ng,r(¥)))
® E = 0 gives the condition of (3.3).

(iii) If the condition of (3.3) holds for every quadratic extension of F;
and F, then it holds for every quadratic extension of the field F
constructed by Kula [3] with WF = WF, X, WE,.

4. Simple derivation algebras. We begin with a simple observation:

LEMMA 4.1. Let R be a Witt ring, D € Der(R) and suppose D(Iy) C
I7, for some m > 1. Then for all k > 1, D(IK) c 17+*1,

Proof. We use induction on k, the case k = 1 being trivial. Suppose
k > 1; we need only check the value of D on k-fold Pfister forms.

D(((ay---,a.))) = (La)D({(ay,...,a;_1)))
+ <<al’ cees ak—1>>D(<17 ak>)'
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Now D({(1,a,)) C I? and by induction D({{ay,...,a,_,))) C Im+*2,
Thus D({{ay, ..., a,))) € IF**~! as desired. 0

The generalized Witt algebra W, is the derivation algebra of
Z,[ty,...,t,1/(t2,...,t%) (cf. [T]). Since the Witt ring Z,[A,] is isomor-
phic to Z,[t,...,t,1/(t5 ..., t2) we have W, = Der(Z,[A,]). We will
show this is the only example of a simple derivation algebra of a finitely
generated Witt ring.

THEOREM 4.2. Let R be a finitely generated Witt ring and suppose
L = Der(R) # 0. The following are equivalent:

(1) L is simple;

(2) L is semi-simple;

(3) L has no (non-zero) abelian ideals;

(4) L= W,and R = Z,[A,), for some n.

Proof. We need only show (3) — (4). So suppose L has no (non-zero)
abelian ideals. Let G be the group associated to R. Write R = R [A], for
some group A of exponent 2 and Witt ring R, which is not a group ring.
Let G, be the group associated to R,,.

Step 1. I§_is torsion-free.

Suppose otherwise and choose m > 2 such that Iz is not torsion-free
but 7 ,’{‘0“ is torsion-free (this is possible as R, is finitely generated, cf. [5,
9.4]). Note that a torsion form in Iz’ is universally round. Let / = R - I
and I = {D € L|D(R) c J}. I # 0by (1.3). We will obtain a contradic-
tion by showing [ is an abelian ideal.

Clearly I is closed under addition. Choose D € I, D’ € L and
g€ G.By (1.5 L=AL,+ L,, where L, = {D € L|D(A) =0, D(R,)
C Ry} and L,={D € L|D(R,) = 0}. Since R, is not a group ring
extension, (1.7) implies D(R,) C I for D € L,. Write D’ = (£§,D,) +
D”, with §,€ A, D,e L, and D” € L,. Write D(g)= Xv,p;, with
Y; € A and ¢, € Iz.. We obtain:

[D,D’](g) = D(D'(g)) + LD'(v,9,)
= D(D'(g)) + Lo D'(v,) + ZY,(Z .D;(9;) )+D"(q>,~)-
Now D(D'(g))€J since D eI, D'(y,)€R-Iff =J, D"(9)=0

since D” € L, and v,8,D;(9;) € R- Iz =J by (4.1). Hence [D, D’] € I
and I is an ideal.



290 ROBERT W. FITZGERALD

Lastly, we show I is abelian. If D;, D, € I and g € D then
D,(D,(g)) € D,(R - 1,3;) c RDl(I,Q’:)) +I7D,(R)C R I3}

by (4.1). Then since m > 2, (1.1) implies D,(D,(g)) C R - Iz" 'N R, =
0. Hence [1,I] = 0.

Step 2. R # R,,.

Suppose R = R,,. If I is torsion-free then either R is reduced or Z,,
and in both cases L = Der(R) = 0 by (1.4). So we may assume I, is not
torsion-free, in particular, that D(1,1) # {1}. If x € D(1,1) then
(1, —x) € ur(R) since (1, —x) is torsion and I3 is torsion-free by Step
1. We consider four cases. In each case we obtain a contradiction by
construction of non-zero abelian ideal.

Casel. G # {1,—1}D(1,1) and 1 # —1.

Fix a subgroup H of index 2 in G such that H contains
{1, -1} D{1,1). Set I = {d(H, (1, —x))|x € D(1,1)}, using the nota-
tion of (1.3). I # 0since D(1,1) # {1}.

Now d(H, (1,—x))+d(H, {1,-y))=d(H, (1, —xy)), so I is
closed under addition. Let D € L and g € G. Then D(g) € anng(1,1)
=IxNR,, since —1 # 1. We can find an e € G such that D(g) +
(1, —e) € I3. Then ({1, —e)) = (1,1)D(g) + ({1, —e)) € I} and so
({1, —e)) = 0. Thus D(g) + (1, —e) € I3 N R, =0, by Step 1. Hence
for every g € G there exists an e € D(1,1) such that D(g) = (1, —e).

We now complete the proof that I is an ideal. [D, d(H, (1, —x)))(g)
= D(d(H, (1, —x))(g)), since D(g) = (1, —e) with e € D(1,1) C H.
In particular, [D, d(H, (1, =x))(g) =0if g€ H.If g ¢ H and D(x) =
(1, —y) for some y € D(1,1) then [D, d(H, (1, —x))I(g) = D({(1, —x))
= (1, —y). Hence [D,d(H, (1, —x))] = d(H, {1, —y)) € L

Lastly, we show I is abelian. Since the image of d(H, (1, —x)) is {0,
(1, =x)} and x € D(1,1) C H, the composition of any two derivations
in Iis 0. Thus[I,I]= 0.

Case 2. G = {1, -1} D(1,1) and —1 & D(1,1).

For g € G define D(g) = D(1,—g) if g€ D(1,1), and D(g) =
(1, g) if —g € D(1,1). Note that D(g) = D(—g) for all g and D(—1)

.= 0. To show D € L we need only check D(gg’) = D(g) + D(g’) for all
g, 8 € G, since D(g) € ur(R) for all g € G. Now:

D(g) L D(g’) = (1,g8) + <1,82g’>, for some ¢, ¢, € {1, —1}
= < — &8, _818288’> + <1’£23’>a as (1,¢g) € ur(R)
= (1, —e5,88") = D(8g').
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Let D’ € L and g € G be arbitrary. As in Case 1 D’(g) = (1, —x)
for some x € D(1,1). Then

[D’, D](g) = D'((1,¢8)) + D((1, —x)) = D'(g) + D(x)
=(1,-x) + (1,—x) =0 (wheree € {1, —1}).

Hence {0, D} is an abelian ideal.

Case 3. G = D{(1,1) and —1 # 1.

Here we have (1,1) € ur(R). Set I = {D € L|D(R) c {0, (1,1)}}.
I # 0 by (1.3). Since for any derivation D’ € L, D’(1) = 0, we have for
D €I that [D,D’}(R) € D(D'(R)) c {0, {(1,1)}. Thus I is an ideal.
Further, I is abelian since the composition of any two derivations in [ is
0.

Case 4. —1 = 1.

Since R = R, by assumption and I is torsion-free by Step 1, we
have I3 = 0 and anng(1,1) = {(1,x)|x € G} C ur(R). We define D:
G — R by D(x) = (1,x). Then D(1) = 0 and D(xy) = (1, xy) = (1, x)
+ (1, ) = D(x) + D(y) = yD(x) + xD(y), since (1,x), (1,y) €
ur(R). So D is a derivation. Further, for any D’ € L, g € G we have
[D, D’)(g) = D(D'(g)) + D'(D(g)) = D'(g) + D’(g) = 0 by (1.1). Thus
{0, D} is an abelian ideal.

Step 3. I is torsion-free.

By Step 2, |A|=2" with n > 1. Let ¢,...,¢, generate A. By (1.5),
L=AL, + L,where L, ={D € L|D(A)=0, D(R)) CRy}and L, =
{D € L|D(R,) = 0}. Note that if D € L, then D(R,) C I, by (1.7).
For a;,...,a, € anng(1,1) let d(q,,...,a,) be the derivation sending
R, to 0 and ¢, to a; (1 <i<n). Then L,={d(a,...,a,)|a; €
anng(1,1)}.

Suppose I is not torsion-free. Then I N R, C anng(1,1), since
I; is torsion-free by Step 1. Set J = R(Iz NR,) and I =
{d(ay,...,a,)|a; €J}. I is closed under addition. We will obtain a
contradiction by showing I is an abelian ideal.

First, if 6 € A, D€ L, and d(e,,...,a,) € I then for g € G, we
have

[6D,d(a,...,a,)](g) = d(ay,...,a,)(8D(g))

= D(g)d(ay,...,a,)(8) € I - R(I, " R,) C R(IZ N R,) = 0.
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And [8D, d(ay, ..., a,)t;) = 8D(a;) € R(Iz, N R,) = J. Hence
[8D,d(ay,...,a,)] =d(8D(ay),...,8D(a,)) € I and [AL, I]C I

Next, choose d(f;,...,B,) € L, and d(ay,...,a,) € I. Write a, =
X089, for some 8, €A and ¢, €I N R, Then [d(B,,...,B,),
d(ay,...,a,)] sends R, to 0 and sends ¢, to

d(ala--->an)(3i) + d(:Bp---an)(ai)
=d(ay,....,0,)(B) + Lo,d(Br..... 8,)(8,)).

Now d(ay,...,a,)(B) €J and @, d(By,...,B,)(8;;) € (Ig, N R,)-R =
J. Thus[L,,I]C Iandso[L,I]C I.

Lastly, to show I is abelian choose d(ay,...,a,), d(By,...,B,) € I.
Then d(ay,...,a,)°d(By,...,B,) sends R, to 0 and ¢, to

1

d(ay,...,a,)(B;). Write B; = L.8,p, with §, € A and ¢, € Iy N R,. Then
d(ey,....a,)(B) = Lod(ey,...,a,)(5)
J

€ (I, " R,)-R(Ix, N R,) C R(I} NR,)=0.

Hence [d(«ay,...,,), d(By,...,B,)]=0and [I,I]= 0.

We now complete the proof. We have R = R,[A,] with » > 1 and
I, torsion-free. In particular, D(1,1) = {1}. Thus either R, is reduced
or Ry=17Z,. But if R, is reduced so is R and L = Der(R) = 0. So
Ry=1Z,, R=7,[A,]and L = Dex(R) = W,. a

REMARK. Manin has shown [7, p. 106] that every restricted Lie algebra
can be embedded in a generalized Witt algebra. Hence if R is a finitely
generated Witt ring there exists an n such that Der(R) embeds in
Der(Z,[A,,)).

5. Integrable derivations. We follow the terminology of Matsumura
[6]. If R is a commutative ring with identity then a derivation D of R into
itself is integrable if there exists a homomorphism E: R — R[[¢]] such
that E(r) = r + tD(r) (mod ¢?) for all r € R. The map E is an integral
of D. An integral E arises from a collection of maps D = (D,, D,, D,,...)
where D, =idg, D, =D and E(r)=X,D,(r)t' for all r€ R. If D =
(1, Dy, D,,...)and D’ = (1, D{, D3,...) yield integrals for the derivations
D and D’ then:

DD = (1,D1 + D}, D,+ DD, +Di,..., ZD,D,;_,.,...)
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yields an integral for D + D’. Indeed the set of integrable derivations
form an R-submodule of Der(R).

Let R be a Witt ring and let D € Der(R). We say D is Ip-integrable
if D has an integral E such that E(r) —r € I[[¢]] for all r € R.
Equivalently, we require D = (1, D,, D,,...) to give an integral of D with
D,(R) c I for i > 2. The composition DD’ above shows the set of
Ir-integrable derivations also forms a subgroup of Der(R).

LEMMA 5.1. Let R be a Witt ring and D € Der(R). If D(R)?* = 0 then
D is I-integrable.

Proof. D(R)?> =0 implies D(R) C I;. Define E: R — R][[t]] by
E(r)=r + £2,D(r)t'. E is additive, E(r) — r € I [[¢]] and for r,s €
R;:

i-1
E(r)E(s)=rs+ Y |rD(s)+ Y, D(r)D(s) +sD(r)|t’
i j=1

=rs+ Y. D(rs)t' = E(rs),
using that D(r)D(s) = 0. O

LEMMA 5.2. Let R be Z,, Z, or an indecomposable finitely generated
Witt ring of local type. Then every derivation of R is Ip-integrable.

Proof. If R is Z,, Z, or Z then Der(R) = 0 (1.4). Suppose R = L,, ,
or L,, ; for n > 2. Then, by (2.4), Der(R) is generated by derivations of
the form d(H, B) (cf. (1.3)). Here d( H, B)(R) = RB, with B € anng(1,1).
Hence (2.2) implies B is y(1, x) or p, where —x € D(1,1), y € G and p
is the unique non-trivial 2-fold Pfister form of R. In either case 82 = 0.
So d(H, B) is I-integrable by (5.1) and then every derivation of R is
Ir-integrable.

Now suppose R = L,, , with n > 2. Let G be the group associated to
R and fix a,, b, € G with a, & D(1,b,). Write G = 4 X B with a, € 4,
by € B and satisfying a, € D(1,a,), b, € D{1,b,) for all a,,a, € 4,
b,, b, € B. This is possible by (2.12). Define D, on G by D,(ab) = b{1, d,
with a € 4, b € B. This is a derivation, as shown in the proof of (2.13).
Note that D,(R)* = {{{a},a,)) |a, € A} = 0o that D, is I-integrable
by (5.1).

Let D € Der(R). The proof of (2.13) shows that there exists a
derivation D; in the subgroup generated by D, and {d(D(1,x),
{1, x))|y € G, x € D(1, by)} such that D,(a,)=D(a,) and D,(b,)= 0.
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Further, D, is Ip-integrable. Similarly, there exists I-integrable D,
such that D,(a,) = 0 and D,(b,) = D(b,).

By replacing D by D — D, — D, if necessary, we see it suffices to
show if D € L = { D € Der(R)|D(a,) = D(b,) = 0} then D is I-inte-
grable. Now L is isomorphic to Der(L,,_,) by (2.11). Let y,: Der(L,,_,)
— L be an isomorphism (take the inverse of the map in (2.11)). The proof
of (2.11) showed that y4(d(H, a)) = d(K, 8), where d(H, a), d(K, B) are
of the type discussed in (1.3). Thus the derivations d( K, B) € L generate
L by (2.4). As argued above, d(K,fB) is Ip-integrable. Hence D is
Ip-integrable. a

LEMMA 5.3. Let R, be a (finitely generated) Witt ring and let
R = R[A,]. Suppose every derivation of R is Iy -integrable and D &
Der(R) satisfies D(R,) C Iy . Then D is I-integrable.

Proof. Let A, = {1,¢t}. By (1.5) D = D’ + tD"” + D", where D', D"
€ L, ={D € Der(R)|D(A;) =0, D(R;) CR,} and D" (R,)=0.
The restriction to R, gives an isomorphism between L, and Der(R) so
D’ and D” are Ip-integrable. We may thus assume D = D .

Let w = D(¢). By assumption, w € anng(1,1) N I,. For r € R,
D(r) = 0 and D(rt) = rw. If char R = 2 then since w? € 21, = 0, D(R)?
= (wR)? = 0 and D is I-integrable by (5.1). So we may assume char R
# 2. For non-negative even integers k we dfine w, € I inductively by:

D) wy=w

(i) If k = 4i then w,, € Iy and wj, € 2I;. Choose w, € I such

that:

—2tw, = w3, + 2

i—1

)y szwk—zj)-

j=1

(iii) If k = 4i + 2 then w§ € 21;. Choose a w, € I such that:

i
2 WaWi—2j |-
j=1

—2tw, = wg + 2

We note the following identities:

k/2—1
2w = Y Wy Wy, if k =0 (mod4),
j=1
k/2
—2tw, = wi + 2wy w, ,, if k=2 (mod4).
j=1



DERIVATION ALGEBRAS 295

For odd integers k, set D, = D. Let D, = id; and for even k > 2
define D,: R = R by D, (r, + r,t) = ryw,, for all r,,r, € R,,. Note that
D,(R) Cc I, for i > 1. Define E: R — R[[s]] by E(r) = X D,(r)s*. To
show E is the integral of D it suffices to check for all x, y € G (G the
group associated to R) that:

(+) D) = L D(x)D,, ()

Suppose k is odd. Then D, (xy) = xD(y) + yD(x) = Dy(x)D,(y) +
Dy(y)D,(x). Thus (*) becomes:

(k=1)/2 (k=1)/2
0=D(x)( gl D, (y)| +D(y) gl Dz,(x))-

This clearly holds if x or y are in G, the group associated to R,. So
suppose x = gt, y = gt for some g, g’ € G,,. Then:

D(x)(XD,;(»)) + D(»)( L D,,(x))
= gwo(glzwzj) + g’wo(gzwz,)
 2agw o) =0,

Now suppose k is even. Let ¢, = 0 if k =0 (mod4) and ¢, =1 if
k = 2 (mod 4). Then (*) becomes

(*%) D, (xy) = 'Z;,dDj(x)Dk_,(yH X D(x)D,,(¥)
D,(xy) = &D(x)D(y) + xD,(y) + yD,(x)
k/2-1

+ gl DZJ(x)Dk—2j(y)'

The equation (**) holds if x or y are in G,. So suppose x = gt, y = g't
for some g, g’ € G,. We want to show the right hand side of (**) is 0
since D,(xy) = D,(gg’) = 0. First consider the case k = 0 (mod 4). The
right hand side of (#x) is:

gig'w, + g'tgw, + Zgw2jg/wk—2j = gg'(2twk + ZWZJWk—2j>
=0, by construction of w,.
If k£ = 2 (mod 4) the right hand side of () is:

gg'wg + gig'w, + gligw, + 88’ Y wy Wy,

= gg’(wo2 + 2tw, + szjwk_zj)

= 0, again by construction of w,. O
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LEMMA 5.4. Let R,, R, be (finitely generated) Witt rings and let
R=R, X, R, Let Lf={De€De(R)|D(R)CIy} for i=1,2.
Suppose every derivation in L} is Ig-integrable (i = 1,2). Then every
derivation of R is Ip-integrable.

Proof. Let G, be the group associated to R, (i = 1,2); G = G, X G,
is the group associated to R. We use the notation of (1.8). If D € L, then
there exists D’ € L¥ such that for all (g,,8,) € G, D(g,8,)=
(D’(g),0). Let D' = (1, D{, D,,...) yield an integral for D" with D/(R;)
C I for i > 2. Define, for i > 2, D;: R = R by D/(r,r,) = (D/(r,),0).
Then D = (1, D, D,,...) yields an integral for D. Similarly, if D € L,
then D is Ij-integrable.

If Disin E,, E, or F then D(R) C ur(R) by (1.8). Hence, D(R)?> = 0
and D is Ig-integrable by (5.1). Since L,, L,, E,, E, and F generate
Der(R), by (1.8), we have that every derivation on R is Ip-integrable. O

THEOREM 5.5. Let R be a finitely generated Witt ring of elementary
type. The following are equivalent:

(1) There exists D € Der(R) with D(1Ig) & I;

(2) There exists D € Der(R) that is not integrable;

(3) There exists D € Der(R) that is not I g-integrable;

(4) R is a group ring and char(R) = 2.

Proof. (1) < (4) is (1.7) and (2) — (3) is clear.

(4) — (2): Write R = R,[A,] with A, = {1,¢}. There is a derivation
D with D(R,) = 0 and D(¢) =1 (cf. (1.5)). Suppose D = (1, D, D,,...)
yields an integral of D. Then D,(1) = 0 and

0=D,(t-t)=1D,(t) + D(t)D(t) + tD,(1)
0= (1) + 2tD,(1),

which is impossible, as 2tD,(t) € Ip but { — 1) & I,.

(3) = (4): We use induction on |G|, where G is the group associated
to R. By (5.2), R is not indecomposable. Suppose R is a product
R, X R, X, --- X, R, with each R, indecomposable or a group ring.
If R, is indecomposable then every derivation on R, is I -integrable. If
R, is a group ring then R, = S,[A] with S, indecomposable or a Witt
product. By induction, every derivation on S, is Ig-integrable. Hence any
derivation on R; mapping I into itself is I -integrable (5.3). Then (5.4)
implies every derivation on R is Ip-integrable, a contradiction.
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We thus have that R is a group ring extension. Write R = S[A], with
S indecomposable or a Witt product. Again induction yields that every
derivation on S is I¢-integrable. If char(R) # 2 then any derivation on R
maps I, into itself (1.7). So (5.3) implies every derivation on R is
I-integrable, contrary to our assumption. Thus R is a group ring and
char(R) = 2. a
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