EXTENDED ADAMS-HILTON'S CONSTRUCTION

Y. FELIX AND J. C. THOMAS

Let $F \xrightarrow{J} E \xrightarrow{p} B$ be a Hurewicz fibration. The homotopy lifting property defines (up to homotopy) an action of the *H*-space ΩB on the fibre *F* which makes $H_*(F)$ into a $H_*(\Omega B)$ -module. Suppose *B* is connected. We prove that if $E \xrightarrow{p} B$ is the cofibre of a map $g: W \to E$ where *W* is a wedge of spheres, then the reduced homology of *F*, $\tilde{H}_*(F)$ is a free $H_*(\Omega B)$ -module generated by $\tilde{H}_*(W)$. This result implies in particular a characterization of aspherical groups.

The key point in the proof of this theorem is the following generalization of the Adams-Hilton construction. In their famous paper, Adams and Hilton construct for every simply connected C.W. complex *B* a graded differential algebra whose homology computes the algebra $H_*(\Omega B)$. Extending their construction to any fibration *p* we construct a differential graded module C(F) whose homology computes the $H_*(\Omega B)$ -module $H_*(F)$. We suppose *E* is a subcomplex of *B*, then C(F) is a free $H_*(\Omega B)$ -module generated by the cells of *E*. The differential is defined inductively on generators in accordance with the way the cells of *E* are attached.

Our construction has many applications. For instance, let $\tilde{K} \xrightarrow{p} K$ be a normal covering of a finite C.W. complex. \tilde{K} is the homotopy fibre of some classifying map $K \to K(G, 1)$. As $H_*(\Omega K(G, 1))$ is isomorphic to $\mathbb{Z}[G]$, our construction yields an explicit chain complex whose homology computes the homology of \tilde{K} as a $\mathbb{Z}[G]$ -module. In particular, we establish some properties of infinite cyclic coverings in low dimensions.

1. The algebra structure of $H_*(\Omega X; R)$. Let X be an arcwise connected space with x_0 as base point. For sake of simplicity, we denote by G the fundamental group $\pi_1(X, x_0)$. Then

$$\Omega X = \coprod_{g \in G} (\Omega X)_g$$

where $(\Omega X)_g$ denotes the arcwise connected component of ΩX whose elements are the based loops γ belonging to the homotopy class g.

We denote by *e* the homotopy class of the constant loop at x_0 . For each $\gamma \in g$, the homotopy equivalence

$$L_{\gamma}: (\Omega X)_{e} \to (\Omega X)_{g}$$

defined by $L_{\gamma}(\omega) = \gamma * \omega$, induces for each ring R a unique R-module isomorphism $(L_g)_*$: $H_*((\Omega X)_e; R) \to H_*((\Omega X)_g; R)$. Let R[G] be the group ring of G. If $g = \sum_i \lambda_i g_i$ belongs to R[G] and f belongs to $H_*((\Omega X)_e; R)$, the map

$$\Phi: H_*((\Omega X)_e; R) \otimes R[G] \to H_*(\Omega X; R)$$

defined by

$$\Phi(f,g) = \sum_{i} \lambda_i (L_{g_i})_*(f)$$

is an isomorphism of *R*-module.

Moreover, Φ is an algebra isomorphism when $H_*(\Omega X; R)$ is equipped with the canonical Pontryagin algebra structure and if the product in $H_*(\Omega X_e; R) \otimes R[G]$ is given by the formula

$$(f_1, g_1)(f_2, g_2) = f_1 f_2^{g_1} \otimes g_1 g_2,$$

where $f^g \in H_*((\Omega X)_e; R)$ denotes the image of f by the unique homomorphism $H_*((\Omega X)_e; R) \to H_*((\Omega X)_e; R)$ induced by the conjugation map $\omega \mapsto \gamma \omega \gamma^{-1}$ with $\gamma \in g$.

REMARKS. (1) Suppose that X admits a universal covering $p: \tilde{X} \to X$, then $\Omega p: \Omega \tilde{X} \to (\Omega X)_e$ is an isomorphism of topological monoids.

(2) By the natural inclusion $(\Omega X)_e \to \Omega X$, $H_*((\Omega X)_e; R)$ is a subalgebra of $H(\Omega X; R)$, and so $H_*(\Omega X; R)$ is a free left module on the ring $H(\Omega \tilde{X}; R)$.

(3) The conjugation map $\omega \to \gamma \omega \gamma^{-1}$ in $(\Omega X)_e$ corresponds via Ωp to the map in $\Omega \tilde{X}$ defining the operation of $\pi_1(X, x_0) = G$ on $\pi_n(X, x_0)$.

(4) If R is a field of characteristic zero, then by the Milnor-Moore theorem [10] the Hopf algebra $H(\Omega \tilde{X}; R)$ is isomorphic to the enveloping algebra $U(\pi(\Omega \tilde{X}) \otimes R)$. In this case Φ induces a Hopf algebra isomorphism

$$H_{*}(\Omega X; R) \cong U(\pi_{\geq 1}(\Omega X) \otimes R) \otimes R[G]$$

where the operation of R[G] on $U(\pi_{\geq 1}(\Omega X) \otimes R)$ is induced by the natural operation of $\pi_1(X, x_0)$ on $\pi_{>2}(X, x_0)$.

2. Adams-Hilton construction in the non-simply connected case. Recall the Baues' construction [2].

Let K be a 0-reduced CW complex. There exists a 0-reduced CW complex \overline{K} together with a homotopy equivalence

$$q: \overline{K} \to K$$

such that the attaching map of a 2-cell of \overline{K} belongs to the free monoid generated by the 1-cells of \overline{K} . In order to do that, replace each 1-sphere in K^1 by the 2-dimensional complex

with one 2-cell and two 1-cells y and \overline{y} . The attaching maps of the 2-cell is $y\overline{y}$. The attaching maps of the *n*-cells of K define attaching map of \overline{K} and for the cellular chains complex of \overline{K} we have the relations:

$$\tilde{C}_{n}(\bar{K}) = \begin{cases} C_{1}(K) \oplus C_{1}(K), & n = 1, \\ C_{2}(K) \oplus sC_{1}(K), & n = 2, \\ C_{n}(K), & n \ge 3. \end{cases}$$

THEOREM 1 [2, D3.7 and 3.16]. Let K be a 0-reduced CW-complex. There is a differential d on $T(s^{-1}\tilde{C}_{*}(\overline{K}))$ together with a weak equivalence of chain algebras

$$v: A(\overline{K}) = T(s^{-1}\tilde{C}_{*}(\overline{K})) \to C_{*}(\Omega\overline{K}).$$

Moreover, the construction of d and v is inductive. Assume constructed $v_n: A(K^n) \to C_*(\Omega K^n)$ then for each (n + 1)-cell e, with attaching map f: $S^n \to X$, put $ds^{-1}e = z$ where $(v_n)_*[z] = (\Omega f)_*(\xi)$ with ξ a generator of $H_{n-1}(\Omega S^{n-1})$.

Each 1-cell y of \overline{K} yields a loop $y \in \Omega K \subset C_0(\Omega K)$. Then $v(s^{-1}y) = y$.

For a 2-cell e in \overline{K} , $ds^{-1}e = \alpha - 1$, where α is an element of the free monoid generated by the 1-cells of K, representing the attaching map of e.

REMARK. These formulas differ slightly from the Baues' ones. (Simply, subtitute formally y by y + 1).

Now, consider the canonical fibration

$$\Omega \overline{K} \xrightarrow{j} P \overline{K} \xrightarrow{p} \overline{K}.$$

Let denote by $S_*(\Omega \overline{K})$ (resp. $S_*(\overline{K})$, $S_*(P\overline{K})$). The singular chain group generated by non-degenerated cubes (resp. whose vertices are at the base point, in $\Omega(\overline{K})$). Following, the original Adams-Hilton construction it is easy now to obtain.

THEOREM 2. If K is a 0-reduced CW-complex there is a commutative diagram of augmented chain complexes

$$\begin{pmatrix} A(\overline{K}), d \end{pmatrix} \xrightarrow{v} S_{*}(\Omega(\overline{K}))$$

$$\stackrel{r\downarrow}{r} \xrightarrow{\downarrow j}$$

$$\begin{pmatrix} B(\overline{K}) \otimes A(\overline{K}), d \end{pmatrix} \xrightarrow{\theta_{1}} S_{*}(P(\overline{K}))$$

$$\stackrel{\pi\downarrow}{r} \xrightarrow{\downarrow p}$$

$$\begin{pmatrix} B(\overline{K}), \overline{d} \end{pmatrix} \xrightarrow{\theta} S_{*}(\overline{K})$$

with $B(\overline{K}) = \mathbb{Z} \oplus \tilde{C}(\overline{K})$, such that

1. v is a homomorphism of **Z**-algebras;

2. θ_1 is a homomorphism of differential modules;

3. The induced maps $v_*, (\theta_1)_*, \theta_*$ are isomorphisms.

REMARKS. (a) Denote by Λ_n the set of *n*-dimensional cells. Then $\langle t_{\alpha}, \alpha \in \Lambda_1; r_{\beta}, \beta \in \Lambda_2 \rangle$ is a presentation of the fundamental group G of K. This defines a group extension:

$$1 \to H \to F \to G \to 1$$

where F denotes the free group $\langle t_{\alpha}, \alpha \in \Lambda_1 \rangle$ and H the normal subgroup of F generated by the elements $r_{\beta}, \beta \in \Lambda_2$.

The group ring $\mathbb{Z}[F]$ is an augmented Z-algebra concentrated in degree zero. We denote by

$$\hat{A}(K) = \mathbf{Z}[F] * T(s^{-1}C_{\leq 2}(K))$$

the free product of the two associative **Z**-algebras. As $A(\overline{K}) = T(s^{-1}C_1(K) \oplus s^{-1}C_1(K) \oplus C_1(K) \oplus s^{-1}C_{\geq 2}(K))$, the homomorphism $\rho: A(\overline{K}) \to \hat{A}(K)$ defined by

$$\rho(t_{\alpha}) = t_{\alpha}, \quad \rho(\tilde{t}_{\alpha}) = t_{\alpha}^{-1}, \quad \rho(C_1(K)) = 0, \quad \rho|_{s^{-1}C_{\geq 2}} = \mathrm{id}$$

induces an isomorphism in homology. If K is countable, Milnor constructs a topological group G(K) which has the homotopy type of $\Omega(K)$. In this case it is possible to construct directly an equivalence of chain algebras, between $(\hat{A}(K), D)$ and $S_*(G(K))$. (b) As in the classical construction, we define on the chain complex $B(\overline{K}) \otimes A(\overline{K})$ (resp. $B(\overline{K}) \otimes \hat{A}(K)$) an ϵ -derivation s such that

$$sd + ds = 1 - \varepsilon$$

where ε denotes the augmentation of the complex.

In particular, using Fox calculus we obtain in $B(\overline{K}) \otimes \hat{A}(K)$ the following relations, in low degrees;

$$\begin{aligned} &dt_i = 0, & i \in \Lambda_1, \\ &d1 \otimes v_j^1 = 1 \otimes r_j - 1 \otimes 1, & j \in \Lambda_2, \\ &db_i^1 \otimes 1 = 1 \otimes t_i - 1 \otimes 1, & i \in \Lambda_1, \\ &db_j^2 \otimes 1 = 1 \otimes v_j^1 - \sum b_i^1 \otimes \frac{\partial r_j}{\partial t_i}, & j \in \Lambda_2, \end{aligned}$$

where

$$\hat{A}(K) = \mathbf{Z}[t_i, t_i^{-1}] * \langle v_j^{\prime} \rangle, \quad i \in \Lambda_1, \ j \in \Lambda_l, \ l \ge 2,$$
$$B(\overline{K}) = (1, b_j^k), \qquad j \in \Lambda_k, \ k \ge 1.$$

NOTATIONS. $\langle v_{\alpha} \rangle$, $\alpha \in \Lambda$ denotes the free group (resp. the free association algebra) generated by the v_{α} 's when the degree of the v_{α} 's is zero (resp. is positive) (b_{α}) , $\alpha \in \Lambda$ denotes the abelian group freely generated by the b_{α} 's.

EXAMPLES.

EXAMPLE 1.
$$K = P^4(\mathbf{R})$$
,
 $\hat{A}(K) = (\mathbf{Z}[t, t^{-1}] * \langle v_1, v_2, v_3 \rangle, d)$,
 $dt = 0, dv_1 = t^2 - 1, dv_2 = tv_1t^{-1} - v_1$,
 $dv_3 = tv_2t^{-1} + v_2 - v_1^2t^{-2}$.
EXAMPLE 2. $K = S^1 \times S^2$,
 $\hat{A}(K) = (\mathbf{Z}[t, t^{-1}] * \langle v_1, v_2 \rangle, d)$,
 $dv_1 = 0, dv_2 = tv_1t^{-1} - v_1$.

Therefore the natural projection $\hat{A}(K) \twoheadrightarrow (Z[t, t^{-1}] \otimes \langle v_1 \rangle, 0)$ is a quasi-isomorphism.

3. Adams-Hilton construction for homotopy fiber and applications.

3.1. Let $f: K \to L$ be a cellular map between 0-reduced C.W. complexes. Denote by $g: F \to K$ the homotopy fibre of f and by δ the connecting homomorphism in the Puppe sequence.

THEOREM 2. With the notations introduced in §2, there is a commutative diagram of augmented chain complexes

$(A(\overline{L}),d)$	$\xrightarrow{v_L}$	$S_*(\Omega \overline{L})$
$\downarrow r$		↓ 8
$(B(\overline{K})\otimes A(\overline{L}),d)$	$\stackrel{\Psi}{\rightarrow}$	$S_*(F)$
$\downarrow 1 \otimes \epsilon$		$\downarrow f$
$(B(\overline{K}), \overline{d})$	$\theta_K \rightarrow$	$S_*(\overline{K})$

such that Ψ is a homomorphism of differential modules and Ψ_* is an isomorphism.

Proof. Clearly we may suppose that f is an inclusion. We have only to define d and Ψ on $B(\overline{K}) \otimes A(\overline{L})$. d is defined as the restriction of the differential d of $B(\overline{L}) \otimes A(\overline{L})$ to $B(\overline{K}) \otimes A(\overline{L})$. This is possible since f is an inclusion. The cellular construction of Theorem 2.2 shows that the restriction of $\theta_1(L)$ to $B(\overline{K}) \otimes A(\overline{L})$ factors into a homomorphism of differential modules Ψ , making commutative the above diagram.

(i) Suppose that $K = V_{\alpha}S_{\alpha}^{1}$ and denote by $\Omega \overline{L} \to F' \to K$ the induced fibration by the inclusion $K \to \overline{L}$. Then we obtain a commutative diagram

$$\begin{array}{cccc} B(K) \otimes A(\overline{L}) & \stackrel{\Psi_{K}}{\to} & S_{*}(F') \\ & & & \downarrow j' \\ B(\overline{K}) \otimes A(\overline{L}) & \stackrel{\to}{\to} & S_{*}(F). \end{array}$$

As j_* and j'_* are isomorphism, it suffices to prove that $(\Psi_K)_*$ is an isomorphism.

The Leray-Serre spectral sequence of the fibration $\Omega \overline{L} \to F' \to K$ on one hand and the spectral sequence obtained using the filtration $B_{\leq p}(K)$ $\otimes A(\overline{L})$ on the other hand, yield the commutative diagram

$$\rightarrow H_{q+1}(B(K) \otimes A(\overline{L})) \rightarrow B_1(K) \otimes H_q(A(\overline{L})) \xrightarrow{d_1} H_q(A(\overline{L})) \rightarrow H_q(B(K) \otimes A(L))$$

$$\downarrow (\Psi_K)_* \qquad \cong \downarrow \theta_1 \otimes (v_L)_* \qquad \cong \downarrow (v_L)_* \qquad \downarrow (\Psi_K)_*$$

$$\rightarrow H_{q+1}(F) \qquad \rightarrow C_1(K) \otimes H_q(\Omega \overline{L}) \rightarrow H_q(\Omega L) \rightarrow H_q(F) \rightarrow$$

So, from the five lemma we deduce that Ψ_* is an isomorphism.

256

(ii) Suppose we have proved Theorem 3 for C.W. complexes of dimension less or equal to n and let $K = K^{n+1}$. The following diagram defines then F' as the total space of a pull-back fibration

$\Omega(\overline{L})$	=	$\Omega(\overline{L})$	=	$\Omega(\overline{L})$
Ļ		\downarrow		\downarrow
F'	\rightarrow	F	\rightarrow	$P(\overline{L})$
\downarrow		\downarrow		$\downarrow p$
K^n	\rightarrow	\overline{K}	\xrightarrow{f}	\overline{L}

So obtain the commutative diagram:

From the inductive assumption and the five lemma it suffices to prove that $(\overline{\Psi})_*$ is an isomorphism.

We denote by $\chi: (E^{n+1}, \underline{S}^n) \to (\overline{K}, \overline{K^n})$ the characteristic map of the cell *e*, and suppose that $\overline{K} = \overline{K^n} \cup e$.

Now from the commutativity of the diagram

$$\begin{array}{ccc} \left(B(\overline{K})_{/B(\overline{K^{n}})}\right) \otimes A(\overline{L}) & \xrightarrow{\sim} & \left(B\left(\overline{L^{n}} \cup e\right)_{/B(\overline{L^{n}})}\right) \otimes A(\overline{L}) \\ & \\ & \overline{\Psi} \downarrow & & \\ & & \\ & S_{*}(F)/S_{*}(F') & \xrightarrow{\sim} & S_{*}\left(p^{-1}\left(\overline{L^{n}} \cup e\right), \ p^{-1}\left(\overline{L^{n}}\right)\right) \end{array}$$

where the two horizontal maps are quasi-isomorphisms, we might as well suppose that

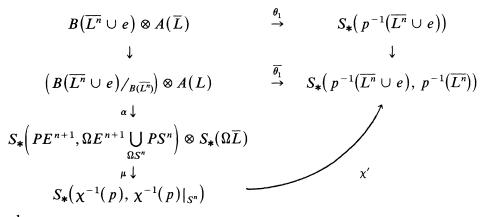
$$\overline{K^n} = \overline{L^n}$$
 and $\overline{\Psi} = \overline{\theta}_1$ (θ_1 , as in Th. 2).

Now, let us recall the construction of θ_1 : $B(\overline{L}) \otimes A(\overline{L}) \to S_*(P\overline{L})$. We denote by ζ a cycle of $S_*(\Omega S^n)$ corresponding by homology suspension to a generator of $H_n(S^n)$. Let $\xi \in S_n(PS^n)$ and $\eta \in S_n(\Omega E^{n+1})$ such that $d\xi = \zeta$ and $d\eta = \zeta$ when ζ is considered as an element of $S_*(PS^n)$ or of $S_*(\Omega E^{n+1})$. Considering now, all these chains in $S_*(PE^{n+1})$ we obtain the relation $d\kappa = \xi - \eta$ for some $\kappa \in S_{n+1}(PE^{n+1})$. Now θ_1 is defined such that

$$\theta_1(e \otimes 1) + P\chi(\kappa) \in S_{n+1}(P\overline{L}^n) \subset S_{n+1}(p^{-1}\overline{L}^n)$$

with $P\chi$: the canonical map $PE^{n+1} \rightarrow PK \hookrightarrow PL$.

From this formula we deduce the following commutative diagram,



where,

(i) $\alpha = \gamma \otimes v_{\overline{L}}$ with $\gamma(e) = -\rho(\kappa)$ and ρ is the canonical map $S_*(PE^{n+1}) \to S_*(PE^{n+1}, \Omega E^{n+1} \cup \Omega S^n PS^n)$.

(ii) χ' is defined by the following diagram

$$\begin{pmatrix} \chi^{-1}(p), \chi^{-1}(p)|_{S^n} \end{pmatrix} \xrightarrow{\chi'} \begin{pmatrix} p^{-1}(\overline{L^n} \cup e), p^{-1}(\overline{L^n}) \end{pmatrix} \downarrow_{p'} \qquad \qquad \downarrow_p \\ (E^{n+1}, S^n) \xrightarrow{\chi} (\overline{L^n} \cup e, \overline{L^n})$$

(iii) μ is induced by the homotopy equivalence

$$\left(PE^{n+1}, \Omega E^{n+1} \bigcup_{\Omega S^n} PS^n\right) \times \Omega \overline{L} \xrightarrow{\mu} \left(\chi^{-1}(p), \chi^{-1}(p)|_{S^n}\right)$$

with $\mu(c) = (P\chi(c), c(1))$ if $c \in PE^{n+1}$ and extended using the operation of $\Omega \overline{L}$ on $\chi^{-1}(p)$.

By excision χ'_* is an isomorphism and since α_* and μ_* are also isomorphisms, so is $(\bar{\theta}_1)_*$.

3.2. Fibre of a cofibre.

PROPOSITION. Let K and L be connected C.W. complexes. If $f: K \to L$ is the cofibre of a map $\bigvee_{\alpha} S^{n_{\alpha}} \to K$ and F the homotopy fibre of f, then $H_{+}(F)$ is a free $H_{*}(\Omega L)$ -module generated by $H_{+}(\bigvee_{\alpha} S^{n_{\alpha}})$.

Proof. The 1-connected version of this theorem soon appears in [6]. Nevertheless, for the convenience of the reader, we sketch the proof again. By 3.1,

$$H_{*}(F) \cong H_{*}(B(K) \otimes A(L)).$$

Consider then the exact sequence of differential chain complexes

(*) $0 \to (B(K) \otimes A(L), d) \to (B(L) \otimes A(L), d) \to (B(L)/B(K) \otimes A(L), \bar{d}) \to 0$

The inductive property of the Adams-Hilton construction shows that:

$$H_*(B(L)/B(K) \otimes A(L), \bar{d}) \cong B(L)/B(K) \otimes H_*(A(L))$$

The long exact sequence induced by (*) is an exact sequence of $H_*(A(L))$ -modules. So on we obtain an isomorphism of $H_*(A(L))$ -modules

$$B(L)/B(K) \otimes H_*(A(L)) \to H_*(B(K) \otimes A(L)).$$

3.3. Coverings. Let K be a connected finite C.W. complex and $H \to \pi_1(K) = G$ a normal subgroup with quotient group N = G/H. Denote by θ_2 : $\hat{A}(K) \to C_*(G(K))$ an Adams-Hilton model of K, by $\tilde{K} \to K$ a covering corresponding to H and by $\tau \nu_K$: $\hat{A}(K) \to \mathbb{Z}[\pi_1(K)] \to \mathbb{Z}[N]$ the composite of the canonical projections. The following proposition results then directly from Theorem 3.

PROPOSITION.

$$B(K) \otimes \mathbf{Z}[N] = (B(K) \otimes \hat{A}(K)) \otimes_{\hat{A}(K)} \mathbf{Z}[N]$$

is a chain complex whose homology is isomorphic to $H_*(\tilde{K}; \mathbb{Z})$ as $\mathbb{Z}[N]$ -module.

Proof. The homotopy fibre of the inclusion

$$K \hookrightarrow L = K(N,1)$$

has the homotopy type of \tilde{K} . From Theorem 3 and the definition of ρ : $A \rightarrow i\hat{A}$ we obtain the following commutative diagram:

$$\mathbf{Z}[N] \stackrel{\nu_{L}}{\leftarrow} A(L) \stackrel{\rho}{\leftarrow} (A(\overline{L}), d) \stackrel{\nu_{L}}{\rightarrow} S_{*}(\Omega\overline{L})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B(\overline{K}) \otimes \mathbf{Z}[N] \stackrel{\epsilon}{\leftarrow} B(\overline{K}) \otimes \hat{A}(L) \stackrel{1 \otimes \rho}{\leftarrow} (B(\overline{K}) \otimes A(\overline{L}), d) \stackrel{\Psi}{\rightarrow} S_{*}(\tilde{K})$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B(\overline{K}) \otimes \mathbf{Z}[N] \stackrel{\epsilon}{\leftarrow} B(\overline{K}) \otimes \hat{A}(L) \stackrel{1 \otimes \rho}{\leftarrow} (B(\overline{K}) \otimes A(\overline{L}), d) \stackrel{\Psi}{\rightarrow} S_{*}(K)$$

It is easy, then to prove that $1 \otimes v_L$ and $1 \otimes \rho$ induce isomorphisms at the homological level.

If we choose α , $\hat{A}(K) \rightarrow \hat{A}(\overline{L})$ such that $\tau \nu_K = \alpha \nu_L$, and if we define a $\hat{A}(K)$ -module structure on $\mathbb{Z}[N]$ with $\tau \nu_K$, we obtain a commutative diagram

$$B(\overline{K}) \otimes \hat{A}(\overline{K}) \otimes_{\hat{A}(\overline{K})} \hat{A}(K) \xrightarrow{\mu} B(\overline{K}) \otimes \hat{A}(L)$$

$$\downarrow^{1 \otimes \nu_L} \qquad \qquad \downarrow^{1 \otimes \nu_L}$$

$$B(\overline{K}) \otimes \hat{A}(\overline{K}) \otimes_{\hat{A}(\overline{K})} \mathbf{Z}[N] \xrightarrow{\mu'} B(\overline{K}) \otimes \mathbf{Z}[N]$$

where the canonical isomorphisms μ and μ' commute with differentials, and so induce isomorphisms between homologies.

With the notations of remark (b) below Theorem 2, the differential d of the complex $B(K) \otimes \mathbb{Z}[N]$ is defined in low degrees as follow:

$$d(b_i^1 \otimes 1) = 1 \otimes [t_1] - 1 \otimes 1,$$

$$d(b_j^2 \otimes 1) = -\sum b_i^1 \otimes \left[\frac{\partial r_j}{\partial t_i}\right],$$

where $[\alpha]$ denotes the image of α by the projection $\mathbb{Z}[t_i, t_i^{-1}] \to \mathbb{Z}[N]$. So we recover the classical formulaes of [5].

3.4. Infinite cyclic coverings in low dimensions. Let $\tilde{K} \to K$ be an infinite cyclic covering of a 0-reduced finite C.W. complex K. Denote by \mathscr{A} the matrix $([\partial r_j/\partial t_i])$ defined in 3.3 and by rank \mathscr{A} the maximal r such that there exists in \mathscr{A} a non-zero $r \times r$ minor. Then

PROPOSITION. If $\tilde{K} \to K$ is a connected infinite cyclic covering of a 0-reduced finite C.W. complex, then $H_1(\tilde{K}; \mathbf{Q})$ is finite dimensional if and only if rank $\mathscr{A} = n - 1$, where n is the number of 1-cells in K.

Proof.
$$H_1(\vec{K})$$
 is a finitely generated $\mathbf{Z}[t, t^{-1}]$ -module. If we write,

$$H_1(\tilde{K}) = \frac{\mathbf{Z}[t, t^{-1}]}{(\alpha_1)} \oplus \cdots \oplus \frac{\mathbf{Z}[t, t^{-1}]}{(\alpha_r)}$$

 $H_1(\tilde{K}; \mathbf{Q})$ will be finite dimensional if and only if all $\alpha_i \neq 0$, and so if and only if

$$H_1(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t) = 0.$$

Tensoring the complex $C_*(\tilde{K})$ by the field $\mathbf{Q}(t)$ over $\mathbf{Z}[t, t^{-1}]$, we obtain a chain complex of **Q**-vector spaces

2

(*)
$$0 \leftarrow C_0(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t) \stackrel{\sigma_1}{\leftarrow} C_1(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t)$$
$$\stackrel{\vartheta_2}{\leftarrow} C_2(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t) \leftarrow$$

260

(whose Euler characteristic coincide with $\chi(K)$). As $H_0(\tilde{K}) = \mathbb{Z}$, $H_0(\tilde{K}) \otimes_{\mathbb{Z}[t,t^{-1}]} \mathbb{Q}(t) = 0$ and dim Im $\partial_1 = 1$. Sorank $\mathscr{A} = \dim \operatorname{Im} \partial_2 = n - 1$ if and only if

$$H_1(C_*(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t)) = H_1(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t) + 0.$$

COROLLARY 1. Let K be a 0-reduced finite 2-dimensional C.W. complex whose Euler characteristic is zero and satisfying rank $\mathcal{A} = n - 1$ (n = number of 1-cells). If $\tilde{K} \to K$ is a connected infinite cyclic covering, then $H_i(\tilde{K}; \mathbf{Q})$ is finite dimensional for each i.

Proof. In the chain complex (*) as $\chi(K) = 0$, ∂_2 becomes injective, so dim $H_2(\tilde{K}; \mathbf{Q})$ and dim $H_*(\tilde{K}; \mathbf{Q})$ are finite.

COROLLARY 2. Let K be a 0-reduced finite 3-dimensional C.W. complex satisfying

(i) K satisfies Poincaré Duality with rational coefficients

(ii) rank $\mathscr{A} + 1 =$ number of 1-cells.

Then each connected infinite cyclic covering \tilde{K} has the rational homotopy type of a compact manifold.

Proof. In this proof we assume a lot of material and notation from S. Halperin's paper [8]. Consider the K.S. model [9, 20–2] of the classifying map $\varphi: K \to S^1$ of the covering \tilde{K} :

$$(\Lambda t, 0) \rightarrow (\Lambda t \otimes \Lambda V, D) \rightarrow (\Lambda V, \overline{D})$$

In [7] we show that $\dim_{\mathbf{Q}} H^i(\Lambda V; \overline{D}) < \infty$ if and only if $\dim H_i(\tilde{K}; \mathbf{Q}) < \infty$. From the duality assumption we deduce a surjective quasi-isomorphism

$$(\Lambda t \otimes \Lambda V, D) \xrightarrow{\theta} (A, D)$$

such that $A^{>3} = 0$ and $A^{3} = \mathbf{Q}U$. Moreover, since K is arcwise connected, $H_{1}(\varphi) \neq 0$ and there exist a cocycle $v \in \Lambda V$ such that $\theta(tv) = U$. Consider now the c.d.g.a. $(\Lambda t \otimes \Lambda V \otimes \Lambda \bar{t}, D')$ with $D'(\bar{t}) = t$, $D'|_{\Lambda t \otimes \Lambda V} = D$, deg $(\bar{t}) = 0$. Denote now by $(A \otimes \Lambda \bar{t}, D)$ the tensor product of the two commutative differential graded algebras

$$(A, D) \otimes_{(\Lambda t \otimes \Lambda V)} (\Lambda t \otimes \Lambda V \otimes \Lambda \overline{t}, D').$$

Clearly, $(A \otimes \Lambda \bar{t}, D)$ is quasi-isomorphic to $(\Lambda V, \overline{D})$. Now $(A \otimes \Lambda \bar{t})^3 = \mathbf{Q}U \otimes \Lambda \bar{t}$. As $U \otimes \bar{t}^n = D(\theta(v)\bar{t}^{n-1}/n)$ for $n \ge 1$, $H^3(\Lambda V, \overline{D}) = \mathbf{Q}$ and thus $H_3(\tilde{K}; \mathbf{Q})$ is finite dimensional.

On the other hand, the above proposition shows that $H_1(\tilde{K}; \mathbf{Q})$ and $H_0(\tilde{K}; \mathbf{Q})$ are finite dimensional. As $\chi(K) = 0$, in the chain complex (*) we obtain $H_2(\tilde{K}) \otimes_{\mathbf{Z}[t,t^{-1}]} \mathbf{Q}(t) = 0$, so $H_2(\tilde{K})$ is also finite dimensional.

The corollary results then of the Milnor theorem ([11]).

3.5. Aspherical groups. Let (W, w_0) be a wedge of S^1 's and let X be obtained by attaching 2-cells to W:

$$X = W \cup \left(\bigcup_{i \in I} e_i^2\right).$$

For each, $k \in I$, φ_k : $S^1 \to W$ denotes the attaching map of the 2-cell e_k^2 .

Let N_X be the normal subgroup of $\pi_1(W, *)$ generated by the homotopy classes $[\varphi_k], k \in I$.

Note that the group extension

$$1 \to N_X \to \pi_1(W, w_0) \stackrel{(i_{WX})_{\#}}{\to} \pi_1(X, w_0) \to 1$$

induces on the abelianized group $(N_X)_{ab}$ a canonical structure of $\mathbb{Z}[\pi_1(X)]$ -module. Denote by ϕ_i the image of $[\varphi_i]$ in $(N_X)_{ab}$.

PROPOSITION. $(i_{WX})_{\#}$: $\pi_1(W, w_0) \rightarrow \pi_1(X, w_0)$ is surjective iff $(N_X)_{ab}$ is freely generated by the ϕ_i 's as $\mathbb{Z}[\pi_1(X)]$ -module.

Proof. We denote by $j: F_X \to W$ the homotopy fibre of i_{WX} . Then each φ_i , $i \in I$, factorises into $\overline{\varphi}_i: S^1 \to F_X$ and so induces $\overline{\Phi}_i$ belonging to $H_1(F_X)$. From 3.2, the reduced homology $H_+(F_X)$ is freely generated as $H_*(\Omega X)$ -module by the $\overline{\Phi}_i$'s. An argument of degree shows that $H_1(F_X)$ is isomorphic to $\bigoplus_{i \in I} \mathbb{Z}[\pi_1(X)]\overline{\Phi}_i$, since $H_0(\Omega X) = \mathbb{Z}[\pi_1(X)]$.

(a) If $(i_{WX})_{\#}$ is surjective, then F_X has the homotopy type of a wedge of S^{1} 's and so

$$\left(N_X\right)_{\rm ab} = H_1(F_X).$$

(b) In order to prove the "only if" direction first remark that the exact sequence

$$0 \to \pi_2(X) \to \pi_1(F_X) \xrightarrow{j_{\#}} N_X \to 0$$

obtained from the homotopy fibration $F_X \xrightarrow{J} W \xrightarrow{i} X$ naturally splits.

Now, if we suppose that $(N_X)_{ab}$ is a $\mathbb{Z}[\pi_1(X, w_0)]$ -module freely generated by the ϕ_i 's then $H_1(F_X)$ is isomorphic to $(N_X)_{ab}$.

Thus $\pi_2(X, w_0) = 0$ and then $\pi_{>2}(X, w_0) = 0$.

262

References

- [1] J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv., **30** (1956), 305–330.
- [2] H. J. Baues, On the homotopy classification problem, Volume 4. Bonn (1983), preprint.
- [3] _____, The chains on the loops and 4-dimensional homotopy types, Homotopie algébrique et algèbre locale. Astérisque n°113-114 (1984), 44-59.
- [4] H. J. Baues and J. M. Lemaire, Minimal models in homotopy theory, Math. Ann., 225 (1977), 219–242.
- [5] E. Fadell and S. Husseini, *The Nielsen number on surfaces*, Contemporary Mathematics, 21 (1983), 59-98.
- [6] Y.Felix and J. C. Thomas, Module d'holonomie d'une fibration, Bull. Soc. Math. France, 113 (1985), 255-258.
- [7] ____, Le Tor différentiel d'une fibration non nilpotente, J.P.A.A., 38 (1985), 217–233.
- [8] S. Halperin, Lectures on minimal models, Mémoire de la Société Mathématique France, 9/10 (1984).
- [9] J. Milnor, Construction of universal bundles II, Ann. of Math., 63 (1956), 430-436.
- [10] J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.
- [11] J. Milnor, *Infinite cyclic covering*, Conference on the Topology of manifolds, Prindle Weber and Schmidt (1968), 115–133.

Received December 6, 1985 and in revised form June 11, 1986. The authors were partially supported by a N.A.T.O. grant.

Institut Mathématique Université Catholique de Louvain Louvain-La-Neuve, (Belgique)

AND

U.E.R. DE MATHÉMATIQUES UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE VILLENEUVE D'ASCQ, (FRANCE)