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SOME EXPLICIT UPPER BOUNDS

ON THE CLASS NUMBER AND REGULATOR OF A

CUBIC FIELD WITH NEGATIVE DISCRIMINANT

PIERRE BARRUCAND, JOHN LOXTON AND H. C. WILLIAMS

Explicit upper bounds are developed for the class number and the
regulator of any cubic field with a negative discriminant. Lower bounds
on the class number are also developed for certain special pure cubic
fields.

1. Introduction. Let Jf be any cubic number field with discriminant
Δ < 0 and regulator R. Since either 41Δ or A ^ l (mod4), we may
assume that Δ = df2, where d is the discriminant of a quadratic field.
Further, since d < 0 and either 41 d or d = I (mod 4), we must have
\d\ > 3. Let Ox be the ring of all algebraic integers of Jf and let h be the
number of ideal classes of 0x.

From a classical, general result of Landau [11] we know that

Λi? = θ(/JΔT(log|Δ|)2).

More recently Siegel [19] and Lavrik [13] have given general results from
which an explicit constant c can be easily determined such that

hR<c{\K\{\o%\Δ\)2.

However, in the case of a pure cubic field (d = -3), Cohn [6] has shown
that

ΛR = θ(/ίΔ[log|Δ|loglog|Δ|).

In this paper we will develop an explicit upper bound on hR which
depends on d and / (= {K/d). In the pure cubic case our results give

We make use of the well-known fact that

where

and C =

209
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Now

Φ(j)aUί)/ίWa Σ «(«)«"*,
W = l

where

(1.1) «(n) = ΣμU)F(n/j)
j\n

and F(k) denotes the number of distinct ideals of 0# with norm k. Also,

Φ(l - s) = C-2s+ι(Γ(s)/Γ(l - s))Φ(s);

hence, by using a result of Barrucand [1], we get

φ(i)= Σ βOIΛ-^ + cΣ *ϋWJc),

where

Thus,

and, if we put

(1.2)

we get

(1.3)

E(x) = fχ e

0 0

Φ(l) < 2 Σ

0 0

A(x)-Σ
7 = 1

hRC -

~trldt<

L

kίy)!/"1

<2A(C)

e~x/x.

ιe~Jc,

e'jx,

It follows that we can easily bound R once we can obtain an upper
bound on A(C).

2. The function a(k). As a(k) is a rather difficult function to work
with, we will develop a simpler function β(k) such that

(2.1) \a(k)\<β(k).

We first note that since F(k) is a multiplicative function and ̂ (1) = 1,
then a(k) is also a multiplicative function and α(l) = 1. We need now
only consider the problem of determining a{pn), where p is any rational
prime. By (1.1) we have

(2.2) a{p") = F(p") - F{pn-')

hence, it suffices here to determine F(pn). In order to do this we will need
to know how the ideal (p) splits in Θx. A convenient summary, describ-
ing the five different types A, B9 C, D9 E of possible rational prime
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factorization in 0X9 can be found in Hasse [11] or Barrucand [2]. In Table
1 below we present those results which will be useful in the sequel. As
usual we use the symbol (a/b) to denote the Kronecker symbol. We also
use the symbols p, p\ p" to denote prime ideal factors of (p) with norm
p and the symbol q to denote a prime ideal factor of (p) with norm p2.

TABLE 1

Type

A
B
C
D
E

Factorization of (p)

(P)

Quadratic Characters

(Δ//>) = 1
(Δ/p) = 1
(Δ//>) = -1
(<//»-0,(//p)*0

(//p)= o

Remarks

—

inert
—

ramified
ramified

Define

where

(2.3)

(β(k) when (k,f) = 1,

\θ when (A:,/) > 1,

β(k) = Σ

If p is of type A, we see that F(^") is the number of possible triples of
non-negative integers k, j , k such that / + j + k = n; that is, F(pn) =
(n22) By using similar reasoning and (2.2) we get the results listed in
Table 2.

Type

TABLE 2

F(p") a(p")

Since β(k)is multiplicative and β(l) = 1, we get

β(k)>β*(k)>\a{k)\>0.

β*(p")

A

B
B
B
C
C
D
E

any
n Ξ 0 (mod 3)
n Ξ= 1 (mod 3)
« Ξ 2 (mod 3)
n Ξ=0(mod2)
n ΞΞ 1 (mod 2)

any
any

(w + 2){n + l)/2
1
0
0

(ii + 2)/2
(n + l)/2

n + 1
1

n + l
1

- 1
0
1
0
1
0

n + l
n + l
n + l
n + l

1
0
1
0
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3. An upper bound on CRh. If we put

(3.1) B(x) = £ β{j)Γle'j\
7 = 1

then by (1.2), (1.3), (2.1), and (2.3) we get

(3.2) hRC<2B{C).

In this section we will determine an explicit upper bound on B(C). If

we take x and c to be positive real numbers, by an inverse Mellin

transform

= 4~ f+'°° x~sT(s)ξ(s + l)L(s + 1) ds9

where L(s) is the associated L function

L(s) = f (d/n)n-\
« = 1

Now the functions ξ and L satisfy the functional equations

f(1 - s) = ^ f

(3.3) L(l - ,) = - ^ μ f ^ s i n f Γ(s)L(s) (d < 0)
( 2 ) 2

(see [8] Ch. 9); thus, by using the relation

Γ(j)Γ(-.s) = -π/(s sin ITS ) ,

we see that the integrand

A(j) = j r T(s)£( j + ΐ)L(s +

satisfies

(3.4) Λ(-5) = -

As j -* 0, Γ(ί) = s'1 - γ + 6>(J) and ζ(s + 1) = s'1 + γ + 6>(ί).

(γ here is Euler's constant .577215665 ....) (See [16], §§12.1, 13.21.) Thus,

Λ(s) has a double pole at s = 0 and if we write L(s + 1) = a + bs +

O(s2) with a = L(l), Z> = Z/(l), we find, by expanding the various
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functions about s = 0,

A(s) = (1 - slogx + )(^~1 - γ + )

x(s~ι + γ + ••• )(a + bs + ••• )

+ )

as s -» 0. From the functional equations for ζ and L we see that
ζ(s + l)L(s + 1) has simple zeros at integral values of s < - 1 ; hence,
Λ(5) has no poles except for the double pole at s = 0 and the simple pole
at s = - 1 . Also, the residue at s = -1 is

foe = Urn (s + 1 ) A ( J ) = -f(0)L(0);t.
s->-l

Since f(0) = -1/2 and, by (3.3), L(0) = \d\1/2L(l)/π = | J | 1 / 2 α A ? we
have

k = a\d\1/2/2π.

Let S be a positive real number > 1. By Stirling's formula in the
form

T(σ + it) = 0(e-'*t*'2\tΓl/2)

as |/| -> oo, and standard estimates for ξ and L (as in [20] §13.51),

A(σ + it) ^

as |/| -> oo, uniformly for -S < σ < c and for each fixed x. We can
therefore move the line of integration in the integral for B{x) from

= c to Re(^) = -S. This gives

(3.5) £(JC) = b - a\o%x + kx + ^-: Γ5 + / 0° A ( J ) Λ (5 > 1).

By (3.4) The integral here is

\d\"1/2χ T{s) g j8(π)
2πiJs_i0O 5(27r)2i~1 «=i n

4τr2n
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Thus, by evaluating the Mellin transforms above, we get

4π2n
(3.6)

\d\x

Since E(y) < e~y/y when y > 0, from (3.6) we have

T(C) <-
J

Put1 N = [\d\/4π2f2], and set

f , «
n) r-2,fn/Jidϊ

Since /?(«) < «, we have

Also,

/G< Σ 8(n)/n,

where δ(/ι) is the number of divisors of n. It is well known (see for
example Shapiro [18]), that there exist constants cλ and c2 such that

TV

(3.7) Σ δ(*)/n < (logN)2/2 + 2γlog7V + cx + c2/jN .
n = l

Indeed, (3.7) is true with c2 = 0 and cx = 7.442. It follows that

(3.8a) fT(C) < (logfld\/4τr2f2))2/2 + 2γlog(μ|/4τr 2/ 2) + 8.442

< i i o g 2 μ | - f 2 γ i o g μ | ( μ ι > 8 ) ,

when | J | > 4τr2/2 and

(3.8b) fT(C) < {\d\ /2τrf < 1

when \d\ < 4ττ2/2.

xBy [a] we denote that integer such that a - 1 < [a] < a.
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By (3.2) and (3.5) we get

(3.9) Rh < ^-ί?log|Δ| + b - aloglπ + ^ + T{C)\.
ir \ί J I

By using these results we can derive an explicit upper bound on Rh in
terms of L(l) and L'(l). In fact, if we use the formula following (3.8a), we
get

4. The main results. We need now to discuss bounds on a = L(l) and
b = Z/(l). It is well known (see, for example, Chandrasekharan [5], p. 157)
that

(4.1) 0 < L ( l ) < l o g | J | + 2 ;

indeed, if we use the result of Pintz [16] we get

(4.2) Z,( l )<(λ + *(l))log|</|,

where λ = 3(1 - e~ι/2)/4 = .295102. However, since (4.2) is not an
explicit result, we will make use of (4.1) here.

Also, by a simple refinement to the argument given in [5], p. 158-159,
we can derive

(4.3) μ
By using (4.1), (4.3), (3.9) and (3.8b) or (3.10), we get for \d\ > 200

(4.4) Rh < .453/[Δ[log|Δ|log|</| (\d\< 4π2f2)

and

(4.5) Rh< .767/|ΔTlog|Δ|log|rf| (|</|>200).

When \d\ is small compared to |Δ|, these results are better than the results
mentioned in §1.

We can also give a and b as finite sums. It is well known that

1/2 | r f |

(4.6) α = L(l) = -v\d\ Σ n(d/n).

(see [8] Ch. 6). When \d\ is large, however, it is often easier to compute a
by finding h' and using

(4.7) 2πh' = w{\d\L{\),
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where hf is the class number of the quadratic field of discriminant d and
w is the number of roots of unity in that field. Buell [4] has described how
W can be efficiently computed.

In terms of the Hurwitz Zeta-function
00

ΐ( ) = V ( 4- V5

w = 0

we have

L(s)=\dΓΣ (d/n)ξ(s,n/\d\);

whence,

\d\

L'(0)= Σ (d/n)ζ'{0,n/\d\)-L(0)log\d\

\d\

= Σ (<///i)iogr(/i/μ|)-L(o)iog|</|.

(see [20], §13.21). From the functional equations for L,

\d\1/2L'(l) = »[L'(0) +(log(|d|/2w) - γ)L(O)].

So we obtain

\d\

(4.8) b = 1/(1) = (γ + Iog2*> - π\d\~1/2 Σ (d/n)\ogT{n/\d\).
n = l

In the case where Jf is a pure cubic field we have Δ = - 3 / 2 ,
a = L(l) = τr/3v/3 and

log2^ + 3 1 o g ^ | ) * .222662987

by (4.8). It follows from (3.9) and (3.8b) that

(4.9) hR < ̂ - l o g | Δ | = (2/log/ + /log3)/6.

Other results of this type for \d\< 200 can be easily derived by using
Table 3 below together with the formulas (3.8) and (3.9).
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TABLE 3

- 3 0.6045997881
- 4 0.7853981634
- 7 1.1874104117
- 8 1.1107207345

- 1 1 0.9472258251
-15 1.6223114704
-19 0.7207307841
-20 1.4049629462
-23 1.9652020541
-24 1.2825498302
- 3 1 1.6927400922
-35 1.0620521591
-39 2.0122297265
-40 0.9934588266
-43 0.4790883882
-47 2.2912419285
- 51 0.8798219250
-52 0.8713210307
-55 1.6944490680
-56 1.6792519084
-59 1.2270015789
-67 0.3838066289
-68 1.5238962757
-71 2.6098691772
-79 1.7672839421
-83 1.0345037784
-84 1.3711034417
-87 2.0208845180
-88 0.6697898042
-91 0.6586567884
-95 2.5785648429

0.2226629870
0.1929013168
0.0185659811

-0.0230045879
-0.0797737528
-0.4272680579
-0.0611999045
-0.4460960312
-0.8295529542
-0.4226371999
-0.7636917993
-0.3841359021
-1.1251079939
-0.2795058488

0.1195240860
-1.4690506571
-0.2759159416
-0.1705046261
-0.9400942441
-1.0135002063
-0.6541524535
0.2526843656

-0.8855692531
-2.0424190523
-1.1177717634
-0.4748405533
-0.7765396209
-1.4284849560
0.0872717101

-0.0879919892
-2.1505771251

-103 1.5477516108
-104 1.8483510282
-107 0.9111276756
-111 2.3854942292
-115 0.5859100510
-116 1.7501373307
-119 2.8798932638
-120 1.1471474419
-123 0.5665357400
-127 1.3938563455
-131 1.3724111229
-132 1.0937621702
-136 1.0775573904
-139 0.7993992331
-143 2.6271317553
-148 0.5164746508
-151 1.7896142906
-152 1.5289008746
-155 1.0093551772
-159 2.4914450356
-163 0.2460685276
-164 1.9625373721
-167 2.6741411208
-168 0.9695165413
-179 1.1740682982
-183 1.8578656914
-184 0.9264051326
-187 0.4594720151
-191 2.9551296636
-195 0.8998964910
-199 2.0043143873

By a result of Cusick [7] we know that

-0.8809087714
-1.4168771966
-0.3227283614
-2.0120281805

0.0021206331
-1.3044164518
-2.6880771121
-0.5084996029

0.1051756228
-0.6756070246
-1.0129497686
-0.4421925820
-0.4920159080
-0.3215125571
-2.4098111988

0.3635813641
-1.2898755068
-1.0381270761
-0.4772813436
-2.3185606656

0.5335570640
-1.7270709177
-2.5496223412
-0.2486118800
-0.7410094492
-1.3440359401
-0.2653014650

0.1890727660
-3.0461589353
-Ό.4200739607
-1.7042768578

hence we can use this result in (4.4) or (4.5) to get an upper bound on h.
In the case of the pure cubic field we can use (4.9) to get

(4 1 0 ) h < M logl ΔI = / L + log 27 \
2/3 log(|Δ|/27) 2\ log(/2/9) /

Thus, when / > 9VT, we have h < f. It can be verified by direct computa-
tion that h <f also holds for / < 9V .̂ We remark here that if the
radicand D of Jf satisfies D = ± 1 (mod 9), then f < D. Hence h < D in
this case and D + h. Also D \ A if D Ψ ± 1 (mod 9) and the cube free part
of D has a non-trivial square factor.
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We also point out that in the pure cubic case with / > 61 we have

2

/

by (3.8b). Hence

and by (3.9) we get

(4.11) Rf

and

5. A lower bound on the class number. In this section we will derive a
lower bound on the class number of X. This, unfortunately, will involve
R, and another function πd(x); however, as we will illustrate for the case
of a pure cubic field, when \d\is small and R can be bounded from above,
we can get some interesting inequalities on h.

Let α be any ideal of 0x. Denote by M(a) the least positive rational
integer in α. We say that α is a reduced ideal of Θx if α is primitive (α
has no rational integer divisors) and there does not exist a non-zero
element a e α such that all of

\a\ < M(a), |α'| < M(a), |α"| < M(a)

hold. Here α' and a" are the conjugates of a in Jf. (Of course, because
Δ < 0 two of |α|, |α'|, lα"l a r e equal.)

If b is any ideal of ί^ , there always exists a reduced ideal α such
that α - b. Also, i f α ( = α 1 ) i s any reduced ideal of Θx then Voronoi's
continued fraction algorithm can be used on a basis of α, to produce a
sequence of bases of ideals

α 1 , α 2 , α 3 , . . . , α / O ? α / O + 1 , . . .

such that aέ ~ αx and αz (/ = 1,2,3,..., p) are all distinct reduced ideals
which belong to the same ideal class. In fact, if we assume that the
generator of Jf is real, Voronoi's algorithm can be used to produce
elements 0g

(O (> 1) of Jf such that

(M(aMan=(M(aH))al9
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where

θn = Π 8?.
/ = 1

In this case (Δ < 0) Voronoi's algorithm is completely periodic; that is,
dp+k = &k for all k e Z+. It follows that

*0 = Π φ,
I — i.

where ε0 (> 1) is the fundamental unit of JΓ. The value of p is the period
length of Voronoi's continued fraction algorithm expanded on a basis of
αx (= a). For the proofs of the above statements, we refer the reader to
Delone and Faddeev [9] or Williams [21].

We remark here that by using an earlier (non-explicit) form of our
result (4.9), Dubois [10] has shown that

(5.1) p = θ(/ΪΔίlog|Δ|)

when Jf is a pure cubic field. More recently Buchmann [3] has given the
explicit upper bound

(5.2) p < 4 / h φ o g 2 | Δ |

for any cubic field X with Δ < 0. This was obtained by using the upper
bound on hR given by Siegel [18]. Now Williams [22] has shown that

where

T = (1 + V^)/2; hence

(5.3) p<2i?/logτ.

Thus, by using (5.3) with (4.5) we can get an improvement on (5.2). In the
pure cubic case we can use (4.9) and (5.3) to get

(5.4) p<.4/ΪΔ[log|Δ|,

an explicit form of (5.1).
By referring to Table 1, we note that for those primes p such that

(Δ/p) = (d/p) = -1, we have (p) = pq and N(q) = p2, M(q) = p; put
§ = q in this case. For those primes p such that p \ /, we have (p) = p3;
thus, if g = p2, we get N(&) = p2, Af(g) = p. Suppose p is any prime

4

such t h a t (d/p) = - 1 or p\f a n d suppose further, that p < y | Δ | / 2 7 .
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For the ideal £ which we have defined above we get

M(§)4< )I\Δ\/2ΊN(S).

By a result of Williams [22], we know that 3 must be a reduced ideal of

a*-
Let iτd(x) be the number of primes up to x for which d is a quadratic

non-residue. If T is the number of all ideals of Θx which are reduced and
pi is the number of reduced ideals belonging to the z'th ideal class, we have

Since p, < 2i?/log T, we get T < 2 Rh/log T and

(5-5)

When Jf is a pure cubic field, then d = -3 and (d/p) = -1 when p = 2
(mod 3); thus,

πd(x) = π(x'9 3,2),

where π(x; 3,2) denotes the number of primes p < x such that p = 2
(mod 3). From a result of McCurley [14], we can easily deduce that

π(x; 3,2) > .460517x/logx

when x > 4. Thus, if Δ < - 6912, from (5.5) we get

(5.6) h > ,44ί|Δ|/27/(Λlog(|Δ|/27)).

Hence, in a pure cubic field Jf with discriminant Δ < - 6912, we have
h > 1 whenever

i?<.444vΊΔ|/27/log(|Δ|/27).

When Jf is a pure cubic field with radicand D, where D (= δ3) =

K3 + k and k\3K2, then for θ = δ - K, we have θ < 1, JV(0) = A:.

Hence θ3/k e <V and N(θ3/k) = 1. It follows that

In fact, in the case where |fc| = 1, we have ε0 < δ 2 + K8 + K2. When D
is cube-free, we can replace these inequalities by equalities, for all but 6
values of D (see Rudman [17]). Also,

|Δ| > 3D > 3(K3 - 3K2) > 3(δ2 + Kδ + K2)
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when 8 > 6. Thus, |Δ| > 3εY3 and R < 3 log(|Δ|/3); by (5.6) we get

4

.14/1Δ |/27
( 5 ' 7 ) Λ > log(|Δ|/3)log(|Δ|/27)'

an explicit lower bound for h. We notice here that h > 1 for all |Δ| that
are sufficiently large. Also, the bound given in (5.7) is much larger than
those obtained by Mollin [15] in the analogous case of certain real
quadratic fields Ά{{Ό) when D = K2 + k and k \AK.
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