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THE BEST MODULUS OF CONTINUITY
FOR SOLUTIONS OF THE

MINIMAL SURFACE EQUATION

GRAHAM H. WILLIAMS

We consider the Dirichlet problem for the minimal surface equation
on a bounded domain in R" which has nonnegative mean curvature. We
give a modulus of continuity for the solution u in terms of the modulus
of continuity of the boundary values ψ. The modulus obtained is shown
to be best possible.

0. Introduction. We consider the Dirichlet problem for the minimal
surface equation in a bounded domain Ω c R ^ with boundary values φ.
We shall assume that 3Ω has nonnegative mean curvature and so the
existence of a solution u for any continuous function φ is known [JS]. In
this paper we consider the way that the regularity of u depends on the
regularity of φ. Many results have already been obtained for this problem.
For example if φ e C*'α(3Ω), k > 1, then u e C* β(Ω). (See [GG], [LI],
[GTJ.) If φ<ΞC°>\dti) then u e C°'α(Ω) for some α e ( 0 , l ) which
depends on the Lipschitz constant of φ and the behaviour of the mean
curvature of 3Ω. (See [Gl] and also [Wl] where optimal results are
obtained for the value of a.) If φ e C°'ft(9Ω), 0 < a < 1, and the mean
curvature of 3Ω is strictly positive then u e C°'α/2(Ω) (see [Gl] and [L2].)
More generally if JC0 e 3Ω, φ satisfies a Holder condition with exponent
a at x0 and the mean curvature of 3Ω is larger than C\x — xo\

k, C > 0,
near x0 then u satisfies a Holder condition at x0 with exponent a/( k + 2).
(See [Wl] and [W2].) However few results, apart from just continuity,
have been given in the case φ e C°'α(3Ω), 0 < a < 1, and assuming only
nonnegative mean curvature. A modulus of continuity could be found by
the method proposed in §13.5 of [GT]. The counter-examples of [Wl]
show that in general the solution u will not be Holder continuous for any
exponent β. We shall explicitly find a modulus of continuity for u in this
situation and then show that it is the best possible. Actually the results
hold, and are presented, for a fairly general modulus of continuity for φ
rather than just the Holder condition. Further the results given are local
results and so we only need to assume 3Ω has nonnegative mean curvature
in a neighbourhood of the point under consideration. However in this case
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194 GRAHAM H. WILLIAMS

a classical solution may not exist so we must consider generalized solu-
tions, that is, functions u e C°°(Ω) Π Wh\Ώ,) minimizing

ί i/l +\Dv\2 + ( \v-φ\dH n~ι

for all v ^ BV(Q). Such solutions u still satisfy the minimal surface
equation

Jίu = t A(Dtu(\ +\Du\2)~l/2) = 0
i — l

in Ω but they may not satisfy the boundary conditions, u = φ, everywhere
on 3Ω. The existence and properties of such solutions may be found, for
example, in [G2].

The method of proof uses barrier constructions very similar to those
in [Wl] (which had their origins in [S]) and essentially reduces the
problem to an examination of the behaviour of solution of Laplace's
equation in cusped domains.

1. Laplace's equation on cusped domains. The barriers which we
construct in later sections are defined in terms of various functions on
cusped domains. The nature of the cusp is determined by the modulus of
continuity, γ, for the boundary values φ, with the required domain given
by D = {(y'9 yn): yf e R w l , γ( | / | ) < yn < 8}. It is convenient to work
with polar coordinates so that the required results are given as follows.

PROPOSITION 1. Suppose β e C3(0, oo) with β(r) > 0 and β\r) > 0
for r > 0 and

β(r) + rβ'{r) + r2\β"{r) \ + r3\β'"(r) | -> 0 as r -> 0.

Let

where r = \y\ and θ = cos~ι(yn/r).
For a e R let

(1.1) Fa(r) =

where a is the first positive zero of the Bessel function / (n

Then for 8 sufficiently small,
I if a > -(n — 2)/2 there exist a function u defined on D such that

(i) u > 0 on D and du = 0 if \θ\ = β(r),
(ii) \u(y)\ < CFa(r), \Du(y)\ < CFa(r)/rβ(r), \D2u(y)\ <

CFa{r)/rψ{r),
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(in) for \θ\ <Ξ εβ(r) with 0 < ε < 1, u(y) > C(ε)Fa(r),
(iv) du/dyn > 0 in D,
(v) Δw > ct0Fa(r)(β(r) + rβ\r))/rψ{r), where a0 > 0,

II if a < -(« — 2)/2 /Λere ex/ίto a function u defined on D satisfying
(i)-(iv) above and also
(v') ΔM < -a0Fa(r)(β(r) + rβ'(r))/rψ(r), where α0 > 0.

Proo/. We let

(1.2) G(t) = t^-n)/2J(n_i)/2{at),

where /(n_3)/2 is the Bessel function and a is its first zero. Thus

(1.3) G(l) = 0, (7(0 > 0 i f | / | < l ,

G"(t) + ̂ -j^-G'{t) + a2G(t) = 0,

\G\+\G'\ + \G"\<C for I ί I < 1.

We now let F — Fa(r) be given by (1.1) and define

gι(r) - β(r) + rβ'(r),

g(r) = β(r) + rβ'(r) + r2\β"(r) | + r3|β'»(r) \ - 0.
Then

(Φ)
r2F" +(n-ΐ)rF

- jτ\a2 + a(2a - l)(β + rβ>) + a(n - l)β + glO(g)}

Next we define

(1.5) H(r,θ) =

where b and d are constants to be chosen. Then

(1.6) Hβ = H\bθψ + djy Hr = -^

Hβθ == —Abrβ' + dβ + e,O(a)
β
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Finally we set

(1.7) u{r,θ)-F.(r)G^H{r,θ)

so that

(1.8) Δ« = urr + ̂ ^-ur + &j^- Cot(θ)uθ + j-2

r2F" +(n - \)rF'\
2

r β

+ FHG'\rβ'ηr2(b - a) + 2dθ\

+ FHG(n - \){brβ' + dβ) + FHglO{g)^

where we have used the estimates of (1.3), (1.4) and (1.6). Now using (1.3)
and (1.4) again we see

(1.9)

^ { rβ') +(a + d)(n - l)β + brβ'(n -

G'2dθ + G'yβ'2(b -a) + gιO(g)

FH ' βG(a(2a + n - 2) + d(n - 1))
rψ

+ rβ'G((2a-l)a + b(n- 1))

+ G'^(2dβ + 2(b - a)rβ') + glO(g)

Noting that G(t) - tG\t) > aλ > 0 for |;| < 1 and H(r,θ) > 1 we see
that if 2a + n — 2 > 0 we can choose b and d such that d < 0, b < a,
(2a - \)a + b(n - 1) > 0 and a(2a + n - 2) + d(n - 1) > 0 so that
I(v) holds if δ small. Similarly if2α + / ? - 2 < 0 w e can ensure Π(v')
holds.
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Properties (i), (ii) and (iii) hold by our definition of u and estimates
(1.3), (1.4) and (1.6). Finally

du 1
τ— = urCosθ UβSinθ and
dyn

 r r

rriKr r , _ / si rtHj u n ,

so that

3M FhG

rβ

FHG

> 0 if δ small.

2. Continuity estimates. We now present the continuity estimates
for the solution u. These are local in nature so that we assume φ satisfies a
continuity condition (for example Holder continuity) only at a particular
point X O G 3Ω and then derive corresponding continuity conditions for
the solution u at x0. We shall assume that xo3Ω and Jf is a neighbour-
hood of x0 such that 3Ω has nonnegative mean curvature in Jf. Suppose
φ has an upper modulus of continuity, γ, at JC0 so that

(2.1) φ(x) - φ(x0) < y{\x - x Q \ ) , x G 3Ω.

We may assume, without loss of generality, that x0 = 0, Φ(x0) = 0, the
inner unit normal to 3Ω at 0 lies on the x^-axis and that 3Ω Π Jf=
{(jt',w(jc')): J c ' e R " - \ \x'\ < δ0} where w e C^R"" 1), w(0) = 0,
Dw(0) = 0 and |W(JC')| < L\xf for some constant L. Then from (2.1) we
see that, if x' = (x l 9 . . . , xn_0,

(2.2) φ(x) < γ(|jc'| + L|x'|2) = Y l ( |x ' | ) , \x\< «o

Fairly complete results have already been obtained in the case of Lipschitz
data where γ(/) = Kt (see [Wl]) so we restrict ourselves to the case where
t'ιy(t) increases to oo as t decreases to 0. At the cost of increasing γ by a
multiplicative constant it is known (as noted in [Wl]) in this situation we
may assume γ is concave and Ck for any k. Hence we assume γ is C3 and
concave, γ' -» oo as t -» 0 and [y(t)/t]' > 0. We now wish to write (2.2)
in a polar form so that the results of the last section may easily be applied.
Hence we set r2 = x2

+1 + \x'\2 and θ = cos~1(xM+1/r). Then the condi-
tions on γ ensure that there is function βλ such that

(2.3) rCosβ^r) = Ύl(rSinfi^r)), r < δv
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Then (2.2) becomes

(2.4)

Furthermore by increasing L in (2.2) we may assume the above inequality
is strict for r > 0. We wish to compare the function βl9 just constructed,
with the more easily calculated function, /?, which is defined so that rβ(r)
is the inverse of γ(/), that is

(2.5) γ(U8(r)) = r.

LEMMA 1. For r sufficiently small,

(2.6) &(/•) < β(r) < &(/•) (l + Lrβλ(r) + Jjβχ(r)),

(2.7) β ( r ) > β , > β ( r ) ( l + L r β ( r ) + — β ( 1

w h e r e

Proof. The left hand inequality follows by considering, for fixed r, the
derivatives of y(rβ) and (Cos)8)"1γ(rSin)8) with respect to β and then
using the concavity of γ. For the right hand inequality we have

{ \ή rCosβ, <

so that

If r is small enough then using concavity

2 ) > γ ( ι j 8 ) . •

Now for each 8 small enough that Lemma 1 holds, we can set

and

< 2 9) Mr)-ττ%) t0"<s-



MINIMAL SURFACE EQUATION 199

Then we see that near 0 the graph of φ(x\ w(x')) must lie below the graph
of the function given in polar coordinates by \θ\ = β2(r).

Note that by our assumptions on γ we already have that

(2.10) β(r) > 0, β'(r) > 0, for r > 0, Kmβ(r) + rβ'(r) = 0.

We shall make the further additional assumption that for β (or equiva-
lent^)

(2.11) ]im\r2β"(r) \ + \r2β"'{r) I = 0.

Thus altogether we have assumed that

(2.12) γ is a C3 concave modulus of continuity such that

Km (γ-Hr))' + r | ( γ - V ) ) " | + r*\{y-*(r))'"\ = 0.

The new modulus of continuity for u then involves the function Fa(r)
given in (1.1). Thus

(2.13) F.(r) -

with a the first positive zero of the Bessel function J(n-3)/2(x)-

THEOREM 1. Suppose Ω is a bounded open subset of Rw with locally
Lipschitz boundary 3Ω, φ G LX(ΘΩ) αw^ u is a generalized solution of the
Dirichlet problem. Suppose x0 e 3Ω α«̂ / /Λ r̂e w a neighborhood Jί of' x0

such that 3Ω is C2 with nonnegatiυe mean curvature in JΓ. Suppose γ:
[0, oo) -> [0, oo) satisfies (2.12)

77ieπ/or any a > -(n — 2)/2 ίΛere w α constant c and a neighbourhood
Gofx0 such that

u(x) - φ(x0) < max{γ(2|x - xo |) + c\x - xo\9 Fa-
ι(cd(x,dQ))}

for x e G Π Ω, where F~ι is the inverse of the function Fa defined in (2.13).

Proof. We can assume, as above, that xo = 0, φ(xo) = O and that
near 0, 3Ω is the graph of w: R""1 -» R where \w(x')\ < L\x'\2. Further-
more it is sufficient to consider the case where φ(x) = γ(|jc|) so that u is
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continuous on Ω Π ^ ([M]). We let β2 be as above and suppose a >
-(n - 2)/2 then define

where / is the function given by (I) of Proposition 1 in §1 but with β
replaced by β2 and λ e (0,1) is to be chosen. We have taken v and / to
be defined on a set

D={y<=R»:\θ\<β2(r),r<δ}

and w is independent of yn. We shall prove the theorem with Fa replaced
by Fa defined as in (2.13) but with β2 replacing β. But by definition (2.9)

Fa(r) = (r&Γexpj-αjΓ1 -L dt + aεlog

and ε can be made as small as we like by taking δ sufficiently small and
so the required result follows.

Now by Proposition 1 we have \Df(y)\ < cFa(r)/rβ2(r) -> 0 as r ->
0, so that taking λ < 1 and δ sufficiently small we can ensure that
λ\Df(y)\ < 1 in D. Then Lemma 1 of [S] may be applied to give

Jί$ = Jt$v + λΔ/ + \E > λ(Δ/ + E)

where

= yj\ +\Dg\2Jΐg and

\E\< c{\D2f\ + \Df\\D2w\){λ\Df\

< , α

/ v for r sufficiently small.

Thus we see that

Jtoυ > ̂ p-(a0β2(r) - crβ2(r)) > 0

in D, provided we take δ sufficiently small. Then for D we have
Jt'ov > 0? Dnv > 0, v > w and v = w if \θ\ = β2{r). Arguing as in [S]
there is then a neighbourhood G of 0 and a function v defined o n G π Ω
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such that Jίυ < 0 in G n ί ί , graph of v over G Π 3Ω = graph (in polars)

of \θ\ = ^S2(r) which lies above the graph of φ(x), and v(x)

= / δ 2 - |JC'|2 > 8Cosβ2(8) on 3G n Ω. Furthermore

3G Π Ω = {*: *„ = W(JC') + λ / ( M ) , 1*1 < &(«)}

so that if x G 3G Π Ω, JCW - W(JC') < cλFa(δ).
Now as noted above we may assume u is continuous on Ω Π / ' so

there is a function />(*) such that p{t) -> 0 as t -> 0 and |M(X) -
— y\) for x, j E 6 Π Ω. Then, in particular, if x e 3G Π Ω,

<yι(δSmβ2(δ))+p(cλFa(δ))

<8Cosβ2(δ)+p{cλFa(δ)).

Hence for a fixed δ > 0 we can choose λ sufficiently small so that
u(x) < v(x) on 3G Π Ω. The comparison principle now gives that u(x) <
ί (x) in G Π Ω and so it only remains to show that v(x) has the required
growth. By the definition of v we have for x = (x\ xn) e G,

(x'9xn9υ(x)) = (x/,i;(x/,i;(x)),i;(x)).

If

then

xΛ = ι>(x',δ(jc))^w(x') + cFβ(r)

where r 2 = |x'|2 + (v(x))2. So that

β(x)<A < J F α - 1 (c(x n -w(x')))
On the other hand if |0| > \β2{r) then

\x'\ =\rSmθ\ > rSinij82(r) > r{\β2 - Cβ\)

and so

rβ(l - εβ) < rβ2 < 2\x'\ + εrβ2.

Hence for r small,

and, using [y(t)/t]' > 0,

r =
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and so

The exponential term in Fa is of course far more important than
(rβ)a and so in most cases the next result is all that is required.

COROLLARY 1. If n > 2 and the conditions for Theorem 1 hold then

u(x) -φ(x0)

< max|γ(2|x - χo\) + c\x - xo\9F'ι\^ a JJ

where

If n = 2 the same statement holds provided we replace a (= ττ/2) by
a' where ar is any number greater than ττ/2.

The main case of interest is when the given data is Holder continuous
in which case y(t) = Ktλ with 0 < λ < 1. Conditions (2.12) are easily
checked and Fa and F are readily calculated.

COROLLARY 2. Suppose Ω,φ, w, x0 and JΓ are as in Theorem 1.
Suppose there are constants K, M and λ G (0,1) such that

φ(x) - φ(x0) < K\x - xo\
λ, x e a Ω n ^ ,

φ(x) - φ(x0) <J(, x e 3Ω.

Then for any a > -(n — 2)/2 there is a constant c and a neighborhood G of
x0 such that u(x) - φ(x0) < max{2λ+ιK\x - x o | \ F;\cd(x9dto))} for
x e Ω Π G,

COROLLARY 3. (i) If n > 2 and the conditions of Corollary 2 hold then
for \x — xo\ sufficiently small

(2.14) u(x) - φ(x0)

<mzxl2λ+ιK\x-x0\
λ,

α is the first positive zero ofJ^n_3)/2(t).
(ii) Ifn = 2 then (2.14) Ao/ώ w///i any a > π/2.
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3. Optimal growth. In this section we show that the results of the
previous section cannot be improved. Thus we show that, in general,
Theorem 1 and Corollary 2 do not hold for a < -(n - 2)/2 and
Corollaries 1 and 3 do not hold for any a less than the first positive zero
of the Bessel function /(M_3)/2(0 Since Corollaries 1 and 3 are obtained
by weakening Theorem 1 it is enough to give counter examples for
a < -(n — 2)/2. It should be noted that in the case where 3Ω has strictly
positive mean curvature near x0 (or mean curvature growing like a power
of \x — JCO|) better regularity results are known (see [Wl] and [W2]) thus
any counter examples must be for the case of zero mean curvature near
x0. A typical application of Theorem 2 would show that if Ω has zero
mean curvature near 0 e 3Ω (and has interior normal at 0 the x^-axis)
and we prescribe boundary values φ(x) = γ(|*|) on 3Ω then the solution
u must grow faster than F~\xn) along the x^-axis near 0 for any
a < -(n - 2)/2.

For technical reasons we introduce one further restriction on the
types of modulus of continuity we consider. Namely, we assume in
addition to (2.12) that there are constants ελ > 0 and ε2 > 0 such that

(3.1) (l + β 1 ) ί γ " ( 0 + ( 2 / i - 3 ) γ / ( 0 ^ 0 f o r O < ί < ε 2 .

This additional restriction could probably be removed but in any case it
allows Holder continuous data when γ(/) = Kta, 0 < a < 1 and also
logarithmic growth γ(/) = ~A/(logt + B) when n > 3.

THEOREM 2. Suppose Ω is a bounded open subset of Rn with locally
Lipschitz boundary 3Ω, φ e LX(3Ω) and u is the generalized solution of the
Dirichlet problem. Suppose x0 e 3Ω and there is a neighbourhood Jf of x0

such that 3Ω is C2 and has non-positive mean curvature in Jί. Suppose γ:
[0, oo) -> [0, oo) satisfies (2.12) and (3.1) and

Φ(x) - Φ(χo) > y{\x - x o | ) , χ e 3 Ω n / ,

φ(x) > φ(x0) + ε0, x^dti-JΓ,

for some ε0 > 0.

Then for any a < -(n — 2)/2 and any c > 0 there is t0 > 0 such that

u(x0 + tv) > φ(x0) + F-\ct), 0<t<t0

where v is the unit inner normal to 3Ω at x0.

Proof. We take x0 = 0, v = en = (0,..., 0,1), φ(x0) = 0 and suppose
3Ω is the graph of w: Rnl -» R near 0. It is sufficent to consider the case
Φ(x) = y(\x\) near 0. We first prove a preliminary result about the growth
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of u in such a situation. This result is similar to, but slightly more precise
than, results presented in the last section of [Wl].

LEMMA 2. Suppose w, Ω and φ are as above. Then there are constants
Cx > 0 and C2 > 0 such that for \x\ sufficiently small and x e Ω

(3.2) u(x) >

Proof. Suppose Ω c BR(0).

For each ε > 0 we can construct a function W(x') depending on ε
such that

(i) W{xr) = (HO if |JC'| < ε2, W(x') = 0 if |*' | > 2ε2,
(iϊ) \W(x')\ < L\x'\\

(nϊ) \DW(x')\ < C0L\x%
(iv)\D2W(x')\<CQL,

where Co is a constant not depending on ε. Furthermore if ε is sufficiently
small we may assume

(v) if x e 3Ω, |jc'| < ε2, xn Φ W{x') then |JCΠ| > 2ε2,
(vi) ε < 1 and 4CQL\[e < 1.

Let A be a constant with 0 <A < min{ε3,1/2L} and consider the
functions

(3-3)

(3-4)

«(*)« X + -r-ί - T - W(x'),

v(x) = η(Aδ(x)) where rj(r) = γ(\/F).

We aim to show that, for suitable choices of ε and A, v is a lower barrier
for the solution u and it has the required growth.

First note that by (v) above and the choice A < ε3 we have 0 < 8(x)
< R + 1 in Ω and so v is defined on Ω. Since η' > 0 and η" < 0 we can
calculate

(l + \Dv\2)j?0υ = (l + \Dv\2)Δv - D.υDjvD^

= Aη'Δδ + A2η"]'Dδ\2 + A3(ηf(\Dδ\2Δδ - DβDjδD^

Aen/2\
<(« - 1 - cε)η' x + y

Ae,,/2\
(π - 1 - cε).
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Now if t = A8(x) < A(R + 1) then

x + -^

so that

Thus

= t + ^- + AW(x')<t + ^- + Aε\x'\

x + -r- 2(1 - ε) 1 - e '

+\Dv\2)j?0v

^ A(l-cε)

\x + Aen/2\

where s = τ/t = jAδ(x) < ^A{R + 1). Then using (3.1) and the as-
sumption that y'(s) -* oo as s -* 0 we see that Jίoυ > 0 provided ε and
]]A(R + 1) are sufficiently small. We now examine the behaviour of v on
3Ω near 0. If xn = W(x') then

|x + Aen/2\ + A/2 + W(x')

On the other hand, as 2AL < 1, we have

x>tf <\x'\
and so

and

X>+ "7Γ(
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Thus, if xn = W(x'), A8(x) < \xf. Consequently, if x e 3Ω, |JC'| < ε2

and xn = w(x') then

v(x)<y(\x'\)<φ(x).

If x e 3Ω but |x'| > ε2 or xn Φ w(x') then φ(x) > min{εo,γ(ε2)} while
v(x) < y(]/A(R + 1)). Hence, if we first choose ε sufficiently small and
then A such that y(]JA(R + 1)) < min{ ε0, γ(ε2)}, we have Jfov > 0 in Ω
and v < φ on 3Ω. The comparison principle gives v < u in Ω.

Finally we examine the growth of v(x) near 0. We have, for x e Ω
and |x| < A/A,

_ \x'\2+{xn-W(x')(A+xn+W(x')))

\x+Aen/2\ +A/2+ W(x')

^ \x'\2+(A/2){xn-(x'))

\x'\ + xn + A + W(x')

~ A + 2\x'\+{xn-W(x')) '

Thus

A8(x) >\x'\2{l - 2-^ί) + j(xn - W(x')).

Proof of Theorem 2. Suppose ε > 0. We assume the situation as
described before Lemma 2 and define βx and β by r Cosβλ(r) =
y(rSmβ1(r)) and r = y(rβ(r)) so the graph of φ(x\w(x')) is above the
graph given in polars by |0| = j8x(r) near 0.

By Lemma 1 we have

(3.6) βλ < β.

We now define β2 = β/(l - εβ) and β3 = β/(l - 2εβ) then

(3.7) β2<(l-εβ)β3.

Now suppose a < -(n — 2)/2 and define

where / is the function given by part II of Proposition 1 with β replaced
by β3 and λ > 0. We consider v on the set D = {y e R": \θ\ < β3(r),
r < δ}. We note that as in Theorem 1 the effect of changing β to β3 is to
change a but by an amount proportional to ε which can be taken as small
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as we like. Also as in Theorem 1 we see that provided

si r<s

and δ is sufficiently small we have Jt'ov < 0, Dnυ > 0, v > w and v = w
if |0| = β3(r). Thus there is a neighbourhood G of 0 and a function v
defined o n G π Ω such that Jίυ > 0 in G Π Ω, graph of v over G Π 3Ω
= graph (in polars) of |0| = β3(r) which Ues below the graph of φ(x) and
v(x) = ]/δ2 - \x'\2 < δ on 3G Π Ω. Also

dG Π Ω = {x: xn = w{x') + λf{89θ)9 \θ\ < β ( δ ) } .

In order to apply the comparison principle in G Π Ω we want to ensure
that u > v on dG Π Ω. But v < 8 = y(δβ(δ)) so that by Lemma 2 we
require, on dG Π Ω,

| x f( l " Cjx'l) + C2(xn - w(x')) > 8ψ(δ).

That is we require

(3.9) δ2Sin20(l - QδlSinfll) + C2λf(8,θ) > δψ(δ)

for \θ\ < β?(δ).
Now, if δ sufficiently small,

2

and so (3.9) holds for

On the other hand if \θ\ < β2(δ) < (1 - εβ(δ))β3(δ), by (3.7), then by
the definition of / given in (1.7) we have /(δ, θ) > C3εβ(δ)Fa(δ) for some
constant C3 > 0. Consequently (3.9) holds provided

(3.10) Cλβ(δ)Fa(δ)>δψ(δ).

It is clear that by taking δ small and then making a suitable choice of λ
we can satisfy both (3.8) and (3.10) and so obtain that u > v in G Π Ω.
Finally we note that if \y'\ = 0, and so θ = 0, we have /(r,0) = cFa{r).
That is v(ren) < cFa and so by the definition of v, υ{ten) > F~\ct).
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