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THE HARMONIC REPRESENTATION OF
U( /?, q) AND ITS CONNECTION WITH THE

GENERALIZED UNIT DISK

MARK G. DAVIDSON

In this paper we study the very close connection between the kth
tensor product of the harmonic representation ω of U(p,q) and the
generalized unit disk S). We give a global version of ω realized on the
Fock space as an integral operator. Each irreducible component of ω is
shown to be equivalent in a natural way to a multiplier representation of
U(p,q) acting on a Hilbert space Jί?(@,λ) of vector-valued holomor-
phic functions on 3). The intertwining operator between these realiza-
tions is then explicitly constructed. We determine necessary and suffi-
cient conditions for square integrability of each component of ω and in
this case derive the Hilbert space structure on 3^{β, λ).

Introduction. Of interest here are the diverse roles the generalized unit
disk plays in the constructions mentioned above. Our principal objective
is to give a disk picture realization of all U(p,q) highest weight modules.
This is done in §3. Further, we are interested in their unitary structure. We
will say more on that later.

In the literature various versions of U(p,q) highest weight modules
appear. Typical are constructions involving the Siegal upper half plane [4,
8] or the open set of positive /?-planes in the Grassmannian [12]. More
recently, Patton and Rossi [13] have used cohomological methods to
realize these modules and the Penrose transform has related these to other
constructions (cf. also [12, 14]). Most notable, however, is the paper of
Kashiwara and Vergne [8]. There they decompose ω (we will use ω to
mean the &th tensor product of the standard Segal-Shale-Weil representa-
tion of U(p,q)) and produce, as they conjectured, all highest weight
U(p,q) modules on a Schroedinger-Fock space (cf. [2, 7]). In their
version ω is constructed by determining its action on certain subgroups
whose product is dense in U(p,q). Together these actions lead to a
unitary representation of the whole group. Their main results are the
decomposition of ω into its irreducible components ωλ, λ e Λ c U(k) A,
and an explicit description of Λ in terms of the signature of irreducible
representations of the dual group U(k).
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34 MARK G. DAVIDSON

In §1, we show how a direct and global version of ω can be realized in
a variant of the Fock Space over CnXk

y where n = p + q. The generalized
unit disk plays an important role here. For T e 2 we introduce a
function qτ^^ invariant under the right action of U(k). In fact, {qτ:

generates all the invariants. For g = (£ £) e G we show

D-χz
dμ(w).

is a continuous unitary representation (cf 1.12).
The orthogonal complement of the ideal generated by the i/(& ̂ in-

variants is the space of harmonics Jίf. Based on 2.3 the decomposition of
ω is reduced to the decomposition of ω \ κ on H, where K is the maximal
compact subgroup U{p) X U(q). In [8] a similar space is defined. Our
proof that the λ-isotypic component in Jίf is irreducible under K X U(k),
λ G U{kγ, differs however. Here, we are able to exploit the role of the
generalized unit disk.

In §3 we construct all U(p,q) highest weight modules as Hubert
spaces Jί?(2,λ) of vector valued holomorphic functions on 3). This
construction is based on the relation of a kernel function Q on 2 to the
inner product in the Fock space. Namely, for S , Γ e @ and Λ, / e tf

(cf. 3.1). The positivity of Q follows immediately from this formula. The
results of Kunze [11] apply to yield the Hubert spaces desired. We further
show that the map qτh -> Q( ,T)h extends to a unitary operator inter-
twining Tλ and ωλ. This extension is expressed globally as an integral
operator in 3.7.

In §4 necessary and sufficient conditions are determined on the
Kashiwara-Vergne parameter λ for ωλ to be in the discrete series. We
exploit the role of 3i to an even greater extent than before. In this case we
determine globally the unitary structure of 3^(2, λ).

Finally, we mention that Inoue [6] has constructed a series of irreduci-
ble unitary representations of U(p,q) which generalizes the limits of the
discrete series constructed by Knapp and Okamoto. The representation
spaces are highest weight modules and are realized as vector-valued
holomorphic functions on 2). Hence they appear in our constructions. In
fact we can describe them in terms of the Kashiwara-Vergne parametriza-
tion (cf. 2.9) as follows: Let k = n - ι, where 1 < i < min( p,q) and
n = p 4- q. Let λ e U(n - i) Λ have signature (ml9..., mp_i, 0,..., 0,
-nq_i,..., -nj. Then Jf?(3, λ) is a generalized limit of the discrete series
in the sense of Inoue if and only if λ is of the above form. In this case the
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inner product is given in a form similar to 4.5. However, the integral is
over the /th boundary component of 3) and Q(T,T) is replaced by a
positive operator on the /th boundary component.

This work is in essence my doctoral dissertation. I would like to
express my gratitude and respect to Professor Ray A. Kunze for his
guidance.

1. Preliminaries. In this section we set down some salient facts about
U(p,q) which are used throughout this paper. Our objective is to globally
define the harmonic representation ω of U(p,q) on the Fock space. To
do this we introduce the Heisenberg group and its essentially only
infinite dimensional representation.

Let /?, q > 0 be integers and let n = p + q. For g e GL(n, C), where
C denotes the field of complex numbers, we will frequently write g in
block form as

P \ IA B
g = q{\C D

Let Ipq = {I" _°r). We define

t/(/>,?)={geGL(/i,C): ί

where * denotes the conjugate transpose. Throughout this paper we will
denote U(p,q) by G. For g = (^ ^) e (j, the defining condition of
U(p,q) implies the following relations:

(Λ Λ \

(1.1)

(1)

(2)

(3)

(4)

AA* -

CC* ~

A*A -

B*B -

BB* = Ip

DD* = -Iq

C*C = Ip

D*D = -/ and

(5)

(6)

(7)

(8)

C = DB*A*~X

B = AC*D*-1

C = D*'ιB*A

B = A*~1C*D.

Let K = G Π £/(«). Then ^ is a maximal compact subgroup of G
isomorphic to U{p) X U(q). Let 2 = ^ ^ = { Γ G C^ X *: 1 - ΓΓ* > 0},
where > 0 denotes positive definite. Then 2) is a bounded complex
domain open in CpXq. The map G/JsΓ -> Sf defined by

is a homeomorphism and the natural action of G on 3) is given by

c D) ' τ =
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The domain 3 plays a crucial role in the analysis of the harmonic
representation.

Now, let Sf=CnXk, where n = p + q and k > 0 is an integer. We
will frequently write z e Sf in the form

z =

where zx e C* x * and z2 e C*x/c. We define an inner product ( | •) on Sf
by (z\w) = tr(zw*). Let σ be the real form on Sf defined by σ(z,w) =
Im( J z I w) for z, w G ̂ . It is easy to see that σ is nondegenerate and
skew-symmetric. Let H = 5^x R, where R is the set of real numbers. We
equip H with the product defined by

(z,s)(w,t) = (z + w, s + t + σ(z,w)).

This makes if a group, the Heisenberg group.
The essentially only infinite dimensional irreducible representation p

of H can be realized in the following way. Let / be a complex-valued
function on £f. We say / is (/?, q) holomorphic if zx -> /(J,) is holomor-
phic for z2 e C^xA:, and z2 ->/(^2) is conjugate holomorphic for zx e
C^x/C. Let J ^ = J ^ = { / : ^-> 2 C: / is (^, 9 ) holomorphic and
fy\f(z)\2dμ(z) < ooj, where dμ(z) = μ(z)dz, μ(z) = e"7"12'2, is normal-
ized so that /^e" 7 Γ | z | έfe = 1. Then 3F is a Hubert space, known as the
Fock space and the reproducing kernel K is given by

K(z9w) =

The representation p of H defined by

(1.2) p(w,t)f(z) = e-^K{z,w)μ^{w)f{z - w)9

(w,t) e H, z ^£f and / e ^*, defines a continuous unitary representa-
tion of H on J*", such that p(0, t) = e"77"/, for all t G R. Furthermore, it
is well known that p is irreducible and has square integrable matrix
entries over 5f.

LEMMA. Let A e GL(m,C) 6̂ 5wcΛ that A + A* > 0.

Proof. The lemma is clear for A > 0 by making the change of variable
z -> {Aι/1)~1z. Then proceed by analytic continuation to the set [A e
GL(m,C): Λ + ̂ t* > 0}. D
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Let Γ e ^ . W e define qτ G & by the formula

It is clear that qτ is (p,q) holomorphic. Furthermore, the following
proposition shows that \\qτ\\ < oo.

1.4. PROPOSITION. Lei Γ e i

II I I 2 =
d e t ( l - I T * )

. Let T G ̂ . Then

*'

= ί

by Lemma 1.3. D
2

* det(l -
This function qτ plays a very important role in the rest of this paper.
Let Sp(σ) be the group of all real linear operators on S? which

preserve σ. In other words, a e Sp(σ) if and only if σ(az, aw) = σ(z, w),
for all z, w G £f. Clearly, G= U(p,q) is a subgroup of Sp(σ). Let
α E Sp(σ). The map (w, t) -> ρ(aw, t) defines an irreducible unitary
representation of H on J*", which is identical to p on the center R of H.
By the Stone-von Neumann theorem they are unitarily equivalent. Hence
there is an operator ω(α), unique up to a unitary constant, so that

(1.5) ω(a)p(w,t) = p(aw,t)ω(a).

For g G G, we can choose ω(g) so that g -> ω(g) is a continuous unitary
representation called the harmonic representation. We seek to explicitly
determine ω(g), g G G. Its construction comes from the proof of the
Stone-von Neumann theorem which we now review.

1.6. THE STONE-VON NEUMANN THEOREM. Let r be a unitary repre-
sentation of H such that

τ(0,0 = e-vitI, t G R .

Then τ is a multiple of p.

Proof. Let Sτ be the representation space of r. Define a map T on Sτ

by
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for φ, ψ e Sr. The matrix entry (z,0) -* (τ(z,0)φ| ψ) is bounded, so the
above integral converges. It's not hard to see that T is a non-zero bounded
operator and Γ = Γ* = T2. Further, if (z, t) e H then

(1) Tτ(z,t)T = e-vitμι^(z)T.

One can further show that the /^-invariant subspace generated by the
range of T is dense in Sτ. Let φv φ2 e range of T. For A = (z, /) e //, let
/>(Λ) = e-πitμ1/2(z). By (1) above

and hence

(2) MΛjΦxlTίA^φa)

Let { φv} be an orthonormal base for the range of Γ. Let //v be the closed

iZ-invariant subspace generated by φv. It follows from (2) that {Hv} is a
set of mutually orthogonal subspaces and Sr =

Let τv be the restriction of T to Hv. By (1)

So ΊV and p share a common matrix entry. This is enough to show that p
is equivalent to τv. In fact, the map Φ of span{τ(h)φv: h e H) into J^
defined by

J ' J

extends to a unitary intertwining operator of τp and p. D

1.7. COROLLARY. Let ψ e Hv

Then Qv = Φ.

. Let ψ e ί ί f a n d z e y . Then
2(z) = (Φψ|Φτ(z,0)φJiu-1/2(z)

^ ί z ) = (Φψ| *(-,*)) = Φ(ψ)(z). D

For the case we will consider we mention;

1.8. COROLLARY. // T is irreducible the range of T is one dimensional.

Let g e G. Consider the representation r of H defined by τ(z,t) =
ρ(g~λz, t). Clearly, τ is irreducible and τ(0, t) = e~πitI. By the Stone-von
Neumann theorem there exists a unitary operatory Φ on ^" such that
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Φρ(g~ιz, t) = p(z, t)Φy for all (z, t) e if. Replace z by gz. We then have
Φp(z, ί) = p(gz, ί)Φ So ω(g) as defined by 1.5 is a unitary multiple of
Φ. To determine Φ in this case we must determine a vector in the range of
T as defined in the proof of 1.6. Let z e 9>. Then

= (Tl\K(.9z))=[ {p(g-
ι

= ί p(g-1w,0)l{z)μ1^2(w)dw

= ί K{z,g-1w)μ^2{g-ιw)μ^2(w)dw

\detA*\

I ί e^zl\wl)eT(-B*A*-1w1\W2)e^(D* -B*A*-1C*w2\z2)

1 e*(z1\-Λ-1Bz2) = 1 / λ
,k kH-A-χB\Z)
| | |

So ^_^-i5 e range of Γ. By Corollary 1.8 the range of T = span{^- l s}.
In order that g - » ω ( g ) b e a representation we need to judiciously choose
φ e span{g_^is}. Let φ = (l/detyl*)^?,^-^. By 1.1 and Proposition 1.4
IIΦH = 1. By Corollary 1.7 we have '

(19a) φf(w) = ω(g)/(w) =

An easy calculation shows that

(1.9b) β

Thus co(g) is a unitary operator satisfying 1.5.
We now proceed to show that g ^> ω(g) is a continuous unitary

representation of G on &. The following standard lemma will prove
useful for that goal and will have frequent use throughout this paper.
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1.10. LEMMA. Let M be a connected complex manifold and h a function
on M X M with the following properties.

(b) w -» h(z,w) and z -> Λ(z,w) are holomorphic for z, w /bced,

ΓAew Λ(z, w) = 0 /or a//z,w e M.

1.11. LEMMA. Le/S, Γ E ^ ΛWJX, >V e y \ ΓΛOT

(ίΓΛΓ( ,x)|feΛ:( ,w))

1

det(l -

Proof. Each function given above is holomorphic in S and conjugate
holomorphic in T. For 5 = T it is a straightforward calculation that they
agree. By 1.10 the result follows. D

1.12. THEOREM. The map ω: G -> Φ( ̂ ) defined by 1.9 w α continuous
unitary representation of G on &.

Proof. It is clear from (1.9a) that g -* ω(g)/(w) = (ω(g)f\K( ,w))
is a continuous function of G, for all W G ^ . Since span{JSΓ( ,w):
w e ^ } is dense in F a standard argument shows g -> (ω(g)/|A) is
continuous, for /, A e ^ " . Using 1.1 and Lemma 1.11, it is easy to check
that ω(gι)ω(g2)K(-,x) = ω(gιg2)K(',x), for all x e ^ . Hence ω is a
continuous unitary representation of G on J^.

2. The decomposition of the harmonic representation. In this section
we give a description of the irreducible components of ω. In the process
we will also derive some fundamental formulas necessary for the main
results in §3.

The irreducible components of ω are parametrized by a class Λ of
irreducible representations of the dual group U(k). Kashiwara and Vergne
[8] give an explicit description of Λ in terms of the signature of the
representation, to which we refer in 2.9. As we observe after Corollary 2.3
the decomposition of ω reduces to a decomposition of the space of
harmonics J(? under the joint actions of U(p)> U(q), and U(k). Our
method of proving irreducibility of the isotypic components (Theorem
2.5), is somewhat different from [8]. Their proof utilizes arguments involv-
ing the relative size of p, q and k. We offer a direct proof for which the
generalized unit disk plays an important role.
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The dual group U(k) acts on & by right translation. We may extend
this action holomorphically to GL(&, C) by

= /

Clearly, R commutes with ω. Let 0> = ̂  ^ be the subspace of F of all
polynomials holomorphic in zx and conjugate holomorphic in z2. Then &
is dense in J*\ Let / be the subspace of polynomials invariant under the
action of U(K). Then, by a theorem of Weyl, / is generated as an algebra
by the constants and the matrix entries of z -> zxzξ. Let J be the ideal in
& generated by the invariants with zero constant coefficient and let
Jί*= $Cpq be the orthogonal complement of J in ^ . We refer to 3C as
the space of harmonics.

For / ε P one can easily prove by induction on deg(/) that /
Hence we have

2.1. PROPOSITION. ^ =

Clearly qrr e /. In fact, one can easily show that sρan{ qτ: Γ e ® } is
dense in 7. The importance of this and the space J(? will be clear from the
following propositions. Let L denote the left action of U(p) X U(q) on
&. Then L extends holomorphically to GL(/?, C) X GL(<?, C) by

L{A,D)f\7\\=f
A-%

D*z2

Since L clearly leaves J invariant it also leaves
true of R.

invariant. This is also

2.2. PROPOSITION. Let h ejfandg e (^ B

D) e G. Then

Proof. By 1.9b

W> n-i-
dμ(z).

Since q_A-iB = 1 + φ, where φ 6 / , and h is harmonic

ω(g)h(z) =
άe\Ak w, dμ{z)

detAk
D
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by

2.3. COROLLARY.

h)

Proof. Let g1 = (
2.2 qτh = det Λ* •

MARK G. DAVIDSON

LetT<Ξ9 andh (=Jίf. Let

(ig.T n

it(A+BT*)k '

\c\ %) e G b e s u c h t h a t gi
ωfg^Lί^ϊ1, A*)Λ. Thus

g = (c

*),(CΓ

• 0 = B

+ />:

Λ-

G. Then

= T. Then

rΛ =dct A* ω{ggl)L(Aϊ\D*)h.

The result now follows by applying Proposition 2.2 and the properties
listed in 1.1. D

The formula given in Corollary 2.3 suggests that to decompose ω one
only need to decompose the action of L on Jίf. This is indeed the case.
Since R commutes with L we can use its representations to pick out the
isotypic components.

Let U(kybe the equivalence classes of irreducible unitary represen-
tations of U(k), and let λ e U(ky. We will also use λ to denote a
representation in that class. Let Pλ: & -> 9 be defined by

pλ/(z) = degλ/^/MXλ(u)<&.

Then Pλ is a projection. Let ̂ λ be the range of Pλ and let Λ = {λ e
U(ky: PλΦ0}. Then 0>= + λ e Λ Let ̂ λ = P λ (Jf). Since P λ

fixes each invariant we have by Proposition 2.1 that ^ λ = I3^λ. It's easy
to see that 3^x and thus ^ λ are invariant under L. We will show that 3^λ

is in fact irreducible under L X R.
Let F λ be the representation space for λ and (Vλ)' = Vλ, be the dual

space where λ' is the contragredient of λ. Let ̂ ( λ ) = {/: «$"-> Vλ:
f(zu) = λ{uyιf(z) for all u e ί/(it) and γ ° / e J^ for all γ e (Kλ)'}
and ^ ( λ ) = { / ε ^ ( λ ) : γ o / e J T , for all γ e (Kλ)'}. We may define
an action T = τ(λ) of GL(^, C) X GL(#, C) on

It is easy to see that T is unitary when restricted to U(p) X U(q), with
respect to the inner product

(f\g)= j(f(z)\g(z))dμ(z).
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We can also define a representation ω(λ) of G on ^"(λ) by the rule
γ ° O ( λ ) ( g ) / ) = ω(g)(γ<>/). It is easy to see that ωλ is unitary with
respect to the inner product given by (*).

The following theorem due to [8] reduces the question of irreducibility
of L X R on 3tfx to the irreducibility of τ on

2.4. THEOREM. There is an isomorphism of 3tfv onto tf(λ) X Vx,
intertwining the representationsL X R\ H and τ X λ'.

2.5. THEOREM. The representation τ of GL(/?, C) X GL(#, C) on J(P(\)
is irreducible.

Proof. Suppose V c J(?(λ) is a non-zero invariant subspace. Let V1-
be the orthogonal complement. Let feV and J G K 1 . We first show
that the condition (/1 g) = 0 implies (f(z) \ g(z)) = 0, for all z e S. Let
α = ( ^ ) G G.Then

by Proposition 2.2. Since g is harmonic and qBD-ι is an invariant with
constant 1 coefficient we have (qBD-^{A,D)f\g) = (τ(A9D)f\g) = 0.
By unitarity of ω(λ) it follows that (o>(λ)(a1)f\ω(λ)(a2)g) = 0 for all
av a 2 e G. In particular this says that

(M\g{z))qT(z)qs(z)dμ(z) = 09

for all Γ, S e ^ . Since span{ ̂ Γ : Γ e ,©} is dense in / it follows that

f(f(z)\g(z))φι(z)φ^)dμ(z) = 0

for all φl9 φ2 e /. By the invariance of V9 K
x , and / by the action of

GL( p, C) X GL(#, C), we have

f (/(z) |g(z))φ 1 (z)φ^I)e-^^'^-^^l^j2 = 0,

for all (a, 6) e GL( ?̂ C) X GL(#, C). Let si be the span of

{z -> φ^zJφ^IJe-'^^l^e-^^ ^:
φx, φ 2 G/and(β,&) e GL(pX) X GL(^,C)}.

Clearly J ^ is an algebra closed under complex conjugation. An easy
argument shows that sέ separates U(k) orbits of £f. Hence the uniform
closure of s/ is the set of all continuous functions on S? which vanish at
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infinity and are U(k) invariant. This implies that (f(z)\g(z)) = 0, for all
z e ST. By Lemma 1.10 (/(z) | g(w)) = 0, for all z, w e ^ . Now assume /
is nonzero. Then the span of the range of / is a nonzero U(k) invariant
subspace and hence is all of Vλ. This implies that g must be identically
zero and hence VL is the null space. D

In view of this theorem and Theorem 2.4 we immediately get:

2.6. COROLLARY. The representation L X R of GL(/?,C) X GL(#,C)
X GL(A:, C) on J>fλ is irreducible.

Let 3tifλ be a subspace of J^λ irreducible under the action L. Then
L\^χ is equivalent to deg(λ) copies of L\#κ. Let J^*λ = I3f\ Then if
^ λ = Px{&), ^x = degλ(J^λ). Since the span of {qτ: Γ e ^ } is dense
in 7 the span of {qτh: T € ^ , Λ e Jf λ } is dense in J^ λ. By Corollary 2.3

is invariant under ω. Further, we have:

2.7. THEOREM. The restriction ωλ 0/ ω to ^ λ is an irreducible
representation of U( p, q).

Proof. Let s e 17(1). Define A(s) = (I

Os°I)^ U(p,q). Since L\Hχ is
irreducible ω(^4(5)) = L(I,sI) = β(^)/ on f̂λ, where ^ -» α(5) is as
character of C/(l). Define an operator P on J^"λ by

An easy calculation shows that P = P* = P 2 . Further, if Λ e ^ λ then
Ph = h. Let φ G 7 with zero constant coefficient. Then

P(φh) = f a-ι(s)L(l,sq)φa(s)hds = /* L(l,sl)φdsh = 0

(cf. Hua [5], p. 97). It follows that P is the orthogonal projection of
onto J(?λ. Let F be a closed subspace of &rλ invariant under co. Then P
leaves V invariant. We may assume there is an / e V such that Pf Φ 0,
for otherwise V1 will contain such a vector. Since

if follows that ^ λ c V. By Proposition 2.2, Γ̂/z e F for all Γ e .© and
A G ̂ λ . This implies F = J^ λ and ωλ is irreducible. •
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We therefore obtain the complete decomposition of ω. We summarize
it as:

2.8. THEOREM. The representation ω decomposes as follows:

ω= 0deg(λ)ωλ

λeΛ

We conclude with an explicit description of Λ as given in [8]. Let
zx G cpXk be partitioned as follows:

z =
i k - i

Let Δ,(zx) = detz13. Similarly, let z2 e CqXk be partitioned as follows:

/Z21 *22 Y

k-j j

Let Mj(z2) = detz2 2. Suppose λ e £/(&)* has signature

(*) ("h>..., m r, 0,0,..., 0, -«,,..., - π j ,

where mλ> > mr > 0 and nx > > H5 > 0, r < p, and s < q.
Let Λλ(z) = Δ" 1 ^) Δα/(z1)Mf1(z2) Mf*(z2), where α,. = w, -
m / + 1, i = l , . . . , r - l a n d α r = mr and j8f = «z - w/+1, / = 1,..., s - 1
and βs = ns. By [8] we get:

2.9. THEOREM. (1) λ e Λ if and only if the signature of λ satisfies (*).
(2) / / λ E A ί&en Λλ G Jfλ is ίλe highest weight vector for L X R\ Hχ

with respect to the lower triangular subgroups of GL(p,C), GL(q, C), απj
GL(fc, C).

(3) J / λ e Λ ίΛen ίAe signature ofLxR\^χ is

(0,.. ., 0, -mr9..., - m j x(nl9...9ns909...90)

x(ml9...9mr909...909-ns9...9-nl).

3. The connection with the disk 2). In the previous section the
invariant qτ, Γ G S , played a key role in the decomposition of ω. In this
section we exploit this function further to derive an operator valued kernel
function Q on 2. Our key result, Theorem 3.2, shows Q is positive
definite. We can therefore construct Hubert spaces and irreducible repre-
sentations of G which we show are equivalent to those in the decomposi-
tion of ω. The following result is the key to these constructions.
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3.1. PROPOSITION. Let hj <Ξ3(randS,T e 3>. Then

Proof. Let gx, g2 e G be such that gx 0 = T and g2 0 = 5. By 2.3

9 rΛ = det4co(g 1 )L(^r 1 , Df)h

and

where g; = (^ §.), « = 1, 2. By the unicity of ω and 2.3 we get

{qTh\qsf) = άetAξA\(ω{g?{

X(L(I - ^Γ'QC^Γ1, (l - s r

D

Let

Q(S, T) -L(l - ST*, (1 -
det(l - ST*)

Then the formula in Proposition 3.2 can be written

3.2. THEOREM. The function Q on Sd X B is a positive definite
operator-valued kernel.

Proof. Let hl9..., hn e 3tf and Γ 1 ? . . . , Γn e 2. Then by Proposition
3.1

Σ (Q(Ti9 Tj)hj\

Clearly Q(S, S) > 0, S e ^ . So β is positive definite. D
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3.3. Let β λ ( , ) = β( , )l^rλ BY Kunze [11]. there is a unique
Hubert space, 3^{Q), λ), of continuous functions /: 2 -> ̂ fλ with the
following properties:

(1) The span of the set {S->Qλ(S,T)h: Γ G ^ , h e j r λ } is dense in

(2) For S E S , £ 5 : / -> /(S) is a continuous map from ^f (S9 λ) to

(3) Qλ(S, T) = £^£* for all S J G ^ , and

Since S -> βλ(»S, Γ) is holomorphic, J f ( ^ , λ) consists of holomor-
phic functions on 2.

We can construct a multiplier representation of G on 3^{2,\) as
follows: Let

restricted to 3fλ. Define / λ on G X 0 by /λ(g, T) = L£((Λ + 5Γ*)*-\
(CT + D)). Then / λ satisfies

(1) Jκ(l,T) = I, forallΓeS

(2) Jχ(gig2,T) = Jλ(gi,g2T)Jχ(g2,T) forallg1)g2eG, Γ € i

Hence 7λ is a multiplier. We further have

(3) J ^

and

(4)

For Λ e ^T λ we can rewrite 2.3 as ω(g)qτh = qg.τJλ(g, T)*~ιh.
The relationship between Qλ and / λ can be expressed by the follow-

ing proposition.

3.4. PROPOSITION. Let S,T e Si andg e G. Then

Qλ(gS, gT) = / λ(g, 5 ) β λ ( 5 , Γ)/ λ (g, Γ)*

. The result follows from the easily verified formulas:

(1) 1 - gS(gT)* = {SB* + A*)~\\ - ST*)(BT* + A)'1 and

(2) 1 -(gS)*gT= (S*C* + D*)~1(1 - 5*Γ)(CΓ+i))" 1 . D
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3.5. THEOREM. The formula

τλ(g)f(s) = jλ(g-\ sy'fig-'s), f G «*>(#, λ),

defines a strongly continuous unitary representation of G on 3^(3), λ).

Proof. This is easily verified. For details see [11]. D

3.6. THEOREM. The representations Tλ and ωλ are unitarily equivalent
and the map defined by

extends to a unitary intertwining map ofFλ onto 3^{S>, λ).

Proof. Let h,, e Jtfλ and Ti e 3). By 3.1 and 3.3

ij

It follows that the above map is well defined and unitary. It extends
uniquely to a unitary map Φ of J^ λ onto 3iί?{3),λ). Let g e G and
S e 9. Then

by Proposition 3.4. It follows that Φ is an intertwining map and Γλ is
unitarily equivalent to ωλ D

A global version of Φ may be defined in terms of the reproducing
kernel of Jίfλ. Since evaluation is a continuous linear functional on Hλ

there is a function Kλ(-,w) £ ^ \ w e ^ , such that (f\Kλ(-,w)) =
/(w) , fora l l /e j f λ

3.7. COROLLARY. Letf e J^*λ α/irf S e i
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Proof. Let / e J*"λ and S e 3> then

λ ( ,w)) (by 3.3.3)

= Φf(S)(w). O

4. The square ίntegrable representations. In [8], it is mentioned that
for k > n all irreducible components of ω are in the discrete series. While,
for k < min(/?, q) there are no such components. In this section we give
necessary and sufficient conditions on the signature of λ for ωλ to be
square integrable. Of course, one could trace the Harish-Chandra condi-
tion on the weight corresponding to L\. However, our techniques are
more indigenous to the situation at hand. Our methods underscore the
importance of the role of the generalized unit disk. We conclude the
section with an explicit description of the unitary structure for Jf?(@, λ)
for the square integrable case.

Suppose / e L\G) and f(gk) = /(g) for all k e K. Let T e Q and
let g e G such that g 0 = T. Define / # : 2 -> C by f#(T) =/(g).
Then / # is well defined and we can normalize measures in such a way
that

/ = f f*(T) ^
det(l — TT*)

( χLx((l - 7T*)-1, (1 - T*T)\ — — < oo,

4.1. PROPOSITION. The representation ωλ is square integrable if and
only if

dT

_ ττ*γ
where χL\ is the character for L\.

Proof. Let {ev...,ed} be an orthonormal base of Jfλ. By Gode-
monts theorem [15], ωλ is square integrable if and only if

Σ f \^{g'l)ei\eJ\
2dg< oo.
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Hence

ij

The function g -> χL\(AA*, D*~ιD~ι) is invariant under K. If g e G and

g 0 = Γ. Then AA* = (1 - 7T*)" 1 and D * 1 / ) ' 1 = 1 - Γ*Γ. Hence

ω λ is square integrable if and pnly if

ί
4
4 Lk{y } ; det(l -

< oo.

4 . 2 . L E M M A . L e / a = ( α 1 ? . . . , ap) where ax> a2> > ap > 0

/e/ 6 = ( Z ? 1 ? . . . , bp) where bx>b2> > bp > 0 . L e / /: 6 ^ an integer

and assume p < q. Then

Ω = ί X β ( l - ΓΓ*)χ,(l - 7T*)det(l - TT*)kdT< oo

if and only if ap + bp + k > 0, w/zere χ α ^«J χ 6 ^re the characters for the

representations of GL(p, C) with signature a and b, respectively.

Proof. We will utilize the notation and some results of Hua [5]. By

formula 5.2.13 of Hua [5],

Ω = Cί Xa(l - ZZ*)χb(l - ZZ*)dtt(ZZ*)q~pdetk{l - ZZ*)dZ,

where C is a constant. Let r = q - p. By formula 5.2.3 of Hua [5],

Ω = ς c j f 1 • •. £ X β ( i - λ 1 ? . . . , i - \p)Xb{i - λ 1 ? . . . , i - λ , )

detk{l-λl9...,l-λp)dλ1 ••• J λ ^ ,

where Cp is a constant, and the arguments of χa9 χb9 and det are diagonal

matrices. Now, it is easy to see that D2(l — λv..., 1 — λ^) =

D 2 ( λ 1 , . . . , λ^). We apply Weyls character formula and make the change

of variable λ, -> 1 - λ f , / = 1,...,/?, to get

Ό

d e f ( l - λ 1 , . . . , l - λ / J )
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Let /, = at + p - i and mi = bt+ p - i. Then Ma(λv . . . , λ^) =
d e tl λ /}l£/-i a n d Mb(λv ->λp) = det|λ™<|£y==1. Expanding the above in-

tegrand gives

where J?(x, >>) = /Q1 ̂ " ^ l - ί ) ^ " 1 dt is the Beta function which is finite

if and only if x, y > 0 (cf. Ryzhik [3] p. 948). It follows that Ω is finite if

and only if r + 1 > 0 and lx, + πij + k + 1 > 0, for all /, 7 = 1,. . . , p.

This is only true if and only if ap + bp 4- k = lp + m^ 4- A: > 0. D

4.3. REMARK. In the following theorem we will use the following

observation regarding the branching theorem (cf. Boerner [1] page 175). If

A e GL(m, C) we can regard GL(m, C) a subgroup of GL{n, C), n > m,

by the injection A -> [Q J]. If (α) = ( α 1 ? . . . , α n ) is the signature of an

irreducible representation T(a) of GL(n, C), then its restriction to GL(m, C)

decomposes with multiplicities m(a'v..., a'm) as:

Γ ( * ) I GL(m) = Σ W(έlί, . . . , Λ^)Γ(<2{j ) < } .

One crucial observation for our purpose is that a'm> an whenever

m{a[,..., a'm) Φ 0 and there is a nonzero multiplicity for which a'm = αw.

4.4. THEOREM. Suppose λ e Λ has signature (mv...,mn 0,. . .,0,

-ns,..., -nx), r < p, s < q, r + s < k. Then ωλ is square integrable if

and only ifk — n + mp + nq> 0.

Proof. Let (m) = (0,.. .,0, -m r , . . ^-mλ) and (n) = (nl9..., ns,

0,...,0). By 2.9 the signature of Lλ is (m) X (n). Without loss of

generality we may assume p < q. Let Γ e A Then there exists u e {/(/?)

and ϋ e C/(ήr) such that Γ = wΛ, where d = (Q1 ̂  0), where 0 < λ, < 1

(cf. Hua [5] page 33). Now

1 - T*T=v*(l -d*d)v = v*l1 ~ dd* °
v J \ 0 1

w* θ W l - Γ Γ * θ\(u 0 . ,
0 1 0 1 l θ 1]Ό
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Therefore

By 4.1 ω λ is square integrable if and only if

det(l - 7T )*-" X ( m ) ( l - TT*)-1 χ ( B ) ( l - T*T)dT

*-"χ( l - TT*^1 ~ TT*(l - 7T )*-"χ ( - o(l - TT*^1 ~ TT*Q fj dT < oo,

where (m') = (m 1 ? . . . , mr, 0,..., 0). Applying the branching the theorem
we see that ωλ is square integrable if and only if

- TT*)k-nχ(mΊ(l - TT*)χ{n[_n,p){l - TT*)dT< oo

for all signatures (n{,..., n'p) such that m(n[,..., n'p) Φ 0. By Lemma4.2
and Remark 4.3 ω λ is square integrable if and only ii k — n + mp + nq

< 0. D

For the remainder of this section we will assume λ e Λ i s such that
ω λ is square integrable. Let L2(G,λ) be the space of Jfλ valued
functions / on G such that

(1) f(g(o°v)) = L\(u,υ)f(g) for u e U(p) and v e ί/(^) and

Define a map Θ: J f ( 0 , λ) -» L2(G, λ) by

where Cλ is a constant defined below and where EQ is evaluation at
O e i Since E0(Tλ(g-ι)F) = /λ"

1(g,0)F(g 0), its easy to see that ΘF
satisfies (1). To verify (2) we proceed as follows: Let h e J^ λ . From 3.3.3
E$h = lh. Let {ev..., ed) be an orthonormal basis for Jf\ Then

2 2 2

i! = 1 / = 1

Since Γλ is unitarily equivalent to ωλ, Tλ is square integrable. Therefore,
we have

\2E0Tλ(g-ι)Fl dg=Σ _

z = l
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where C is the formal degree of Tλ. If we let Cλ = C/dim Hλ then Θ is a
unitary map of Jf(2, λ) into L2(G, λ).

4.5. THEOREM. The inner product on 3^{3ι, λ) may be written

dT
(Fλ\F2) = det(l -IT*)'

Proof. Since Θ is unitary

(/λ-
1(g,0)F1(g 0)\J^(g,Q)F2(g • 0)) dg

{jχ*-1(g,0)Jϊι(g,0)F1(g-0)\F2(g-0))dg.

Now J\'1(g90)Jχ1(g90) = Q\l{g - 0, g 0). Clearly the integrand is in-
variant under g -> gλ:. Hence

det(l - TT*Y

4.6. COROLLARY. The reproducing property can be written

Π

Proof. Let h e Jfλ. By Theorem 4.5 we have

(F(S)\h) = {F\Es*h)

= Cλj{Q-\T,T)f{T)\Q{T,S)h)

Since Λ is arbitrary the corollary follows. D

4.7. COROLLARY. The map Ψλ: J^{Q,\)^>^X defined by

qτQ-\T,T)F{T)—-^
det(l -

is a unitary map intertwining ωλ and Tλ.
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Proof. Let F e / ( ^ , λ ) . Then by 4.5 and 4.6

(ΨχF\ΨχF) = dj ί{qτQ-1(T,T)F(T)\qsQ-ί(S,S)F(S))dTdS

= Cl\ ({Q(S,T)Q-1(T,T)F(T)\Q-1(S,S)F(S))dTdS

= Cλfa(F(S)\Q-1(S,S)F(S))dS =\\F\\\

Let R e 3 and h <=Jίfλ. Then, by Corollary 4.6, Ψλ(Q( ,R)h) = qRh
for

(Ψλ(Q(-,R)h)\qsf)

det(l - TT*)

for all 5 e ^ and / e ^ \ It now follows that Ψλ is the inverse of Φ as
defined in 3.10. Therefore Ψλ is a unitary map intertwining ωλ and
Tλ. Π
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