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FOUR DIMENSIONAL HOMOGENEOUS ALGEBRAS

L. G. SWEET AND J. A. MACDOUGALL

An algebra is homogeneous if the automorphism group acts transi-
tively on the one dimensional subspaces of the algebra. The purpose of
this paper is to determine all homogeneous algebras of dimension 4. It
continues previous work of the authors in which all homogeneous alge-
bras of dimensions 2 and 3 were described. Our main result is the proof
that the field must be GF(Ί) and the algebras are of a type previously
described by Kostrikin. There are 5 non-isomorphic algebras of dimen-
sion 4; a description of each is given and the automorphism group is
calculated in each case.

All algebras considered are finite dimensional and not necessarily
associative. By K\xi{A) we denote the group of algebra automorphisms of
the algebra A. Thus, an algebra A is homogeneous if Aut(^4) acts
transitively on the one dimensional subspaces of A. A general discussion
of homogeneous algebras may be found in [8] along with references to
related literature. Djokovic [2] has classified all homogeneous algebras
over the field of real numbers and has found that the only examples exist
in dimensions 3,6 and 7. Sweet [9] has shown that non-trivial examples
cannot exist over any algebraically closed field. Homogeneous algebras of
dimension 2 were studied in [8] where it was shown the field must be
GF(2). The authors have also previously classified dimension 3 homoge-
neous algebras [6] where it was found that either the algebra is a truncated
quaternion algebra or else the field must be GF(2). The purpose of this
paper is to determine the structure and automorphism group of all
homogeneous algebras of dimension 4.

Kostrikin has shown, in [5], how to construct homogeneous algebras
over the field GF{2) in every dimension.

DEFINITION. Let K = GF(2n) and let μ be any fixed element in K. Let
o : K X K -> K be the map defined by x o y = μ(χy)2" . Then A(n, μ)
denotes the algebra over GF{2) obtained by replacing the usual multiplication
in K by the map °. We callA(n, μ) a Kostrikin Algebra.

These algebras are shown to be homogeneous by Kostrikin and are
obviously commutative. We can now state the main result of the paper. It
is summarized in the following theorem.
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THEOREM. Let A be a non-trivial four dimensional homogeneous algebra
over a field K. Then K = GF(2) and A is a Kostrikin algebra.

There are actually 5 non-isomorphic algebras of this type and these,
along with their automorphism groups, are described in more detail in
§111 of the paper. Section I contains general results about homogeneous
algebras of arbitrary dimension which will be useful later. In §11, we deal
with four separate cases depending on whether the dimension of the
subalgebra generated by a single element is 1,2,3 or 4. In cases 1,2 and 4,
it is shown that the field must be GF{2) and in case 3 no homogeneous
algebra exists.

I. General results. Assume A is a homogeneous algebra. We say
that A is non-trivial if A2 Φ 0 and dim A > 1. If a is any nonzero
element of A then (a) denotes the subalgebra generated by a. From [8]
we know that (a) is also a homogeneous algebra and (a) does not have
any non-trivial subalgebras. As in [8], La denotes the linear map on A
defined by left multiplication by some fixed a ^ A and La is usually
represented by a matrix relative to some basis for A. If a, b are any
non-zero elements of A then there exists a ^ Aut(^4) such that a(a) = λb
for some nonzero scalar λ. Hence aLaa~ι = \Lb and we say that La and
Lh are projectively similar. We denote by Er(La) the rth elementary
symmetric function of the eigenvalues of La, that is, the sum of the
principal r X r sub-determinants of La. In particular, Ex is the trace and
En is the determinant. From [8], we know that Eλ(La) = 0 for all a e A.
Finally we say that A is a quasi-division algebra if the nonzero elements
of A form a quasi-group under multiplication.

THEOREM 1. Let A be a commutative or anti-commutative homogeneous
algebra over an infinite field K. If La is nilpotent for some nonzero a e A
then A1 = 0.

Proof. Since La is nilpotent for some nonzero a & A, homogeneity
implies that Lx is nilpotent for all x e A. If a and b are any nonzero
elements of A then La and Lb are projectively similar nilpotent matrices.
But projectively similar nilpotent matrices are in fact similar and so A is a
left special nil algebra as defined in [9]. But A is commutative or
anti-commutative so A is also a right special nil algebra. Since K is
infinite, Theorem 2 of [9] implies that A2 = 0.

THEOREM 2. Let A be a homogeneous quasi-division algebra over a field
K. If a is any nonzero element of A then La has precisely one eigenvalue in
K and the corresponding eigenspace is one dimensional.
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Proof. If A = (a) then this is the result of Theorem 8 of [8]. Assume
A Φ (a) and suppose La has an eigenvector b & (a). Then ab = λb for
some nonzero scalar λ but (b) is also a quasi-division algebra so xb = λb
has a unique solution x e (b). This implies that a e (b). But from
Theorem 3 of [8] we know that <0>Π(ft) = {O} and we have a con-
tradiction.

The only known examples of homogeneous algbras over an infinite
field have the property that x2 = 0 for every x in the algebra (see [2] and
[6]). Thus the following theorem is of interest.

THEOREM 3. Let A be a nontriυial homogeneous algebra over a field K.

If a is a nonzero element of A such that a2 = 0 then La has no nonzero

eigenvalues in K.

Proof. Since a2 = 0 for some nonzero element a in A, homogeneity
implies that x2 = 0 for every x e A and hence A is anticommutative.
Also, clearly A is not a quasi-division algebra and so the results of Shult
[7] and Gross [3] imply that K must be infinite. Let a be any nonzero
element in A and suppose that La has a non-zero eigenvalue λ e K with
corresponding eigenvector b. Then with respect to a basis {a, b,...} La

and Lb are n X n matrices as follows:

0 0

0 λ

0 0

0 0

aIn

aIn

a33 « 1

an3

0

-λ
0

0

0

0

0

0

013

023

033

0n3

• β\n

βsn

βnn

We proceed by showing Lb to be nilpotent, which contradicts Theorem 1.
Let t e K be a variable and let B be the (Λ - 2) X (Λ - 2) block of
Lα + tLh obtained by deleting the first two rows and columns. We will
show that Ek(Lb) = 0 for k = 1,...,« - 1. Clearly E^^L^) = 0, so
that by Theorem l(ii) of [7], En_1(La + tLh) = 0. But

Consequently En_2(B) = 0 for all / G K. But this is a polynomial of
degree n - 2 in t whose coefficients must be identically 0. The coefficient
of tn~2 is just En_2(Lb), so we have En_2(Lb) = 0 and by similarity
En_2(La + tLb) = 0. We find that

0 = En_2(La + tLh) = λ£n_3(2?) + En_2(B) =
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Therefore En_3(B) = 0 for all / and as before, by examining the coeffi-
cient of the highest power of / in this polynomial, we find

En-,(Lh) = 0.

This argument may be repeated to show that En_Λ(Lh) = = Eλ{Lh)

= 0 and the proof is complete.

THEOREM 4. Let A be a homogeneous algebra over a field K. If there
exists an a e A such that dim(α) is a prime or 4 then K = GF(2).

ProofV As noted above, we know that (a) is a homogeneous algebra
with no proper subalgebras. Since dim(α) is a prime or 4 it follows from
the corollary of Theorem 3 of Artamonov [1] that Aat(a) is finite. But
since (a) is homogeneous this implies that K is finite. Hence, according
to Schult [7], the field K = GF{2).

II. Homogeneous algebras of dimension four. Let A be a homoge-
neous algebra of dim 4 over a field K and let a be a nonzero element of
A. We consider four cases, depending on dim(α). In each case it will be
shown that K = GF(2). In §111 we investigate homogeneous algebras of
dim 4 over K = GF(2).

Case 1. dim(α) = 1.
If dim(a) = 1 then a2 = λa for some λ e K and there are two

possibilities.

THEOREM 5. Let A be a homogeneous algebra over a field K. If
aim A = 4 and a1 = λa for some nonzero element a G A and nonzero
scalar λ then K = GF(2).

Proof. Homogeneity implies that x2 = λxx for all nonzero x e A
where λx is a nonzero scalar which may depend on x. The result follows
directly from Theorem 7 of [8].

THEOREM 6. Let A be a homogeneous algebra over a field K. If
dim A = 4 and a2 = 0 /or somtf nonzero a & A then A2 = 0.

Proof. As noted in Theorem 3, we may assume that x2 = 0 for every
x G: A. A is anti-commutative, and K is infinite. It follows from Theorem
3, from a2 = 0, from Eλ(La) = 0 and from dim A = 4 that the only
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possible rational canonical forms for La are the following

0 0 0 0
0 0 0 «!

0 1 0 α 2

0 0 1 0

Type 1. We may assume that the basis which produced this form for

La is { a, b, c, d}. But then

0
0

0

0

0
0

0

0

0
0

0

1

0
0

a

0

0
1

0

0

0
0

0

0

0
0

0

1

0
0

a

0 .

and

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

P i

βl

ft
ft

-ft
-ft
-ft

0

ft
ββ

βl

-ft.

-ft ]
-ββ

-βi + ft
ft

-Lb =

Theorem 3 implies that β3 = 0. But then Lβ^a_b = βALa — Lb is nilpotent

and A1 = 0 by Theorem 1.

Type 2. We may assume that the basis which produced this form for

La is {b, a, c,d}. But then ba = -a which contradicts Theorem 3 so this

type does not occur.

Type 3. We may assume that the basis which produced this form for

La is {a, b,c,d}. But then

00

0

0

0

0

0

1

0

0

0

0

1

0
0

1

0

0
0

0

0

ft
ft
ft
β

ft
ββ

βl

-ft
a2

0

We may assume aλ Φ 0 since otherwise La is similar to Type 1 or La is

nilpotent. Hence rank La = 3. Again consider β4La — Lh

"0 0 -βx -β5

0 0 -β2 - &

1 β4 -β3 -βΊ

0 0 0 β3
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As before, Theorem 3 implies that β3 = 0. But then E3(β4La - Lh) = 0
whereas E3(La) Φ 0, and therefore β4La - b is not projectively similar to
La. Thus, this type does not occur.

Case 2. dim(α) = 2.

THEOREM 7. Let A be a homogeneous algebra over a field K. If
dim A = 4 and άim(a) = 2 for some a e A then K = GF(2).

Proof. Since (a) is a nontrivial homogeneous algebra of dim2,
Theorem 9 of [8] implies that K = GF{2).

Case 3. dim(tf) = 3.

THEOREM 8. Let A be a homogeneous algebra over a field K. If
dim A = 4 /λew dim(α) # 3 /or

. Suppose there exists an a e A such that dim(α) = 3. Then
homogeneity implies that dim(x) = 3 for every nonzero x e i . Fix a
nonzero a & A and choose any nonzero b & (a). Then dim(Z>> = 3 and
so dim((α> Π (b)) > 1. But Theorem 3 of [8] says that (a) Π (b) = {0}
and we have a contradiction.

Case 4. dim(α) = 4.

THEOREM 9. Lei A be a homogeneous algebra over a field K. If
dim A = 4 am/ (a) = A for some a e A then K =

Proof. This is simply a special case of Theorem 4.

III. Homogeneous algebras of dim 4 over GF(2). Now assume that
A is a homogeneous algebra over GF(2) of dimension 4. By direct (but
tedious) computation using methods similar to those of §11, the authors
have shown that there are exactly 5 non-isomorphic algebras of this type,
all of which are Kostrikin algebras. This work has been superseded by a
result of Ivanov. In [4], the following general theorem is proved which
applies in any dimension.

THEOREM 10 (Ivanov). If A is a homogeneous algebra over GF(2), then
A is a Kostrikin algebra.

The question of when two Kostrikin algebras of the same dimension
are isomorphic was answered by Gross in [3].
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THEOREM 11 (Gross). The algebras A(n, μ) andA(n, λ) are isomorphic
if and only if there is an automorphism TofGF(2n) such that T(λ) = μ.

Using this result, the authors in [10] derived the following formula,
which in the case n = 4 shows that there exist 5 nontrivial algebras.

THEOREM 12. The number of non-isomorphic Kostrikin algebras of
dimension n is given by

Ά d\n

We proceed to determine the multiplication table of a representative
of each of the isomorphism classes. As explained in the proof of Theorem
12, the automorphism group of GF(2n) is generated by the squaring map,
so by Theorem 11, A(n,μ) and A(n,\) will be non-isomorphic if and
only if λ and μ belong to different orbits of GF(2n). We construct GF(16)
by extending GF(2) by a which is a root of the irreducible x4 + x + 1.
Then the orbits of GF(16) are:

I

π
III

IVa

IVb

{0},

{1},
{a2 + a,a2 + a-

{ α , α 2 , α + l , α 2 -

{a3,a3 + a2,a3 4- a2 - + l , α 3 + a),

IVc {a3 + l , α 3 + a2 + l , α 3 + a2 + a,a3 + a 4- 1}.

By choosing μ from each of the orbits in turn and substituting into the
definition

we obtain the six different cases (orbit I giving the trivial algebra). In each
case we use the basis {1, α, α2, α3}.

Case 11. (μ = 1)

1
a

a2

a3

1

1

a

<X2 +

a

1

a2

a

a3 + a

a2

a3

a3 + a
a2

a2 + a +
a3

1
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= ^ 2Case III. (μ = a2 4- α)

1

a

a
2

a
3

1

a
2
 + a

a

a
3
 + a

2
 +

a
3
 + a

2

1

α
2

«
3
 +

α
3
 +

a
3
 + a

a
2

1

+ 1

a
3

a
3
 +

a
2

a
3

+

a

1
+

1

+

1

1

Case IVa. (μ = α)

1

a

a
2

a
3

1

α

a

α
3
 + «

a
2

a
2

a
2

a
2
 + a H

α
3

h 1

α
2

α
3

α
3

4- α +

α
3

+ «
2
4

α + 1

1

• α

1

α

a
2

a
3

IVb.

1

α
3

(μ = a
3
)

a

α
3
 + «

2

a 4-

+ α

1

a

a
3
 + a

a
:

a
2

+
2
 +

5
 +

1

α +

α

1

α
3
 +

α
3

c

a
3

a
2
 + a

a
2
 + a

+ a +

x
3
 + a

2

+

1

1

Case IVc. (ju, = a3 + 1)

1

a

a
2

a
3

1

a
3
 + 1

O!

a
3
 + a

1

+ 1

a
2

1

a
2
 +

a

1

α
3

α
2
 +

α

α
3
 +

a
2

1

α

The algebra of Case II has the property that x2 = x for every x & A,
i.e. 4̂ has 1-dimensional homogeneous subalgebras. The algebra of Case
III has 2-dimensional homogeneous subalgebras. The algebras of Cases
IVa, IVb, and IVc enjoy the property that each is generated by any
nonzero element.

We conclude by describing the automoφhism group for each algebra.
In [10], the authors have determined Aut(^4) for any Kostrikin algebra.
Aut(^4) has 2 generators: (1) Ty(x) = γx, where γ is a generator of the
multiplicative group of K; (2) Sm, where S is the squaring map and m is
the smallest non-negative integer for which Sm(μ) = μ. Readers are
referred to [10] for further details.
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Case II. Aut(^4) is of order 60 and the generators Ta and S satisfy the
relations Γα

15 = 1 = S4 and SιTaS = Γα

8.
Case III. Aut(^4) is of order 30 and the generators Ta and S2 satisfy

the relations Γα

15 = 1 = (S2)2 and ( S 2 ) " 1 ^ 2 = Γα

4.
Cases IVa, IVb, IVc. Aut(A) is cyclic of order 15 and is generated by

Note. The authors wish to thank the referee for suggestions which
shortened and improved §11.
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