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4-FΪELDS ON (4k + 2)-DIMENSIONAL MANIFOLDS

TZE BENG NG

Let M be a closed, connected, smooth and 2-connected mod 2 (i.e.,
H((M9Z2) = 0, 0 < i' < 2) manifold of dimension n = 4k + 2 with
A: > 1. We obtain some necessary and sufficient conditions for the span
of an /ί-plane bundle η over M to be greater than or equal to 4. For
instance for k odd span M > 4 if and only if χ ( M ) = 0. Some
applications to immersion are given. In particular if n = 2 + 2', / > 3
and w 4(M) * 0 then M immerses in R2w~4.

1. Introduction. Let M be a smooth manifold, assumed throughout
the paper to be closed and connected and of dimension n == 4A: + 2 with
fc> 1.

If A: > 2 and M is (ί — 2)-connected mod 2 where ί = 5 or 6, then
Thomas in [20] gave necessary and sufficient conditions for span M > t.
We shall give necessary and sufficient conditions for a 2-connected mod
2M to have span > 4.

The Main Result. Recall the Euler-Poincare characteristic of M is
given by

where w = dim M = 4& + 2. We state our main theorem as follows:

THEOREM 1.1. Suppose M is 2-connected mod 2 and dimM = n s 2
mod 4 #«J >2 > 10.

(a) Ifn Ξ= 6 mod 8 ίΛew span(M) > 4 //, and only if χ(M) = 0.
(b) If n z= 10 mod 16 αm/ w4(M) = 0 then span(M) > 4 //, and only

ifχ(M) = 0.
(c) Ifn = 2 mod 16 am/ w4( M) = 0 /Λew span(M) > 4 //, α«(i only if

= 0 and χ(M) = 0.

In Theorem 1.1 δ is the co-boundary operator associated with the
sequence 0 - > Z - » Z - » Z 2 - » 0 .

Notation. Let BSpin^ be the classifying space of orientable y-plane
bundles ξ satisfying w2(ξ) = 0. Let BSO/8) (cf. [13]) be the classifying
space for orientable /-plane bundles ξ satisfying w>2(£) = w4(£) = 0. Then
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BSO/8) fibres over BSpiny with ^-invariant w4 e i/4(BSpiny; Z2).
Throughout the remainder of the paper cohomology would be ordinary
cohomology with coefficients in the mod 2 integers unless otherwise
specified. We denote Eilenberg-MacLane spaces of type (Z2, j) and (Z, j)
by Kj and Kf respectively and their fundamental classes by
respectively.

and ι*

2. The n-MFT for the fibration π: BSpinn_4 -> BSρinπ. We list the
k-'mvariants for the modified Postnikov tower for the fibration π:
BSpinrt_4 -> BSpinn through dimension n (abbreviated H-MPT see [4]).
For the computation the reader can refer to Thomas [17]. Because of the
fact that the indeterminacy Indet"(Λ:f, M) is trivial, although our choice
of k\ and k\ for n = 2 mod 8 are not independent ^-invariants,
it does not affect our computation. Note that (V 4 ) = 1 m °d 2 <=>
(Sq4 + w4 )wn_4 = wn.

TABLE 1. k invariant for π

Stage 1

Stage 2

Stage 3

/c-invariant

k\

kϊ
k2

k2

k3

Dim

n - 3

n - 2

n-2
n
n

n

Defining relation

*1 = 8wn-4

k\ = K-2

Sq2k\ + Sqιk\ = 0
(Sq4 + w4)k\ + ("ϊ4)Sq3kι

2 = 0
(8Sq2)k\ = 0

Sq2Sqιk2 + Sqιkj = 0.

We shall denote the «-MPT by

Since we shall be considering manifolds which are 2-connected mod 2,
to realize k\ we shall identify (Sqιkl, k\) in stage 2 instead of {k\, k\).

P\

Let Eλ -> BSpinw be the 1st stage «-MPT for the fibration. From the
defining relation for k\, the fact that Sq2wn_2 = wn = χn mod 2 where
χn is the Euler class for BSpinΛ, and the Peterson-Stein formula we
deduce (via functional operation considerations). (See also [6, page 337].)
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P R O P O S I T I O N 2.2.

(cf. Atiyah-Dupont [3] Theorem 1.1 page 3.)

COROLLARY 2.3. Suppose η is an n-plane bundle over M. Suppose
δw/?_4(η) = 0 andwn_2(η) = 0. Then modulo zero indeterminacy k2(η) = 0
//, and only if χ(η) = 0, where χ(η) denotes the Euler class of η.

3. The case wn_4(M) = 0. Throughout this section we assume that
wn_4(M) = 0.

Consider the following relations:

(3.1)

φ3: Sq2Sq2 + S#3δ = 0 and

φ 4 : ( l ® 5ήf4 + ι j β p 2 ) δ + 5 ^ ( 1 β 5 ^ 4 + t j β l )

+ {Sq2Sq1)Sq2 = 0

where ιj is the fundamental class of iΓ(Z,4), p2 is reduction mod 2, δ is
the Bockstein operator associated with the exact sequence 0 -» Z -* Z -»
Z 2 -^ 0. In (3.1), the tensor product is to be interpreted as for the
Massey-Peterson algebra 2ί(#(Z,4)) for the mod 2 steenrod algebra 9t.
The multiplication for p2 and δ is obvious. By abuse of notation and to
save space we sometimes write a for 1 0 a for a e 31 U {δ}. Consider
the vector cohomology operation defined by (3.1). Its existence follows
from the method of universal example as in Thomas [18]. Moreover it is
easily seen that if we denote the operator by (φ3, φ4) we have the following
relation

(3.2) Λ 4 : Sq2φ3 4- Sqιφ4 = 0.

Hence we have a tertiary operation associated with the relation (3.2). Let
us denote such an operation also by the symbol Λ4. In the terminology of
[18], (Φ3,φ4) and Λ4 are twisted cohomology operations.

Let ξy. BSpiny -> K£ represent a generator of /f4(BSpiny; Z) « Z.
Then we have

THEOREM 3.3. Let j > 5 and let Uj be the Thorn class of the universal
spin j-plane bundle over BSpin^. Then

(0,0)e(φ3,φ4)(t/.,f.) and
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Proof. Since i/3(BSpiny) « {0} and i/4(BSpiny) is generated by the
4th mod 2 universal Stiefel-Whitney class w49 trivially we can choose
(Φ39Φ4) s u c h that (090) e (φ39φ4)(Uj9ξj). If necessary we can replace
(φ39φ4) by (Φ3,φ4 + Sq4). Similarly we can choose the stable tertiary
operation Λ4 such that 0 e A4(UJ9ξj).

Instead of writing ζj9 by abuse of notation we shall confuse ξj with
the class Q e /f4(BSpiny; Z) which it represents. Notice that 2Q = Pλ the
first Pontrjagin class of the universal spin y-plane bundle over BSpin^ .

Let wπ_4 be the (n — 4)th mod 2 universal Stief el-Whitney class
considered as in i/"-4(BSpinrt_4). Then (Sq4 + Q )wn_4 = 0, S#2H>rt_4

= 0 and 8wn_4 = 0. Thus an immediate corollary to Theorem 3.3 is

PROPOSITION 3.4.

(a) (0,0) €= (φ3,φ 4 )K_ 2 ,β) c iSΓ"-1(BSpinll_4) + JΪ"(BSpinll_4).

Since TΓ* maps Indetw~lw(BSpin, (φ39φ4)) onto Indetyi"1>/l(BSpinπ_4,
(Φ3,Φ4)), w,7_4 e i/ r t-4(BSpinJ is a generating class (see [18, §5]) for
(Sqιkϊ9 k\). Thus by the generating class theorem [18, Theorem 5.9] we
have

(3.5) {Sq'klkj) €= (4>3,4>4)(ptwn-49piQ).

Consider the commutative diagram

Ei - Ei - Kn_2XKnXKn*

If 111 4 y

£2 -> ^ ^ 2 Kn_2XKn

where j is the projection and ξ is the principal fibration with ^-invariant
(kl9k\) and / is the natural map induced by the commutative right-
hand square. Then there is a class k e Hn(E2) associated with
the relation Sq2Sqιkf + Sqλk\ = 0 such that f*k = A:3. Since
Kerτ7* c KerPx* in dimension < «, gf maps Indef' ί^, A4,Q) onto
Indetn(BSpinrt_4, Λ 4 ,β). Thus we have by Proposition 3.4 and (3.5) the
following

PROPOSITION 3.6. wn_4 e Hn~4(BSpinn) is a generating class for ~k.
Here k is considered as a coset modulo YLsxq* Π Im£* where qλ = / ° q2'
BSpinn_4 -» £ 2 .
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By the connectivity condition on M, the ith Wu class is trivial unless
i == 0 (4). We can easily show with the help of S-duality that
lndctn(M9k

3) = Indetw(M, Λ4,η*β) for any map η: M -> BSpinM clas-
sifying a spin w-plane bundle over M.

PROPOSITION 3.7. Suppose η: M -» BSpinrt is a map such that
V*(8wn_4) = 0,0E φ4(η*wn-49η*(Q)) and η*(χ) = 0, then

Proof. Note that Indet"(M, k) = Indetn(M, k3). Since M is 2-con-
nected mod 2, (A:x

2, fcf)(ij) = (0, ife|)(ij). Thus (0, A:|)(η) =
(0, Φ 4)(η*^-4 5 iJ*β) Since 0 e Φ4(ij w l l.4, η β), (0,0) e (0, k2

2)(η). Thus
A:(η) is defined. Since η*(χ) = 0, then by Corollary 2.3 /:|(τ)) = 0 mod-
ulo zero indeterminacy. Therefore k3(η) is defined. By Proposition 3.6
and the generating class theorem, there exists an element h in Hn(Eι)
such that h e Kergf and

Since Kergf c Ker/?£ through dimension < n and fcf(η) = 0

A:3(η) = (f*~k)(η) = (Λ + A)(η) = A 4 ( i ,X_ 4 ,η β ) .

For an «-plane bundle η over M with classifying map also denoted
by η, let Wj(η) — η*Wj and Q(η) = η*β. We have from Proposition 3.7
the following

THEOREM 3.8. Suppose η is an n-plane bundle over M. Then
spanrj > 4//, andonlyifδwn_4(η) = 0 , 0 e Φ^n-ΛvXQd)), x(v) = 0
andO<ΞA4(wn_4(η)9Q(η))

THEOREM 3.9. Suppose M is 2-connected mod2 and wn_4(M) = 0.
Then span(M) > 4 //, and only if χ(M) = 0.

Proof. Immediate from Theorem 3.8.

4. The case w4(M) = 0. In this section we shall assume that w4(M)
= 0.

Consider the following relations:

| Φ l : Sq(δSq*) + Sq2(Sq2Sq"-4) = 0,

\φ2: Sq4{8Sq"-4) + Sq^Sq^q"'4) + Sq2Sqι{Sq2Sq"-4) = 0.
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Choose stable secondary cohomology operation associated with φλ

and φ2 of Hughes-Thomas type [5], also denoted by the same symbols
such that on the fundamental class dn_4 of Dn_Λ9 the principal bundle
over Kn_4 with classifying map (Sqhn_4, Sq2ιn_4)

0 e Φ i ( O and Sq4dn_4 U dn_A G Φ2(dn_4).

Moreover we can choose (φl9φ2) such that (0,0) G (φ l 5 Φ2)(^_5). % Λe
Leray-Serre exact sequence for the universal example tower for (Φ1,φ2)>
we see that

Φi = Φ* ° Sqn'4 modulo ( S ^ ' 1 , S^" 2 ^ 1 } and

φ2 = φ*oSq"~4 modulo (*V, S^"" 1 ^ 1 , S ^ " 2 ^ 2 }

where φ£ and φj are defined by the following relations

Sq3δ + S^Sfl2 = 0 and Sq4δ + SqιSq4 + (Sq2Sqι)Sq2 = 0.

Furthermore (φ1? φ2) can be chosen in such a way that

(4.2) Ω: Sq2φλ + S^φ2 = 0.

Consider now the fibration π: BSOW_4<8> -^ BSOW(8> where BSO/8)
is the classifying space for «-plane bundles ξ satisfying w2(ξ) = w4(ξ) = 0.
The ^-invariants for the n-MPΎ is as defined before in Table 1. Then
(φvφ2)(Tπ)*Un = s4(φ^φ*)(Un_4U Un_4) where s is the suspension
homomorphism and Uj is the Thorn class of the universal bundle over
BSOy(8). Therefore (φ1? φ2)(Γτ7)*ί/w = 0 modulo zero indeterminacy by a
Car tan formula for (φ*,φ4).

Now observe that TΓ*: 7/*(BSO/?(8» -> 7/*(BSOλ7_4(8» is an epi-
morphism in dimension < n for w > 30 and n Φ 34. For π < 30 and
n = 34 think of the π-MPT over BSOW(8) as the induced tower from the
fl-MPT over BSO .̂ With this in mind it can be easily verified that
(δwπ_4, wn_2) is admissible for (Sqιk2, k2) via (φ1? φ2) [12, §3.2].

Let E2 -> ̂  -> BSOn(8) be the Postnikov tower for #. Then by the
admissible class theorem [12, Theorem 3.3] we have

THEOREM 4.3.

where U(Ei) is the Thorn class of the bundle over EιjMhιced from the

universal n-plane bundle over BSOΠ(8> by the map Eι -> BSOΠ(8).

From the relation (4.2) we can choose an operation associated with
the relation (4.2) denoted by Ω such that on the fundamental class bn_4 of
Yn-49 the principal bundle over K*_4 with classifying map
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(4-4)

where φ* is the secondary operation on integral classes associated with
the relation

φ*: Sq2Sq3 + SqτSq4 = 0

and Kf is an Eilenberg-MacLane space of type (Z, j) and ij its funda-
mental class. By the methods of [12] (see for example. [12, §4.20] we can
easily derive (4.4). The details are left to the reader. Thus (4.4) and the
admissible class theorem give us

THEOREM 4.5.

where θ4 e //4(BSOM(8» is defined by φ4ί/(BSOM(8» = C/(BSOΠ(8» θ4.
Indeed by Proposition 3.4 of [12]̂  treating BSO^8) as a principal fίbration
over BSOn we see that φ4(U(BSOJS}) = ί/(BSOM(8» θ4 where θ4 is such
that i*θ4 = sqh3 where j:K3 -> BSOM(8) is the inclusion of the fibre. Thus
θ4 is a generator of H\BSOn(8)) « Z 2 .

REMARK. Notice that by a spectral sequence argument qf: H^{Eι)
-» /ί*(BSOπ_4(8)) is an epimoφhism through dimension n. Also

U(Eλ) -{ind^-^iSq'klklE,)) = Indet^^^ίφ^φ^Γ^).

Hence we can apply the admissible class theorem.
Let £ be an w-plane bundle over M such that w4{ξ) = 0.

THEOREM 4.6. (a) Suppose Indetn(Λ:3,M) Φ 0. Then sρan(£) > 4 if,
and only if 8wn_4(ξ) = 0, and χ(ξ) = 0.

(b) Suppose Indetn(k\ M) =J)_and wn_4(ξ)θ4(ξ) = 0 where Θ4(ξ) =
g*04, g α classifying map into BSOW(4> for ξ. Suppose Θ4(ζ) = Θ4(v),
where v is the normal bundle of M. Then span(£) > 4 */, and only if
8wn_4(ξ) = 0, χ(ξ) = 0, φ2(U(ξ)) = 0 and Q(U(ξ)) = 0 modulo zero
indeterminacy.

Proof. This follows from Theorem 4.5. The details are left to the
reader.

5. Evaluation on the manifold. Let g: M X M -> Γ(M) be the map
that collapses the complement of a tubular neighborhood of the diagonal
to a point. Then let

U = g*(ί/(τ)) mod2 e Hn(M X M).
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We want to give a decomposition of U. Note that for any x e Hn/2(M),
x2 = 0. Thus Z 2 rank of i/ r t / 2(M) is even. Suppose rank Hn/2(M) = 2q.
Then we have the following.

PROPOSITION 5.1. Suppose Hn/2(M) * {0}. There exists a basis
{ xl9..., xq9 yi9-..,yq} for Hn/2(M) and an integer r > 0 such that

Sqι

x. = 0, i = 1,..., q, Sqιyr+i = 0, i = 1,..., q - r,

and xtyj = δjjμ where δ/y is the Kronecker function and μ e Hn(M) is a
generator. In particular {xl9...,xr} c SqιHn/2~1(M).

Proof. First we remark that for α = 4/c + 2KετSqι: H2k+\M) ->
H2k+2(M) is non-trivial unless H2k+ι(M) = {0}. For if S^JC # 0 then
for any ^ e H2k(M) with 5^xx ^ # 0, j satisfies Sqιy Φ 0 and 5^V e

H2k+\M) Π K e r ^ 1 . Choose generators

such that {«!,...,α r} c ImSq1 Π H2k+1(M) and {α r + 1,... ,ar+p} c
CokS^1 Π Kerty1 ΠH2k+\M) and {ft,...,j8Γ+/,} are their corre-
sponding duals (i.e. ft x = 0 for all x e H2k+1(M) and x # α/9 ft αy

# 0). Notice this choice is possible by the above remark, for Sqιx Φ 0 and
x G H2k+\M) implies that x is dual to S^V f ° r some y e H2k(M).
Now Sqιβr+ι = 0, 1 < / <j9 for otherwise ft+/ is dual to some αy,
1 < i < r. Of course now letting x,. = α , ^ = jβ̂  gives the required basis.
Let

2k n(i) q

i = 0 / = 1 i = l

where dim Hl{M) = Λ(I) and {x l9..., xφ yv..., 7̂ } are given by Pro-
position 4.1. Here ak U βjι_i = δkJμ. Then we have

THEOREM 5.2.

(i) U = A + tA
(ii) SqιA = 0

(iii) A U tA = χ2{M)μ 0 μ
where

\ 1

Σ dimH'(M) mod2 = -χ(M)mod2.
/=o / z
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Proof. Assertion (i) follows from the fact that

is a basis for H*(M) and Milnor [11].

S^t/ = 0 and

i-θ\/-l / i-l

is a sum of terms of bidegree (j9 n + 1 - y), j < 2k + 1. Now w + 1
= 4A: + 3 -j > Ak + 3 - (2k + 1) > 2k + 2. Therefore S^U + ^
= 0 implies that SqιA = S^ 1^ = 0. Assertion (iii) is obvious.

PROPOSITION 5.3.

(ϊ) δSq«-\A) = δwn_4(M) ® μ
(ii) Sq4Sq"-\A) = 0 ifw4(M) = 0.

Proo/. (i)

Now Sq2%k+2 = ϋ2Λ j8^+ 2 # 0 if j8^+ 2 is dual to ϋ2A: the 2fcth Wu
class of M. We can choose for some a{k to be υlk. Thus Sq2kβ{k+2

 = 0
for / # 7. Thus

= Sq2k-2v2k Θ μ = W4,_2(M) 0 μ = ^ _ 4 ( M ) β μ,

and so 8Sqn~4(A) = δwrt_4(M) ® μ.
(ii) is obvious.

PROPOSITION 5.4. Suppose w4(M) = 0 am/ δwn_4(M) = 0. Then
(i) (ψ l9 ψ2) w defined on A, and

(ii) Modulo zero indeterminacy,

(0,φ4*K_4(M) ® μ ) H (Φ

Proof. Part (i) follows from 5.3. Part (iii) follows from Part (ii) since
g* is injective. Note that Sqn~2Sq2A = 0 so that

φ2(A) = φtSqn~4A = φ*4(wn-ΛM) <S μ).
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Let P -> Kn be a universal example tower for (φ1 ? φ2). Consider 4̂ as
a map A: M X M ^> Kn. Since δwrt_4(Af) = 0, A has a lifting A to P.
Let w: P X P -> P be the multiplication map. Then the map h =
m °{A, A ° t) is a lifting of 4̂ + **J4 regarded as a map m °{A, A <> ί) Let
φ be a representative for the operation φ2. Then m*φ = l ® φ + φ ® l .
Thus

Λ*Φ = i*φ + t*A*φ.

But /*: H2"(M X M) -> H2n(M X M) is an identity homomorphism.
Therefore A*φ = 0.

Let U: T(M) -* Kn represent the Thorn class of the tangent bundle
of M reduced mod 2. Let Ό: T(τ) -> P be any lifting of U to P. Then
/ = U° g is a lifting of 1̂ + /*/4. Since g* is injective, φ2(U(τ)) vanishes
if and only if g*Φ2(U(τ)) =/*(φ) = 0. Since Indet2"(M x M,φ2) = 0,
h*φ = 0 => /*(φ) = 0 since both A and / are liftings of A + t*A. By the
connectivity condition on M; this shows that (φ l 9 Φ2)(^(τ)) ^ (0,0). This
completes the proof of Proposition 5.4.

Consider Indet2w(Ω, T(M)). By the connectivity condition on M
Indet2"(Ω, T(M)) is a sum of secondary operations defined below

Indet2 w(Ω,Γ(M))

; Z), y e # 2 « }

where f 3 is associated with

f3: 59 2 S 9

2 + Sqι{Sq2Sqι) = 0.

By Atiyah-James duality the S-dual of Γ(M) is the Thorn space of
the stable bundle a = -T - T. Thus f3 is trivial on H2n~3(T(M)). φj is
also trivial on H2n~\T{M)\ Z)) since φ*(jc) = φ*(jc) and 04(α) = 0.
Thus if Indet"(fc3,M) = 0 then Indet2w(Ω, T(M)) = Indet"(fc3, M) =
Indet 2 w (Ω,MxM) = 0.

THEOREM 5.5. Suppose 8wn_4(M) = 0 <zm/ w4(M) = 0. Suppose fur-
ther that IndetM(fc3, M) = 0. Then

Ω(ί/(τ)) = 0

modulo zero indetermicacy.

Proof. From Theorem 4.6 and the fact that Indet"(A;3, M) = 0,
Φ*(ww-4(Λ0) = 0. Therefore Ω is defined on A hence on tA. Thus
Ώ,(A + L4) = Ω(i4) + ί*(Ω,4) = 0 modulo zero indeterminacy.
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5.6. Proof of Theorem 1.1.

l.l(a) follows from Theorem 3.9 since ww_4(M) = 0 for n = 6 mod 8.
Similarly l.l(b) follows from Theorem 3.9 since n Ξ 10 mod 16 and
w4(M) = 0 implies wn_4(M) = 0. l.l(c) follows from Theorem 4.6 and
Theorem 5.5.

6. Immersions of manifolds. As an application of Theorem 3.8 and
Theorem 4.6 we derive some immersion results. Note that for immersion
we don't need the unstable fc-invariants.

Suppose M is a spin-manifold. Then by Massey [9] it can be easily
shown that if dim m = n s 2 mod 4 then wn_2(M) = 0 and δwn_4(M) =
0. In particular if dim M = n = 6 mod 8, wn_4(M) = 0. Also if dim M =
n ΞΞ 10 mod 16 and w4(M) = 0, then wn_4(M) = 0.

Thus using the proof of Theorem 3.8, letting η be the stable normal
bundle of M, we have:

THEOREM 6.1. Suppose M is 2-connected mod 2 and n > 6. // dim M
= w Ξ= 6 mod 8 or if n s 10 mod 16 αwrf w 4(M) = 0, /Ae« M immerses in

R2n-4

As an application of Theorem 4.6 bearing in mind that the condition
χ(ξ) = 0 does not apply to stable bundle we have:

THEOREM 6.2. Suppose M is 2-connected mod 2, Dim M = n = 2

mod 16 0«d w4( AT) = 0. Then M immerses in R2n~4.

Proof. If Indet"(/c3, M) # 0, we have nothing to prove since k3(v) is
defined and 0 e k3(v), where v is the Spivak normal bundle. If
Indet"(λ:3, M) = 0, then φj is trivial on Hn~4(M,Z). Since wn_4(M) is
an integral class, #f(wrt__4(M)) = 0 modulo zero indeterminacy. Therefore
wn_4(M) - Θ4(v) = 0. Thus by Theorem 4.6(b) M immerses in R 2 π" 4 since
Φ2(U(P)) = Ω(U(v)) = 0 being operation mapping into the top class of
T{v).
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