4-FIELDS ON ($4 k+2$)-DIMENSIONAL MANIFOLDS

Tze Beng Ng

Abstract

Let M be a closed, connected, smooth and 2 -connected $\bmod 2$ (i.e., $\left.H_{l}\left(M, \mathbf{Z}_{2}\right)=0,0<i \leq 2\right)$ manifold of dimension $n=4 k+2$ with $k>1$. We obtain some necessary and sufficient conditions for the span of an n-plane bundle η over M to be greater than or equal to 4 . For instance for k odd span $M \geq 4$ if and only if $\chi(M)=0$. Some applications to immersion are given. In particular if $n=2+2^{l}, l \geq 3$ and $w_{4}(M)=0$ then M immerses in $\mathbf{R}^{2 n-4}$.

1. Introduction. Let M be a smooth manifold, assumed throughout the paper to be closed and connected and of dimension $n=4 k+2$ with $k>1$.

If $k>2$ and M is $(t-2)$-connected $\bmod 2$ where $t=5$ or 6 , then Thomas in [20] gave necessary and sufficient conditions for span $M \geq t$. We shall give necessary and sufficient conditions for a 2 -connected mod $2 M$ to have span ≥ 4.

The Main Result. Recall the Euler-Poincaré characteristic of M is given by

$$
\chi(M)=\sum_{i=0}^{n}(-1)^{i} \operatorname{Rank} H_{i}(M ; \mathbf{Z}),
$$

where $n=\operatorname{dim} M=4 k+2$. We state our main theorem as follows:
Theorem 1.1. Suppose M is 2 -connected $\bmod 2$ and $\operatorname{dim} M=n \equiv 2$ $\bmod 4$ and $n \geq 10$.
(a) If $n \equiv 6 \bmod 8$ then $\operatorname{span}(M) \geq 4$ if, and only if $\chi(M)=0$.
(b) If $n \equiv 10 \bmod 16$ and $w_{4}(M)=0$ then $\operatorname{span}(M) \geq 4$ if, and only if $\chi(M)=0$.
(c) If $n \equiv 2 \bmod 16$ and $w_{4}(M)=0$ then $\operatorname{span}(M) \geq 4$ if, and only if $\delta w_{n-4}(M)=0$ and $\chi(M)=0$.

In Theorem 1.1δ is the co-boundary operator associated with the sequence $0 \rightarrow Z \rightarrow Z \rightarrow Z_{2} \rightarrow 0$.

Notation. Let BSpin_{j} be the classifying space of orientable j-plane bundles ξ satisfying $w_{2}(\xi)=0$. Let $\widehat{\mathrm{BSO}}_{j}\langle 8\rangle$ (cf. [13]) be the classifying space for orientable j-plane bundles ξ satisfying $w_{2}(\xi)=w_{4}(\xi)=0$. Then
$\widehat{\mathrm{BSO}}_{j}\langle 8\rangle$ fibres over BSpin_{j} with k-invariant $w_{4} \in H^{4}\left(\mathrm{BSpin}_{j} ; \mathbf{Z}_{2}\right)$. Throughout the remainder of the paper cohomology would be ordinary cohomology with coefficients in the mod 2 integers unless otherwise specified. We denote Eilenberg-MacLane spaces of type $\left(\mathbf{Z}_{2}, j\right)$ and (\mathbf{Z}, j) by K_{j} and K_{j}^{*} respectively and their fundamental classes by ι_{j} and ι_{j}^{*} respectively.
2. The n-MPT for the fibration π : $\mathrm{BSpin}_{n-4} \rightarrow \mathrm{BSpin}_{n}$. We list the k-invariants for the modified Postnikov tower for the fibration π : BSpin $_{n-4} \rightarrow$ BSpin $_{n}$ through dimension n (abbreviated n-MPT see [4]). For the computation the reader can refer to Thomas [17]. Because of the fact that the indeterminacy $\operatorname{Indet}^{n}\left(k_{3}^{2}, M\right)$ is trivial, although our choice of k_{2}^{2} and k_{3}^{2} for $n \equiv 2 \bmod 8$ are not independent k-invariants, it does not affect our computation. Note that $\binom{n-4}{4} \equiv 1 \bmod 2 \Leftrightarrow$ $\left(\mathrm{Sq}^{4}+w_{4} \cdot\right) w_{n-4}=w_{n}$.

Table 1. k invariant for π

	k-invariant	Dim	Defining relation
Stage 1	k_{1}^{1}	$n-3$	$k_{1}^{1}=\delta w_{n-4}$
	k_{2}^{1}	$n-2$	$k_{2}^{1}=w_{n-2}$
	k_{1}^{2}	$n-2$	$S q^{2} k_{1}^{1}+S q^{1} k_{2}^{1}=0$
Stage 2	k_{2}^{2}	n	$\left(S q^{4}+w_{4}\right) k_{1}^{1}+\left(n^{n-4}\right) S q^{3} k_{2}^{1}=0$
	k_{3}^{2}	n	$\left(\delta S q^{2}\right) k_{2}^{1}=0$
Stage 3	k^{3}	n	$S q^{2} S q^{1} k_{1}^{2}+S q^{1} k_{2}^{2}=0$.

We shall denote the n-MPT by

Since we shall be considering manifolds which are 2 -connected mod 2, to realize k_{1}^{3} we shall identify $\left(S q^{1} k_{1}^{2}, k_{2}^{2}\right)$ in stage 2 instead of $\left(k_{1}^{2}, k_{2}^{2}\right)$. Let $E_{1} \xrightarrow{p_{1}} \mathrm{BSpin}_{n}$ be the 1 st stage n-MPT for the fibration. From the defining relation for k_{3}^{2}, the fact that $S q^{2} w_{n-2}=w_{n}=\chi_{n} \bmod 2$ where χ_{n} is the Euler class for BSpin_{n}, and the Peterson-Stein formula we deduce (via functional operation considerations). (See also [6, page 337].)

Proposition 2.2.

$$
k_{3}^{2}=\frac{1}{2} p_{1}^{*} \chi_{n}
$$

(cf. Atiyah-Dupont [3] Theorem 1.1 page 3.)
Corollary 2.3. Suppose η is an n-plane bundle over M. Suppose $\delta w_{n-4}(\eta)=0$ and $w_{n-2}(\eta)=0$. Then modulo zero indeterminacy $k_{3}^{2}(\eta)=0$ if, and only if $\chi(\eta)=0$, where $\chi(\eta)$ denotes the Euler class of η.
3. The case $w_{n-4}(M)=0$. Throughout this section we assume that $w_{n-4}(M)=0$.

Consider the following relations:

$$
\left\{\begin{align*}
\tilde{\phi}_{3}: & S q^{2} S q^{2}+S q^{3} \delta=0 \quad \text { and } \tag{3.1}\\
\tilde{\phi}_{4}: & \left(1 \otimes S q^{4}+\iota_{4}^{*} \otimes \rho_{2}\right) \delta+S q^{1}\left(1 \otimes S q^{4}+\iota_{4}^{*} \otimes 1\right) \\
& +\left(S q^{2} S q^{1}\right) S q^{2}=0
\end{align*}\right.
$$

where ι_{4}^{*} is the fundamental class of $K(\mathbf{Z}, 4), \rho_{2}$ is reduction mod $2, \delta$ is the Bockstein operator associated with the exact sequence $0 \rightarrow Z \rightarrow Z \rightarrow$ $Z_{2} \rightarrow 0$. In (3.1), the tensor product is to be interpreted as for the Massey-Peterson algebra $\mathfrak{A}(K(\mathbf{Z}, 4))$ for the mod 2 steenrod algebra \mathfrak{A}. The multiplication for ρ_{2} and δ is obvious. By abuse of notation and to save space we sometimes write α for $1 \otimes \alpha$ for $\alpha \in \overline{\mathfrak{Z}} \cup\{\delta\}$. Consider the vector cohomology operation defined by (3.1). Its existence follows from the method of universal example as in Thomas [18]. Moreover it is easily seen that if we denote the operator by $\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)$ we have the following relation

$$
\begin{equation*}
\Lambda_{4}: S q^{2} \tilde{\phi}_{3}+S q^{1} \tilde{\phi}_{4}=0 \tag{3.2}
\end{equation*}
$$

Hence we have a tertiary operation associated with the relation (3.2). Let us denote such an operation also by the symbol Λ_{4}. In the terminology of [18], $\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)$ and Λ_{4} are twisted cohomology operations.

Let $\zeta_{j}: \mathrm{BSpin}_{j} \rightarrow K_{4}^{*}$ represent a generator of $H^{4}\left(\operatorname{BSpin}_{j} ; \mathbf{Z}\right) \approx \mathbf{Z}$. Then we have

Theorem 3.3. Let $j \geq 5$ and let U_{j} be the Thom class of the universal spin j-plane bundle over BSpin_{n}. Then

$$
\begin{gathered}
(0,0) \in\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\left(U_{j}, \zeta_{j}\right) \quad \text { and } \\
0 \in \Lambda_{4}\left(U_{j}, \zeta_{j}\right)
\end{gathered}
$$

Proof. Since $H^{3}\left(\operatorname{BSpin}_{j}\right) \approx\{0\}$ and $H^{4}\left(\operatorname{BSpin}_{j}\right)$ is generated by the 4th mod 2 universal Stiefel-Whitney class w_{4}, trivially we can choose $\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)$ such that $(0,0) \in\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\left(U_{j}, \zeta_{j}\right)$. If necessary we can replace $\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)$ by ($\tilde{\phi}_{3}, \tilde{\phi}_{4}+S q^{4}$). Similarly we can choose the stable tertiary operation Λ_{4} such that $0 \in \Lambda_{4}\left(U_{j}, \zeta_{j}\right)$.

Instead of writing ζ_{j}, by abuse of notation we shall confuse ζ_{j} with the class $Q \in H^{4}\left(\right.$ BSpin $\left._{j} ; \mathbf{Z}\right)$ which it represents. Notice that $2 Q=P_{1}$ the first Pontrjagin class of the universal spin j-plane bundle over BSpin ${ }_{j}$.

Let w_{n-4} be the $(n-4)$ th $\bmod 2$ universal Stiefel-Whitney class considered as in $H^{n-4}\left(\operatorname{BSpin}_{n-4}\right)$. Then $\left(\mathrm{Sq}^{4}+Q \cdot\right) w_{n-4}=0, S q^{2} w_{n-4}$ $=0$ and $\delta w_{n-4}=0$. Thus an immediate corollary to Theorem 3.3 is

Proposition 3.4.

(a) $(0,0) \in\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\left(w_{n-2}, Q\right) \subset H^{n-1}\left(\operatorname{BSpin}_{n-4}\right)+H^{n}\left(\operatorname{BSpin}_{n-4}\right)$.
(b) $0 \in \Lambda_{4}\left(w_{n-4}, Q\right) \subset H^{n}\left(\mathrm{BSpin}_{n-4}\right)$.

Since π^{*} maps $\operatorname{Indet}^{n-1, n}\left(\operatorname{BSpin},\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\right)$ onto $\operatorname{Indet}^{n-1, n}\left(\operatorname{BSpin}_{n-4}\right.$, $\left.\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\right), w_{n-4} \in H^{n-4}\left(\mathrm{BSpin}_{n}\right)$ is a generating class (see [18, §5]) for ($S q^{1} k_{1}^{2}, k_{2}^{2}$). Thus by the generating class theorem [18, Theorem 5.9] we have

$$
\begin{equation*}
\left(S q^{1} k_{1}^{2}, k_{2}^{2}\right) \in\left(\tilde{\phi}_{3}, \tilde{\phi}_{4}\right)\left(p_{1}^{*} w_{n-4}, p_{1}^{*} Q\right) \tag{3.5}
\end{equation*}
$$

Consider the commutative diagram

$$
\begin{array}{ccccc}
E_{2} & \xrightarrow{P_{1}} & E_{1} & \xrightarrow[\rightarrow]{\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}\right)} & K_{n-2} \times K_{n} \times K_{n}^{*} \\
\downarrow f & & \downarrow \| & & \downarrow j \\
\tilde{E}_{2} & \xrightarrow{\xi} & E_{1} & \xrightarrow{\left(k_{1}^{2}, k_{2}^{2}\right)} & K_{n-2} \times K_{n}
\end{array}
$$

where j is the projection and ξ is the principal fibration with k-invariant (k_{1}^{2}, k_{2}^{2}) and f is the natural map induced by the commutative righthand square. Then there is a class $\tilde{k} \in H^{n}\left(\tilde{E}_{2}\right)$ associated with the relation $S q^{2} S q^{1} k_{1}^{2}+S q^{1} k_{2}^{2}=0$ such that $f * \tilde{k}=k^{3}$. Since $\operatorname{Ker} \pi^{*} \subset \operatorname{Ker} P_{1}^{*}$ in dimension $\leq n, q_{1}^{*} \operatorname{maps} \operatorname{Indet}^{n}\left(E_{1}, \Lambda_{4}, Q\right)$ onto Indet ${ }^{n}\left(\operatorname{BSpin}_{n-4}, \Lambda_{4}, Q\right)$. Thus we have by Proposition 3.4 and (3.5) the following

Proposition 3.6. $w_{n-4} \in H^{n-4}\left(\right.$ BSpin $\left._{n}\right)$ is a generating class for \tilde{k}. Here \tilde{k} is considered as a coset modulo $\operatorname{Ker} \tilde{q}_{1}^{*} \cap \operatorname{Im} \xi^{*}$ where $\tilde{q}_{1}=f \circ q_{2}$: $\operatorname{BSpin}_{n-4} \rightarrow \tilde{E}_{2}$.

By the connectivity condition on M, the i th Wu class is trivial unless $i \equiv 0$ (4). We can easily show with the help of S-duality that $\operatorname{Indet}^{n}\left(M, k^{3}\right)=\operatorname{Indet}^{n}\left(M, \Lambda_{4}, \eta^{*} Q\right)$ for any map $\eta: M \rightarrow \mathrm{BSpin}_{n}$ classifying a spin n-plane bundle over M.

Proposition 3.7. Suppose $\eta: M \rightarrow \mathrm{BSpin}_{n}$ is a map such that $\eta^{*}\left(\delta w_{n-4}\right)=0,0 \in \tilde{\phi}_{4}\left(\eta^{*} w_{n-4}, \eta^{*}(Q)\right)$ and $\eta^{*}(\chi)=0$, then

$$
k^{3}(\eta)=\Lambda_{4}\left(\eta^{*} w_{n-4}, \eta^{*} Q\right)
$$

Proof. Note that $\operatorname{Indet}^{n}(M, \tilde{k})=\operatorname{Indet}^{n}\left(M, k^{3}\right)$. Since M is 2 -connected $\bmod 2,\left(k_{1}^{2}, k_{2}^{2}\right)(\eta)=\left(0, k_{2}^{2}\right)(\eta)$. Thus $\left(0, k_{2}^{2}\right)(\eta)=$ $\left(0, \tilde{\phi}_{4}\right)\left(\eta^{*} w_{n-4}, \eta^{*} Q\right)$. Since $0 \in \tilde{\phi}_{4}\left(\eta^{*} w_{n-4}, \eta^{*} Q\right),(0,0) \in\left(0, k_{2}^{2}\right)(\eta)$. Thus $\tilde{k}(\eta)$ is defined. Since $\eta^{*}(\chi)=0$, then by Corollary $2.3 k_{3}^{2}(\eta)=0 \bmod -$ ulo zero indeterminacy. Therefore $k^{3}(\eta)$ is defined. By Proposition 3.6 and the generating class theorem, there exists an element h in $H^{n}\left(E_{1}\right)$ such that $h \in \operatorname{Ker} q_{1}^{*}$ and

$$
(\tilde{k}+h)(\eta)=\Lambda_{4}\left(\eta^{*} w_{n-4}, \eta^{*} Q\right)
$$

Since $\operatorname{Ker} q_{1}^{*} \subset \operatorname{Ker} p_{2}^{*}$ through dimension $\leq n$ and $k_{3}^{2}(\eta)=0$

$$
k^{3}(\eta)=\left(f^{*} \tilde{k}\right)(\eta)=(\tilde{k}+h)(\eta)=\Lambda_{4}\left(\eta^{*} w_{n-4}, \eta^{*} Q\right)
$$

For an n-plane bundle η over M with classifying map also denoted by η, let $w_{j}(\eta)=\eta^{*} w_{j}$ and $Q(\eta)=\eta^{*} Q$. We have from Proposition 3.7 the following

Theorem 3.8. Suppose η is an n-plane bundle over M. Then span $\eta \geq 4$ if, and only if $\delta w_{n-4}(\eta)=0,0 \in \tilde{\phi}_{4}\left(w_{n-4}(\eta), Q(\eta)\right), \chi(\eta)=0$ and $0 \in \Lambda_{4}\left(w_{n-4}(\eta), Q(\eta)\right)$

Theorem 3.9. Suppose M is 2 -connected $\bmod 2$ and $w_{n-4}(M)=0$. Then $\operatorname{span}(M) \geq 4$ if, and only if $\chi(M)=0$.

Proof. Immediate from Theorem 3.8.
4. The case $w_{4}(M)=0$. In this section we shall assume that $w_{4}(M)$ $=0$.

Consider the following relations:

$$
\left\{\begin{array}{l}
\phi_{1}: S q^{3}\left(\delta S q^{n-4}\right)+S q^{2}\left(S q^{2} S q^{n-4}\right)=0 \tag{4.1}\\
\phi_{2}: S q^{4}\left(\delta S q^{n-4}\right)+S q^{1}\left(S q^{4} S q^{n-4}\right)+S q^{2} S q^{1}\left(S q^{2} S q^{n-4}\right)=0
\end{array}\right.
$$

Choose stable secondary cohomology operation associated with ϕ_{1} and ϕ_{2} of Hughes-Thomas type [5], also denoted by the same symbols such that on the fundamental class d_{n-4} of D_{n-4}, the principal bundle over K_{n-4} with classifying map $\left(S q^{1} \iota_{n-4}, S q^{2} \iota_{n-4}\right)$

$$
0 \in \phi_{1}\left(d_{n-4}\right) \quad \text { and } \quad S q^{4} d_{n-4} \cup d_{n-4} \in \phi_{2}\left(d_{n-4}\right)
$$

Moreover we can choose $\left(\phi_{1}, \phi_{2}\right)$ such that $(0,0) \in\left(\phi_{1}, \phi_{2}\right)\left(\iota_{n-5}\right)$. By the Leray-Serre exact sequence for the universal example tower for $\left(\phi_{1}, \phi_{2}\right)$, we see that

$$
\begin{aligned}
& \phi_{1}=\phi_{3}^{*} \circ S q^{n-4} \text { modulo }\left\{S q^{n-1}, S q^{n-2} S q^{1}\right\} \quad \text { and } \\
& \phi_{2}=\phi_{4}^{*} \circ S q^{n-4} \text { modulo }\left\{S q^{n}, S q^{n-1} S q^{1}, S q^{n-2} S q^{2}\right\}
\end{aligned}
$$

where ϕ_{3}^{*} and ϕ_{4}^{*} are defined by the following relations

$$
S q^{3} \delta+S q^{2} S q^{2}=0 \quad \text { and } \quad S q^{4} \delta+S q^{1} S q^{4}+\left(S q^{2} S q^{1}\right) S q^{2}=0
$$

Furthermore $\left(\phi_{1}, \phi_{2}\right)$ can be chosen in such a way that

$$
\begin{equation*}
\Omega: S q^{2} \phi_{1}+S q^{1} \phi_{2}=0 \tag{4.2}
\end{equation*}
$$

Consider now the fibration $\tilde{\pi}: \widehat{\mathrm{BSO}}_{n-4}\langle 8\rangle \rightarrow \widehat{\mathrm{BSO}}_{n}\langle 8\rangle$ where $\widehat{\mathrm{BSO}}_{j}\langle 8\rangle$ is the classifying space for n-plane bundles ξ satisfying $w_{2}(\xi)=w_{4}(\xi)=0$. The k-invariants for the n-MPT is as defined before in Table 1. Then $\left(\phi_{1}, \phi_{2}\right)(T \tilde{\pi})^{*} U_{n}=s^{4}\left(\phi_{3}^{*}, \phi_{4}^{*}\right)\left(U_{n-4} \cup U_{n-4}\right)$ where s is the suspension homomorphism and U_{j} is the Thom class of the universal bundle over $\widehat{\mathrm{BSO}}_{j}\langle 8\rangle$. Therefore $\left(\phi_{1}, \phi_{2}\right)(T \tilde{\pi}) * U_{n}=0$ modulo zero indeterminacy by a Cartan formula for $\left(\phi_{3}^{*}, \phi_{4}^{*}\right)$.

Now observe that $\tilde{\pi}^{*}: H^{*}\left({\widehat{\mathrm{BSO}_{n}}}_{n}\langle 8\rangle\right) \rightarrow H^{*}\left(\widehat{\mathrm{BSO}}_{n-4}\langle 8\rangle\right)$ is an epimorphism in dimension $\leq n$ for $n \geq 30$ and $n \neq 34$. For $n<30$ and $n=34$ think of the n-MPT over $\widehat{\mathrm{BSO}}_{n}\langle 8\rangle$ as the induced tower from the n-MPT over BSO_{n}. With this in mind it can be easily verified that $\left(\delta w_{n-4}, w_{n-2}\right)$ is admissible for $\left(S q^{1} k_{1}^{2}, k_{2}^{2}\right)$ via $\left(\phi_{1}, \phi_{2}\right)$ [12, §3.2].

Let $E_{2} \rightarrow E_{1} \rightarrow \widehat{\mathrm{BSO}}_{n}\langle 8\rangle$ be the Postnikov tower for $\tilde{\pi}$. Then by the admissible class theorem [12, Theorem 3.3] we have

Theorem 4.3.

$$
U\left(E_{1}\right)\left(S q^{1} k_{1}^{2}, k_{2}^{2}\right) \in\left(\phi_{1}^{*}, \phi_{2}^{*}\right) U\left(E_{1}\right)
$$

where $U\left(E_{i}\right)$ is the Thom class of the bundle over E_{1} induced from the universal n-plane bundle over $\widehat{\mathrm{BSO}}_{n}\langle 8\rangle$ by the map $E_{1} \rightarrow \widehat{\mathrm{BSO}}_{n}\langle 8\rangle$.

From the relation (4.2) we can choose an operation associated with the relation (4.2) denoted by Ω such that on the fundamental class b_{n-4} of Y_{n-4}, the principal bundle over K_{n-4}^{*} with classifying map
$\left(S q^{2} \iota_{n-4}^{*}, S q^{4} \iota_{n-4}^{*}\right)$

$$
\begin{equation*}
\tilde{\phi}_{4}^{*}\left(b_{n-4}\right) \cup\left(b_{n-4}\right) \in \Omega\left(b_{n-4}\right) \tag{4.4}
\end{equation*}
$$

where $\tilde{\phi}_{4}^{*}$ is the secondary operation on integral classes associated with the relation

$$
\tilde{\phi}_{4}^{*}: S q^{2} S q^{3}+S q^{1} S q^{4}=0
$$

and K_{j}^{*} is an Eilenberg-MacLane space of type (\mathbf{Z}, j) and ι_{j}^{*} its fundamental class. By the methods of [12] (see for example. [12, §4.20] we can easily derive (4.4). The details are left to the reader. Thus (4.4) and the admissible class theorem give us

Theorem 4.5.

$$
U\left(E_{2}\right) \cdot\left(k_{1}^{3}+p_{2}^{*} p_{1}^{*}\left(w_{n-4} \theta_{4}\right)\right) \in \Omega\left(U\left(E_{2}\right)\right)
$$

where $\theta_{4} \in H^{4}\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right)$ is defined by $\phi_{4} U\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right)=U\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right) \cdot \theta_{4}$. Indeed by Proposition 3.4 of [12] treating $\widehat{\mathrm{BSO}}_{n}\langle 8\rangle$ as a principal fibration over $B S O_{n}$ we see that $\phi_{4}\left(U\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right)=U\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right) \cdot \theta_{4}\right.$ where θ_{4} is such that $i^{*} \theta_{4}=s q^{1} \iota_{3}$ where $i: K_{3} \rightarrow \overline{\mathrm{BSO}}_{n}\langle 8\rangle$ is the inclusion of the fibre. Thus θ_{4} is a generator of $H^{4}\left(\widehat{\mathrm{BSO}}_{n}\langle 8\rangle\right) \approx \mathrm{Z}_{2}$.

Remark. Notice that by a spectral sequence argument $q_{1}^{*}: H^{*}\left(E_{1}\right)$ $\rightarrow H^{*}\left(\widehat{\mathrm{BSO}}_{n-4}\langle 8\rangle\right)$ is an epimorphism through dimension n. Also

$$
U\left(E_{1}\right) \cdot\left(\operatorname{Indet}^{n-1, n}\left(S q^{1} k_{1}^{2}, k_{2}^{2}, E_{1}\right)\right)=\operatorname{Indet}^{2 n-1,2 n}\left(\phi_{1}, \phi_{2}, T E_{1}\right)
$$

Hence we can apply the admissible class theorem.
Let ξ be an n-plane bundle over M such that $w_{4}(\xi)=0$.
Theorem 4.6. (a) Suppose $\operatorname{Indet}^{n}\left(k^{3}, M\right) \neq 0$. Then $\operatorname{span}(\xi) \geq 4$ if, and only if $\delta w_{n-4}(\xi)=0$, and $\chi(\xi)=0$.
(b) Suppose $\operatorname{Indet}^{n}\left(k^{3}, M\right)=0$ and $w_{n-4}(\xi) \theta_{4}(\xi)=0$ where $\theta_{4}(\xi)=$ $g^{*} \theta_{4}, g$ a classifying map into $\widehat{\mathrm{BSO}}_{n}\langle 4\rangle$ for ξ. Suppose $\theta_{4}(\xi)=\theta_{4}(\nu)$, where ν is the normal bundle of M. Then $\operatorname{span}(\xi) \geq 4$ if, and only if $\delta w_{n-4}(\xi)=0, \chi(\xi)=0, \phi_{2}(U(\xi))=0$ and $\Omega(U(\xi))=0$ modulo zero indeterminacy.

Proof. This follows from Theorem 4.5. The details are left to the reader.
5. Evaluation on the manifold. Let $g: M \times M \rightarrow T(M)$ be the map that collapses the complement of a tubular neighborhood of the diagonal to a point. Then let

$$
\bar{U}=g^{*}(U(\tau)) \bmod 2 \in H^{n}(M \times M)
$$

We want to give a decomposition of \bar{U}. Note that for any $x \in H^{n / 2}(M)$, $x^{2}=0$. Thus \mathbf{Z}_{2} rank of $H^{n / 2}(M)$ is even. Suppose $\operatorname{rank} H^{n / 2}(M)=2 q$. Then we have the following.

Proposition 5.1. Suppose $H^{n / 2}(M) \neq\{0\}$. There exists a basis $\left\{x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{q}\right\}$ for $H^{n / 2}(M)$ and an integer $r \geq 0$ such that

$$
\begin{array}{ll}
S q^{1} x_{i}=0, & i=1, \ldots, q, \quad S q^{1} y_{r+i}=0, \quad i=1, \ldots, q-r \\
S q^{1} y_{i} \neq 0, & i=1, \ldots, r
\end{array}
$$

and $x_{i} y_{j}=\delta_{i j} \mu$ where $\delta_{i j}$ is the Kronecker function and $\mu \in H^{n}(M)$ is a generator. In particular $\left\{x_{1}, \ldots, x_{r}\right\} \subseteq S q^{1} H^{n / 2-1}(M)$.

Proof. First we remark that for $n=4 k+2 \operatorname{Ker} S q^{1}: H^{2 k+1}(M) \rightarrow$ $H^{2 k+2}(M)$ is non-trivial unless $H^{2 k+1}(M)=\{0\}$. For if $S q^{1} x \neq 0$ then for any $y \in H^{2 k}(M)$ with $S q^{1} x \cdot y \neq 0, y$ satisfies $S q^{1} y \neq 0$ and $S q^{1} y \in$ $H^{2 k+1}(M) \cap \operatorname{Ker} S q^{1}$. Choose generators

$$
\left\{\alpha_{1}, \ldots, \alpha_{r}, \alpha_{r+1}, \ldots, \alpha_{r+p}, \beta_{1}, \ldots, \beta_{r}, \beta_{r+1} \cdots \beta_{r+p}\right\}, \quad r+p=q
$$

such that $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subseteq \operatorname{Im} S q^{1} \cap H^{2 k+1}(M)$ and $\left\{\alpha_{r+1}, \ldots, \alpha_{r+p}\right\} \subseteq$ $\operatorname{Cok} S q^{1} \cap \operatorname{Ker} S q^{1} \cap H^{2 k+1}(M)$ and $\left\{\beta_{1}, \ldots, \beta_{r+p}\right\}$ are their corresponding duals (i.e. $\beta_{i} \cdot x=0$ for all $x \in H^{2 k+1}(M)$ and $x \neq \alpha_{i}, \beta_{i} \cdot \alpha_{i}$ $\neq 0$). Notice this choice is possible by the above remark, for $S q^{1} x \neq 0$ and $x \in H^{2 k+1}(M)$ implies that x is dual to $S q^{1} y$ for some $y \in H^{2 k}(M)$. Now $S q^{1} \beta_{r+i}=0,1 \leq i \leq p$ for otherwise β_{r+i} is dual to some α_{i}, $1 \leq i \leq r$. Of course now letting $x_{i}=\alpha_{i}, y_{i}=\beta_{i}$ gives the required basis. Let

$$
A=\sum_{i=0}^{2 k} \sum_{l=1}^{n(i)} \alpha_{i}^{l} \otimes \beta_{n-i}^{l}+\sum_{i=1}^{q} x_{i} \otimes y_{i}
$$

where $\operatorname{dim} H^{i}(M)=n(i)$ and $\left\{x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{q}\right\}$ are given by Proposition 4.1. Here $\alpha_{i}^{k} \cup \beta_{n-i}^{j}=\delta_{k j} \mu$. Then we have

Theorem 5.2.
(i) $\bar{U}=A+t A$
(ii) $S q^{1} A=0$
(iii) $A \cup t A=\hat{\chi}_{2}(M) \mu \otimes \mu$
where

$$
\hat{\chi}_{2}(M)=\frac{1}{2}\left(\sum_{i=0}^{4 k+2} \operatorname{dim} H^{i}(M)\right) \bmod 2=\frac{1}{2} \chi(M) \bmod 2 .
$$

Proof. Assertion (i) follows from the fact that

$$
\left\{\alpha_{i}^{l}, \beta_{n-i}^{l}\right\}_{i=1, \ldots, 2 k ; l=1, \ldots, n(i)} \cup\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, q}
$$

is a basis for $H^{*}(M)$ and Milnor [11].

$$
\begin{aligned}
& S q^{1} \bar{U}=0 \quad \text { and } \\
& S q^{1} A=\sum_{i=0}^{2 k}\left(\sum_{l=1}^{n(i)} S q^{1} \alpha_{i}^{l} \otimes \beta_{n-i}^{l}+\alpha_{i}^{l} \otimes S q^{1} \beta_{n-1}^{l}\right)+\sum_{i=1}^{r} x_{i} \otimes S q^{1} y_{i}
\end{aligned}
$$

is a sum of terms of bidegree $(j, n+1-j), j \leq 2 k+1$. Now $n+1-j$ $=4 k+3-j \geq 4 k+3-(2 k+1) \geq 2 k+2$. Therefore $S q^{1} A+S q^{1} t A$ $=0$ implies that $S q^{1} A=S q^{1} t A=0$. Assertion (iii) is obvious.

Proposition 5.3.
(i) $\delta S q^{n-4}(A)=\delta w_{n-4}(M) \otimes \mu$
(ii) $S q^{4} S q^{n-4}(A)=0$ if $w_{4}(M)=0$.

Proof. (i)

$$
S q^{n-4}(A)=S q^{4 k-2}(A)=\sum_{l=1}^{n(2 k)} S q^{2 k-2} \alpha_{2 k}^{l} \otimes S q^{2 k} \beta_{2 k+2}^{l}
$$

Now $S q^{2 k} \beta_{2 k+2}^{l}=v_{2 k} \cdot \beta_{2 k+2}^{l} \neq 0$ if $\beta_{2 k+2}^{l}$ is dual to $v_{2 k}$ the $2 k$ th Wu class of M. We can choose for some $\alpha_{2 k}^{j}$ to be $v_{2 k}$. Thus $S q^{2 k} \beta_{2 k+2}^{l}=0$ for $l \neq j$. Thus

$$
S q^{n-4}(A)=S q^{2 k-2} v_{2 k} \otimes \mu=w_{4 k-2}(M) \otimes \mu=w_{n-4}(M) \otimes \mu
$$

and so $\delta S q^{n-4}(A)=\delta w_{n-4}(M) \otimes \mu$.
(ii) is obvious.

Proposition 5.4. Suppose $w_{4}(M)=0$ and $\delta w_{n-4}(M)=0$. Then
(i) $\left(\phi_{1}, \phi_{2}\right)$ is defined on A, and
(ii) Modulo zero indeterminacy,

$$
\left(0, \phi_{4}^{*}\left(w_{n-4}(M) \otimes \mu\right)\right)=\left(\phi_{1}, \phi_{2}\right)(A)
$$

Hence
(iii) $(0,0)=\left(\phi_{1}, \phi_{2}\right)(U(\tau))$.

Proof. Part (i) follows from 5.3. Part (iii) follows from Part (ii) since g^{*} is injective. Note that $S q^{n-2} S q^{2} A=0$ so that

$$
\phi_{2}(A)=\phi_{4}^{*} S q^{n-4} A=\phi_{4}^{*}\left(w_{n-4}(M) \otimes \mu\right)
$$

Let $P \rightarrow K_{n}$ be a universal example tower for $\left(\phi_{1}, \phi_{2}\right)$. Consider A as a map $A: M \times M \rightarrow K_{n}$. Since $\delta w_{n-4}(M)=0, A$ has a lifting \bar{A} to P. Let $m: P \times P \rightarrow P$ be the multiplication map. Then the map $h=$ $m \circ(\bar{A}, \bar{A} \circ t)$ is a lifting of $A+t^{*} A$ regarded as a map $m \circ(A, A \circ t)$. Let ϕ be a representative for the operation ϕ_{2}. Then $m^{*} \phi=1 \otimes \phi+\phi \otimes 1$. Thus

$$
h^{*} \phi=\bar{A}^{*} \phi+t^{*} \bar{A}^{*} \phi
$$

But $t^{*}: H^{2 n}(M \times M) \rightarrow H^{2 n}(M \times M)$ is an identity homomorphism. Therefore $h^{*} \phi=0$.

Let $U: T(M) \rightarrow K_{n}$ represent the Thom class of the tangent bundle of M reduced mod 2. Let $\bar{U}: T(\tau) \rightarrow P$ be any lifting of U to P. Then $f=\bar{U} \circ g$ is a lifting of $A+t^{*} A$. Since g^{*} is injective, $\phi_{2}(U(\tau))$ vanishes if and only if $g^{*} \phi_{2}(U(\tau))=f^{*}(\phi)=0$. Since $\operatorname{Indet}^{2 n}\left(M \times M, \phi_{2}\right)=0$, $h^{*} \phi=0 \Rightarrow f^{*}(\phi)=0$ since both h and f are liftings of $A+t^{*} A$. By the connectivity condition on M; this shows that $\left(\phi_{1}, \phi_{2}\right)(U(\tau))=(0,0)$. This completes the proof of Proposition 5.4.

Consider Indet ${ }^{2 n}(\Omega, T(M))$. By the connectivity condition on M Indet ${ }^{2 n}(\Omega, T(M))$ is a sum of secondary operations defined below

$$
\begin{aligned}
& \operatorname{Indet}^{2 n}(\Omega, T(M)) \\
& \quad=\left\{\tilde{\phi}_{4}^{*}(x)+\zeta_{3}(y) \mid x \in H^{2 n-4}(T(M) ; \mathbf{Z}), y \in H^{2 n-3}(T(M))\right\}
\end{aligned}
$$

where ζ_{3} is associated with

$$
\zeta_{3}: S q^{2} S q^{2}+S q^{1}\left(S q^{2} S q^{1}\right)=0
$$

By Atiyah-James duality the S-dual of $T(M)$ is the Thom space of the stable bundle $\alpha=-\tau-\tau$. Thus ζ_{3} is trivial on $H^{2 n-3}(T(M))$. $\tilde{\phi}_{4}^{*}$ is also trivial on $H^{2 n-4}(T(M) ; \mathbf{Z})$) since $\tilde{\phi}_{4}^{*}(x)=\phi_{4}^{*}(x)$ and $\theta_{4}(\alpha)=0$. Thus if $\operatorname{Indet}^{n}\left(k^{3}, M\right)=0$ then $\operatorname{Indet}^{2 n}(\Omega, T(M))=\operatorname{Indet}^{n}\left(k^{3}, M\right)=$ $\operatorname{Indet}{ }^{2 n}(\Omega, M \times M)=0$.

Theorem 5.5. Suppose $\delta w_{n-4}(M)=0$ and $w_{4}(M)=0$. Suppose further that $\operatorname{Indet}^{n}\left(k^{3}, M\right)=0$. Then

$$
\Omega(U(\tau))=0
$$

modulo zero indetermicacy.
Proof. From Theorem 4.6 and the fact that $\operatorname{Indet}^{n}\left(k^{3}, M\right)=0$, $\phi_{4}^{*}\left(w_{n-4}(M)\right)=0$. Therefore Ω is defined on A hence on $t A$. Thus $\Omega(A+t A)=\Omega(A)+t^{*}(\Omega A)=0$ modulo zero indeterminacy.

5.6. Proof of Theorem 1.1.

1.1(a) follows from Theorem 3.9 since $w_{n-4}(M)=0$ for $n \equiv 6 \bmod 8$. Similarly $1.1(\mathrm{~b})$ follows from Theorem 3.9 since $n \equiv 10 \bmod 16$ and $w_{4}(M)=0$ implies $w_{n-4}(M)=0$. 1.1(c) follows from Theorem 4.6 and Theorem 5.5.
6. Immersions of manifolds. As an application of Theorem 3.8 and Theorem 4.6 we derive some immersion results. Note that for immersion we don't need the unstable k-invariants.

Suppose M is a spin-manifold. Then by Massey [9] it can be easily shown that if $\operatorname{dim} m=n \equiv 2 \bmod 4$ then $\bar{w}_{n-2}(M)=0$ and $\delta \bar{w}_{n-4}(M)=$ 0 . In particular if $\operatorname{dim} M=n \equiv 6 \bmod 8, \bar{w}_{n-4}(M)=0$. Also if $\operatorname{dim} M=$ $n \equiv 10 \bmod 16$ and $w_{4}(M)=0$, then $\bar{w}_{n-4}(M)=0$.

Thus using the proof of Theorem 3.8, letting η be the stable normal bundle of M, we have:

Theorem 6.1. Suppose M is 2 -connected $\bmod 2$ and $n>6$. If $\operatorname{dim} M$ $=n \equiv 6 \bmod 8$ or if $n \equiv 10 \bmod 16$ and $w_{4}(M)=0$, then M immerses in $R^{2 n-4}$.

As an application of Theorem 4.6 bearing in mind that the condition $\chi(\xi)=0$ does not apply to stable bundle we have:

Theorem 6.2. Suppose M is 2-connected $\bmod 2, \operatorname{Dim} M=n \equiv 2$ $\bmod 16$ and $w_{4}(M)=0$. Then M immerses in $R^{2 n-4}$.

Proof. If $\operatorname{Indet}^{n}\left(k^{3}, M\right) \neq 0$, we have nothing to prove since $k^{3}(\nu)$ is defined and $0 \in k^{3}(\nu)$, where ν is the Spivak normal bundle. If Indet ${ }^{n}\left(k^{3}, M\right)=0$, then $\tilde{\phi}_{4}^{*}$ is trivial on $H^{n-4}(M, \mathbf{Z})$. Since $\bar{w}_{n-4}(M)$ is an integral class, $\tilde{\phi}_{4}^{*}\left(\bar{w}_{n-4}(M)\right)=0$ modulo zero indeterminacy. Therefore $\bar{w}_{n-4}(M) \cdot \theta_{4}(\nu)=0$. Thus by Theorem 4.6(b) M immerses in $\mathbf{R}^{2 n-4}$ since $\phi_{2}(U(\nu))=\Omega(U(\nu))=0$ being operation mapping into the top class of $T(\nu)$.

References

[1] Adém and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana, 8 (1963), 53-78.
[2] M. F. Atiyah, Thom complexes, Proc. London. Math. Soc., (3) 11 (1961), 291-310.
[3] M. F. Atiyah and J. L. Dupont, Vector fields with finite singularities, Acta Mathematica, 128 (1972), 1-40.
[4] S. Gitler and M. E. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana 11 (1966), 85-106.
[5] A. Hughes and E. Thomas, A note on certain secondary cohomology operations, Bol. Soc. Mat. Mexicana, 13 (1968), 1-17.
[6] M. E. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc., 110 (1964), 315-349.
[7] , The index of a tangent 2-field, Pacific J. Math., 58 (1975), 539-548.
[8] C. R. F. Maunder, Cohomology operations of the N-th kind, Proc. London Math. Soc., (3) (1960), 125-154.
[9] W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana, (2) 8 (1963), 1-13.
[10] J. Milgram, Cartan formulae, Illinois J. Math., 75 (1971), 633-647.
[11] J. Milnor, Lectures on Characteristic Classes, Princeton University 1957.
[12] Tze Beng Ng , The existence of 7-fields and 8-fields on manifolds, Quart. J. Math. Oxford, (2) 30 (1979), 197-221.
[13] , A note on the mod 2 cohomology of $\widehat{\mathrm{BSO}}_{n}\langle 16\rangle$, Canad. J. Math., XXXVII (1985), 893-907.
[14] , Vector bundles over $(8 k+3)$-dimensional manifolds, Pacific J. Math., 121 (1986), 427-443.
[15] , Frame fields on manifolds, to appear in Canad. J. Math.
[16] D. G. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann., 194 (1971), 197-212.
[17] E. Thomas, Real and complex vector fields on manifolds, J. Math. and Mechanic, 16 (1967), 1183-1205.
[18] __, Postnikov invariants and higher order cohomology operations, Ann. of Math., (2) 85 (1967), 184-217.
[19] _, The index of a tangent 2-field, Comment. Math. Helv., 42 (1967), 86-110.
[20] _ , The span of a manifold, Quart. J. Math., Oxford (2) 19 (1968), 225-244.
[21] _, Vector fields on manifolds, Bull. Amer. Math. Soc., 75 (1969), 643-683.

Received March 24, 1986.

National University of Singapore
Kent Ridge
Singapore 0511

