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THE DIVISOR FUNCTION AT CONSECUTIVE
INTEGERS

ADOLF HILDEBRAND

Let d(n) be the divisor function. Improving a result of Heath-
Brown, we show that for sufficiently large x, d(n) = d(n + 1) holds for
» x(loglogjc)"3 integers n < x.

1. Introduction. In a recent paper with the above title, Heath-Brown
[5] showed that there are infinitely many positive integers n, for which
d(n) = d(n + 1). In fact, he proved that for sufficiently large x

(1.1) #{n < x: d{n) = d(n + 1)} » x(logx)~\

This settled a problem of Erdόs and Mirsky [1]. Heath-Brown's work was
motivated by an earlier result of Spiro [6], namely that with a = 5040,
d(n) = d(n + a) holds for infinitely many integers n.

Using a different approach, Erdos, Pomerance and Sarkozy [2] re-
cently showed that for sufficiently large x

3

(1.2) Σ # { « < JC: d{n) = Td{n + 1)} » jt(loglogjc)~1/2,

and in a subsequent paper [3] established the upper bound

(1.3) #{n < x: d(n) = d(n + 1)} <z x(loglogx)'1 / 2.

These results strongly suggest that the right order of magnitude for the
quantity estimated by (1.1) and (1.3) is x(loglog;c)~1/2. A heuristic
argument supporting this conjecture has been given P. T. Bateman and C.
Spiro.

The main purpose of this paper is to prove the following estimate,
which considerably improves on Heath-Brown's bound (1.1) and falls
short of the conjectured bound only by a power of log log x.

THEOREM 1. For sufficiently large x,

(1.4) #{n < x: d(n) = d(n + 1)} » c(loglogx)"3.

The idea of the proof is to combine the methods of Heath-Brown and
Erdos-Pomerance-Sarkόzy. We shall give an outline of the proof in §3.

307



308 ADOLF HILDEBRAND

A sieve result plays a crucial role in the proof. We shall use here
Lemma 2 below, which constitutes the sharpest known estimate of its
type. The bound (1.4) can be improved, if one assumes stronger sieve
estimates. For example, if Lemma 2 holds with g = r = 2, as has been
conjectured, then one gets the bound » x(loglogx)"1/2 for the left-hand
side of (1.4), which by (1.3) is best-possible.

Our method actually yields the following more general result.

T H E O R E M 2. Let dl9...9.dΊ be positive integers. For sufficiently large x

(1.5) Σ

In the special case dγ = = dΊ, the estimate (1.5) reduces to the
estimate (1.4) of Theorem 1. In its general form, Theorem 2 allows to
partially settle another conjecture of Erdόs, asserting that every posi-
tive real number is a limit point of the sequence {d(n + l)/d(n)}.
Equivalently, if E denotes the set of limit points of the sequence
{logd(n + l)/d(n)}, then Erdos' conjecture asserts that E = R. By
Heath-Brown's result, E contains the number 0, but until now this had
been the only real number known to belong to E. From Theorem 2 we
shall deduce

THEOREM 3. E contains a positive proportion of all real numbers in the
sense that

and

liminf-|£n[0,jc]|>0
Λ:-» oo X

liminf-|£ n[-x,0] |> 0,
χ-+ oo X

where | | denotes the Lebesgue measure. Moreover, there exists a positive
δ, such that E contains the interval [-δ, δ].

Similar results can be proved for the function Ω(H), the number of
prime factors of n counted with multiplicity. This is not very surprising,
since for squarefree integers n, d(n) = 2Ω("). Because of the complete
multiplicativity of the function 2Ω(n), the arguments in the case of Ω(rc)
are in fact technically simpler. The bound (1.4) of Theorem 1 remains
valid with Ώ(n) instead of d(n), without further modifications. Moreover,
one can establish the following analogues of Theorems 2 and 3.
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T H E O R E M 4. Let dv...9d7 be nonnegative integers. For sufficiently

large x

)"3#{n<x: Q(n + 1) - Q(n) = dj - </,.} » x(loglogjc)"3.

THEOREM 5. Let A denote the set of integers a such that Ω(«) —

Ώ(n 4- 1) = a holds for infinitely many integers n. Then A has positive lower

density.

2. Lemmas. We shall need two lemmas, both of which are crucial

in Heath-Brown's method. The first is Heath-Brown's "Key Lemma".

LEMMA 1 [5, p. 142]. For any positive integer k there exist positive

integers ax < < ak such that ifatj = aj — a{ then

(2.1) 'au\(ai9aj) (l<i<j<k)

and

(2.2) d(aj)

The second result we shall need is a lower bound sieve estimate for

almost-primes represented by products of linear polynomials.

LEMMA 2. For every integer g > 2 there exists an integer r = r(g) > 1

and positive constants δ, = δ^g), i = 1,2,3, with the following property.

Let at, bj,l < i < g, be integers satisfying

(2-3) Γk Π (atb,-a,bt)Φ0,
/=1 l<t<s<g

and let

Suppose that the polynomial f(n) has no fixed prime divisor. Let

S(x) =#{n<x: Ω(/(«)) < r;μ2(f(n)) = 1; />(/(«))

where p(n) denotes the least prime factor ofn. Then we have

(2.4) S(x) > δl
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provided x satisfies

(2.5) 2max{|έi|.|,|&J.|: 1 < i < g) < xδ\

Moreover, for g = 7 a possible choice for r is r = r(7) = 27.

This result is Theorem 10.5 in Halberstam-Richert [4], modified as
follows:

(i) In the definition of S(x) we have, apart from the restriction on
the number of prime factors of /(«), required that f(n) be squarefree and
free of prime factors smaller than a certain fixed power of x. These last
two properties do not appear in the statement of [4, Theorem 10.5].
However, a restriction of the type p(f(n)) > x82 is implicit in the proof of
that theorem, and using this property, one easily sees that the contribution
of the non-squarefree integers is negligible.

(ii) In [4, Theorem 10.5] the numbers at and b( are fixed and the
bound (2.4) is asserted only for sufficiently large x9 and with a constant 8λ

depending on the coefficients ai and bt. Here an inspection of the proof
shows that if x exceeds a sufficiently large but fixed power of each of the
coefficients (as is guaranteed by the condition (2.5)), then the same bound
holds with the implied constants depending at most on g.

(iii) The table given in [4, p. 285] gives r = 29 as admissible value in
the case g = 7. The value r = 27, which is the current record, has been
obtained by Xie [7] through more careful numerical computations.

We remark that Heath-Brown in his work applies the same result with
the above modifications including Xie's improvement, except that he does
not use the uniformity in the coefficients.

We shall use the two lemmas only in the cases k = 1 resp. g = 7. For
our purposes therefore the constants δ, in Lemma 2 can be taken as
absolute constants.

3. Outline of the method. We first outline Heath-Brown's argu-
ment leading to (1.1). It is based on the observation that if nλ < < nk

are positive integers satisfying the conditions of Lemma 1, then, for any
pair i <j\ the integers π,•/(/!,-, nj) and rij/(ni9 rij) are consecutive, and we
have

Hence every such k- tuple (nl9...9nk)9 which satisfies in addition

(3.1) ^ ( Ό = d(rij) for some / <j9
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gives rise to a solution of d{n) = d(n + 1). To ensure (3.1), one can take
k large and require that the integers ni have only few prime factors. For
example, if

1),

then (3.1) must hold. ^-tuples (w1?..., nk) having this additional property
can be found among the translates (ax 4- t,..., ak + t) of a fixed Λ>tuρle
(tf1?..., ak) satisfying the conditions of Lemma 1. In fact, it is easily seen
that the translated &-tuple satisfies the same conditions, whenever t is
divisible by af for / = 1,..., fc. A sieve result such as Lemma 2 can then
be applied to show that among those translates there is a substantial
proportion, for which d{nι)y...,d{nk) are small enough to imply (3.1),
provided k was chosen sufficiently large at the outset.

This is, roughly, Heath-Brown's method of producing solutions to
d{n) = d(n + 1). The drawback of this method is that it detects only
solutions which have few prime factors, and thus misses the "typical"
solutions, which one would expect to have about log log n prime factors.
To remedy this, we shall combine Heath-Brown's argument with an idea
of Erdόs, Pomerance and Sarkozy [2]. Namely, we shall look for integers
nv.. .9nk satisfying the conditions of Lemma 1 and of the form nt = mrf,,
where the integers mi (resp. qf) are composed of the small (resp. large)
prime factors of ni (in a sense to be made precise), and

(3.2) dim^dimj) (\<i<j<k).

The restriction on the size of the prime factors of qi ensures that qi has
only few prime factors, so that, in view of (3.2), there are only few possible
values for the k numbers d(wf) = dim^d^). For large k, this implies
(3.1), and we obtain as before a solution to d(n) = d(n + 1). To count
these solutions, we shall first fix the numbers mi and count the k~tuples
(qv ...,qk), which lead to an "admissible" k- tuple (nv..., nk) =
{mxqv..., rnkqk), and then sum over all choices of (mv..., mk) subject
to (3.2). In this way we pick up substantially more solutions than with
Heath-Brown's original argument. The optimal choice of k turns out to be
k = 7; the argument would go through for larger values of k, but the
resulting estimate would then be weaker.

The outlined argument leads to the estimate of Theorem 1. In order to
obtain the more general estimate of Theorem 2, it suffices to replace the
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condition (3.2) by

The rest of the argument goes through without change.

4. Proof of Theorem 2. Let dl9...9dΊ be given positive integers
and fix positive integers aλ < < aη satisfying the conditions (2.1) and
(2.2) of Lemma 1. Further let z and 8 be positive constants to be specified
later. At the moment we shall only suppose

(4.1) z > a7, 0 < δ < 1.

These constants as well as all other constants occurring in the proof are
allowed to depend on the numbers at and dt.

Next, let x > zι/δ be given, and suppose that ml9..., mΊ are positive
integers satisfying the conditions

(*)

m, < xs, pirn) >z ( l < / < 7 ) ,

Km,) d{aj)di y—-•>-•>•

Consider the system of congruences

7

n0 = 0 mod7! Π ^ 2 ,

no= -at modm, (z = l , . . . ,7) .

By (4.1) and (*) the moduli involved are pairwise coprime. Hence, by the
Chinese remainder theorem, this system has a solution, and all its solutions
are given by

no(t) = no + tP (/eZ),

where n0 denotes the least positive solution and P is the product of the
moduli, i.e.

7

ι = l

For/ = l,...,71et

Λ|.(/) = /I0(/) + flI = Λ0 + έII. + /P.
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The tuples (n1(t)9...9n7(t))9 t > 1, are all translates of a fixed tuple
(av...,a7) satisfying the conditions of Lemma 1. Among these tuples we
shall try to find "good" tuples (nl9..., «7), from which a solution to the
equation

(4.2) ^¥4
d(n) dt

can be constructed, as outlined in the preceding section.
By construction, n0 + at and P are both divisible by at and by mt

and hence by a^m^ since (ai9 m, ) = 1 in view of (4.1) and (*). We can
therefore write

(4.3) «,(/) = a.m^t + Qt) = a^jM,

say, where

p=Jί- Q - "0 + ^

are positive integers. If now, for some t >\ and some i < j,

, (p(fMfjU))>χs,

then we have, by (2.2) and (*),

d{nj{t)/ai}) d{aj/aij)d{mj)d{fj{t)) J,

and since

aiJ9

we obtain (4.2) for n = «,(
Thus, for fixed i <j9 every tuple (m,t) = (ml9...9m79t) satisfying

(*) and (**) gives rise to a solution of (4.2). This solution n = «.(
satisfies w < x, if we suppose that 3tP < x, i.e.

/ 7 \-l

ίmx m7 < 3 7!]7l0z

2

say. On the other hand, if i < j are fixed, then every integer n < x
satisfying (4.2) arises in this way at most once. For we must have
n^t) = ncijj and hence

nh{t) = /!,.(/) 4- ah - a, = natj + ah- a, (1 < h < 7 ) .
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Therefore n determines the integers nh(t), h = 1,...,7, uniquely. But
then the integers mh, h = 1,...,7, and t are also uniquely determined by
(4.3), since under the conditions (4.1), (*) and (**) the decomposition (4.3)
of nh(t) is unique.

We therefore obtain for the left-hand side of (1.5) the bound

(4.4)
1 < i <y < 7

' d{n)

where the summation on the right-hand side is extended over all tuples
m = (m 1 ? . . . ,m 7 ) satisfying (*) and T(m, y) denotes the number of
positive integers t < y, for which (**) is satisfied for some pair i < j . Note
that the condition (**) depends on the pair (i,j) as well as on the
numbers mi9 which are implicit in the coefficients of f^t). We shall show
that with an appropriate choice of the constants z and 8 we have

(4.5) τ ( m , y ) » j > ( i o g y)~Ί { * > y > * ι / 1 )

for all sufficiently large x and all tuples m satisfying (*), and further

(4.6) Σ Λ m » (logjc)7(loglogx)-3.

The asserted bound (1.5) follows from these two estimates and (4.4).
To prove the first estimate, we shall apply Lemma 2 with the

polynomial

i - l / = 1

To this end we have to check first that the hypotheses of this lemma are
satisfied. The coefficients Pi and Qi are all non-zero. Moreover, we have
PiQj — QjPj Φ 0 for all / < j . For this is equivalent to

P no + cij p n, + a.

aimi ajmj ajmj aimi

(1 < / < y < 7 ) ,

which holds, since we assumed the integers at to be pairwise distinct.
Hence the analogue of condition (2.3) is satisfied.

It remains to verify that f(t) has no fixed prime divisor, i.e. we have
to show that for every prime p there exists an integer t for which

(4.7) f(t)Φ0 mod p .

We proceed here as in Heath-Brown [5, p. 148]. We first establish

(4.8) (Λ >β/) = 1 ( l < / < 7 ) .



THE DIVISOR FUNCTION 315

To see this, recall that

7 ! Γί

and

ΐ

where

0 Π
Therefore the only possible common prime factors of Pt and Qέ are the
prime factors of mJ9 j = 1,..., 7. By (*) the numbers my are pairwise
coprime and free of prime factors < z and therefore coprime to each #y.
Hence no prime factor of mi divides P(. On the other hand, if j Φ /, then
every prime factor of nij divides n0 4- αy = Qiaimi + (αy — at), and since
it is coprime to (ai9 a^) = |αy. — αj, it cannot divide Qjm This proves (4.8).

The condition (4.8) implies that each of the congruences

/ΛO - ty + β, s 0 mod^ ( i - l , . . . , 7 )

has exactly one solution *,.(/>) modulo p. If now p > Ί, then there exists a
congruence class modulo p different from each of the classes tέ(p)
modulo p, and for / belonging to this class (4.7) holds. If however p < 7,
then for each /, p\l\\Pt for p \ Qiy and (4.7) follows again, this time for all
integers /.

The hypotheses of Lemma 2 are therefore satisfied, and we conclude
that there are » y(\ogy)~Ί positive integers t < y, for which

(4.9) Ω(/(0)<27, μ2(f(t)) = l, p(f(t)) > y\

provided y is a sufficiently large power of each of the coefficients Pi and
(?.. This last condition is satisfied if we suppose that y > xι/1 and that
the constant δ implicit in (*) is sufficiently small.

The first condition in (4.9) implies

Σ 0(Λ(0) = Q(/(0) < 27 < 1 + 2 + +7 = 28,
i = l

and hence Ω(/Z(ί)) = Ω(//(0) f°Γ some i < j . Taking into account the
remaining conditions μ2(f(t)) = 1 and p(f(t)) > y8l

y we see that (4.9)
implies (**) for some i <j, provided that y > xι/2 and δ < δ2/2, as we
may assume. Therefore the number of positive integers t < y satisfying
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(4.9) is < T(m, y), and we obtain for T(m, y) the asserted lower bound
(4.5).

It remains to establish (4.6). Let z < pλ< ••• < pΊbe the first seven
primes exceeding z, and put

J(tfJ y.i J

so that

d{qt) oci + l d{a^)di ^1<J^

Let further

x' = xs/maxqi, z' = p7.

We now require the integers mi to be of the form mi = -̂r,-, where

\ri<x',p{r)> z' ( l < / < 7 ) ,

(rx) = Ω ( r 7 ) .

It is easily seen that the conditions (*)' for (rl9..., rΊ) imply the condi-
tions (*) for (mv..., mη) = (qfo..., qΊrΊ). Therefore we have

and it suffices to establish the bound (4.6) for the last sum.
For k > 1 let

sk(*')- Σ 7.
p(r)>z', Ω(r) = k

We shall presently show that

(4.10) Sk(x') log z V log log*'

holds uniformly in the range

(4.11) \k - log log x' I < /log log x',

provided x' is sufficiently large in terms of z'. The lower bound in (4.10)
implies

(logz')7(loglogx')' ) 3 '
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where the summation is extended over all tuples (rl9..., rΊ) satisfying

[r < x' p(r\ -> τf (Λ <r i <r Ί\

= Ω(r7), |Ω(rJ - loglog*'| < i/loglogx'.

Using the upper bound in (4.10), it is readily seen that in the last sum the
contribution of the tuples (rl9. . . ,r 7 ) with μ2(rλ r7) = 0 is by a
factor « 1/z' smaller than the right-hand side. Therefore, if z and hence
z' are large enough, then the above bound remains valid with the addi-
tional condition μ2(rx rΊ) = 1 in the summation, i.e. with (*)" re-
placed by (*)', and we obtain the desired estimate.

The proof of (4.10) is routine and we shall therefore merely sketch it.
One way to obtain (4.10) would be to first "eliminate" the condition
p(r) > zr by means of a sieve argument, and then deduce the estimate
(and in fact an asymptotic formula for Sk(x')) from the Sathe-Selberg
formulae for the number of integers < x with k prime factors.

A simpler and more direct approach goes as follows. For the upper
bound one considers first the modified sum

Λ x ) „<,'
p{n)>z', ίl(n) = k

Clearly,

z'<p<x' J

and by means of Stirling's formula this bound is easily seen to be of the
required order of magnitude uniformly in k, provided xf is sufficiently
large in terms of z\ Since obviously

the same bound holds for Sk(xf), as asserted in (4.10).
A lower bound for Sk(xf) can be derived from the inequality

n n
n>x'

Ω() k

1 \ 1
Σ — - Σ' —

zf<p<x'P ί *}>*', n
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where in Σ' the summation runs over integers composed of prime factors
in the interval (z\x'\ and σ > 1 is arbitrary. Taking σ = 1 + λ/logx'
with a sufficiently large but fixed λ, the second term can be bounded
from above by a quantity smaller than the desired lower bound, while the
first term can be estimated as before and shown to be of the desired order
of magnitude for the range (4.11).

The proof of Theorem 2 is now complete.

5. Proof of Theorem 3. Let

Ex = I log - : r, s G N; ( . = - for infinitely many n G N >,
I s d{n) s j

and let Eλ be the closure of Eλ in the usual topology. Then obviously
Eλ c E. Theorem 2 shows that given any positive integers dl9...,d7 there
exist indices / <j9 such that log^dj/d^ e ^ . It follows that given any
positive real numbers ul9..., ul9 we have

(5.1) Uj - t/f. G E1cz E for some i <j.

In fact, this holds if the numbers ut are of the form ui = log^/s) with
positive integers η and s, and an approximation argument yields the
general case. We shall deduce the assertions of Theorem 3 from the
property (5.1).

Suppose that the second assertion of Theorem 3 is false, i.e. suppose
that for every 8 > 0 the interval [-δ, δ] contains a number not belonging
to E. Then there exists a sequence xn e R \ is, n > 1, with \m\n_^o0xn =
0. Since, by Theorem 1, 0 G £, this sequence must contain infinitely many
pairwise distinct terms. By taking subsequences, we may suppose that the
terms of this sequence are already pairwise distinct and have all the same
sign, say xn > 0 for all n > 1 without loss of generality.

By definition, £ is a closed set and hence R\E is an open set.
Therefore there exist positive numbers 8n such that for all n > 1

We may assume that the sequence {8n} is non-increasing. Further, by
taking a suitable subsequence, we may assume that

Consider now the positive integers
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These satisfy

J

« = / + !

contradicting the property (5.1). Hence the second assertion of Theorem 3
is proved.

To obtain the first assertion, we apply (5.1) with ut = iu, 1 < / < 7,
getting (in an obvious notation)

« = 1 n

Hence we have for x > 0

X = 10,*] n U f

and therefore

Similarly taking utr = (8 - i)u yields

This completes the proof of Theorem 3.
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