PARACOMPACT C-SCATTERED SPACES

L. M. FRIEDLER, H. W. MARTIN AND S. W. WILLIAMS

Telgársky calls a topological space C-scattered when each of its non-empty closed sets contains a compact set with non-empty relative interior. With respect to infinite products, hyperspaces, and the partially ordered set of compactifications, we study the class of paracompact C-scattered spaces and two of its subclasses, MacDonald and Willard's A'-spaces and A-spaces.

0. Introduction. All spaces are Hausdorff spaces. A space X is said to be C-scattered [16] provided that each of its non-empty closed subspaces contains a compact set with non-empty relative interior. The notion of C-scatteredness seems a simple simultaneous generalization of scattered (\equiv each non-empty set has a relative isolated point) and of local compactness. However, the class of paracompact C-scattered spaces is most interesting because [19] it contains its perfect pre-images, it is closed under finite products, it contains all closed continuous images of paracompact locally compact spaces, and for each of its members X, $X \times Y$ is paracompact iff Y is paracompact. Presently we study this class and two of its subclasses.

Section 1 is due to the third author and §§2 and 3 are due to the first two authors.

In §1 of our paper, we show that each countable product of paracompact C-scattered spaces is paracompact. This result improves upon the same theorem, due to Rudin and Watson [18], for paracompact scattered spaces, and answers the question raised for A'-spaces by the first two authors of this paper. As a corollary, we find that each countable product of Lindelöf C-scattered spaces is Lindelöf, a result due to Alster [2].

In the second section, we investigate hyperspaces of paracompact C-scattered spaces—a situation so complex that we limit our attention to A'-spaces. An A'-space is a space whose set of accumulation points is compact [10]. Thus, an A'-space is paracompact C-scattered. It is known [12] that the compact-set hyperspace $\mathscr{C}(X)$ is locally compact (metrizable) iff X is locally compact (respectively, metrizable). Here we present an example of a Lindelöf scattered A'-space X such that $\mathscr{C}(X)$ is neither C-scattered or normal. Further, we prove that $\mathscr{C}(X)$ is an A'-space

(contains a dense A'-space containing X) iff X is either compact or discrete (respectively, or int(acc(X)) = \emptyset).

In our final section we consider the metrizable A'-spaces termed as A-spaces by Willard [21]. A-spaces occur naturally in several ways; for example, a metrizable space is an A-space iff each closed continuous image is metrizable ([17] and [21]) iff each Hausdorff quotient space is metrizable ([1], [9], and [18]). A-spaces are also studied in [3], [4], [7], [11], [13], and [14]. The main result in the section shows that $K_M(X)$, the partially ordered set of metrically compactible Hausdorff compactifications, is a lattice when X is an A-space. However, we also obtain a characterization of A-space: A metrizable space is an A-space iff $K_M(X)$ has maximal element.

- 0.1. Conventions. All ordinals are von-Neumann ordinals. N denotes the set of positive integers and R denotes the set of reals. The interior, closure, and accumulation point-set operators are denoted, respectively, by int, cl, and acc.
- 0.2. DEFINITION. Let X be a space and $X^{(1)}$ be the set of points of X which fail to have a compact neighborhood in X. Now, letting $X^{(0)} = X$, inductively define for each ordinal α , $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)(1)}$. Then X is C-scattered iff there exists an ordinal γ such that $X^{(\gamma)} = \emptyset$ [19].

Suppose X is C-scattered and $Y \subset X$. For each ordinal α define $Y^{(\alpha)} = X^{(\alpha)} \cap Y$. Then the rank of Y (in X), denoted by $\operatorname{rk}(X)$, is the least ordinal γ such that $Y^{(\gamma)} = \emptyset$. It is easily proved that an A'-space is a paracompact C-scattered space of rank at most 2.

- **1. Products of** *C***-scattered spaces.** The entirety of this section is directed to proving the following result:
- 1.1. Theorem. Suppose X_n is a paracompact C-scattered space for each positive integer n. Then $\prod_n X_n$ is paracompact.
- 1.2. A Reduction. We begin our proof of 1.1 with a reduction to an easier case. We first observe that it suffices in Theorem 1.1 to assume that all the spaces X_n are homeomorphic and 0-dimensional in the sense of small inductive dimension. To see this, let

$$Y = \left(\bigcup_{n \in \mathbb{N}} X_n \times \{n\}\right) \cup \{\infty\}.$$

The space Y has the topology which makes each $X_n \times \{n\}$ clopen in Y and homeomorphic to X_n . Basic neighborhoods of ∞ have the form

$$Y \setminus \bigcup_{n < k} X_n \times \{n\}, \text{ for some } k \in \mathbb{N}.$$

Then Y is paracompact and C-scattered. So $\Pi^N Y$ is paracompact implies $\Pi_n X_n$ is paracompact. Now let X be Ponomarev's absolute of Y [16]. Then X is paracompact, extremally disconnected and C-scattered [19]. Since $\Pi^N X$ maps perfectly onto $\Pi^N Y$, $\Pi^N X$ is paracompact iff $\Pi^N Y$ is paracompact.

Henceforth, X will be a paracompact C-scattered 0-dimensional space, and we will show $\Pi^N X$ paracompact. Actually we show a stronger result: Each open cover of $\Pi^N X$ has a pairwise-disjoint open refinement; i.e. $\Pi^N X$ is ultraparacompact. We approach this in stages.

1.3. Lemma [19]. If X is a paracompact C-scattered 0-dimensional space, then so is X^n for each $n \in \mathbb{N}$.

The following result was obtained (unpublished) by the third author in 1974.

- 1.4. LEMMA. For a paracompact space Y the following are equivalent:
- (1) Y is ultraparacompact.
- (2) Ind(Y) = 0 (Ind \equiv large inductive dimension).
- (3) Each non-empty closed subset F of Y contains an ultra-paracompact subspace with non-empty F-interior.

Proof. The equivalence of (1) and (2) is straightforward and (1) implies (3) is obvious. We prove (3) implies (1).

For a closed subset Z of Y, define Z^* to be the set of all points of Z which do not have Y-closed Y-ultraparacompact neighborhoods. Since Z^* is closed in Y, there is a family $\mathscr A$ of Z-open sets such that $\bigcup \mathscr A = Z \setminus Z^*$ and $\operatorname{Ind}(A) = 0 \ \forall A \in \mathscr A$.

Claim. If $Z^* = \emptyset$, then Z is ultraparacompact.

To see the claim, suppose \mathcal{R} is a Z-open cover of Z. Since Z is paracompact and $Z^* = \emptyset$, there is a Z-locally finite refinement \mathcal{T} such that $\{\operatorname{cl}_Y(T)\colon T\in\mathcal{T}\}$ refines $\{R\cap A\colon R\in\mathcal{R},\ A\in\mathcal{A}\}$. Applying the normality of Z and the condition $\operatorname{Ind}(A)=0\ \forall A\in\mathcal{A}$, we may choose a

refinement $\mathscr{U} = \{U_T : T \in \mathscr{T}\}\$ of \mathscr{T} such that for each $T \in \mathscr{T}$, $U_T \subset T$ and U_T is $\operatorname{cl}_Y(T)$ -clopen. Note that each U_T is actually Z-clopen. Since \mathscr{T} is Z-locally finite, \mathscr{U} is Z-locally finite. Let \prec be a well-ordering of \mathscr{U} . Then

$$\{U \setminus \bigcup \{V \in \mathcal{U} \colon V \prec U\} \colon U \in \mathcal{U}\}$$

is the desired pairwise-disjoint Z-open refinement of \mathcal{R} . The claim is now proved.

According to the claim, Y is ultraparacompact whenever $Y^* = \emptyset$. We contend the latter is true. Suppose, by way of contradiction, that $Y^* \neq \emptyset$. Then applying regularity and (3), there is a Y-closed set Z such that $Z \cap Y^*$ is ultraparacompact and $Y^* \cap \operatorname{int}_Y(Z) \neq \emptyset$. Clearly, $\emptyset \neq Z^* \subset Y^*$. Now suppose $\mathscr R$ is a Z-open cover of Z. Then there is a pairwise-disjoint Z^* -open cover $\mathscr S$ of Z refining $\mathscr R \mid Z^*$. Since Z is collectionwise normal, there is a pairwise-disjoint family $\mathscr T = \{T_S \colon S \in \mathscr S\}$ consisting of Z-open sets such that for each $S \in \mathscr S$, $T_S \cap Z^* = S$ and there exists $R_S \in \mathscr R$ with $T_S \subseteq R_S$. Let $K = Z \setminus \bigcup \mathscr T$, and, by normality, choose a Z-open set G such that

$$K \subset G \subset \operatorname{cl}_{V}(G) \subset Z \setminus Z^{*}$$
.

Clearly, $(\operatorname{cl}_Y(G))^* = \emptyset$. So the claim above shows there is a $\operatorname{cl}_Y(G)$ -open pairwise-disjoint family \mathscr{U} covering $\operatorname{cl}_Y(G)$ and refining the family

$$\{\operatorname{cl}_{Y}(G)\setminus K\}\cup\{R\cap G\colon R\in\mathscr{R}\}.$$

Let $\mathscr{V} = \{U \in \mathscr{U} \colon U \cap K \neq \varnothing\}$. Then each $V \in \mathscr{V}$ is a $\operatorname{cl}_Y(G)$ -open subset of G and $\operatorname{cl}_Y(G)$ -closed. Hence, each $V \in \mathscr{V}$ is Z-clopen. So \mathscr{V} is Z-locally-finite and $\bigcup \mathscr{V}$ is clopen. Certainly

$$\mathscr{V} \cup \{T \setminus \bigcup \mathscr{V} \colon T \in \mathscr{T}\}$$

is a Z-open pairwise-disjoint refinement of \mathcal{R} . So Z is ultraparacompact. Hence int $_{Y}(Z) \cap Y^* = \emptyset$ —a contradiction.

Now we know $\prod^n X$ is ultraparacompact for each $n \in \mathbb{N}$. However, we need a much stronger result.

1.5. DEFINITION. Suppose that Y is a C-scattered space and $A \subseteq Y$. Define the *top* of A by

$$tp(A) = \begin{cases} \emptyset & \text{if } rk(A) \text{ is a limit ordinal,} \\ A^{(\alpha)} & \text{if } rk(A) = \alpha + 1. \end{cases}$$

We say that A is capped provided there exists an α such that $A^{(\alpha)}$ is compact and non-empty. Obviously if A is open and capped, then rk(A) will be $\alpha + 1$ when $A^{(\alpha)}$ is compact and non-empty.

1.6. Lemma. A 0-dimensional C-scattered space Y has a base of clopen capped sets.

Proof. For $y \in Y$, $\operatorname{rk}(y) = \alpha + 1$ for some α . Given a neighborhood G of Y, choose a clopen set H with $y \in H \subseteq G \setminus Y^{(\alpha+1)}$. Then $H^{(\alpha)}$ is clopen in the locally compact space $Y^{(\alpha)} \setminus Y^{(\alpha+1)}$. So there is a Y-clopen neighborhood K of Y such that $X \cap H^{(\alpha)}$ is compact.

1.7. Lemma. Each open covering of X is refined by a pairwise-disjoint family of clopen capped sets.

Proof. Suppose that \mathcal{R} is an open covering X. According to 1.4 we may assume \mathcal{R} to consist of pairwise-disjoint clopen sets. Inductively, we construct for each $n \in \mathbb{N}$, a family \mathcal{R}_n as follows: First set $\mathcal{R}_1 = \mathcal{R}$. For each n > 1

- (i) \mathcal{R}_n is a pairwise-disjoint open refinement of \mathcal{R}_{n-1} .
- (ii) If $R \in \mathcal{R}_{n-1}$ is capped, then $R \in \mathcal{R}_n$.
- (iii) If $R \in \mathcal{R}_{n-1}$ is not capped, then $\operatorname{rk}(R^*) < \operatorname{rk}(R)$ for each non-capped $R^* \in \mathcal{R}_n$ with $R' \subseteq R$.

Assume that we have \mathcal{R}_n for all $n \leq m$; we will find \mathcal{R}_{m+1} . Let

$$\mathcal{S} = \{ R \in \mathcal{R}_m : R \text{ is not capped} \}$$

and fix $S \in \mathcal{S}$. Note that S is clopen. For each $x \in S$ we use 1.6 to find an open capped set S_x such that $x \in \operatorname{tp}(S_x)$ and $S_x \subseteq S$.

Now suppose rk(S) is a limit ordinal. Then $rk(S_x) < rk(S)$ for each $x \in S$. From 1.6 there is a pairwise-disjoint refinement \mathcal{T}_S of $\{S_x: x \in S\}$ (we are assuming that the union of the refinement is the union of the family that it refines).

On the other hand, suppose $\operatorname{rk}(S) = \alpha + 1$. Then $(X^{(\alpha)} \cap S) \setminus X^{(\alpha+1)}$ is a locally compact ultraparacompact space, and hence, the union of a pairwise-disjoint family $\mathscr U$ consisting of compact $X^{(\alpha)}$ -open sets. For each $U \in \mathscr U$, let $V_U \subset S$ be an open set such that $(V_U)^{(\alpha)} = U$. From 1.4 there is a pairwise-disjoint X-open refinement $\mathscr T_S$ of $\{S \setminus X^{(\alpha)}\} \cup \{V_U : U \in \mathscr U\}$. Observe that for each $T \in \mathscr T_S$, $T^{(\alpha)}$ is closed in some $U \in \mathscr U$. Hence, $T^{(\alpha)}$ is compact. Clearly, if T is not capped, then $T^{(\alpha)} = \varnothing$ and so $\operatorname{rk}(T) < \operatorname{rk}(S)$.

We complete the construction by defining

$$\mathscr{R}_{m+1} = (\mathscr{R} \setminus \mathscr{S}) \cup (\bigcup \{\mathscr{T}_S : S \in \mathscr{S}\}).$$

Now \mathcal{R}_n is defined for each $n \in \mathbb{N}$. Define

$$\mathscr{R}_{\infty} = \Big\{ R \in \bigcup_{n \in \mathbb{N}} \mathscr{R}_n \colon R \text{ is capped} \Big\}.$$

Then (i) and (ii) imply \mathscr{R}_{∞} is a pairwise-disjoint open capped family. Also, (i) shows that if \mathscr{R}_{∞} covers X, then \mathscr{R}_{∞} refines \mathscr{R} . So suppose \mathscr{R}_{∞} does not cover X, i.e., $x \in X \setminus \bigcup \mathscr{R}_{\infty}$. Then we may find for each n > 1 a set $R_n \in \mathscr{R}_n$ such that $x \in R_n \subset R_{n-1}$. As R_n is not capped, $\operatorname{rk}(R_n) < \operatorname{rk}(R_{n-1})$. However, this implies there is a decreasing sequence of ordinals, an impossibility. So \mathscr{R}_{∞} must cover X.

- 1.8. DEFINITION. Fix $n \in \mathbb{N}$. By a box in $\prod^n X$, we mean a set of the form $B = \prod_{i \le n} B_i$, where each B_i is open in X. A capped box is a box B such that B_i is capped in X for each $i \le n$.
- 1.9. LEMMA. For a fixed natural number n, each open cover of $\prod^n X$ is refined by a pairwise-disjoint collection of capped box.

Proof. The proof is by induction on n. As the Lemma 1.6 shows our result for n = 1, we suppose it is true for some $m \in \mathbb{N}$ and show it is true for m + 1. Suppose \mathscr{R} is an open cover of $\prod^{m+1} X$. Let Y denote the set of all points in X such that X does not have a neighborhood 0 for which $\mathscr{R} \mid (0 \times \prod^m X)$ is refined by a pairwise-disjoint family of capped boxes. If Y = empty, then we may, by 1.7, write X as the union of a disjoint family \mathscr{G} if open capped sets G such that $\mathscr{R} \mid (G \times \prod^m X)$ is refined by a pairwise-disjoint capped box family \mathscr{S}_G . Clearly, in this case, $\bigcup \{\mathscr{S}_G \colon G \in \mathscr{G}\}$ is the desired refinement of \mathscr{R} .

Of course, it is always true that $Y=\emptyset$. To see this suppose not. Then there is a compact subset K of Y such that $\operatorname{int}_Y(K) \neq \emptyset$. For each $v \in \Pi^m X$, there is a capped box $A_v = \prod_i A_{vi}$ neighborhood of v such that $K \times A_v$ is the union of a finite pairwise-disjoint $(K \times \Pi^m X)$ -capped box refinement \mathscr{T}_v of $\mathscr{R} \mid K \times T$. By the induction hypothesis, there is a pairwise-disjoint capped box refinement \mathscr{U} of $\{A_v : v \in \Pi^m X\}$. For each $U \in \mathscr{U}$, choose a $v(U) \in \Pi^m X$ such that $U \subseteq A_{v(U)}$. Then

$$\mathscr{W} = \left\{ (K \times U) \cap T \colon U \in \mathscr{U}, T \in \mathscr{T}_{v(U)} \right\}$$

is a pairwise-disjoint $(K \times \prod^m X)$ -capped box refinement of the restriction of \mathcal{R} to $K \times \prod^m X$. For each $W = \prod_{i < m+1} W_i \in \mathcal{W}$ choose an open

set H_W of X and an $R_W \in \mathcal{R}$ such that $H_W \cap K = W_{m+1}$ and $H_W \times \prod_{i \leq m} W_i \subset R_W$. But, according to the definition of Y, the existence of the family

$$\{H_W \times \prod_{i \le m} W_i : W \in \mathscr{W}\}$$

implies that int $_X(K) \cap Y = \emptyset$, a contradiction. So $Y = \emptyset$.

We are now ready to prove the main result of this section, from which 1.1 follows.

1.10. Theorem. $\prod^{N} X$ is ultraparacompact.

Proof. By a cube in $\Pi^N X$, we mean a set of the form $C = \Pi_n C_n$, where each C_n is a clopen capped set in X, and there exists $m(C) \in \mathbb{N}$ such that $C_n \neq X \ \forall n < m(C)$ and $C_n = X \ \forall n \geq m(C)$ [Notice that in the reduction 1.2, X is capped. We assume, without loss of generality, that such is the case here.] Therefore, the family of cubes in $\Pi^N X$ forms a base. For a cube C let $\operatorname{tp}(C) = \prod_n \operatorname{tp}(C_n)$.

Suppose that \mathcal{R} is a cube cover of $\Pi^{N} X$. We construct, inductively, for each $i \in \mathbb{N}$, a cube cover \mathcal{S}_{i} of $\Pi^{N} X$ satisfying the conditions below for i = j + 1:

- (1) \mathcal{S}_i is a pairwise-disjoint refinement of \mathcal{S}_j .
- (2) If $S \in \mathcal{S}_j$ is such that $\operatorname{tp}(S) \subset \bigcup \mathcal{R}'$, where $\mathcal{R}' \subset \mathcal{R}$ and $m(R) \leq m(S) \ \forall R \in \mathcal{R}'$, then
 - (a) m(S') = m(S) for each S' with $S \supset S' \in \mathcal{S}_{I}$, and
 - (b) $S' \in \mathcal{S}_i$ and $S' \cap \operatorname{tp}(S) \neq \emptyset$ implies $\exists R \in \mathcal{R}$ with $S' \subset R$.
- (4) If $S \in \mathcal{S}_i$ is such that $\exists R \in \mathcal{R}$ with $S \subset R$, then $S \in \mathcal{R}_i$.

The construction proceeds as follows. First let $\mathcal{G}_1 = \{\prod^N X\}$, and suppose we have found $\mathcal{G}_i \ \forall i \leq k$. We construct \mathcal{G}_{k+1} . Since \mathcal{G}_k is a pairwise-disjoint clopen cover of $\prod^N X$, it is sufficient to find $\mathcal{G}_{k+1} \mid S$ for a fixed $S = \prod_n S_n \in \mathcal{G}_k$. If there is an $R \in \mathcal{R}$ with $S \subset R$, then define $(\mathcal{G}_{k+1} \mid S) = \{S\}$. If there does not exist a subfamily \mathcal{R}' of \mathcal{R} such that $\operatorname{tp}(S) \subset \bigcup \mathcal{R}'$ and $m(R) \leq m(S) \ \forall R \in \mathcal{R}'$, then we apply 1.9 to obtain a pairwise-disjoint capped box family \mathcal{F} covering $\prod_{n \leq m(S)} S_n$ such that $\forall T \in \mathcal{T} \ \forall n \leq m(S) \ T_n \neq X$. In this case we define

$$\left(\mathscr{S}_{k+1} \mid S\right) = \left\{ \left(\prod_{n \leq m(S)} T_n\right) \times \prod^{\{n \in \mathbb{N}: n > m(S)\}} X \colon T \in \mathscr{T} \right\}.$$

Finally, if $\exists \mathscr{R}' \subset \mathscr{R}$ such that $\operatorname{tp}(S) \subset \bigcup \mathscr{R}'$ and $m(R) \leq m(S) \ \forall R \in \mathscr{R}'$, then there is a finite subfamily of $\{\prod_{n < m(S)} R_n : R \in \mathscr{R}'\}$ covering the compact set $\prod_{n < m(S)} \operatorname{tp}(S_n)$. Applying 1.9 we choose a pairwise-disjoint clopen capped box cover \mathscr{W} of $\prod_{n < m(S)} S_n$ refining

$$\left\{ \left(\prod_{n < m(S)}^{m(S)} X \right) \setminus \left(\prod_{n < m(S)} \operatorname{tp}(S_n) \right) \right\} \cup \left\{ \prod_{n < m(S)} R_n \colon R \in \mathcal{R}' \right\}.$$

We define

$$\left(\mathscr{S}_{k+1}\mid S\right) = \left\{ \left(\prod_{n < m(S)} W_n\right) \times \prod^{\{n: n \geq m(S)\}} X: W \in \mathscr{W} \right\}.$$

It is clear that the conditions (1) through (4) are satisfied. So we assume that we have defined the families $\mathcal{S}_i \ \forall i \in \mathbb{N}$.

Define $\mathscr{S} = \{ \cap \mathscr{B} : \mathscr{B} \text{ is a maximal chain of } \bigcup_{i \in \mathbb{N}} \mathscr{S}_i \text{ and } \cap \mathscr{B} \neq \emptyset \}.$ Now (i) implies \mathscr{S} is a pairwise-disjoint cover of $\prod^{\mathbb{N}} X$. So the proof is complete once we show that \mathscr{S} consists of open sets. This follows immediately from

(#) Each maximal chain
$$\mathscr{B}$$
 of $\bigcup_{i \in \mathbb{N}} \mathscr{S}_i$ is finite.

Suppose # is false. Then for each $i \in \mathbb{N}$ $\exists S(i) \in \mathcal{S}_i$ such that, by (1), S(i+1) is a proper subset of S(i). Also $m(S(i+1)) \geq m(S(i))$ $\forall i \in \mathbb{N}$, and $\operatorname{rk}(S(i+1)_n) \leq \operatorname{rk}(S(i)_n) \ \forall i \in \mathbb{N}$. Since any non-increasing sequence of ordinals is eventually constant, we may choose for each $n \in \mathbb{N}$, $i_n \in \mathbb{N}$ such that $\operatorname{rk}(S(i)_n) = \operatorname{rk}(S(i_n)_n) \ \forall i \geq i_n$. There is a finite family $\mathscr{R}' \subset \mathscr{R}$ covering the compact set $\prod_n \operatorname{tp}(S(i_n)_n)$. Let $m = \sup\{m(R): R \in \mathscr{R}'\}$.

Suppose there is a j so large that $m(S(j)) \ge m$. Let $i \ge j$ be such that $i \ge i_n \ \forall n < m$. Then for each n < m, $\operatorname{tp}(S(i)_n) \subset \operatorname{tp}(S(i_n)_n)$. Since $R_n = X \ \forall R \in \Omega' \ \forall n \ge m$, $\operatorname{tp}(S(i)) \subset \bigcup \mathscr{R}'$. Since m(S(i)) > m, (2a) implies m(S(i+1)) = m(S(i)). Thus, for each $k \in \mathbb{N}$, $m(S(i+k)) \ne m(S(i))$. since $S(i+k+1) \ne S(i+k+2)$, (2b) implies that

$$tp(S(i+k+1)) \cap tp(S(i+k)) = \varnothing.$$

So for each $k \in \mathbb{N}$, there exists $n(k) \in \mathbb{N}$ such that n(k) < m(S(i)) and

$$\operatorname{rk}(S(i+k+1)_{n(k)}) < \operatorname{rk}(S(i+k)_{n(k)}).$$

But then there exists $n \in \mathbb{N}$ with n = n(k) for infinitely many n. As this implies there is an infinite decreasing sequence of ordinals, we have a contradiction.

Now suppose there is $m(S(i)) < m \ \forall i \in \mathbb{N}$. Then (3) implies there is $j \in \mathbb{N}$ such that $\forall i \geq j \ \exists \mathcal{R}_i \subset \mathcal{R}$ with $\operatorname{tp}(S(i)) \subset \bigcup \mathcal{R}_i$ and $m(R) \leq m(S(i)) < m \ \forall R \in \mathcal{R}_i$. Let $i \geq j$. As in the previous paragraph, (2)

implies there exists n(i) < m such that

$$\operatorname{rk}(S(i+1)_{n(i)}) < \operatorname{rk}(S(i)_{n(i)}).$$

So there is an n < m with n(i) = n for infinitely many i, which leads to a contradiction.

1.11. COROLLARY [2]. If X_n is a Lindelöf C-scattered space for each natural number n, then $\prod_n X_n$ is Lindelöf.

Proof. The absolute of a Lindelöf space is Lindelöf, as is the space X constructed in the reduction 1.2. In particular, each of the families \mathcal{S}_i of the Theorem 1.10 may be taken to be countable.

1.12. COROLLARY [18]. If X_n is a paracompact scattered space for each natural number n, then $\prod_n X_n$ is ultraparacompact.

Proof. The Lemma 1.4(3) \Rightarrow (2) shows that each X_n is 0-dimensional. So we simply replace X, in the reduction, by Y. Then this result is a consequence 1.10.

2. Hyperspaces of C-scattered spaces. Given a space X, we use 2^X , according to Michael [12], for the set of all non-empty closed subsets of X topologized by the *Vietoris topology* as follows:

First, given a finite set $\{S_1, \ldots, S_n\}$ of subsets of X, define

$$\langle S_1, \ldots, S_n \rangle = \Big\{ F \in 2^X \colon F \subset \bigcup_{i \le n} S_i \text{ and } F \cap S_i \neq \emptyset \ \forall i \le n \Big\}.$$

Then the Vietoris topology is the topology on 2^X with base the set of all sets of form $\langle V_1, \ldots, V_n \rangle$, where $\{V_1, \ldots, V_n\}$ is some finite (n is not fixed) family of open subsets of X.

The hyperspace 2^X has two distinguished subspaces, the *compact-set* hyperspace $\mathscr{C}(X) = \{ F \in 2^X : F \text{ is compact in } X \}$, and the finite-set hyperspace $\mathscr{F}(X) = \{ F \in 2^X : F \text{ is a finite subset of } X \}$.

It is known that X is compact iff 2^X is compact iff 2^X is normal [20]. Further, we know that $\mathscr{C}(X)$ is locally compact (discrete) iff X is locally compact (discrete) [12]. More recently, Bell [5] discovered that $\mathscr{F}(X)$ is paracompact iff $\prod^n X$ is paracompact $\forall n \in \mathbb{N}$; hence $\mathscr{F}(X)$ is paracompact whenever X is a paracompact C-scattered space (a result, unpublished, due to the third author). From these results one might conjecture that $\mathscr{C}(X)$ is C-scattered whenever X is C-scattered, or that $\mathscr{C}(X)$ is

an A'-space whenever X is an A'-space. In this section we kill both conjectures and prove the right theorems in their stead.

2.1. Lemma. For a space
$$X$$
, $\mathscr{C}(X)^{(1)} \subset \langle X, X^{(1)} \rangle$.

Proof. If $F \notin \langle X, X^{(1)} \rangle$, then $F \cap X^{(1)} = \emptyset$. So F is covered by open sets with compact closures. If $F \in \mathscr{C}(X)$, then F has a compact neighborhood K in X. Since $\langle K \rangle = 2^K$ is compact, $\langle K \rangle \cap \mathscr{C}(X)^{(1)} = \emptyset$. So $F \notin \mathscr{C}(X)^{(1)}$.

2.2. LEMMA. For an A'-space X,
$$acc(\mathscr{C}(X)) = \mathscr{C}(X) \cap \langle X, acc(X) \rangle$$
.

Proof. If $F \in \mathcal{C}(X)$ and $F \cap \operatorname{acc}(X) = \emptyset$, then F is finite and clopen in X, say $F = \{x_1, \ldots, x_n\}$. But then $\{F\} = \langle x_1, \ldots, x_n \rangle$ is open in $\mathcal{C}(X)$. So $f \notin \operatorname{acc}(\mathcal{C}(X))$.

Conversely, if $F \in \mathcal{C}(X) \cap \langle X, \operatorname{acc}(X) \rangle$, let $x \in F \cap \operatorname{acc}(X)$ and suppose $\langle V_1, \ldots, V_n \rangle$ is an arbitrary basic neighborhood of F in $\mathcal{C}(X)$. Since X is an accumulation point of X, we may choose, for each $i \leq n$, an $X_i \in V_i \setminus \{x\}$. Clearly,

$$F \neq \{x_1, \dots, x_n\} \in \langle V_1, \dots, V_n \rangle.$$
 So $F \in acc(\mathscr{C}(X))$. \Box

2.3. Example. There is a Lindelöf scattered A'-space X such that $\mathscr{C}(X)$ is neither C-scattered nor normal.

Proof. Let
$$X = (\mathbb{N} \times \omega_1) \cup \{\infty\}$$
 have as a base the set $\{\{(n,\alpha)\}: (n,\alpha) \in \mathbb{N} \times \omega_1\}$ $\cup \{X \setminus (\mathbb{N} \times W): W \text{ is a finite subset of } \omega_1\}.$

Then the only non-isolated point of X is ∞ , and the complement of a neighborhood of ∞ is countable. So X is a Lindelöf scattered A'-space. Since $\prod^{\omega_1} \mathbf{N}$ is not normal (see 2.7.16 in [6]), our proof will be complete once we show the following assertions:

- $(1) (\mathscr{C}(X))^{(1)} \neq \varnothing.$
- (2) If $\mathscr{V} = \langle V_1, \dots, V_n \rangle$ is a basic open set of $\mathscr{C}(X)$ and if $\mathscr{V} \cap (\mathscr{C}(X))^{(1)} \neq \emptyset$, then there is a closed set \mathscr{K} of $(\mathscr{C}(X))^{(1)}$ such that $\mathscr{K} \subset \mathscr{V}$ and \mathscr{K} is homeomorphic to $\prod^{\omega_1} \mathbb{N}$ [i.e., every compact subset of $(\mathscr{C}(X))^{(1)}$ has empty interior].

For simplicity, let \mathscr{C}^1 denote $(\mathscr{C}(X))^{(1)}$ and Π denote $\Pi^{\omega_1} \mathbb{N}$. Of course (1) follows since X is not locally compact; however, using the Lemmas 2.1 and 2.2, we can easily establish more:

$$(3) \mathscr{C}^1 = \mathscr{C}(X) \cap \langle X, \{\infty\} \rangle.$$

In order to see (2), we use (3) to assume, without loss of generality, $V_i = \{(k_i, \alpha_i)\} \subset \mathbb{N} \times \omega_1 \ \forall i < n, \text{ and } V_n = X \setminus (\mathbb{N} \times W), \text{ where } W \text{ is a finite subset of } \omega_1. \text{ Let } \{\overline{\alpha}: \alpha \in \omega_1\} \text{ be a listing of } \omega_1 | (W \cup \{\alpha_i: i < n\}). \text{ Define a function } \Phi: \Pi \to \mathscr{C}^1 \text{ by}$

$$\Phi(g) = \{\infty\} \cup \{(k_i, \alpha_i) : i < n\} \cup \{(g(\alpha), \bar{\alpha}) : \alpha \in \omega_1\} \quad \forall g \in \Pi.$$

Now Φ is a function because each $\Phi(g)$ is (homeomorphic to) the one-point compactification of the discrete subspace $\Phi(g) \setminus \{\infty\}$. Clearly Φ is an injection into \mathscr{V} . Further, for each finite subset S of ω_1 and each $g \in \Pi$, we have

$$\Phi\left(\bigcap_{\alpha\in S}\prod_{\alpha}^{-1}\left\{g(\alpha)\right\}\right)=\Phi(\Pi)\cap\langle(k_1,\alpha_1),\ldots,(k_n,\alpha_n),\{x_1\},\ldots,\{x_m\},$$

$$X\setminus(\mathbf{N}\times(S\cup W))\rangle,$$

where $\{x_1, \ldots, x_m\} = g(S)$. Therefore, Φ is an embedding.

In order to see that $\Phi(\Pi)$ is closed in \mathscr{C}^1 , suppose that $F \in \mathscr{C}^1 \setminus \Phi(\Pi)$. Then at least one of the following hold:

- (4) $\exists \beta \in \omega_1$ such that $F \cap (N \times \{\overline{\beta}\})$ has more than one element, or
- (5) $\exists \beta \in \omega_1 \text{ such that } F \cap (N \times \{\overline{\beta}\}) = \emptyset, \text{ or }$
- (6) $\exists x \in F \cap (N \times \{\alpha_i : i < n\}) \setminus \{(k_i, \alpha_i) : i < n\}, \text{ or } i < n\}$
- (7) $\exists i < n \text{ such that } (k_i, \alpha_i) \notin F$.

In case (4), suppose $\{(j_1, \overline{\beta}), (j_2, \overline{\beta})\} \subset F$ and $j_1 \neq j_2$. Then $\langle X, \{(j_1, \overline{\beta})\}, \{(j_2, \overline{\beta})\}\rangle$ is a neighborhood of F missing $\Phi(\Pi)$. In case (5)

$$\langle X \setminus (\mathbf{N} \times \{\bar{\beta}\}) \rangle$$

is a neighborhood of F missing $\Phi(\Pi)$. The cases (6) and (7) are similar to (4) and (5), respectively. So $\Phi(\Pi)$ is a closed subset of \mathscr{C}^1 .

An example similar to our 2.3 was discovered independently by S. Mrowka.

2.4. THEOREM. The hyperspace $\mathscr{C}(X)$ is an A'-space iff X is either compact or discrete.

Proof. If X is compact, then $\mathscr{C}(X) = 2^X$. If X is discrete, then $\mathscr{C}(X) = \mathscr{F}(X)$, which is discrete. In either case, $\mathscr{C}(X)$ is an A'-space.

Conversely, suppose $\mathscr{C}(X)$ is an A'-space. Since $x \to \{x\}$ gives an embedding of X onto a closed subspace of $\mathscr{C}(X)$, X is an A'-space. Now suppose X is neither compact nor discrete. Since X is not discrete, there exists $y \in \operatorname{acc}(X)$. Since X is not compact and $\operatorname{acc}(X)$ is compact, there exists a non-compact, closed, discrete subspace $D \subset X \setminus \operatorname{acc}(X)$. Let $\mathscr{D} = \{\{y,d\}: d \in D\}$. Obviously \mathscr{D} is a closed, non-compact subset of $\mathscr{C}(X)$. According to 2.2, $\mathscr{D} \subset \operatorname{acc}(\mathscr{C}(X))$. Thus, $\operatorname{acc}(\mathscr{C}(X))$ is not compact—a contradiction.

Since $\mathscr{C}(X)$ is metrizable iff X is metrizable [12], the following is an immediate consequence of Theorem 2.4.

2.5. COROLLARY. The hyperspace $\mathscr{C}(X)$ is an A-space iff A is compact metrizable or discrete.

We do not, at this time, have a reasonable characterization for " $\mathscr{C}(X)$ is paracompact C-scattered". However, according to [22] and to the inverse limit characterization of absolute, the absolute of $\mathscr{C}(X)$ is \mathscr{C} (the absolute of X). Thus, one might follow the path we used in 1.2 to reduce the situation to the extremally disconnected X case.

For the remaining part of this section, identify X with its image in $\mathscr{C}(X)$ under the map $x \to \{x\}$. We wish to examine the truth of the statement "When X is an A'-space, there is an A'-space X' such that $X \subset X'$ and X' is dense in $\mathscr{C}(X)$ ". Since $X \subset \mathscr{F}(X)$ and since $\mathscr{F}(X)$ will be paracompact (see the first paragraph of this section), $\mathscr{F}(X)$ is a natural candidate for X' in the statement in question. However, when X is the space of example 2.3, $\mathscr{F}(X)$ is not even C-scattered. Before we present the last result of this section, we state a lemma whose proof is straight-forward and easy.

- 2.6. Lemma. Suppose Y is dense in a space X. Then $acc(Y) = Y \cap acc(X)$.
- 2.7. THEOREM. Suppose X is an A'-space. Then there is an A'-space X' such that $X \subset X'$ and X' is dense in $\mathscr{C}(X)$ iff X is compact or int $_X(\operatorname{acc}(X)) = \emptyset$.

Proof. Suppose X is compact. Then $X' = \mathscr{C}(X)$ works. So we suppose that int $_X(\operatorname{acc}(X)) = \emptyset$. Define

$$X' = \mathscr{C}(X) \cap (\langle \operatorname{acc}(X) \rangle \cup \langle X \setminus \operatorname{acc}(X) \rangle).$$

Clearly $X \subset X'$. To see that X' is dense in $\mathscr{C}(X)$, suppose $\langle V_1, \ldots, V_n \rangle$ is a basic open set in 2^X . Since int $\chi(\operatorname{acc}(X)) = \emptyset$, we may choose an

isolated point $x_i \in V_i \ \forall i \leq n$. Then

$$\{x_i: i \leq n\} \in X' \cap \langle V_1, \dots, V_n \rangle.$$

So X' is dense in $\mathscr{C}(X)$. To see that X' is an A'-space, first observe that 2.6 shows that $\operatorname{acc}(X') = X' \cap \operatorname{acc}(\mathscr{C}(X))$. Applying 2.2, we find that

$$acc(X') = X' \cap \langle X, acc(X') \rangle$$
$$= X' \cap \langle acc(X) \rangle = \mathscr{C}(X) \cap \langle acc(X) \rangle.$$

Since acc(X) is compact, $acc(X') = \mathscr{C}(X) \cap \langle acc(X) \rangle$ is compact [12].

For the converse, suppose X is a non-compact space such that $U=\operatorname{int}_X(\operatorname{acc}(X))=\varnothing$, and assume $X\subset\mathscr{Z}$ and \mathscr{Z} is dense in $\mathscr{C}(X)$. We shall show that \mathscr{Z} is not an A'-space. Since X is an A'-space, there is an infinite closed set $D\subset X\setminus\operatorname{acc}(X)$. For each $d\in D$, $\langle U,\{d\}\rangle\cap\mathscr{C}(X)=\varnothing$. Since \mathscr{Z} is dense in $\mathscr{C}(X)$, there is, for each $d\in D$, $K_d\in\mathscr{Z}\cap\langle U,\{d\}\rangle$. Clearly, $K_d\setminus\{d\}\subset\operatorname{acc}(X)$. Hence, Lemma 2.2 shows that each $K_d\in\operatorname{acc}(\mathscr{C}(X))$. According to 2.6, each $K_d\in\operatorname{acc}(\mathscr{Z})$. Now $\mathscr{K}=\{K_d\colon d\in D\}$ is certainly discrete in $\mathscr{C}(X)$, and hence, in \mathscr{Z} . Suppose $F\in\mathscr{Z}\setminus\mathscr{K}$. Since F is compact, $F\cap D$ is finite, say $F\cap D=\{d(1),\ldots,d(n)\}$, where n=0 is the $F\cap D=\varnothing$ case. Then

$$\langle \{x_1\},\ldots,\{x_n\},X\setminus D\rangle\setminus \{K_{d(1)},\ldots,K_{d(n)}\}$$

is a neighborhood of F missing \mathscr{K} . Thus, \mathscr{K} is closed and discrete in $acc(\mathscr{Z})$. So $acc(\mathscr{Z})$ is not compact.

3. Compactifications of metrizable C-scattered spaces. For a metrizable space X, let K(X) denote the collection of all Hausdorff compactifications of X. $BX \in K(X)$ is said to be metrically compatible provided that BX is the Smirnov compactification [15] induced by a metrizable proximity. Let $K_M(X)$ denote the set of all metrically compatible members of K(X). We will consider $K_M(X)$ to be partially ordered, inheriting the natural partial order of K(X).

In this section we will present a characterization of A-spaces in terms of $K_M(X)$, and a study of $K_M(X)$ when X is an A-space. The principal result of our study is that $K_M(X)$ is a lattice when X is an A-space. In order to facilitate our study we first develop some machinery.

3.1. DEFINITION. Suppose that X is a metrizable space. Let M(X) denote the set of all metrics (on X) compatible with X. Define a partial order \ll on M(X) as follows: if d_1 , $d_2 \in M(X)$, then $d_1 \ll d_2$ holds provided that for each pair $\{a_n\}$ and $\{b_n\}$ of sequences in X, $d_2(a_n, b_n) \to 0$ implies $d_1(a_n, b_n) \to 0$.

Given $d_1, d_2 \in M(X)$, we say that d_1 and d_2 are coherently equivalent, and write $d_1 \equiv d_2$, provided that both $d_1 \ll d_2$ and $d_2 \ll d_1$ hold. It is easily determined that coherent equivalence is an equivalence relation on M(X). Let [d] designate the equivalence class of $d \in M(X)$ under \equiv . Let $(E(X), \ll)$ denote the quotient partially ordered set $M(X)/\equiv$ ordered by $[d_1] \ll [d_2]$ iff $d_1 \ll d_2$. That $(E(X), \ll)$ is an upper semi-lattice follows from defining $[d_1] \vee [d_2] = [d_1 \vee d_2]$, where

$$(d_1 \lor d_2)(x, y) = \max\{d_1(x, y), d_2(x, y)\} \quad \forall x, y \in X.$$

The following lemma is the principal reason why we introduced E(X), and is a consequence of the theorem: Suppose that $d_1, d_2 \in M(X)$. Then $d_1 \equiv d_2$ iff d_1 and d_2 induce the same proximity [8].

3.2. Lemma. Suppose that X is a metrizable space. Then $K_M(X)$ and $(E(X), \ll)$ are order-isomorphic.

When X is an A-space, we can simplify our study by considering a less complicated space.

3.3. DEFINITION. Suppose that X is an A'-space. We define a space X^* as follows: First let ∞ be an object not in X and define

$$X^* = \begin{cases} (X \setminus \operatorname{acc}(X)) \cup \{\infty\}, & \text{if } \operatorname{acc}(X) \neq \emptyset, \\ X, & \text{otherwise.} \end{cases}$$

 X^* is topologized by $U \subset X^*$ is open iff $U \cap X$ is open.

Obviously $\operatorname{acc}(X^*) = \{\infty\}$, and X^* is the perfect image of X under the map $x \to x$ if $x \notin \operatorname{acc}(X)$, and $x \to \infty$ otherwise. Further, X^* is an A-space whenever X is an A-space.

3.4. LEMMA. Suppose that X is an A-space. Then $(E(X), \ll)$ and $(E(X^*), \ll)$ are order isomorphic.

Proof. We may assume, without loss of generality, that $acc(X) \neq \emptyset$. Suppose $d \in M(X)$. We may define $d^* \in M(X^*)$ by allowing

- (i) $d^*(\infty, \infty) = 0$,
- (ii) $d^*(x, \infty) = d(x, \operatorname{acc}(X))$, if $x \neq \infty$, and
- (iii) $d^*(x, y) = \min\{d(x, y), d(x, \operatorname{acc}(X)) + d(y, \operatorname{acc}(X))\}, \text{ if } \infty \notin \{x, y\}.$

Define $\Phi = \{([d], [d^*]): d \in M(X)\}$. We will show that Φ is an order-preserving bijection from $(E(X), \ll)$ onto $(E(X^*), \ll)$.

Claim 1. If $d_1, d_2 \in M(X)$ and if $d_1 \ll d_2$, then $d_1^* \ll d_2^*$. To establish this claim, let (x_n) and (y_n) be sequences in X^* such that $d_2^*(x_n, y_n) \to 0$. We show that $d_1^*(x_n, y_n) \to 0$. First, let $I_1 = \{n \in \mathbb{N}: \infty \in \{x_n, y_n\}\}$.

If I_1 is finite, then go to the next paragraph. Let (a_n) and (b_n) be the subsequences, respectively, of (x_n) and (y_n) such that $\infty \in \{u_n, v_n\}$ $\forall n \in \mathbb{N}$. Since $d_2^*(x_n, y_n) \to 0$, we must have $a_n \to \infty$ and $b_n \to \infty$. Therefore, the following holds:

$$d_1^*(a_n, b_n) \to 0.$$

If $\mathbb{N} \setminus I_1$ is finite, then (1) shows $d_1^*(x_n, y_n) \to 0$. So we assume $\mathbb{N} \setminus I_1$ is infinite, and proceed to the next paragraph.

Let $I_2 = \{n \in \mathbb{N}: \{x_n, y_n\} \subset X \text{ and } d_2^*(x_n, y_n) = d_2(x_n, y_n)\}$. If I_2 is finite, then go to the next paragraph. Let (p_n) and (q_n) be the subsequences, respectively, of (x_n) and (y_n) such that $\{p_n, q_n\} \subset X$ and $d_2^*(p_n, q_n) = d_2(p_n, q_n)$. Since $d_1 \ll d_2$ and $d_2^*(p_n, q_n) \to 0$, we have $d_1(p_n, q_n) \to 0$. Since $d_1^*(p_n, q_n) \leq d_1(p_n, q_n)$, we have

(2)
$$d_1^*(p_n, q_n) \to 0.$$

If $\mathbb{N} \setminus (I_1 \cup I_2)$ is finite, then (1) and (2) show $d_1^*(x_n, y_n) \to 0$. So we assume $\mathbb{N} \setminus (I_1 \cup I_2)$ is infinite, and proceed to the next paragraph.

Let $I_3 = \mathbb{N} \setminus (I_1 \cup I_2)$. Let (s_n) and (t_n) be the subsequences, respectively, of (x_n) and (y_n) whose indices come from I_3 . Since $\operatorname{acc}(X)$ is compact, we may choose for each $n \in \mathbb{N}$, $u_n, v_n \in \operatorname{acc}(X)$ such that

$$d_2(s_n, u_n) = d_2(s_n, \text{acc}(X))$$
 and $d_2(t_n, v_n) = d_2(t_n, \text{acc}(X))$.

Since $d_2(s_n, \operatorname{acc}(X)) + d_2(t_n, \operatorname{acc}(X)) = d_2^*(s_n, t_n) \to 0$, we have that $d_2(s_n, u_n) \to 0$ and $d_2(t_n, v_n) \to 0$. Since $d_1 \ll d_2$, we find that $d_1(s_n, u_n) \to 0$ and $d_1(t_n, v_n) \to 0$. So $d_1^*(s_n, \infty) \to 0$ and $d_1^*(t_n, \infty) \to 0$. From the triangular inequality, we have

$$d_1^*(s_n, t_n) \to 0.$$

Certainly (1), (2), and (3) together imply $d_1^*(x_n, y_n) \to 0$. Thus, claim 1 is established.

Claim 2. Φ is an order-preserving function.

This is obvious from claim 1 which shows that $d_1^* \equiv d_2^*$ whenever $d_1 \equiv d_2$.

Claim 3. Φ is an injection.

Let $d_1, d_2 \in M_2(X)$ be such that $d_1 \not\equiv d_2$. Without loss of generality we may assume that there exist sequences (x_n) and (y_n) in X and an $\varepsilon > 0$ such that the following hold:

(4)
$$d_2(x_n, y_n) \to 0, \text{ and}$$

(5)
$$d_1(x_n, y_n) > \varepsilon \quad \forall n \in \mathbb{N}.$$

If there is a subsequence (a_i) of (x_n) such that $d_2(a_i, \operatorname{acc}(X)) \to 0$, then (a_i) has a subsequence (b_j) converging to some $z \in \operatorname{acc}(X)$. But then (4) implies (y_n) has a subsequence converging to z, contradicting (5). Thus, without loss of generality, we may assume that $\varepsilon > 0$ is chosen so that

(6)
$$d_1(x_n, \operatorname{acc}(X)) > \varepsilon \quad \forall n \in \mathbb{N}$$

holds. In a similar manner, we may additionally assume that the $\epsilon > 0$ and the sequences (x_n) and (y_n) satisfy the following:

(7)
$$d_i(z_n, \operatorname{acc}(X)) > 0 \quad \forall i \in \{1, 2\} \ \forall z_n \in \{x_n, y_n\} \ \forall n \in \mathbb{N}.$$

Now combining (4), (7), and the definition of d_1^* and d_2^* , we conclude that sufficiently large n, we have $d_i^*(x_n, y_n) = d_i(x_n, y_n) \ \forall i \in \{1, 2\}$. Therefore, $d_2^*(x_n, y_n) \to 0$ while $d_1^*(x_n, y_n) > \varepsilon$ for sufficiently large n. Thus, $d_1^* \neq d_2^*$.

Claim 4. Φ is a surjection.

Suppose $\delta \in M(X^*)$ and $d \in M(X)$. Given $x \in X \setminus \operatorname{acc}(X)$, we use the compactness of $\operatorname{acc}(X)$ to choose $\overline{x} \in \operatorname{acc}(X)$ such that $d(x, \overline{x}) = d(x, \operatorname{acc}(X))$. For each pair $x, y \in X$, define $\rho(x, y) = 0$, if x = y; otherwise define

$$\rho(x,y) = \begin{cases} d(x,y), & \text{if } x,y \in \operatorname{acc}(X) \\ d(\bar{x},y) + \delta(x,\infty), & \text{if } x \in X \setminus \operatorname{acc}(X) \text{ and } y \in \operatorname{acc}(X) \\ d(\bar{x},\bar{y}) + \delta(x,\infty) + \delta(y,\infty), & \text{if } x,y \in X \setminus \operatorname{acc}(X). \end{cases}$$

It is easy to see that ρ is a metric for X. Since $X \setminus \operatorname{acc}(X)$ is discrete, $\rho \in M(X)$. Clearly, $\rho^* = \delta$. Thus, Φ is surjective. \square

It is interesting to note that much of 3.4 did not require the full force of "A-space". For example, if in 3.3 we merely assume that X is metrizable with $X^{(2)} = \emptyset$, and replace acc(X) with $X^{(3)}$ in the definitions

of X^* and d^* , then Φ is still an order-preserving function. Requiring $X^{(1)}$ to be compact seems necessary for showing Φ is injective. However, it is unclear how to prove Φ is surjective in this context.

3.5. LEMMA [13]. Suppose that (X, d) is a metric space such that for each pair F_0 and F_1 of non-empty disjoint closed subsets of X, $d(F_0, F_1) > 0$, then X is an A-space.

Nagata [14] has shown that the A-spaces are precisely those spaces whose finest compatible uniformities are metric. Here is a similar characterization.

3.6. THEOREM. A metrizable space X is an A-space iff $K_M(X)$ has a maximum.

Proof. According to 3.2, we may use $(E(X), \ll)$ as a representation for $K_M(X)$.

Assume that X is not an A-space. Let $d \in M(X)$. From 3.5 there exist non-empty disjoint closed sets F_0 and F_1 such that $d(F_0, F_1) = 0$. By Urysohn's lemma there exists a continuous map $f: X \to [0, 1]$ such that $f(F_i) = \{i\}$ for each $i \in \{0, 1\}$. Define a metric $\rho \in M(X)$ by $\rho(x, y) = d(x, y) + |f(x) - f(y)|$ (this is standard, see [7]). Since $d \le \rho$, $[d] \ll [\rho]$. Since $d(F_0, F_1) = 0$, there exist sequences (x_n) and (y_n) in, respectively, F_0 and F_1 such that $d(x_n, y_n) \to 0$. However, $\rho(x_n, y_n) > 1 \ \forall n \in \mathbb{N}$. Thus $d \not\equiv \rho$. So [d] is not a maximum.

Now suppose that X is an A-space. According to 3.4, it suffices to show $(E(X^*), \ll)$ has a maximum element. Let $\delta \in M(X^*)$ be arbitrary. If $acc(X) \neq \emptyset$, we define

$$\mu(x,y) = \begin{cases} 0, & \text{if } x = y \\ \delta(x,\infty) + \delta(y,\infty), & \text{if } x \neq y. \end{cases}$$

If $acc(X) = \emptyset$, we define

$$\mu(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y. \end{cases}$$

It is easy to verify that $d \ll \mu \ \forall d \in M(X)$.

It is known that a metrizable space X is locally compact iff K(X) is a lattice. The main result of this section is similar in nature.

3.7. THEOREM. If X is an A-space, then $K_M(X)$ is a lattice.

Proof. From 3.2, we need only show $(E(X), \ll)$ is a lattice. From 3.4, it suffices to prove that $(E(X^*), \ll)$ is a lattice. So we assume X has at most one accumulation point which will be denoted by ∞ . As we have already established $(E(X), \ll)$ to be an upper semi-lattice under the operation \vee , we only need to define \wedge .

Claim. If d_1 , $d_2 \in M(X)$, then there is $d \in M(X)$ such that $d(x, y) \le d_i(x, y)$ for each $i \in \{1, 2\}$.

To establish the claim, first define a continuous semi-metric ρ compatible with X by $\rho(x, y) = \min\{d_1(x, y), d_2(x, y)\}$. The semi-metric ρ generates a shortest path semi-metric d in the following standard way. Let $x, y \in X$. Define

$$d(x,y) = \inf \left\{ \sum_{i=0}^{n} \rho(x_{i-1},x_i) : \{x_0,\ldots,x_n\} \subset X, n \in \mathbb{N}, \right.$$

$$x_0 = x, \ x_n = y \bigg\}.$$

Suppose that $x \neq y$. Not both x and y are ∞ , so suppose $x \neq \infty$. Since x is an isolated point, each of $d_1(x, X \setminus \{x\}) > 0$ and $d_2(x, X \setminus \{x\}) > 0$. So

$$0 < \rho(x, X \setminus \{x\}) \le d(x, y) \le \min\{d_1(x, y), d_2(x, y)\}.$$

It is easy to verify that $d \in M(X)$. Thus, our claim is proved.

Now define, for each pair $x, y \in X$,

$$(d_1 \wedge d_2)(x, y)$$

$$= \sup \{ \delta(x, y) \colon \delta \in M(X), \, \delta(u, v) \le \rho(u, v) \, \forall u, v \in X \}.$$

It is easy to verify that $d_1 \wedge d_2 \in M(X)$, that $d_1 \wedge d_2 \ll d_1$, and that $d_1 \wedge d_2 \ll d_2$. Define $[d_1] \wedge [d_2] = [d_1 \wedge d_2]$.

Question Suppose X is a metrizable space with $X^{(1)}$ compact. Is $K_M(X)$ a lattice?

We complete this section with a result on the size of $K_M(X)$ when X is an A-space. First observe that $|K_M(X)| = 1$ whenever X is compact.

3.8. THEOREM. Suppose that X is a non-compact A-space. Then there is $K \subset K_M(X)$, $|K| = 2^{\aleph_0}$, such that each distinct pair of members of K are pairwise incomparable. Further, if X is separable, then $|K_M(X)| = 2^{\aleph_0}$.

Proof. We show the result for $(E(X), \ll)$, and we assume, without loss of generality, that X has at most one accumulation point to be denoted by ∞ . Since X is non-compact, it has a countably infinite closed discrete subset $\{x_i: i \in \mathbb{N}\}$. Let \mathscr{I} be an independent set in \mathbb{N} (i.e., for each disjoint pair \mathscr{I}_1 and \mathscr{I}_2 of non-empty finite subsets of \mathscr{I} we have $\bigcap \mathscr{I}_1 \setminus \bigcup \mathscr{I}_2$ is infinite) of cardinality 2^{\aleph_0} (see 3.6F in [6]). Let $\mu \in M(X)$ be as defined in 3.6, above, such that $[\mu]$ is the maximum of $(E(X), \ll)$. For each $I \in \mathscr{I}$, define $\mu_I: X \times X \to \mathbb{R}$ by

$$\mu_I(x, y) = \begin{cases} \left| \frac{1}{i} - \frac{1}{j} \middle| \mu(x, y), & \text{if } x = x_i, \ y = x_j, \text{ and } i, j \in I, \\ \mu(x, y), & \text{otherwise.} \end{cases}$$

It is easy to verify that $\mu_I \in M(X) \ \forall I \in \mathscr{I}$.

Suppose $I \in \mathscr{I}$. Then $\mu_I(a_n, b_n) \to 0$ iff either $a_n \to \infty$ and $b_n \to \infty$, or $a_n = b_n$ for sufficiently large n, or $\{a_n, b_n\} \subset \{x_i : i \in I\}$ for all but finitely many n. So if $J \in \mathscr{I} \setminus \{I\}$ and if j(n) is the nth element of J, then $\mu_J(x_{j(n)}, x_{j(n+1)}) \to 0$. While

$$0 < \mu(\infty, D) \le \mu_I(x_{i(n)}, x_{i(n+1)})$$

for infinitely many $n \in J$. Therefore, $\mu_J \ll \mu_I$ is false. Let $K = \{ [\mu_I] : I \in \mathcal{I} \}$.

Further, suppose $Y \subset X$ is countable and dense. Then there are at most 2^{\aleph_0} many continuous functions from $Y \times Y$ into **R**. Hence $|M(X)| \le 2^{\aleph_0}$.

REFERENCES

- [1] K. Alster, Metric spaces all of whose decompositions are metric, Bull. Polon. Sci., 20 (1972), 395-400.
- [2] _____, A class of spaces whose cartesian product with every hereditary Lindelöf space is Lindelöf, Func. Approx. Commen. Math., 114 (1981), 173-181.
- [3] M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math., 8 (1958), 11-16.
- [4] C. E. Aull, Initial and final topologies, Glasnik Mat., 8 (28) (1973), 305-310.
- [5] M. G. Bell, Hyperspaces of finite subsets, Math. Centre Tracts, 115 (1979), 15-28.
- [6] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warsaw, (1977).
- [7] J. Ginsburg, The metrizability of spaces whose diagonals have a countable base, Canad. Math. Bull., 20 (1977), 513-514.

- [8] S. Leader, Metrization of proximity spaces, Proc. Amer. Math. Soc., 18 (1967), 1084–1088.
- [9] S. MacDonald, Resolvants for several classes of mappings and spaces, Ph.D. Thesis, Case Western Reserve University (1972).
- [10] S. MacDonald and S. Willard, Domains of paracompactness and regularity, Canad. J. Math., 24 (1972), 1079-1085.
- [11] H. W. Martin, Derived subsets of metric spaces, Canad. Math. Bull., 23 (1980), 465-467.
- [12] E. Michael, Topologies of spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152–182.
- [13] S. G. Mrowka, On normal metrics, Amer. Math. Monthly, (1965), 998–1001.
- [14] J. Nagata, On the uniform topology of bicompactification, J. Inst. Poly. Osaka City Univ., 1 (1950), 28-38.
- [15] S. A. Naimpally and B. D. Warrack, *Proximity Spaces*, Cambridge Univ. Press (1970).
- [16] V. I. Ponomarev, On the absolute of a topological space, Soviet Math. Dokl., 4 (1963), 299–302.
- [17] J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math., 9 (1959), 567-570.
- [18] M. E. Rudin and S. G. Watson, Countable products of scattered paracompact spaces, to appear (Proc. Amer. Math. Soc.).
- [19] R. Telgársky, C-scattered and paracompact spaces, Fund. Math., 73 (1971), 59-74.
- [20] N. V. Velichko, On spaces of closed subsets, Siberian Math. J., 16 (1975), 484-486.
- [21] S. Willard, Metric spaces all of whose decompositions are metric, Proc. Amer. Math. Soc., 21 (1969), 126-128.
- [22] P. Zenor, On the completeness of the space of compact subsets, Proc. Amer. Math. Soc., 26 (1970), 190-192.

Received July 20, 1984. The delay in publication is in part due to the untimely death of Professor Dugundji. The third author was partially supported by a grant from the National Science Foundation.

University of Bridgeport Bridgeport, CT 06602

NORTHERN MICHIGAN UNIVERSITY MARQUETTE, MI 49855

AND

STATE UNIVERSITY OF NEW YORK AT BUFFALO BUFFALO, NY 14214