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PARACOMPACT C-SCATTERED SPACES

L. M. FRIEDLER, H. W. MARTIN AND S. W. WILLIAMS

Telgarsky calls a topological space C-scattered when each of its
non-empty closed sets contains a compact set with non-empty relative
interior. With respect to infinite products, hyperspaces, and the partially
ordered set of compactifications, we study the class of paracompact
C-scattered spaces and two of its subclasses, MacDonald and Willard's
A' -spaces and Λ-spaces.

0. Introduction. All spaces are Hausdorff spaces. A space X is said to
be C-scattered [16] provided that each of its non-empty closed subspaces
contains a compact set with non-empty relative interior. The notion of
C-scatteredness seems a simple simultaneous generalization of scattered
(Ξ= each non-empty set has a relative isolated point) and of local
compactness. However, the class of paracompact C-scattered spaces is
most interesting because [19] it contains its perfect pre-images, it is closed
under finite products, it contains all closed continuous images of para-
compact locally compact spaces, and for each of its members X, X X Y is
paracompact iff Y is paracompact. Presently we study this class and two
of its subclasses.

Section 1 is due to the third author and §§2 and 3 are due to the first
two authors.

In §1 of our paper, we show that each countable product of para-
compact C-scattered spaces is paracompact. This result improves upon the
same theorem, due to Rudin and Watson [18], for paracompact scattered
spaces, and answers the question raised for Λ'-spaces by the first two
authors of this paper. As a corollary, we find that each countable product
of Lindelof C-scattered spaces is Lindelof, a result due to Alster [2].

In the second section, we investigate hyperspaces of paracompact
C-scattered spaces—a situation so complex that we limit our attention to
A '-spaces. An A'-space is a space whose set of accumulation points is
compact [10]. Thus, an ^I'-space is paracompact C-scattered. It is known
[12] that the compact-set hyperspace ^(X) is locally compact (metrizable)
iff X is locally compact (respectively, metrizable). Here we present an
example of a Lindelof scattered A '-space X such that ^(X) is neither
C-scattered or normal. Further, we prove that ^(X) is an A '-space
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(contains a dense ./4'-space containing X) iff X is either compact or
discrete (respectively, or int(acc(X)) = 0).

In our final section we consider the metrizable Λ'-spaces termed as
A-spaces by Willard [21]. ^4-spaces occur naturally in several ways; for
example, a metrizable space is an A -space iff each closed continuous
image is metrizable ([17] and [21]) iff each Hausdorff quotient space is
metrizable ([1], [9], and [18]). ^-spaces are also studied in [3], [4], [7], [11],
[13], and [14]. The main result in the section shows that KM(X), the
partially ordered set of metrically compactible Hausdorff compactifica-
tions, is a lattice when X is an A -space. However, we also obtain a
characterization of v4-space: A metrizable space is an ̂ 4-space iff KM(X)
has maximal element.

0.1. Conventions. All ordinals are von-Neumann ordinals. N denotes
the set of positive integers and R denotes the set of reals. The interior,
closure, and accumulation point-set operators are denoted, respectively,
by int, cl, and ace.

0.2. DEFINITION. Let A" be a space and X(1) be the set of points of X
which fail to have a compact neighborhood in X. Now, letting X(0) = X,
inductively define for each ordinal α, X(a) = Πβ<aX

iβ)a\ Then X is
C-scattered iff there exists an ordinal γ such that XM = 0 [19].

Suppose X is C-scattered and Y a X. For each ordinal a define
γ(a) = χia) n Y τ h e n t h e rank o f Y ( i n χ^ denoted by rk(X), is the

least ordinal γ such that 7 ( γ ) = 0 . It is easily proved that an A '-space is
a paracompact C-scattered space of rank at most 2.

1. Products of C-scattered spaces. The entirety of this section is
directed to proving the following result:

1.1. THEOREM. Suppose Xn is a paracompact C-scattered space for each
positive integer n. Then X\nXn is paracompact.

1.2. A Reduction. We begin our proof of 1.1 with a reduction to an
easier case. We first observe that it suffices in Theorem 1.1 to assume that
all the spaces Xn are homeomorphic and 0-dimensional in the sense of
small inductive dimension. To see this, let

Y = Xnx{n})u{oo).
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The space Y has the topology which makes each Xn X {n} clopen in Y
and homeomorphic to Xn. Basic neighborhoods of oo have the form

Y\ U Xn

 X W > for some £ e N .
n<k

Then Y is paracompact and C-scattered. So Π N Y is paracompact implies
ΠnXn is paracompact. Now let X be Ponomarev's absolute of Y [16].
Then X is paracompact, extremally disconnected and C-scattered [19].
Since Π N X maps perfectly onto Π N Y, Π N X is paracompact iff Π N Y is
paracompact. D

Henceforth, X will be a paracompact C-scattered ^-dimensional space,
and we will show Π N X paracompact. Actually we show a stronger result:
Each open cover of ΠN X has a pairwise-disjoint open refinement; i.e.
ΓINX is ultraparacompact. We approach this in stages.

1.3. LEMMA [19]. If X is a paracompact C-scattered ^-dimensional
space, then so is Xn for each « G N . D

The following result was obtained (unpublished) by the third author
in 1974.

1.4. LEMMA. For a paracompact space Y the following are equivalent:
(1) Y is ultraparacompact.
(2) Ind( Y) = 0 (Ind = large inductive dimension).
(3) Each non-empty closed subset F of Y contains an ultra-paracompact

subspace with non-empty F-interior.

Proof. The equivalence of (1) and (2) is straightforward and (1)
implies (3) is obvious. We prove (3) implies (1).

For a closed subset Z of Y, define Z* to be the set of all points of Z
which do not have Y-closed Y-ultraparacompact neighborhoods. Since Z*
is closed in Y, there is a family J / of Z-open sets such that Lta/= Z\Z*
andInd(Λ) = O V i G j / .

Claim. If Z* = 0, then Z is ultraparacompact.
To see the claim, suppose ^ is a Z-open cover of Z. Since Z is

paracompact and Z* = 0, there is a Z-locally finite refinement &~ such
that (cl y (Γ): Γ e f ) refines {RΠA: R^0t, A e s/}. Applying the
normality of Z and the condition Ind(^ί) = 0 VA e s/, we may choose a



280 L. M. FRIEDLER, H. W. MARTIN AND S. W. WILLIAMS

refinement <% = {Uτ: T e ^} of SΓ such that for each Γ G ^ ^ C Γ

and Uτ is cly(Γ)-clopen. Note that each Uτ is actually Z-clopen. Since SΓ
is Z-locally finite, °lί is Z-locally finite. Let -< be a well-ordering of °ll.
Then

{ί/\U{Fe qi\ V< U): U

is the desired pairwise-disjoint Z-open refinement of 9t. The claim is now
proved.

According to the claim, Y is ultraparacompact whenever Y* = 0 .
We contend the latter is true. Suppose, by way of contradiction, that
Y * Φ 0 . Then applying regularity and (3), there is a 7-closed set Z such
that Z Π Y* is ultraparacompact and 7* Π int y (Z) Φ 0 . Clearly, 0 Φ
Z* c y*. Now suppose ^ is a Z-open cover of Z. Then there is a
pairwise-disjoint Z*-open cover ^ of Z refining ^ | Z * . Since Z is
collectionwise normal, there is a pairwise-disjoint family y = {Γ5: S e ^ }
consisting of Z-open sets such that for each S e «$**, Ts n Z* = S and
there exists RS<Ξ@ with Γ5 c i? s. Let ^ = ZXU^", and, by normality,
choose a Z-open set G such that

ί c G c cl y(G) c Z \ Z * .

Clearly, (cly(G))* = 0 . So the claim above shows there is a cly(G)-open
pairwise-disjoint family Φ covering cly(G) and refining the family

U{R Π G: R

Let τT= { Ϊ 7 G <V\ UD KΦ 0 } . Then each F e f i s a cly(G)-open

subset of G and cly(G)-closed. Hence, each V e ^ is Z-clopen. So ^ is

Z-locally-finite and U^~ is clopen. Certainly

is a Z-open pairwise-disjoint refinement of 0t. So Z is ultraparacompact.
Hence int y (Z) Γ) Y* = 0—a contradiction. D

Now we know Yln X is ultraparacompact for each n e N. However,
we need a much stronger result.

1.5. DEFINITION. Suppose that Y is a C-scattered space and A c 7.
Define the top of 4̂ by

ί 0 if rk(A) is a limit ordinal,

U
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We say that A is capped provided there exists an a such that A{a) is

compact and non-empty. Obviously if A is open and capped, then rk(^4)

will be a + 1 when A(a) is compact and non-empty.

1.6. LEMMA. A ^-dimensional C-scattered space Y has a base of clop en

capped sets.

Proof. For j/G 7, rk(j>) = α + 1 for some a. Given a neighborhood

G of y, choose a clopen set H with y <E H Q G\Y(a+1). Then # ( f l £ ) is

clopen in the locally compact space 7 ( α ) \ γ(a+ι\ So there is a y-clopen

neighborhood K of y such that # Π H{a) is compact. D

1.7. LEMMA. Each open covering of X is refined by a pairwise-disjoint

family of clopen capped sets.

Proof. Suppose that ^ is an open covering X. According to 1.4 we

may assume 3% to consist of pairwise-disjoint clopen sets. Inductively, we

construct for each n e N, a family 9tn as follows: First set 8%x = Si. For

each n > 1

(i) 3%n is a pairwise-disjoint open refinement of 3tn_v

(ii) If R £ 0tn_γ is capped, then R^9ln.

(iii) If R^0tn_λ is not capped, then rk(i?*) < rk(R) for each

non-capped R* e ^ Λ with R' Q R.

Assume that we have ^ for all n < m; we will find ^ / M + 1 . Let

y= {R G ̂ m : i? is not capped}

and fix S e «$*\ Note that 5 is clopen. For each x G S w e use 1.6 to find

an open capped set Ŝ  such that x £ tpίSJ and 5^ c S.

Now suppose rk(S) is a limit ordinal. Then rkίSJ < τk(S) for each

x ^ S. From 1.6 there is a pairwise-disjoint refinement 2ΓS of (5^:

x e S} (we are assuming that the union of the refinement is the union of

the family that it refines).

On the other hand, suppose rk(S) = a + 1. Then (X(a) n S)\X(a+l)

is a locally compact ultraparacompact space, and hence, the union of a

pairwise-disjoint family °U consisting of compact X(a)-open sets. For each

U G ^ , let F^ c S be an open set such that {Vv)
{a) = U. From 1.4 there

is a pairwise-disjoint X-open refinement ^ of {5\X ( α ) } U {Vυ: U e

. Observe that for each Γ G J S , Γ ( α ) is closed in some ί7 e ^ . Hence,

is compact. Clearly, if T is not capped, then T{a) = 0 and so

rk(Γ) <
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We complete the construction by defining

Now 3&n is defined for each n e N. Define

^oc = [R e U &n R is capped}.

Then (i) and (ii) imply Λw is a pairwise-disjoint open capped family.
Also, (i) shows that if 0t^ covers X, then St^ refines 0i. So suppose 9t^
does not cover X, i.e., x e X\ UtX^- Then we may find for each n > 1 a
set i?rt e ^ r t such that J C G Λ Λ C Rn_v As i?w is not capped, τk(Rn) <
τk(Rn_1). However, this implies there is a decreasing sequence of ordinals,
an impossibility. So 9t^ must cover X. D

1.8. DEFINITION. Fix n e N. By a Z>αx in I P X, we mean a set of the
form B = Π i< „ Biy where each 1?, is open in X. A capped box is a box B
such that 2?, is capped in X for each i < n.

1.9. LEMMA. For a fixed natural number n, each open cover of Π" X is
refined by a pairwise-disjoint collection of capped box.

Proof. The proof is by induction on n. As the Lemma 1.6 shows our
result for n = 1, we suppose it is true for some m e N and show it is true
for m + 1. Suppose & is an open cover of Π m + 1 X Let Y denote the set
of all points in X such that x does not have a neighborhood 0 for which
^ | ( 0 X ΪΊm X) is refined by a pairwise-disjoint family of capped boxes.
If Y = empty, then we may, by 1.7, write X as the union of a disjoint
family ^ if open capped sets G such that ^ | ( G X I T " I ) is refined
by a pairwise-disjoint capped box family Sfc. Clearly, in this case,
U{ S?G: G e ^} is the desired refinement of ^ .

Of course, it is always true that Y = 0 . To see this suppose not. Then
there is a compact subset K of 7 such that miγ(K)Φ 0. For each
( j G f T " I , there is a capped box Aυ = Y\iAvi neighborhood of υ such
that K X Aυ is the union of a finite pairwise-disjoint (JRΓ X Π w Λr)-capped
box refinement ^ of ̂  | AT X T. By the induction hypothesis, there is a
pairwise-disjoint capped box refinement °ll of [Aυ: v GfT" X}. For each
ί/ e ^ , choose a ί;(ί/) G Π m I such that U c Λϋ(ί/). Then

#"= {(ϋ:x ί/)nr:ί/ε«, re^(ί/)}

is a pairwise-disjoint ( # X Π m A^-capped box refinement of the restric-
tion of @ to K X Π m X For each JF = Πî  < m+ι Wi e W choose an open
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set Hw of J a n d a n Λ ^ e ^ such that HWCΛ K = Wm+ι and Hw X
Π, < m Wt c Rw. But, according to the definition of 7, the existence of the
family

implies that mtχ(K) Π Y = 0, a contradiction. So Y = 0 . D

We are now ready to prove the main result of this section, from which
1.1 follows.

1.10. THEOREM. Π N X is ultraparacompact.

Proof. By a cube in ΠN X, we mean a set of the form C = ΠnCn,
where each Cn is a clopen capped set in X, and there exists m(C) G N
such that CnΦ X Vn < m(C) and Cw = X Vn> m(C) [Notice that in
the reduction 1.2, X is capped. We assume, without loss of generality, that
such is the case here.] Therefore, the family of cubes in ΓίN X forms a
base. For a cube C let tp(C) = Ππ tp(CJ.

Suppose that 0t is a cube cover of Π N X We construct, inductively,
for each / G N, a cube cover Sf{ of Π N X satisfying the conditions below
for i =j + 1:

(1) Σ^i is a pairwise-disjoint refinement of ^ .
(2) If S e ^ is such that tp(5) c U ̂ ' , where ^ r c ^ and m(i?) <

rn(S)VR e Λ', then
(a) m(S") = m(5) for each S" with X D S ' G ^ , and
(b) S' e ^ and S r Π tp(5) =̂  0 implies 3i? e « with S' c i?.

(3) If S ε y y is such that $9Ϊ c Λ with tp(S) c U^ 7 and
/w(Λ) < m(S) VS' e ^ with S' c 5.

(4) If S G 5^ is such that 3JR G ̂  with 5 c #, then 5 G 9t^
The construction proceeds as follows. First let 5fλ = { n N ^ } , and

suppose we have found 5^ V/ < k. We construct «$̂  + 1. Since 5fk is a
pairwise-disjoint clopen cover of Π N X, it is sufficient to find S?k+ι \ S for
a fixed S = Πn Sn G ̂ . If there is an i? G ̂  with 5 c /?, then define

( ^ + i IS) = {5} I f t h e r e d o e s n o t e x i s t a subfamily ^ r of ^ such that
tp(S) c U f and m(i?) < m(S) Vi? G ̂ ' , then we apply 1.9 to obtain a
pairwise-disjoint capped box family SΓ covering Π r t < w ( 5 ) S

f

w such that
V Γ G J V « < ^ ( 5 ) ΓΛ # X In this case we define

// x {n<ΞN: n>m(S)} \

= Π TAX Π J Γ : Γ e ^
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Finally, if 3<T c gt such that tp(S) c U # ' and m(R) < m(S) Vi? G # ' ,
then there is a finite subfamily of {Yln<m(S)Rn: R G # ' } covering the
compact set Π n < w ( ι S ) t p ( 5 n ) . Applying 1.9 we choose a pairwise-disjoint
clopen capped box cover # " of Πn < m^Sn refining

Π x \ Π tp(qu Π

We define

= Π W; x Π

It is clear that the conditions (1) through (4) are satisfied. So we assume

that we have defined the families «$*) Vz e N.

Define ^ = {Π^: # is a maximal chain of U / € Ξ N ^ and Π ^ Φ 0}.

Now (i) implies ^ is a pairwise-disjoint cover of Π N X So the proof is

complete once we show that Sf consists of open sets. This follows

immediately from

( # ) Each maximal chain 3ί of U,-̂  N ^ w //w/ϊβ.

Suppose # is false. Then for each / G N 3S(/) e ^ such that, by
(1), S(i + 1) is a proper subset of S(i). Also m(S(i + 1)) > m(S(i))

Vi G N, and r k i ^ i + l)n) < rk(S(i)Λ) Vi G N. Since any non-increasing
sequence of ordinals is eventually constant, we may choose for each
n G N, /„ G N such that rk(£(/)„) = rk(S'(ιΛ)M) VΪ > in. There is a finite
family £%f c ^ covering the compact set Πwtp(S(/„)„). Let m =
sup{m(i?): i? G ^ r } .

Suppose there is a y so large that m(S(j))>m. Let / >y be such
that / > in \fn < m. Then for each n < m, tp(S(ι)π) c tp(5(ιπ)π). Since
/{„ = X Vi? G Ω7 VΛ > m, tp(5(ΐ)) c U^ r . Since m(5(i)) > m, (2a)
implies m(S(i 4- 1)) = m(S(i)). Thus, for each i t e N , m(S(/ 4- A:)) #
m(S(i)). since 5(/ + A: + 1) Φ S(i + k 4- 2), (2b) implies that

tp(S(ι 4- fc 4- 1)) Π tp(S(ί + /:))= 0 .

So for each K N , there exists n(k) G N such that «(A:) < m(S(i)) and

rk(S(/ + fe + l)π ( j t )) < rk(S(i + k)n(k)).

But then there exists n G N with n = n(k) for infinitely many «. As this
implies there is an infinite decreasing sequence of ordinals, we have a
contradiction.

Now suppose there is m(S(i)) < m Vi G N. Then (3) implies there is
J G N such that V/>y 3 ^ c ^ with tp(5(/)) c U ^ and m(R) <

m(S(i)) < m Vi? G ̂ . . Let / >y. As in the previous paragraph, (2)
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implies there exists n(i) < m such that

rk(5(/ + l)n(n) < τk(S(i)n(0).

So there is an n < m with n(i) = n for infinitely many /, which leads to a
contradiction. •

1.11. COROLLARY [2]. // Xn is a LindeΓόf C-scattered space for each
natural number n, then Y\n Xn is Lindelόf.

Proof. The absolute of a Lindelόf space is Lindelόf, as is the space X
constructed in the reduction 1.2. In particular, each of the families ^ of
the Theorem 1.10 may be taken to be countable. G

1.12. COROLLARY [18]. If Xn is a paracompact scattered space for each
natural number «, then Wn Xn is ultraparacompact.

Proof. The Lemma 1.4(3) => (2) shows that each Xn is 0-dimensional.
So we simply replace X, in the reduction, by Y. Then this result is a
consequence 1.10. G

2. Hyper spaces of C-scattered spaces. Given a space X, we use 2X

9

according to Michael [12], for the set of all non-empty closed subsets of X
topologized by the Vietoris topology as follows:

First, given a finite set {S v..., Sn} of subsets of X, define

(Sl9...9Sn) = ( f € 2 χ : F c U $ and F n $ * 0 Vz

Then the Vietoris topology is the topology on 2X with base the set of all
sets of form (Vl9...9Vn)9 where {Vl9..., Vn} is some finite (n is not fixed)
family of open subsets of X.

The hyperspace 2X has two distinguished subspaces, the compact-set
hyperspace <#(X) = {F e 2X: F is compact in X], and the finite-set
hyperspace ^ ( I ) = { F G 2X\ F is a finite subset of X).

It is known that X is compact iff 2X is compact iff 2X is normal [20].
Further, we know that #( X) is locally compact (discrete) iff X is locally
compact (discrete) [12]. More recently, Bell [5] discovered that ^(X) is
paracompact iff Πn X is paracompact Vn e N; hence &(X) is paracom-
pact whenever X is a paracompact C-scattered space (a result, un-
published, due to the third author). From these results one might conjec-
ture that <g( X) is C-scattered whenever X is C-scattered, or that #( X) is
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an ^Γ-space whenever X is an yl'-space. In this section we kill both
conjectures and prove the right theorems in their stead.

2.1. LEMMA. For a space X, V( X) ( 1 ) c ( X,

Proof. If F ί (X, X™), then F Π X(1) = 0 . So F is covered by
open sets with compact closures. If F e #( A'), then F has a compact
neighborhood K in X Since (K) = 2* is compact, (AT) Π <g?(Λr)(1) = 0 .

2.2. LEMMA. For an A'-space X, acc(V(X)) = V(X) Π (X,acc(X)).

Proof. If f e <g(X) and F C\ acc(X) = 0, then F is finite and
clopen in X, say F = (x 1 ? . . . , xn}. But then {F) = (JCX, . . . , xn) is open
in # ( * ) • S o / ί acc(ίf(A')).

Conversely, if f G ^ ( I ) n (X,acc(JQ), let x G F Π acc(X) and
suppose (Vv...9Vn) is an arbitrary basic neighborhood of F in ^{X).
Since Λ: is an accumulation point of X, we may choose, for each / < n, an
x. e F ; \ { J C } . Clearly,

S O F G acc(^(X)). Π

2.3. EXAMPLE. There is α Lindel'όfscattered Af-space Xsuch that
is neither C-scattered nor normal.

Proof. Let X = (N X ωx) U {oo) have as a base the set

U {X\{N X W): Wisa finite subset of ω1}.

Then the only non-isolated point of X is oo, and the complement of a
neighborhood of oo is countable. So I is a Lindelόf scattered A '-space.
Since Π ω i N is not normal (see 2.7.16 in [6]), our proof will be complete
once we show the following assertions:

(l)(V(X))(1)Φ 0.
(2) If f = (Vl9...9Vn) is a basic open set of V(X) and if i^Π

{<g{X)){l)Φ 0 , then there is a closed set Jf of (#(X)) ( 1 ) such that
J f c ψ* and X is homeomorphic to ΠW l N [i.e., every compact subset of

has empty interior].
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For simplicity, let <£ι denote {^{X)){1) and Π denote Π ω i N . Of
course (1) follows since X is not locally compact; however, using the
Lemmas 2.1 and 2.2, we can easily establish more:

In order to see (2), we use (3) to assume, without loss of generality,
V. = {(&„«,)} c N X ωx V/ < n, and Vn = I \ ( N x W\ where W is a
finite subset of ωv Let {α α G ω J b e a listing of ωλ |( W U {α,: i' < n}).
Define a function Φ: Π -> # x by

Φ(g) = {*>} u{(*,,α,.): ί < n) u{(g(α),δ): α e iox} Vg e Π.

Now Φ is a function because each Φ(g) is (homeomorphic to) the
one-point compactification of the discrete subspace Φ(g)\{oo}. Clearly
Φ is an injection into y. Further, for each finite subset S of ωλ and each
g e Π, we have

φ( Π f )

where {xl9...9xm} = gί^). Therefore, Φ is an embedding.
In order to see that Φ(Π) is closed in <gι

9 suppose that ί Έ ^ \ Φ(Π).
Then at least one of the following hold:

(4) 3 j8eω 1 such that F Π (N X {β}) has more than one element, or
(5) 3β e ω x s u c h t h a t F n ( N X { β } ) = 0 , o r
(6)3x (Ξ F Γ\(N X {«,: / < /i})\{(fc/,a/): / < «},or
(7) 3i < /i such that (/:,., α,) ί F.

In case (4), suppose {(jl9 β)9 (j29 β)} c F and ^ Φ j 2 . Then ( X, {(jl9 β)}9

{(Λ» ^)}) i s a neighborhood of F missing Φ(Π). In case (5)

<Jf\(Nx{j8})>

is a neighborhood of F missing Φ(Π). The cases (6) and (7) are similar to
(4) and (5), respectively. So Φ(Π) is a closed subset of c€x. D

An example similar to our 2.3 was discovered independently by S.
Mrowka.

2.4. THEOREM. The hyperspace V(X) is an A'-space iff X is either
compact or discrete.

Proof. If X is compact, then <έ{X) = 2X. If X is discrete, then
#( X) = ̂ (X)9 which is discrete. In either case, V(X) is an A '-space.
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Conversely, suppose ^(X) is an yl'-space. Since x -> {x} gives an
embedding of X onto a closed subspace of V(X)9 X is an v4'-space. Now
suppose X is neither compact nor discrete. Since X is not discrete, there
exists y e acc(X). Since X is not compact and acc(X) is compact, there
exists a non-compact, closed, discrete subspace D c X\acc(X). Let
«©={{;;, d): d ^ D). Obviously 3) is a closed, non-compact subset of
V(X). According to 2.2, ^ c acc(#(*)). Thus, acc(^(Z)) is not com-
pact—a contradiction. D

Since ^(X) is metrizable iff X is metrizable [12], the following is an
immediate consequence of Theorem 2.4.

2.5. COROLLARY. The hyperspace ^(X) is an A-space iff A is compact
metrizable or discrete. D

We do not, at this time, have a reasonable characterization for "*
is paracompact C-scattered". However, according to [22] and to the
inverse limit characterization of absolute, the absolute of V{X) is Φ (the
absolute of X). Thus, one might follow the path we used in 1.2 to reduce
the situation to the extremally disconnected X case.

For the remaining part of this section, identify X with its image in
&(X) under the map x -> {x}. We wish to examine the truth of the
statement "When X is an ^4'-space, there is an ^1'-space Xf such that
X c Xf and Xf is dense in V(X)". Since I c J ( I ) and since &(X)
will be paracompact (see the first paragraph of this section), #"( X) is a
natural candidate for X' in the statement in question. However, when X
is the space of example 2.3, ^(X) is not even C-scattered. Before we
present the last result of this section, we state a lemma whose proof is
straight-forward and easy.

2.6. LEMMA. Suppose Y is dense in a space X. Then acc(7) = Y Π
acc(JT). D

2.7. THEOREM. Suppose X is an Af-space. Then there is an Af-space Xf

such that I c Γ and X' is dense in %(X) iff X is compact or
= 0 .

Proof. Suppose X is compact. Then Xf = ^(X) works. So we
suppose that int x(acc( X)) = 0 . Define

X' = <V(X) Π«acc(X)> U (X\3cc(X))).

Clearly X c X'. To see that X' is dense in V(X)9 suppose (Vl9..., Vn) is
a basic open set in 2X. Since intx(acc(X)) = 0, we may choose an
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isolated point xι ; e ViVz < n. Then

{ x / : i < « } e I ' n ( F 1 ) . . . , F n ) .

So Xf is dense in ^(X). To see that Xf is an ^4'-space, first observe that
2.6 shows that acc(X') = X' Π acc(^( X)). Applying 2.2, we find that

acc(JΓ) = Xf Π (JT,acc(jr)>

= X' Π <acc(*)> = #(X) Π

Since acc(X) is compact, acc( Xf) = <g(X) Π (accί^)) is compact [12].
For the converse, suppose I is a non-compact space such that

U = int^(acc(X)) = 0, and assume I c f and <2" is dense in ^(X).
We shall show that <3Γ is not an v4'-space. Since X is an ^4'-space, there is
an infinite closed set D c X\a.cc(X). For each d e D, ([/, {</}) Π
«X -Y) = 0 . Since # is dense in if (X), there is, for each d^D,Kd<^2?
Π (U9{d)). Clearly, Kd\ {d} c acc(X). Hence, Lemma 2.2 shows that
each j ^ G acc(^(X)). According to 2.6, each A^ e acc(^). Now JΓ=
{ΛΓ̂ : d ^ D) is certainly discrete in #(X), and hence, in 3?. Suppose
F e « r \ j f \ Since F is compact, F Π ΰ is finite, say F Π D =
{d(l)y..., d(n)}9 where Λ = 0 is the F Π D = 0 case. Then

is a neighborhood of i 7 missing Jf. Thus, Jf is closed and discrete in
acc(^). So acc(<3Γ) is not compact. D

3. Compactifications of metrizable C-scattered spaces. For a metriz-

able space X, let K( X) denote the collection of all Hausdorff compactifi-
cations of X. BX G K( X) is said to be metrically compatible provided
that BX is the Smirnov compactification [15] induced by a metrizable
proximity. Let KM(X) denote the set of all metrically compatible mem-
bers of K(X). We will consider KM{X) to be partially ordered, inheriting
the natural partial order of K( X).

In this section we will present a characterization of A -spaces in terms
of KM(X), and a study of KM( X) when X is an yl-space. The principal
result of our study is that KM(X) is a lattice when X is an ^4-space. In
order to facilitate our study we first develop some machinery.

3.1. DEFINITION. Suppose that X is a metrizable space. Let M(X)
denote the set of all metrics (on X) compatible with X. Define a partial
order <§c on M(X) as follows: if dl9 d2 e M(X), then dx <^ d2 holds
provided that for each pair {an} and {bn} of sequences in X, d2(an, bn)
-> 0 implies dι(an, bn) -> 0.
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Given dv d2 ^ M(X), we say that dx and d2 are coherently equiva-
lent, and write dλ = d2, provided that both dx <c d2 and d2 <̂c dx hold.
It is easily determined that coherent equivalence is an equivalence relation
on M(X). Let [d] designate the equivalence class of d e M(X) under
= . Let (E(X), «c) denote the quotient partially ordered set M(X)/ =
ordered by [dx] <^ [d2] iff dx <^ d2. That (E(X), «c) is an upper
semi-lattice follows from defining [dλ] V [d2] = [dλ V d2]9 where

(dx V d2)(x,y) = max^x, j>), d2(x, y)} Vx,y e X.

The following lemma is the principal reason why we introduced
E(X), and is a consequence of the theorem: Suppose that dv d2 e M(X).
Then έ/x = <i2 iff dx and J 2 induce the same proximity [8].

3.2. LEMMA. Suppose that X is a metrizable space. Then KM(X) and
(E(X), <c) are order-isomorphic. D

When X is an A -space, we can simplify our study by considering a
less complicated space.

3.3. DEFINITION. Suppose that X is an ^-space. We define a space
X* as follows: First let oo be an object not in X and define

0 ,

X, otherwise.

X* is topologized by U c X* is open iff U Π X is open.
Obviously a c c ^ * ) = {oo}, and X* is the perfect image of X under

the map x -» x if x £ acc(X), and x -> oo otherwise. Further, Jf* is an
A -space whenever X is an A -space.

3.4. LEMMA. Suppose that X is an A-space. Then (E(X), «:) and
(E(X*)9 <:) are order isomorphic.

Proof. We may assume, without loss of generality, that acc( X) Φ 0 .
Suppose J G M( X). We may define d* e M(X*) by allowing

(i)</*(oo,oo) = 0,
(ii) J*(x, oo) = d(x, acc(Z)), if x Φ oo, and

(iii) d*(x,y) = min{d(x, j>), ί/(Jc,acc(Λr)) + J(^,acc(X))}, if oo €

Define Φ = {([dl[d*]): d e M(Z)}. We will show that Φ is an order-
preserving bijection from (E( X), <c) onto (E(X*), <3C).
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Claim 1. If dvd2 e M(X) and if dλ <£ d2, then </* «: d*. To
establish this claim, let (xn) and (yn) be sequences in X* such that
d*(χn>yn) -* ° W e s h o w t h a t d*(χn>yn) -* O F i r s t > l e t Λ = {> G N :

If /x is finite, then go to the next paragraph. Let (an) and (bn) be the
subsequences, respectively, of (xn) and (j>w) such that oo e {MΛ,UΠ}

Vfl e N. Since d£(xn,yn) -» 0, we must have an -> oo and 6Λ -> oo.
Therefore, the following holds:

(1) rf*(^,oJ-0.

If N \ lx is finite, then (1) shows df(xn, yn) -> 0. So we assume N \ Iλ is
infinite, and proceed to the next paragraph.

Let /2 = {rt€ΞN: { ^ , Λ } c I a n d rf2*(Λ#l, Λ ) = J 2(xw, Λ ) } . If /2

is finite, then go to the next paragraph. Let (pn) and (qn) be the
subsequences, respectively, of (xn) and (yn) such that {pn,qn} c X and
d^(pn,qn) = d2(pn,qn). Since J x «: J 2 and d*{pn,qn) -> 0, we have
<Ί( A,. « J -* ° s i n c e ^i*(Λ» 9«) ^ <*i( A,> 9«), we have

(2) dί(Λ,9j"*0.

If N \ ( / ! U /2) is finite, then (1) and (2) show df(xn9yn) -> 0. So we
assume N \ (Ix U I2) is infinite, and proceed to the next paragraph.

Let / 3 = N \ ( / 1 U / 2 ) . Let (J W ) and (ίn) be the subsequences, respec-
tively, of O J and (jw) whose indices come from /3. Since acc(X) is
compact, we may choose for each n <Ξ N, un, υn <Ξ acc(X) such that

d2(sn,un) = d2{sn,acc(X)) and d2{tn, υn) = d2(tn, zcc(X)).

Since d2(sn, &cc(X)) + ί/2(rn,acc(X)) = d£(sn9 tn) -> 0, we have that

^2(5«' w«) "^ ° a n d ̂ 2(^> ϋ/i) "^ ° S i n c e ^i ̂  2̂> w e f i n d Λat rfxί^, MM)
-> 0 and J ^ ^ , yn) -> 0. So ^ ( ^ ^ oo) -^ 0 and ^ ( / ^ oo) -> 0. From the
triangular inequality, we have

(3) d*{sn,tn)^0.

Certainly (1), (2), and (3) together imply df(xn, yn) -> 0. Thus, claim 1 is
established.

Claim 2. Φ is an order-preserving function.

This is obvious from claim 1 which shows that d* s J * whenever
dx - d2.
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Claim 3. Φ is an injection.

Let dl9d2e M2{X) be such that dx Φ d2. Without loss of generality

we may assume that there exist sequences (xn) and (yn) in X and an

ε > 0 such that the following hold:

(4) d2(xn9yn)^09 and

(5) d1(xn9yH)>ε V*eN.

If there is a subsequence (at) of (xn) such that d1{ai, acc(Z)) -» 0,

then (dj) has a subsequence (Z>y) converging to some z e acc(X). But then

(4) implies (yn) has a subsequence converging to z, contradicting (5).

Thus, without loss of generality, we may assume that ε > 0 is chosen so

that

(6) rf1(xrt,acc(X))>ε V / I G N

holds. In a similar manner, we may additionally assume that the ε > 0

and the sequences (xn) and (yn) satisfy the following:

(7) J,.(z

Now combining (4), (7), and the definition of df and d£, we conclude

that sufficiently large n, we have d^(xn, yn) = di(xn, yn) Vz G {1,2}.

Therefore, d£(xn, yn) -» 0 while df(xn, yn) > ε for sufficiently large n.

Thus, d* Φ dξ.

Claim 4. Φ is a surjection.

Suppose 8 e M(X*) and d e M(ΛΓ). Given I G I \ acc(X), we use

the compactness of acc(X) to choose x G acc(X) such that d(x, x) =

J(x, acc(X)). For each pair X , J G I , define ρ(x, j>) = 0, if x = y; other-

wise define

(d(x9y)9 ifx9ye acc(X)

(x,j) + δ(x,oo), if x G X\acc(X) and j e acc(X)

U(3c, ^) + δ(x, oo) + δ{y9 oo), if JC, ̂  e X\ acc(X).

It is easy to see that p is a metric for X. Since X\SLCC(X) is discrete,

p G M(X). Clearly, p* = δ. Thus, Φ is surjective. D

It is interesting to note that much of 3.4 did not require the full force

of "^4-space". For example, if in 3.3 we merely assume that X is

metrizable with X{2) = 0, and replace acc( X) with X{3) in the definitions
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of X* and d*, then Φ is still an order-preserving function. Requiring X(l)

to be compact seems necessary for showing Φ is injective. However, it is

unclear how to prove Φ is surjective in this context.

3.5. LEMMA [13]. Suppose that (X,d) is a metric space such that for

each pair Fo and Fλ of non-empty disjoint closed subsets of X, d(F0, Fλ) > 0,

then X is an A space. D

Nagata [14] has shown that the A -spaces are precisely those spaces

whose finest compatible uniformities are metric. Here is a similar char-

acterization.

3.6. THEOREM. A metrizable space X is an A-space iff KM(X) has a

maximum.

Proof. According to 3.2, we may use (E(X), <̂ c) as a representation

ίoτKM(X).

Assume that X is not an ^4-space. Let d e M(X). From 3.5 there

exist non-empty disjoint closed sets Fo and Fλ such that d(F09 Fx) = 0. By

Urysohn's lemma there exists a continuous map /: X -> [0,1] such that

f{Ft) = {/} for each / e {0,1}. Define a metric p e M(X) by p(x, y) =

d(x, y) + \f(x) -f(y)\ (this is standard, see [7]). Since d < p, [d] <£ [p].

Since d(F0, Fx) = 0, there exist sequences (xn) and (yn) in, respectively,

Fo and Fλ such that d(xn,yn) -» 0. However, ρ(xn,yn) > 1 V « G N .

Thus d Φ p. So [d] is not a maximum.

Now suppose that X is an A -space. According to 3.4, it suffices to

show (E(X*), «:) has a maximum element. Let δ e M(X*) be arbi-

trary. If acc( X)Φ 0, we define

x)), if x Φ y.

If acc( X) = 0 , we define

0, ifx=y

1, if x Φ y.

It is easy to verify that rf«μVύίGM(I). D

It is known that a metrizable space X is locally compact iff K{ X) is a

lattice. The main result of this section is similar in nature.
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3.7. THEOREM. IfXis an A-space, then KM(X) is a lattice.

Proof. From 3.2, we need only show (E(X), «:) is a lattice. From
3.4, it suffices to prove that (E(X*), <̂ c) is a lattice. So we assume X has
at most one accumulation point which will be denoted by oo. As we have
already established (E(X), <c) to be an upper semi-lattice under the
operation V, we only need to define Λ.

Claim. If dv d2 e M(X), then there is d e M{X) such that d(x, y)
< dt{x, y) for each i e {1,2}.

To establish the claim, first define a continuous semi-metric p com-
patible with X by ρ(x, y) = min{ dλ(x, y), d2(x, y)}. The semi-metric p
generates a shortest path semi-metric d in the following standard way. Let
x, y e X. Define

ί n

d(x,y) = inf £ p(*, - i ,* , ): {x o , . . . ,x j c X, « e N,
w=o

Suppose that x Φ y. Not both JC and y are oo, so suppose x Φ oo. Since x
is an isolated point, each of dλ(x, X\{x}) > 0 and d2{x, X\{x}) > 0.
So

0 < p(x,X\{x}) < d(x,y) < nήn{dι(x9y)9 d2(x,y)}.

It is easy to verify that d e M( X). Thus, our claim is proved.

Now define, for each pair x, y e X9

(dιΛd2)(x9y)

= sup{δ(jc,>;): 8 e M(X), δ(u,ι;) < p(u9υ) VM, i; e X}.

It is easy to verify that dλ Λ d2& M(X), that ^ Λ j 2 « J l 9 and that
^ Λ d2 « rf2. Define [έ/J Λ [d2] = [dλ A d2]. Ώ

Question Suppose X is a metrizable space with X(1) compact. Is
KM{X) a lattice?

We complete this section with a result on the size of KM(X) when X
is an ̂ 4-space. First observe that \KM(X)\ = 1 whenever X is compact.
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3.8. THEOREM. Suppose that X is a non-compact A-space. Then there is
K c KM(X)9 \K\ = 2N°, such that each distinct pair of members of K are
pairwise incomparable. Further, if Xis separable, then \KM(X)\ = 2S°.

Proof. We show the result for (E(X), <3C), and we assume, without
loss of generality, that X has at most one accumulation point to be
denoted by oo. Since X is non-compact, it has a countably infinite closed
discrete subset {jcf: i G N). Let J be an independent set in N (i.e., for
each disjoint pair Jλ and J2 of non-empty finite subsets of J we have
ΓlJ^ \ U / 2 is infinite) of cardinality 2S° (see 3.6F in [6]). Let μ <Ξ M(X)
be as defined in 3.6, above, such that [μ] is the maximum of (E(X), «:).
For each / e J, define μr: X X X -> R by

- -7 μ(x, y), iΐx = xi9 y = xj9 and /, y e /,

(μ ( JC, y), otherwise.

It is easy to verify that μf e Λf( Ύ) V/ e >.
Suppose / e ,/ . Then μ/(^π, 6Π) -> 0 iff either αn -> oo and bn -> oo,

or #„ = 6Λ for sufficiently large «, or {αn, bn} c { JC,-: i G /} for all but
finitely many n. So if / e > \ {/} and if y'(n) is the wth element of J,
then /i^x^^, xy ( π +i)) -• 0. While

0 < μ(θθ, D) <

for infinitely many n e /. Therefore, μy <c μ7 is false. Let AT = {[μ7]:

Further, suppose y c X is countable and dense. Then there are at
most 2N° many continuous functions from Y X Y into R. Hence \M(X)\
< 2*«. U
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