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VECTOR-VALUED SINGULAR INTEGRAL

OPERATORS ON L'-SPACES WITH MIXED

NORMS AND APPLICATIONS

DICESAR LASS FERNANDEZ

We establish Lp and Lp(lQ) estimates for singular integral opera-
tors with variable operator-valued product kernels. Application to the
strong maximal function, double Hilbert transform, Littlewood-Paley
inequalities and Fourier multipliers for //-spaces with mixed norm are
given.

Introduction. A classical theorem due to Hardy and Littlewood and
the improvement given by Fefferman-Stein [6] assert that the maximal
function

is bounded on Lp, 1 < p < oo, and has a vectorial extension M(fj) =
(Mfj) bounded in Lp(lq), 1 < p,q < oo. On the other hand, another
classical theorem, due to M. Riesz, which asserts that the Hilbert trans-
form

Hf(x) = p.v. Γ &&- dy
x -y

is bounded on Lp, 1 < p < oo, was improved by Burkholder [5] for
L ̂ -function with values in Banach spaces with the so called UMD
property. In particular, the Hilbert transform has a vectorial extension
H(fj) = (Hfj) bounded in Lp(lq\ 1 <p>q< oo. Recently Rubio de
Francia-Ruiz-Torrea [13] and [14] have shown that the maximal operator
and the Hilbert transform are operators of same kind: vector-valued
singular integral operators. Actually, they improved a theorem on vector-
valued convolution operators due to Benedek-Calderόn-Panzone [2].

Let us now consider the rectangular (strong) maximal function

1ί f \f(u9v)\dudo
JJ Ji
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and the double Hubert transform

τrsί \ f°° f00 f(x - u,y - v)
Hf(x9y) = p.v. / / Ϋ ΓT^ {-dudυ.

By iteration, we see at once that rectangular maximal function and the

double Hubert transform are bounded on LP(R2), 1 < p < oo. But, this is

not the case if we replace the usual Lp spaces by the U(U) spaces with

mixed norm of Benedek-Panzone [1]. The boundedness now does not

follow from a simple iteration. The U(LS)-norm estimate for the strong

maximal function was stated by Stδckert [17], but a very nice proof was

given by E. Hernandez [9]; on the other hand, for the double Hubert

transform it goes back to M. Cotlar.

Our concern here is to establish a theory of vector singular integral

operators with variable product kernels. This will be done in the mold of

Rubio de Francia-Ruiz-Torrea [13] and [14], and in such a way to be

possible to handle with it the scalar strong maximal function and double

Hubert transform as well as its sequential extensions. As applications we

also obtain an inequality of Littlewood-Paley type for U(U)-spaces and

derive a multiplier theorem of Marcinkiewicz-Lizorkin type in a simple

and natural way.

1. Vector-valued singular integral operators with product kernels.
We begin by recalling the Rubio de Francia-Ruiz-Torrea theorem on

vector-valued singular integral operators (see [13]).

1.1. THEOREM. Suppose E and F denote Banach spaces. For Δ =

{(JC, y) G R» XR", x = y), let k e L\OC(R" X R " - A , L(£, F)) be an

operator-valued kernel which satisfies

(1) / \\k(x,y)-k(x,y')\\L{E,F)dx<C,
J\/-x\>2\y'-y\

and

(2) / \\k(x,y)-k{x\y)\\L(E,F)dy<C.

Let T be a linear bounded operator from Z/(RΛ, E) into Z/(Rn, F), for

some r with 1 < r < oo, such that

(3) Tf(x)=ί k{x,

for all f ^ L™(R", E) (the linear space of all E-valued measurable functions

which are essentially bounded and have compact support) and x £ supp/.
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Then, for allp with 1 < p < oo, we have

(4) \\Tf\\L><r,F) < C||/|U,(R»,£), / e Lf(R",E).

Moreover, for all q with 1 < q < oo, we also have

(5) ()

We shall rely on the above theorem to give a version of it for product

kernels k(x,u, y,v) = k2(y,v)k1(x,u) and the Lp = LP2(LPι) spaces
with mixed norms of Benedek-Panzone [1], from where we take notations.

The proof we shall give follows an idea by Benedek-Calderόn-Panzone [2].

1.2. THEOREM. Suppose E, F and G denote Banach spaces. Let us

consider operator-valued kernels kλ and k2 in L\oc(Rm X Rw — Δ, L(E, F))

andL\oc(Rn X R" - A, L(F,G)), respectively, which satisfy

(1) / \kj{z9w) - k^z,wf) \L dz < ς , j = 1,2,
J\z- w'\>2\w-w'\ J

and

(2) ί \\kl(z,w)~kJ(z',w)\\Ldw<CJ, 7 = 1,2,

where Lγ = L(E, F) and L2 = L{F,G). Let Tx and T be linear bounded

operators from LP(R"',E) into Lp(Rm,F) and from LP(R" X R",E) into

Lp(Rm X R",G), for allp with 1 < p < oo, respectively. Suppose also that

Tx and T satisfy

(3) TJ(x)=( k1(x,u)f(u)du
•Ίr

for allf e Lf {Rm, E) andx £ supp/, and

(4) Tf(x,y)=f f k2(y,υ)kι(x,u)f(u,υ)dudv

for allf e Lf(Rm X R", E) and (x, y) £ supp/. Then, for all P = {px, p2)

with 1 < pv p2 < oo, the linear operator T can be extended to all

Lp(Rm X R", E) into Lp(Rm X R",G) such that

(5) llT/HzAirxiroiS C||/||L'(irxR",£),

for all/e Lp(Rm X R",E).

Proof. Step 1. Let / be in M(Rm+",E), the set of all ^-valued

measurable functions on Rm+". For each / 6 R " and each / e

M(Rm + l',E) we associate the functions f = fv&M{Rm,E) defined
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by vf = fy{ ) = /(•, y). Thus, we shall have Lp(Rm + n, E) =
L^R", L'(RW, E)), Lp(Rm+", E) = L*(R», L^(Rm, E)), P = (pv p2)
and

Moreover, if / e L~(Rm+", £) we shall have fy s Lf(Rm, E).

Step 2. For all / e M(Rm+n, E) and λ > 0, we define Hχf by

where χ λ is the characteristic function of the set {|JC| < λ}. Now, if
y e R", we define Kλ(y) e L{LP{W, E), LP{W, G)) by

[Kχ(y,υ)h}(u) = X λ/c 2(j, l;)[Γ 1(χ λΛ)](M).

Then, if || || denotes the operator norm on L(Lp(Rm, E), LP(R",F)),
since the singular integral operator Tλf is bounded from Lp(Rm, E) into
Lp(Rm, F), it follows that

\\Kx(y,v)\\=sup{\\Kλ(y,v)h\\LP{G)-,\\h\\L'>{E)<l}

< sup{\\k2(y,v)T1(χλh)\\LP(G);

<C\\k2{y,v)\\L{F,G),

which shows that Kλ(y,v) <Ξ L\oc(Rn, L(LP(E), LP(G)). Moreover, we
have

*\y-v'\>2\v-υf\

k2{y,υ)-k2{y,υf)\\dy<CιC2
J\y-υ'\>2\υ-υf\

and

\\Kλ(y,υ)-Kλ{y',v)\\dv
l"-/|>2|^-/|

\\k2(y,v) - k2(y',ϋ)\\dυ < CλC2.
\υ-y'\>2\y-y'\

Now, for F G L?(R*, L^(RW, E)\ we get

TλF(y) = f Kλ(yyv)F(υ)dv.
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Since πHλTHλf = Tλπf, due to hypothesis (4) we get

C\\ Hχf \\

Consequently, setting p = pl9 A = Lp'(Rm,E) and B = L^(Rm,G), we
have

\\T\F\\LP1(μ»iB) < C\\F\\LPHK>,A),

for all F given by F = 77/, / e LJ°(Rm X R", E). Since LJ°(Rm+", £) =
LJ°(R",L^(RW,£)) is dense in Lf(Rn

9 Lp(Rm, E)) = Lf(R\ A), in the
norm of LP(R\ A), we have 1.1(4) for all F e L °̂(R, A). Now, the Rubio
de Francia-Ruiz-Torrea theorem yields

for all F e L^R", ^) and 1 < p2 < 00.

3. We shall have

Finally, since Hλf = f, for λ large enough, we get

( R - ^ ) < lim \\

for all / e L^(Rm+", £) and consequently for all / e Lp(Rm+", £) .
The proof is complete.

1.3. Let us recall that lQ{X), Q = {qχ,q2)i denotes the linear space of
all X-valued double sequences (C,y) such that
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1.4. COROLLARY. Suppose E, F and G denote Banach spaces and let us

consider operator-valued kernels kx and k2 as in Theorem 1.2. We define the

kernels kλ{x) G L{lQ(E)JQ{F)\ andk2(y) e L(lQ{F),lQ{G)) by

(1) kl(x)(alJ)u={kl(x)au)ij

and

(2) ~k2(y){bu),

We define, forf = (/,7) e L»(Rm,

(3) fj(x) = ϊi(/;v) =

and for / e Lf(Rm+",/ρ(£))

(4)

assume that, for all p with 1 < p < oo, ίΛe operators fx and f

are bounded from Lp(Rm, lQ(E)) into Lp(Rm, lQ(F)) and from

Lp(Rm+t\lQ(E)) into Lp(Rm+\lQ(G)\ respectively. Then, for all P =

(Pv Pi) with 1 < pv p2 < oo, the linear operators T can be extended to all

Lp(Rm+\lQ(E)).

Moreover, we shall have

(5) \\Tf\\Lpvr+\P{G)) < C\\f\\LPQr+\P(E))

Proof. Since, for v = 1,2,

\\kv(z,w) -~kv{z,w')\\L0Q(E)JQ(F))<\\kp(z,w) - kv(z,w')\\LiE,F)9

and

| | k v ( z , w) - ~kv{z', w) \\L{lQ(F)JQ{G)) < \\kv(z, w) - kv{z\ w) \\L{FtG)9

it follows that the hypotheses of Theorem 1.2 are fulfilled with the kernels

kλ and k2 and the spaces E, F and G replaced by the kernels kλ and k2

and the spaces lQ(E), lQ(F) and lQ(G), respectively. Hence, the corollary

follows as desired.

1.5. REMARK. When kv{z,w) = kv{z - w), v = 1,2, we have the

singular integral operators of convolution type. This particular type of

singular integral operators was studied, also in the product case, by the

author in [8].



VECTOR SINGULAR INTEGRAL OPERATORS 263

2. The double Hubert transform,

2.1. Our concern here is to obtain Lp and Lp(lQ) estimates for the
double Hilbert transform which is defined by

(1) Hf(x9y)-Γ Γ
(x- u){y - v)

dudv.

This is an integral singular operator of convolution type and the mixed
//-estimate goes back to M. Cotlar. The mixed Z/(/e)-estimate seems
new.

2.2. THEOREM. The double Hilbert transform given by 2.1(1) is an
integral singular operator bounded in the spaces Z/(R2), where P = (pl9 p2)
with 1 < pl9 p2 < oo, i.e.

(i)

for all/<= Z/(R2) =

Proof. Step 1. The kernels kj(z9w) = l/(z — w) satisfy conditions

Step 2. The integral singular operator 7\ associated with the kernel kλ

is bounded in LP(R)91 < p < oo.

Step 3. The integral given by 2.1(1) is well defined for all / e Lf(R2)
and(x, y) & supp/.

Step 4. By iteration we see that H is bounded in LP(R2), 1 < p < oo.
Hence, the conditions of Theorem 1.2 are satisfied and the assertion

follows.

2.3. COROLLARY. In the conditions of Theorem 2.2, for all F = (fu) e
2 < ρ = (ql9q2) < oo,

. It follows from Corollary 1.3.

3. The rectangular maximal function of F. Zό's type. The following
version of a theorem due to F. Zό [19] will be needed to obtain the
maximal inequality which we are looking for.
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3.1. THEOREM. Suppose φ e L\Rm) and ψ e L^R"). i w s > 0

ί > 0, let us set φs(x) = s~mφ(s~ιx) and ψt(y) = t~nψ(Γιy). We shall

also suppose that

(1) / ^ suV\φs(u-χ)-φs(x)\dx<Cι, « e R"

(2) / sup |ψ / ( ί ; ->;)-ψ r ( j ) |φ< C2, v^R\
\y\>4\v\ t>o

Now, for/ e L^°(RW+Π), we get

(3) Mφ ψ/=sup{|ψ ί φ s*

Then, for all P = (Pι,p2) with 1 < j ^ l 9 /?2 < oo, we have

(4) | |M φ ,/ | | L / ,

for a l l / e L p(Rm + r t).

1. If / e L1 Π L00, the mappings (.y, /) -* φtφs*f(x, y)

are uniformly continuous. Indeed since the mapping (s,t) -> ψ fφ5 is

continuous from R2, into LX(R2) we have

Therefore, it is enough to prove (4) taking the supremum on Q+X Q+.

Step 2. Fixing an enumeration of the positive rationals, let us denote

by Qj the set of rationals with indices in ( 1 , . . . , j}. For c and d in N, let

us set

(5) Mcdf= s u p { | ψ , φ 5 * / | ; (s,t) e Qe X Qd).

If /J° and Ifj stand for the complex euclidean spaces C 7 and C/ + 7,

respectively, equipped with the sup-norm, the non-linear operator Mcd

can be viewed as a vector-valued linear operator

(6) feL?(R"+m)^Ncdf= {Ψ t φ ) */)( ! ,, ) e f t .x δ j eΓ(r + ",/S).

The kernel kcd of this operator is a product of the two kernels:

and

k2

d(y)<=L(l?,I?d),
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given by

kι

c(x)a = [φs(x)a; s G Qc}

and

Hence

ked(x>y) = k2

d{y)k\{x)z = {rpt(y)φs(x)z; s e Qc, t e

On the other hand, we have

I 7 , 1 / \ - | |

\κΛx)z\\r

= sup sup \ψs(x)z\= sup |φ,(x)|

and

= sup sup \ψt(y)aj\= sup \ψt(y)\.
11(̂ )11̂  = 1 / e β d β

Therefore &J. and A:̂  are locally integrable. Moreover

\k\{u-x)-k\{x)\\dx/
J\x\>A\u\

= / sup\\[k](u-x)-k1

c(x)]z\\ιrdx

= / sup sup |φ 5 (w - x) - ψs(x)\ \z\dx < Cλ

and

\k2

d{v-y)-kl{y)\\dy
|v|>4|υ|

= / .

sup s u p | ψ f ( ϋ - t)-ψt(y)\\a.\dy

= ί sup
y M>4M r

C2.
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Step 3. Due to Zό's result, for all p with 1 < p < oo, we have

| |M c df \\Lίv < | |Mψ,f \\Lίy < 1 MφM,f \\Lξy < C\\

,C\\

where Lζy9 L£ and Lξ have obvious meaning.

Step 4. Since the operator Mcdf = kcd*f satisfies the hypotheses of

Theorem 1.2 it follows that

(7) \\Mcdf\\Lp{R^JTd) < C | |/Hi/or")

for all /<Ξ LJ°(RW + Λ). But Mcdf has also a sense for all /<Ξ Z / ( R W + " )

and it is not hard to see that the extension Mcd of Mcd to all Lp(Rm+n)

coincides with Mcd. Thus (7) holds for all / e Lp(Rm+n). Finally, letting

|(c, d)\ -> oo, the monotone convergence theorem yields (4).

The proof is complete.

3.2. THEOREM. Let φs and ψ, be as in Theorem 3.1. For f = (/zy) in

L™(Rm+n,lQ), where Q = (ql9 q2) is given with 1 < ql9 q2 < oo, let us

consider the vectorial rectangular maximal function

where M^f^ is the maximal function given by 2.1(3). Then, if P = (pl9 p2)

is given with 1 < pl9 p2 < oo, we have

< r\\( f )\\

Proof. As before, let us replace the maximal function Mφx}/g by Mcdg

and let us consider the vectorial linear operator

The kernel of this operator is a product kernel k{x,y)

where

and
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If || || denotes the norm on L(lQ, lQ(lf)), we shall have

\\kl(u-x)-kl(x)\\dx
x\>4\u\

= / sup ||([φs(w - x) - φs(x)]α,7) \\,Q(ndx

sup\φs(u-x)-φs(x)\dx<C1,
V|>4|M|

and if || || denotes the norm on L(lQ{lf), lQ(l?d)), we also have

/ \\k2Λv - y) - kl{y)\\dy
J\y\>4\υ\

< ί sup l([*t(υ-y) - tt{y)\biJS)\\lQ(l%)dy

^ ( sup ||ψ,(ϋ -y)- ψt{y) \\ sup (bφ)/β(ndy
J\y\>4\v\ tsQd \\b\\ = l

<[ sup \ψt(v-y)->Pt(y)\dy<C2.
J\y\>4\v\ ,<=Qd

Now, it remains to prove that, for all p with 1 < p < oo, we have

(3) \\fcΛfij)\\^fi{n) * C\Uj)\\L'(fiy

where C is a constant independent of c, d and p. Let us consider the
partial operators Mc and td given by

and

We shall have

Thus, due to Zό's result (and Fubini's theorem) we see that Mc and fd are
bounded operators from Lξy(l%) into Lζy(l9) and from L^(/g(/f)) into
Lξv(l?j), respectively. Consequently, if {ftJ) e Lp(lQ) we shall have (g,y)
<ΞLp(lQ), where

%ij = MJij= SUP k,*x/,y|

ifu) = {MJ^ = I sup \<ps*vfu\)



268 DICESAR LASS FERNANDEZ

Hence

The proof is complete.

4. The rectangular maximal function. We are now ready to state

inequalities for the rectangular maximal functions of Hardy-Littlewood

and of Fefferman-Stein type for Lp spaces with mixed norms.

4.1. THEOREM. Suppose f ' G L\oc(Rm + n) and let us consider the rectan-

gular maximal function Mf defined by

(1) Mf(x, y) = sup | / X J\ I I \f(x - u, y - v)\dudv,
I,J

 JJ Ji

where I and J are (hyper)-cubes centered at the origin of R" and Rm,

respectively. Then, iff G Lp(Rm + n), where P = (pλ, p2) with 1 < pl9 p2 <

oo, Mf(x, y) is finite for a.e. (x, y) G Rm + n. Moreover, there is a constant

C > 0 such that

for all/G Lp(Rm + ").

Proof. Let Iλ and Jλ be the unit cubes on Rm and R", and let us

consider the dilated cubes Is and It with side length s and t, respectively.

Now, let φ G Cc°°(R
m) and ψ G C?(Rn) such that φ(x) = ψ(y) = 1, for

x G /, and y G /, respectively. Then

, . - l

a n d

Mf(x9 y ) = sup [ [ \ f ( x - u , y - v ) \ \ I s X J t \ l χ ί x J ( u , υ ) dudυ

Now, from Theorem 3.1, the maximal inequality (2) follows at once.

4.2. THEOREM. Suppose f = (//y) G L\oc(Rm + f\ lQ), where Q = (ql9 q2)

is given with 1 < qλ,q2 < °0 The vectorial rectangular maximal function is

given by

(1) U)
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where Mfif is the rectangular maximal function. Then, there is a constant

C > 0 such that for all P = (pl9 p2) with 1 < pv p2 < oo and f = (fu) e

Z / ( R m + l f , / β ) we have

Proof. It follows at once from Theorem 2.2 as in the proof of

Theorem 3.1.

4.3. REMARK. The inequality 4.1(2) in the case m = n = 1 was stated

by Stόckert [17]. But the inequality 4.2(2) seems new and it was proved by

the author in [8]. (However see Schmeisser [15] and the references quoted

there.)

5. Application to the Littlewood-Paley theorem.

5.1. PROPOSITION. For f e S(R2) and I and J numerical intervals, the

{iterated) partial sum operator is defined by

(1) (SIXJf)
A(s,t)

and we have

(2) \\SIXJf\\Lr<C\\f\\Lr,

for all f e 5(R 2), with C independent off. Moreover, SIXJ can be extended

toallLp(R2).

Proof. If / = J = (0, oo), then

(3) SrxJf = (l/4)(/ + iH10f + iH01 - Hnf)

where H10f, Hoιf and Hnf are the partial and double Hubert transform.

In this case we have obviously (2). The general case follows by modifica-

tions of (3) as in the one-dimensional case.

As the partial and double Hubert transform have an /^-extension,

Theorem 5.1 has the following extension.

5.2. THEOREM. Let (/, X Jj)ij^N be a double sequence of intervals in

R2 and (flJ) be a double sequence of functions in S(R2, lQ). Then

W IKW'v) IU*> * Φ'j) Ufiy 1< Λ β < oo,

where C is independent of (/, X Jj) and (//y ). Moreover, the operator
s(fu)

 = (si,xjfij) c a n be extended continuously to all Lp(Rd).
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We shall reverse inequality 5.2(1) for Q = (2,2) and the family of
dyadic intervals, i.e. we shall obtain the Littlewood-Paley inequalities for
mixed norms. We shall need some preliminaries.

5.3. LEMMA. Let φ e S(R) be given with φ(0) = 0 and φ(t) = 1 //
t e [1/2,1]. Setting ψj(x) = 2Jψ(2Jx), j e Z, we have

(i) f

(2)

(3)

Proof. See [13] or [14].

5.4. THEOREM. Let ψ and ψ Z>e g/ί ŵ α5 in Lemma 5.3.

(i) hitj fjlw
for all/e LP(R2), w/ίΛ 1 < P = (/>υ p 2) < oo.

Proof. We consider the operator

(2) T: fe S(R2) - Γ/= (φ,ψy / ) / y e M(R 2,/ 2).

We have to show that Γ is bounded from Lp into Lp(l2).

Step 1. Γ is well defined. Indeed, by 5.3(1), we have

f
= Σ Σ / / \^j{t)^{s)f{s,t)\2dsdt < Cf J \f{s,t)\2dsdt.

j i

i.e., wehaveΣ^-lψ^. /ίx, y)\2 < oo, a.e., and Tf(x, y) e /2(Z2).

j '

Step 3. 7/ is measurable. Since /2(Z2) is separable it is enough to
show that Tf is weakly measurable. But for all a = (α/y) e /2(Z2) we
have

which is obviously measurable.
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Step 4. T has a bounded extension from L2 into L2(l2) because (3)
holds.

Step 5. The kernel kφ defined by

kφ(x): λ e C - kφ(x) = (φ,(x)λ) f. e /2(Z)

is well defined, belongs to L\OC(R - {0}, L(C, /2)) and verifies
Hormander's condition.

Step 6. The kernel k^ defined by

kψ(y) = («,), e /2(Z) - k+(y){at), = (ψ,(>>K),7 e / 2(Z 2)

is well defined by 5.3(2). On the other hand, the mapping

is measurable for all a = (α/y) e /2(Z2). Thus, &ψ is measurable, belongs
to L ^ R - {0}, L(/2(Z), /2(Z2)), and satisfies Hormander's condition.

Step 7. The above results clearly also hold for the cut operators Tmn

and the respective kernels k™ and k$. Thus, since Tmnf = (ψ 7 φ y */;
1 < / < m, 1 < y < «) is a sequence in /2 we have

w, f) Jwdυ.

Step 8. The operators Tmn are bounded from L^ίR2) into
LP(R2, /2(Z2)), with operator norms bounded by a constant independent
of m and ft.

Step 9. From Theorem 1.2 and Corollary 1.4 we obtain

0) II^/IILV^CII/H^,

with the constant C independent of m and n.

Step 10. The monotone convergence theorem applied to (3) yields (1),
as desired.

5.5. REMARK. For a related result, but with a different proof, of
Theorem 5.4 see Bordin-Fernandez [3].



272 DICESAR LASS FERNANDEZ

5.6. Let Δj be the set of all dyadic intervals in R, and let A = At X i j
be the set of dyadic bi-dimensional intervals.

5.7. THEOREM. /// e ί/(R2), 1 < P = (pv p2) < oo, then

(1) CP\\f\\L"< Σ \sj\
/€ΞΔ

1/2

where cP and CP are independent off.

Proof. Let φ e S(R2) and let φ and ψ be as in Lemma 5.2. Since
φ,.(s) = φ(Ts) and ψ/r) = ψ(2y0, we have φ,(s) = 1 if s e [2'-\2''] and
ψy(0 = 1 if / e [2J-\2ή. Hence

(2) Sif-SIχXtJ-Shxh(φt1tj f).

Now, Theorems 5.2 and 5.4 yield

(3)
1/2

Lp

Finally, to reverse (3) we use polarization and duality as in the well known
cases (see [16], [14] and [18]).

6. Multiplier theorems.

6.1. DEFINITION. A scalar valued measurable function <p, defined in
R X R, is said to be of bounded V-υariation if there exists a positive
constant M and consequences (Ckm; k e Z, m e N), (akm; t £ Z ,
m e N) and (6^m; & e Z, m e N), which satisfy

Σ CkmX(-oo,akm)X(-oo,bkm) = Φ» a e

and

(2) for all m.

We shall write V(φ) for the infimum of such constants M.

6.2. THEOREM. Let (ψmn) be a (double-)sequence of uniformly bounded
V-υariations, i.e.

(1) V(φmn) < M, for all m and n.

For g G S^R2), let Tmn denote the operator defined by

(2) (Tmng)Λ=<pmng.
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Then, if (fmn) is a sequence in S(R ), we have

(3) I K ^ X J I U ^

Proof. Let us suppose fmn = 0, for m and/or n large. Let us set
N = (m, n), and let

be a function which satisfies 6.1(l)-(2) and hmN

define (SmNfN) Λ = hmNfN. We claim that

(4) \\{SmNfN)

In fact, by Holder's inequality

(5) \SmNfN\qi =

mN [hmN = ( ~ ° ° ' α ^ m / ) X (""" °° >**

φ^, as m -> oo. Next,

hence, recalling 5.2(1) and hypothesis (1), we have

l/*2

Σ \Σ\smNfN\qι

< c

< c

<c

< c

j List

Σ\Σ\(χίkmHKm.\ι/VNϊ
. J L ik

Ri

Σ
. j

Finally, by an application of the Lebesgue dominated theorem and
Fatou's lemma, from (4) we get (3) as desired.

The following lemma is well known (see [5, Th. 4.2-3 and 5] and will
play a major role in the multiplier theorem we shall state.
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6.3. LEMMA. Let m be a bounded measurable function which has

continuous derivatives of order (a,β), a = 0,1 and β = 0,1, away from the

axis, and satisfies

(1) \xayβDaβm(x, y) \ < M, x Φ 0, y Φ 0.

Then, the V-variation of the restriction of m to the dyadic intervals are

uniformly bounded, i.e.

(2) V(Xκm) < N,

for all dyadic intervals K = I X J in R2.

Finally, as a consequence of the foregoing results we obtain a multi-

plier theorem of Lizorkin type.

6.4. THEOREM. Let m be a scalar-valued function in R2 given as in

Lemma 6.3. Let Tm be the multiplier operator defined on φ e S^R2) by

(1) ( 7 » Λ = m φ .

Then, Tm has an extension to all Z/(R2) such that

(2) I|rm/IL^ en/11,,,
for allf ^ Z/(R2), where the constant C depends on p only.

Proof. By the Littlewood-Paley inequalities, Theorem 6.2 and Lemma

6.3 we shall have

Σ \sκ(τmf)\2
11/2

= c

< c

1/2

Σ \(xJY
1/2
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