MATRIX RINGS OVER *-REGULAR RINGS AND PSEUDO-RANK FUNCTIONS

Pere Ara

In this paper we obtain a characterization of those *-regular rings whose matrix rings are *-regular satisfying LP $\stackrel{*}{\sim}$ RP. This result allows us to obtain a structure theorem for the *-regular self-injective rings of type I which satisfy LP $\stackrel{*}{\sim}$ RP matricially.

Also, we are concerned with pseudo-rank functions and their corresponding metric completions. We show, amongst other things, that the LP $\stackrel{*}{\sim}$ RP axiom extends from a unit-regular *-regular ring to its completion with respect to a pseudo-rank function. Finally, we show that the property LP $\stackrel{*}{\sim}$ RP holds for some large classes of *-regular self-injective rings of type II.

All rings in this paper are associative with 1.

Let R be a ring with an involution *. Recall that * is said to be *n*-positive definite if $\sum_{i=1}^{n} x_i x_i^* = 0$ implies $x_1 = \cdots = x_n = 0$. The involution * is said to be proper if it is 1-positive definite; and if * is *n*-definite positive for all *n*, then we say that * is positive definite.

Recall than an element $e \in R$ is said to be a projection if $e^2 = e^* = e$ and R is called a Rickart *-ring if for every $x \in R$ there exists a projection e in R generating the right annihilator of x, that is $\iota(x) = eR$. Because of the involution, we have $\ell(x) = Rf$ for some projection f. Notice that $\iota(x) \cap x^*R = 0$, hence the involution * is proper and R is nonsingular. The above projections e, f depend on x only, 1 - e(1 - f)is called the right (left) projection of x and, as usual, we shall write 1 - e = RP(x), 1 - f = LP(x).

If R is a *-ring, we denote by P(R) the set of projections of R partially ordered by $e \le f$ iff ef = e. Thus, if $e \le f$ we have $eR \subseteq fR$ and $Re \subseteq Rf$. Recall [2, pg. 14] that if R is Rickart, then P(R) is a lattice.

Two idempotents e, f of a ring R are said to be *equivalent*, $e \sim f$, if there exist $x \in eRf$, $y \in fRe$ such that xy = e, yx = f. If e, f are projections in a ring with involution and we can choose $y = x^*$ then e, fare said to be *-*equivalent*, $e \stackrel{*}{\sim} f$. A ring is *directly finite* if $e \sim 1$ implies e = 1. A ring with involution is said to be *finite* if $e \stackrel{*}{\sim} 1$ implies e = 1.

A ring R is regular if for every $a \in R$ there exists an element $b \in R$ such that a = aba. If R, in addition, possesses a proper involution, then R is called a *-regular ring. By a theorem of von Neumann [14, Exercise 5, pg. 38] a regular ring with involution is *-regular iff it is a Rickart *-ring and in fact, if R is *-regular, then xR = LP(x)R and Rx = R(RP(x)) for every $x \in R$.

If R is a *-regular ring and $r \in R$ with $e = \operatorname{RP}(r)$, $f = \operatorname{LP}(r)$, then it is well-known [13] that $e \sim f$, in fact there exists a unique $s \in eRf$ (the relative inverse of r) such that sr = e and rs = f.

1. The property LP $\stackrel{*}{\sim}$ RP for *-regular rings. We say that a Rickart *-ring R satisfies the property LP $\stackrel{*}{\sim}$ RP if LP(x) $\stackrel{*}{\sim}$ RP(x) for every x in R. Also, we say that R has partial comparability (PC) if for every e, $f \in P(R)$ such that $eRf \neq 0$ there exist nonzero subprojections $e' \leq e$ and $f' \leq f$ such that $e' \stackrel{*}{\sim} f'$. Clearly, in any Rickart *-ring, we have LP $\stackrel{*}{\sim}$ RP \Rightarrow (PC).

LEMMA 1.1. For a *-regular ring R, the following conditions are equivalent:

(a) R satisfies LP \sim RP.

(b) Any two equivalent projections are *-equivalent.

(c) If $xx^* \in eRe$ with $e \in P(R)$, then there exists $z \in eRe$ such that $xx^* = zz^*$.

Proof. (a) \Leftrightarrow (b). Since LP(x) ~ RP(x) for every $x \in R$.

(a) \Rightarrow (c). See [16, Theorem 1].

(c) \Rightarrow (a). First we show that R is directly finite. If xy = 1, then we can assume that $yx = e \in P(R)$ and $y \in eR$, $x \in Re$. We have $yy^* \in eRe$, so there exists $z \in eRe$ such that $yy^* = zz^*$. Now, we have $1 = xyy^*x^* = xzz^*x^*$. By [1, Theorem 3.1, (ii)], R is finite so $z^*x^*xz = 1$. This implies e = 1. Now, by [16, Theorem 1], the result follows. \Box

Let R be a *-ring. We say that R is a *Baer* *-ring if for every subset $S \subseteq R$ there exists a projection e in R such that $\iota(S) = eR$ (and so $\ell(S) = Rf$ for some projection f in R). Obviously, a Baer *-ring is Rickart and the partially ordered set P(R) is in fact a complete lattice.

An element $w \in R$ is said to be a *partial isometry* if $ww^*w = w$. In this case $ww^* = e$ and $w^*w = f$ are projections with wR = eR and $w^*R = fR$. An element u is called *unitary* if $uu^* = u^*u = 1$.

It follows easily from Lemma 1.1 that the elements of a *-regular ring with LP $\stackrel{*}{\sim}$ RP have weak polar decomposition, that is, if $x \in R$ then

x = wz where w is a partial isometry and LP(z) = RP(z) = RP(x). If, in addition, R is unit-regular (that is, for every x in R there exists a unit u in R such that x = xux), then w can be chosen to be a unitary.

Let R be a Baer *-ring. We say that the *-equivalence is *additive* in R if for any families $(e_i)_{i \in I}$, $(f_i)_{i \in I}$ of orthogonal projections of R such that $e_i \stackrel{*}{\sim} f_i$, for all $i \in I$, we have $\bigvee_{i \in I} e_i \stackrel{*}{\sim} \bigvee_{i \in I} f_i$ (where \lor denotes supremum). The partial isometries are *addable* in R if for any family $(w_i)_{i \in I}$ of partial isometries such that $(w_i w_i^*)_{i \in I}$ and $(w_i^* w_i)_{i \in I}$ are families of orthogonal projections, there exists a partial isometry w in R such that $ww_i^*w_i = w_i w_i^*w = w_i$ for all $i \in I$, and $ww^* = \bigvee_{i \in I} (w_i w_i^*)$ and $w^*w = \bigvee_{i \in I} (w_i^* w_i)$.

LEMMA 1.2. (i) If R is a self-injective *-regular ring, then the partial isometries are addable in R.

(ii) If R is a Baer *-regular ring, then the *-equivalence is additive in R.

Proof. (i) Set $e_i = w_i w_i^*$, $f_i = w_i^* w_i$, with $(e_i)_{i \in I}$ and $(f_i)_{i \in I}$ families of orthogonal projections. Consider the *R*-homomorphism $\varphi: \bigoplus_{i \in I} f_i R$ $\rightarrow \bigoplus_{i \in I} e_i R$ for which $\varphi(f_i) = w_i$, all $i \in I$. Since *R* is self-injective, φ is given by left multiplication by some element, say *x*. Set $e = \bigvee_{i \in I} e_i$ and $f = \bigvee_{i \in I} f_i$. If w = exf then it is easily seen that $e_i w = w f_i = w_i$ and $ww^* = e$, $w^*w = f$.

(ii) Since any Baer *-regular ring R is complete, it follows from [13, Thm. 3, p. 535] that R is a continuous ring. By [5, Thm. 13.17] $R = R_1 \times R_2$, where R_1 is self-injective and R_2 is an abelian continuous ring. Since a central idempotent of a Rickart *-ring is a projection, we have that R_1 and R_2 are *-regular. Moreover two *-equivalent projections in R_2 are equal so the *-equivalence is obviously additive in R_2 . Since R_1 is self-injective and *-regular the partial isometries are addable in R_1 . In particular the *-equivalence is additive in R_1 . Therefore the *-equivalence is additive in R.

For a ring R, we denote by $Q_r(R)(Q_l(R))$ the maximal ring of right (left) quotients of R. Recall that if R is right nonsingular then $Q_r(R)$ is a regular right self-injective ring.

LEMMA 1.3. Let R be a nonsingular *-ring. Then, the involution * extends to $Q_r(R)$ if and if $Q_r(R) = Q_l(R)$. In case * extends to $Q_r(R)$, this extension is unique and if * is n-positive definite on R, then the extended involution is also n-positive definite.

Proof. The proof is contained in [17, Thm. 3.2], except the *n*-positive definite part.

It is well-known that if x_1, \ldots, x_m are nonzero elements in $Q_r(R)$, then there exist $1 \le k \le m$ and $r \in R$ such that $x_i r \in R$ for $i = 1, \ldots, m$ and $x_k r \ne 0$. Assume that * is *n*-positive definite on *R* and let x_1, \ldots, x_m be nonzero elements in $Q = Q_r(R) = Q_l(R)$, with $m \le n$. If k and r are as above, then we have $(x_1r)^*(x_1r) + \cdots + (x_mr)^*(x_mr) \ne 0$, and so $r^*(x_1^*x_1 + \cdots + x_m^*x_m)r \ne 0$ (we also denote by * the extended involution). Hence * is *n*-positive definite on Q.

REMARKS. (1) In particular, if R is a nonsingular *-ring with proper involution and $Q = Q_r(R) = Q_l(R)$, then Q is a self-injective *-regular ring.

(2) Recall that for a nonsingular ring R the condition $Q_r(R) = Q_l(R)$ is equivalent to the Utumi's conditions:

(a) For every right ideal I, $\ell(I) = 0$ implies $I \leq R$.

(b) For every left ideal I, i(I) = 0 implies $I \leq R$.

Obviously, (a) \Leftrightarrow (b) in any *-ring.

Let R be any *-ring. We say that R satisfies general comparability for *-equivalence (GC) if for every e, $f \in P(R)$ there exists a central projection h in R such that $he \leq hf$ and $(1 - h)f \leq (1 - h)e$, cf. [2, p. 77].

THEOREM 1.4. Let R be a *-regular ring such that $Q = Q_r(R) = Q_l(R)$. Then R satisfies (PC) if and only if Q satisfies LP $\stackrel{*}{\sim}$ RP.

Proof. By Lemma 1.3, Q is a self-injective *-regular ring.

Assume that R satisfies (PC). Let e, f be two projections in Q such that $eQf \neq 0$. Since Q is regular, there exist nonzero subprojections $e_1 \leq e$ and $f_1 \leq f$ in Q such that $e_1Q \cong f_1Q$. Hence there exist $x \in e_1Qf_1$ and $y \in f_1Qe_1$ such that $e_1 = xy$ and $f_1 = yx$. Let I be a right ideal of R such that $I \leq e R$ and $yI \leq R$. We have $yI = (ye_1)I = y(e_1I)$ and $e_1I \leq e e_1Q$. Choose a nonzero projection e_0 in R such that $e_0 \in e_1I$. We note that $ye_0 \neq 0$, $ye_0R \leq fQ$ and $(ye_0)R \leq R$. Set $f_0 = LP(ye_0)$, and note that $f_0 \in P(R)$ and $f_0 \leq f$. We observe that left multiplication by y induces an isomorphism from e_0R onto f_0R (since it is the restriction of an isomorphism from e_1Q onto f_1Q), and so $e_0R \cong f_0R$. Since R satisfies (PC), there exist nonzero projections e'_0, f'_0 in R such that $e'_0 \leq e_0 \leq e$, $f'_0 \leq f_0 \leq f$ and $e'_0 \stackrel{*}{\sim} f'_0$. It follows that Q satisfies (PC). By Lemma 1.2 and [2, Prop. 4, p. 79], we have that Q satisfies (GC). Now it follows from [9, Prop. 3.2] that Q satisfies LP \stackrel{*}{\sim} RP.

 $\mathbf{212}$

Conversely, assume that Q satisfies LP $\stackrel{*}{\sim}$ RP. Let e, f be projections in R such that $eRf \neq 0$. Then there exist nonzero projections e_0, f_0 in Rsuch that $e_0 \leq e, f_0 \leq f$ and $e_0 \sim f_0$. Thus, $e_0 \stackrel{*}{\sim} f_0$ in Q, and so there exists x in Q such that $xx^* = e_0, x^*x = f_0$. Let I be a right ideal in Rsuch that $I \leq e$ R and $x^*I \leq R$. Choose a nonzero projection e' in R such that $e' \in e_0R \cap I$ and note that $f' = (x^*e')(e'x)$ is a projection in Rsuch that $e' \stackrel{*}{\sim} f'$. Inasmuch, $e' \leq e_0 \leq e$ and $f' \leq f_0 \leq f$. So, R satisfies (PC).

PROPOSITION 1.5. Let R be a Rickart *-ring. Consider the following axioms for R.

(a) R has LP $\stackrel{*}{\sim}$ RP.

(b) *R* has (PC).

(c) *R* satisfies general comparability for *-equivalence, (GC).

(d) The parallelogram law (P) $(e - e \land f \stackrel{*}{\sim} e \lor f - f, \text{ for } e, f \in P(R)).$

(e) If $e \sim f$, then there exists a unitary u in R such that $f = ueu^*$.

If R is a unit-regular *-regular ring, then (a) \Leftrightarrow (d) \Leftrightarrow (e) and (c) \Rightarrow

(a) \Rightarrow (b). If R is a Baer *-regular ring, then all these conditions are equivalent.

Proof. Assume that *R* is a unit-regular *-regular ring.

(a) \Rightarrow (d). Since R is regular we have $e - e \wedge f \sim e \vee f - f$ for all projections e, f in R [13, Lemma 1]. The result is immediate.

(d) \Rightarrow (a). This is a standard argument, cf. [10, Proof of Corollary 1.1, (g)].

(a) \Leftrightarrow (e). This is routine.

(c) \Rightarrow (a). For this, note that we can adapt the proof of [9, Prop. 3.2].

(a) \Rightarrow (b). Obvious.

If R is a Baer *-regular ring, then R is unit-regular. By Lemma 1.2 and [2, Prop. 4, p. 79], (b) \Rightarrow (c). This completes the proof.

If R is *-regular and I is a two-sided ideal of R, then it is well-known that I is a *-ideal and the factor ring R/I is also *-regular with the natural involution. It is easy to see that if the involution on R is *n*-positive definite, then that on R/I is also *n*-positive definite.

LEMMA 1.6. Let R be a *-regular ring and let I be a two-sided ideal of R. Every projection in R/I has the form \bar{e} , where $e \in P(R)$. If v is any partial isometry in R/I and $e, f \in P(R)$ are such that $\bar{e} = vv^*$ and $\bar{f} = v^*v$,

then there exists a partial isometry w in R such that $\overline{w} = v$, ww* = $e_1 \le e$ and w*w = $f_1 \le f$. In particular, there exist orthogonal decompositions $e = e_1 + e_2$, $f = f_1 + f_2$ with $e_1 \stackrel{*}{\sim} f_1$ and e_2 , $f_2 \in I$.

Proof. Set $\overline{R} = R/I$. From $\overline{LP(x)}\overline{R} = \overline{x}\overline{R} = LP(\overline{x})\overline{R}$ we deduce that $LP(\overline{x}) = \overline{LP(x)}$ and similarly $RP(\overline{x}) = \overline{RP(x)}$. So, any projection in R/I has the form \overline{e} , where $e \in P(R)$. If v is a partial isometry in \overline{R} and e, $f \in P(R)$ are such that $\overline{e} = vv^*$, $\overline{f} = v^*v$ then we observe that we can choose $w' \in eRf$ such that $\overline{w'} = v$. We have

(1)
$$w'w'^* = e + y \quad \text{with } y \in I.$$

Put h = LP(y), and note that $h \le e$. By multiplying the relation (1) on right and left by e - h, we obtain

(2)
$$(e-h)w'w'^*(e-h) = e-h.$$

Set w = (e - h)w'. Since $h \in I$, we have $\overline{w} = v$. Also, by (2), we have $ww^* = e - h \le e$. Putting $e_1 = e - h$, $f_1 = w^*w = w'^*(e - h)w'$, we have $e_1 \le e$, $f_1 \le f$ and $e_1 \stackrel{*}{\sim} f_1$. Moreover, $\overline{e}_1 = \overline{e}$ and $\overline{f}_1 = \overline{f}$ and so, if we put $e_2 = h = e - e_1$, $f_2 = f - f_1$, then we have e_2 , $f_2 \in I$.

It is obvious from the relations $LP(\bar{x}) = LP(x)$ and $RP(\bar{x}) = RP(x)$ that if R satisfies LP $\stackrel{*}{\sim}$ RP, then $\bar{R} = R/I$ also satisfies LP $\stackrel{*}{\sim}$ RP. However, it is not true that property (PC) is preserved in factor rings, as the following example shows.

EXAMPLE 1.7. There exists a *-regular ring R such that

(a) R is \aleph_0 -continuous and \aleph_0 -injective (see [5] for definitions) and $Q_r(R) = Q_l(R)$.

(b) R has (PC) but R does not have LP $\stackrel{*}{\sim}$ RP.

(c) There exists a maximal two-sided ideal M such that the factor ring R/M does not satisfy (PC).

Proof. Let X be any uncountable infinite set. For $i \in X$, set $R_i = M_2(\mathbf{R})$. Consider $R = \{x \in \prod_{i \in X} R_i | x_i \in M_2(\mathbf{Q}) \text{ for all but countably many } i \in X\}$. Obviously, R is a *-regular ring.

(a) If $(e_n)_{n \in \mathbb{N}}$ is any sequence of projections of R, then clearly $\bigvee_{n \in \mathbb{N}} e_n$ exists in $\prod_{i \in X} R_i$ and $\bigvee_{n \in \mathbb{N}} e_n \in R$. So, since $\prod_{i \in X} R_i$ is continuous, R is \aleph_0 -continuous. Since $R \cong M_2(S)$, where $S = \{x \in \prod_{i \in X} K_i | K_i = \mathbb{R} \text{ for all } i \in X, \text{ and } x_i \in \mathbb{Q} \text{ for all but countably many } i \in X\}$, it follows from [5, Corollary 14.13] that R is \aleph_0 -injective. Clearly, $Q_r(R) = Q_l(R) = \prod_{i \in X} R_i$.

(b) If $eRf \neq 0$, with $e, f \in P(R)$, then there exist nonzero subprojections $e_1 \leq e, f_1 \leq f$ such that $e_1 \sim f_1$. There exist some $i \in X$ such that e_{1i} is nonzero, and we observe that $e_{1i} \stackrel{*}{\sim} f_{1i}$ in $M_2(\mathbf{R})$. Define nonzero projections e_2, f_2 in R by $e_{2j} = f_{2j} = 0$ if $j \in X$ and $j \neq i$; $e_{2i} = e_{1i}$, $f_{2i} = f_{1i}$. Clearly, $e_2 \leq e_1, f_2 \leq f_1$ and $e_2 \stackrel{*}{\sim} f_2$.

To show that R does not satisfy LP $\stackrel{*}{\sim}$ RP, note first that the projections $\binom{1/2}{1/2} \binom{1/2}{1/2}$ and $\binom{1}{0} \binom{0}{0}$ are equivalent but not *-equivalent in $M_2(\mathbf{Q})$. Set $p_i = \binom{1/2}{1/2} \binom{1/2}{1/2}$ for all $i \in X$; $q_i = \binom{1}{0} \binom{0}{0}$ for all $i \in X$, and put $p = (p_i)_{i \in X}$, $q = (q_i)_{i \in X}$. Then, p and q are equivalent but not *-equivalent projections in R.

(c) Let $J = \{x \in R | x_i = 0 \text{ for all but countable many } i \in X\}$. Clearly, J is a proper two-sided ideal of R. Let M be a maximal two-sided ideal of R such that J is contained in M. It follows from [5, Thm. 14.33] that R/M is a simple self-injective *-regular ring. So, by Theorem 1.4, R/M has LP $\stackrel{*}{\sim}$ RP if and only if it has (PC). Consider the projections p, q constructed in (b). We note that neither p nor q belong to M. We have $p \sim q$ in R and so $\bar{p} \sim \bar{q}$ in $\bar{R} = R/M$. If \bar{R} satisfies (PC), then $\bar{p} \stackrel{*}{\sim} \bar{q}$, and by applying Lemma 1.6, we see that there exist orthogonal decompositions p = p' + p'', q = q' + q'' with $p' \stackrel{*}{\sim} q'$ and $p'', q'' \in M$. Since all p_i, q_i have rank one, we deduce that each p'_i is either 0 or p_i . It follows that $p', q' \in J$ and so $p, q \in M$. This is a contradiction. So, R/M does not satisfy (PC).

PROPOSITION 1.8. Let R be a *-regular ring such that the intersection of the maximal two-sided ideals of R is zero. If R/M satisfies (PC) for all maximal two-sided ideals M of R, then R satisfies (PC).

Proof. It suffices to see that given two nonzero equivalent projections e, f in R, there exist nonzero subprojections $e_1 \leq e, f_1 \leq f$ such that $e_1 \stackrel{*}{\sim} f_1$. Let M be a maximal two-sided ideal of R such that $e, f \notin M$. Then, \bar{e} and \bar{f} are nonzero projections in $\bar{R} = R/M$. By hypothesis, \bar{R} satisfies (PC) so there exist nonzero subprojections $\bar{e}' \leq \bar{e}, \bar{f}' \leq \bar{f}$ such that $\bar{e}' \stackrel{*}{\sim} \bar{f}'$ in \bar{R} . Set e'' = LP(ee'), f'' = LP(ff') and observe that $\bar{e}'' = \bar{e}', \bar{f}'' = \bar{f}', e'' \leq e, f'' \leq f$. Thus, there exist orthogonal decompositions $e'' = e_1 + e_2, f'' = f_1 + f_2$ with $e_1 \stackrel{*}{\sim} f_1$ and $e_2, f_2 \in M$. Clearly, e_1 and f_1 are nonzero *-equivalent projections and $e_1 \leq e, f_1 \leq f$.

Proposition 1.8 and Example 1.7 suggest that maybe any *-regular ring such that the intersection of the maximal two-sided ideals is zero and the simple homomorphic images satisfy LP $\stackrel{*}{\sim}$ RP has LP $\stackrel{*}{\sim}$ RP. However, this is not true and we offer a counterexample in §3.

Now, we examine property LP $\stackrel{*}{\sim}$ RP in matrix rings. Recall that if R is a *-regular ring with *n*-positive definite involution, then the ring $M_n(R)$ of $n \times n$ matrices over R is also *-regular with involution $A^{\#} = (a_{ii}^{*})$, where $A = (a_{ij})$ (the *-transpose involution). We shall assume in the rest of this section that $M_n(R)$ is endowed with this involution.

LEMMA 1.9. Let R be a *-regular ring with 2-positive definite involution. Set $S = M_2(R)$. If E is a projection in S, then there exists an orthogonal decomposition $E = E_1 + E_2$, where $E_1 = \begin{pmatrix} p & 0 \\ 0 & a \end{pmatrix}$, with $p, q \in P(R)$ and $E_2 = \begin{pmatrix} a_1 & a_2 \\ a_2^* & a_2 \end{pmatrix}$, with $a_1 R = a_2 R$ and $a_2^* R = a_3 R$.

Proof. Set $E = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$. We have

$$(1) a^2 + bb^* = a$$

$$(2) c^2 + b^*b = c,$$

 $c^2 + b^*b = c$ ab + bc = b,(3)

and $a = a^*, c = c^*$.

Set e = LP(a) = RP(a); f = LP(c) = RP(c); g = LP(b); h =LP(b^*). From (1) and (2) we have $bb^* = a(1 - a)$ and $b^*b = c(1 - c)$ and so, $g \leq e, h \leq f$.

We claim that ag = ga. Set $d = bb^*$, and note that ad = da. We have g = LP(d) = RP(d), and so gad = da = ad. Right multiplying this relation by \overline{d} , the relative inverse of d, we obtain gag = ag. Analogously, ga = gag, and we conclude that ag = ga.

Similarly, we can show hc = ch. Now, we have

(4)
$$(e-g)a = a(e-g) = ((e-g)a)^*,$$

(5)
$$(e-g)a^2(e-g) = (e-g)a(e-g)$$

It follows that (e - g)a is a projection. Note that (e - g)aR =(e-g)eR = (e-g)R. Hence,

e - g = (e - g)a(6)

and, similarly

(7)
$$f-h=(f-h)c$$

It follows from (1)-(7) that we have an orthogonal decomposition

$$\begin{pmatrix} a & b \\ b^* & c \end{pmatrix} = \begin{pmatrix} e-g & 0 \\ 0 & f-h \end{pmatrix} + \begin{pmatrix} ga & b \\ b^* & hc \end{pmatrix}.$$

Now, (ga)R = geR = gR = bR and $(hc)R = hfR = hR = b^*R$. Putting

$$E_1 = \begin{pmatrix} e - g & 0 \\ 0 & f - h \end{pmatrix}, \qquad E_2 = \begin{pmatrix} ga & b \\ b^* & hc \end{pmatrix}$$

we have the desired projections.

We note that the decomposition given in Lemma 1.9 is unique. Set $S = M_2(R)$. We say that a projection E of S is of type A if $E = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$ with $p, q \in P(R)$. We say that E is of type B if $E = \begin{pmatrix} a_1 & a_2 \\ a_2 & a_3 \end{pmatrix}$ with $a_1R = a_2R$, $a_2^*R = a_3R$. By Lemma 1.9, every projection of S is, in a unique way, an orthogonal sum of a projection of type A and a projection of type B.

We now construct some projections of type B. If $e \in P(R)$ and w_1 , $w_2 \in R$, we say that (w_1, w_2) is an *isometric pair* for e if $w_1R = w_1^*R = w_2R = eR$ and $w_1w_1^* + w_2w_2^* = e$. It is routine to verify that if (w_1, w_2) is an isometric pair for e, then

$$E = \begin{pmatrix} w_1^* w_1 & w_1^* w_2 \\ w_2^* w_1 & w_2^* w_2 \end{pmatrix}$$

is a projection of S of type B which is *-equivalent to $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ (implemented by $\begin{pmatrix} w_1 & w_2 \\ 0 & 0 \end{pmatrix}$).

PROPOSITION 1.10. Let R be a *-regular ring with 2-positive definite involution such that $S = M_2(R)$ satisfies LP $\stackrel{*}{\sim}$ RP. If E is a projection in S, then there exists an orthogonal decomposition $E = E_1 + E_2$, where E_1 is a projection of type A and there exist a projection e in R and an isometric pair for e, (w_1, w_2) , such that

$$E_2 = \begin{pmatrix} w_1^* w_1 & w_1^* w_2 \\ w_2^* w_1 & w_2^* w_2 \end{pmatrix}.$$

Proof. By Lemma 1.9, $E = E_1 + E_2$, where E_1 is type A and E_2 is type B. Set $E_2 = \begin{pmatrix} a_1 & a_2 \\ a_2^* & a_3 \end{pmatrix}$, and put $e = LP(a_1) = RP(a_1) = LP(a_2)$; $f = LP(a_3) = RP(a_3) = LP(a_2^*)$. Set $G = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$; $G_1 = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$; $G_2 = \begin{pmatrix} 0 & 0 \\ 0 & f \end{pmatrix}$. It is not difficult to see that

 $G \cdot S = G_1 \cdot S \oplus G_2 \cdot S = G_1 \cdot S \oplus E_2 \cdot S = G_2 \cdot S \oplus E_2 \cdot S.$

We conclude that $G_1 \cdot S \cong G_2 \cdot S \cong E_2 \cdot S$. Since, by hypothesis, S satisfies LP $\stackrel{*}{\sim}$ RP, we have $E_2 \stackrel{*}{\sim} G_1$. Let W be a partial isometry of S implementing this *-equivalence. It is easy to see that W has the form $\binom{w_1 \ w_2}{0}$ for $w_1, w_2 \in R$. An easy computation shows that (w_1, w_2) is an isometric pair for e.

PROPOSITION 1.11. Let R be a *-regular ring with 2-positive definite involution and satisfying LP $\stackrel{*}{\sim}$ RP. Set $S = M_2(R)$. Then, S satisfies LP $\stackrel{*}{\sim}$ RP if and only if for every projection $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ of S of type B with e = LP(a) = LP(b), we have $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \stackrel{*}{\sim} \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$.

Proof. We first observe that every subprojection of a projection of type B is itself of type B. This follows from Lemma 1.9 by observing that a projection of type B cannot contain a nonzero projection of type A. For, if $\binom{p}{0} \binom{q}{q} \leq \binom{a}{b^*} \binom{b}{c}$, where $\binom{a}{b^*} \binom{b}{c}$ is of type B, then pa = p, pb = 0, $qb^* = 0$, qc = q. But aR = bR implies $\ell(a) = \ell(b)$, so pa = 0 = p, and similarly qc = 0 = q.

If $E = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}$, then we say E is type A_1 and if $E = \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix}$, then we say that E is type A_2 . Note that every projection in S is an orthogonal sum of projections of types A_1 , A_2 and B. Also, note that any subprojection of a projection E of type A_1 , A_2 or B is itself of the same type as E.

Suppose that E, F are two equivalent projections in S. We will show that $E \stackrel{*}{\sim} F$ provided S satisfies the stated condition. Let $E = E_1 + E_2 + E_3$ be the decomposition of E into projections E_1 , E_2 and E_3 of types A_1 , A_2 and B respectively. Since $E \sim F$, there exists an orthogonal decomposition $F = F_1 + F_2 + F_3$, with $E_1 \sim F_1$, $E_2 \sim F_2$ and $E_3 \sim F_3$. For i = 1, 2, 3, we have orthogonal decompositions $F_i = F_{i1} + F_{i2} + F_{i3}$ of F_i into projections of types A_1 , A_2 and B respectively. Returning to E, we obtain $E_i = E_{i1} + E_{i2} + E_{i3}$ with $E_{ij} \sim F_{ij}$ for i, j = 1, 2, 3. So, we have decomposed E and F into nine orthogonal projections, each one of pure type. It follows that it suffices to consider the following cases:

- (a) E is type A_1 and F is type A_1 .
- (b) E is type A_1 and F is type A_2 .
- (c) E is type A_1 and F is type B.
- (d) E is type B and F is type B.

Case (a). If $E = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}$, $F = \begin{pmatrix} p' & 0 \\ 0 & 0 \end{pmatrix}$ with $p, p' \in P(R)$, then it follows that $p \sim p'$ in R. Since R satisfies LP $\stackrel{*}{\sim}$ RP, we have $p \stackrel{*}{\sim} p'$, and so $E \stackrel{*}{\sim} F$.

Case (b). Similar to case (a).

Case (c). By hypothesis, $F = \begin{pmatrix} a \\ b^* \end{pmatrix} \stackrel{b}{\sim} \begin{pmatrix} e \\ 0 \end{pmatrix}$, where eR = aR = bR. So, $\begin{pmatrix} e \\ 0 \end{pmatrix} \sim E$. By case (a), $\begin{pmatrix} e \\ 0 \end{pmatrix} \stackrel{0}{\sim} E$, and so, $E \stackrel{*}{\sim} F$.

Case (d). Each one of E, F is *-equivalent, by hypothesis, to a projection of type A_1 and so, case (a) applies.

If S satisfies LP $\stackrel{\star}{\sim}$ RP, then it follows as in the proof of Proposition 1.10 that for a projection $E = \begin{pmatrix} a & b \\ b^{\star} & c \end{pmatrix}$ of S of type B, with e = LP(a), we have $E \stackrel{\star}{\sim} \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$.

Recall that a *-ring is said to be *-Pythagorean if for every x, y in R there exists $z \in R$ such that $xx^* + yy^* = zz^*$. Following [11], we say than an element a in R is a norm in R if it has the form $a = xx^*$, with $x \in R$. Clearly, in a *-Pythagorean ring any sum of norms is a norm.

The following theorem is an extension of some results of Handelman, cf. [9, Theorem 4.5] and [11; Theorem 4.9, Corollary 4.10].

THEOREM 1.12. Let R be a *-regular ring with 2-positive definite involution and satisfying LP $\stackrel{*}{\sim}$ RP. Then, $M_2(R)$ satisfies LP $\stackrel{*}{\sim}$ RP if and only if R is *-Pythagorean. In this case, * is positive definite and $M_n(R)$ satisfies LP $\stackrel{*}{\sim}$ RP for all $n \ge 1$.

Proof. The "only if" part follows from [16, Lemma 1].

Assume now that R is *-Pythagorean. By Proposition 1.11, it suffices to see that for any projection $E = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$ in $M_2(R)$ with aR = bR, $b^*R = cR$, e = LP(a), we have $E \stackrel{*}{\sim} \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$. We have $a = a^2 + bb^* = aa^* + bb^*$, so there exists w in R such that $a = ww^*$. Since R has LP $\stackrel{*}{\sim}$ RP, we see from Lemma 1.1 that we can choose $w \in eRe$. Let \overline{w} be the relative inverse of w and note that

(1)
$$w\overline{w} = \overline{w}w = e.$$

Consider the relation

$$ww^*ww^* + bb^* = ww^*.$$

By multiplying the relation (2) on the left by \overline{w} and on the right by $\overline{w}^* = \overline{w^*}$ and using (1), we get

$$w^*w + \overline{w}bb^*\overline{w}^* = e.$$

Hence,

$$\begin{pmatrix} w^* & \overline{w}b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w & 0 \\ b^*\overline{w}^* & 0 \end{pmatrix} = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$$

and so $\begin{pmatrix} w^* & \overline{w}b \\ 0 & 0 \end{pmatrix}$ is a partial isometry. It follows that

$$F = \begin{pmatrix} w & 0 \\ b^* \overline{w}^* & 0 \end{pmatrix} \begin{pmatrix} w^* & \overline{w}b \\ 0 & 0 \end{pmatrix}$$

is a projection in S and we compute that

$$F = \begin{pmatrix} a & b \\ b^* & b^* \overline{w}^* \overline{w} b \end{pmatrix}.$$

Note that $b^*\overline{w}^*\overline{w}bR = b^*R = cR$, so F is of type B. To see that E = F, we observe that for any projection $\begin{pmatrix} a_1 & a_2 \\ a_2^* & a_3 \end{pmatrix}$ of type B, a_3 is uniquely determined by a_1 and a_2 . For, note that $a_2 = a_1a_2 + a_2a_3$. Let \overline{a}_2 be the relative inverse of a_2 . Multiplying the above relation on the left by \overline{a}_2 , and observing that $f = \overline{a}_2a_2 = \operatorname{RP}(a_2) = \operatorname{LP}(a_2^*) = \operatorname{LP}(a_3)$, we get $f = \overline{a}_2a_1a_2 + a_3$, so $a_3 = \overline{a}_2(1 - a_1)a_2$.

Clearly, if R is *-Pythagorean, then * is positive definite. By applying [16, Theorem 3], we see that $M_{2^n}(R)$ is *-Pythagorean for all $n \ge 0$, and so, $M_{2^n}(R)$ satisfies LP $\stackrel{*}{\sim}$ RP for all $n \ge 0$. Since any ring $M_m(R)$ is a corner in some ring $M_{2^n}(R)$, it follows that $M_m(R)$ satisfies LP $\stackrel{*}{\sim}$ RP for all $m \ge 1$.

Let R be a *-ring such that $M_n(R)$ is Rickart for all $n \ge 1$. We say that R satisfies LP $\stackrel{*}{\sim}$ RP matricially if $M_n(R)$ satisfy LP $\stackrel{*}{\sim}$ RP for all $n \ge 1$.

COROLLARY 1.13. Let R be a *-regular ring with 2-positive definite involution. Then, R is a *-regular ring satisfying LP \sim RP matricially if and only if R satisfies the following condition

If $aa^* + bb^* \in eRe$, where $a, b \in R$, $e \in P(R)$, then there exists $z \in eRe$ such that $aa^* + bb^* = zz^*$.

If R is a self-injective *-regular ring, we see from Propositions 1.5 and 1.8 that R satisfies LP $\stackrel{*}{\sim}$ RP if and only if all simple homomorphic images of R satisfy LP $\stackrel{*}{\sim}$ RP. Now we obtain a characterization of the self-injective *-regular rings of type I which satisfy LP $\stackrel{*}{\sim}$ RP matricially. The background of the structure theory for regular, right self-injective rings can be found in [5, Chapter 10].

COROLLARY 1.14. Let R be a *-regular self-injective ring of type I. Then, $M_m(R)$ is a *-regular self-injective ring of type I satisfying LP ~ RP, for all $m \ge 1$, if and only if R is *-isomorphic to a direct product $\prod_{n=1}^{\infty} M_n(A_n)$, where each A_n is an abelian self-injective *-regular ring and all its simple homomorphic images are *-Pythagorean division rings with positive definite involution.

220

Proof. If $R \cong \prod_{n=1}^{\infty} M_n(A_n)$, where each A_n is an abelian self-injective *-regular ring with all division ring images *-Pythagorean and with positive definite involution, we see from 1.5, 1.8 and 1.12 that R satisfies LP $\stackrel{*}{\sim}$ RP matricially. Also, it is well-known that $M_m(R)$ is a regular self-injective ring of type I, for all $m \ge 1$.

For the converse, note that by [5, Thm. 10.24] there exist regular, self-injective rings R_1, R_2, \ldots such that $R \cong \prod_{n=1}^{\infty} R_n$ and each R_n is of type I_n . It follows that there exist orthogonal central projections e_1, e_2, \ldots in R with $\bigvee_n e_n = 1$, and orthogonal projections $f_{i1}, f_{i2}, \ldots, f_{ii}$ for i = $1, 2, \ldots$ such that $f_{i1} \sim f_{i2} \sim \cdots \sim f_{ii}$ and $e_i = f_{i1} + f_{i2} + \cdots + f_{ii}$ for $i = 1, 2, \ldots$ Since R satisfies LP $\stackrel{*}{\sim}$ RP, also $e_i R$ satisfies LP $\stackrel{*}{\sim}$ RP and so $f_{i1} \stackrel{*}{\sim} f_{i2} \stackrel{*}{\sim} \cdots \stackrel{*}{\sim} f_{ii}$. Set $A_n = f_{n1}Rf_{n1}$, and observe that $e_n R \stackrel{*}{\cong} M_n(A_n)$. We deduce that $R \stackrel{*}{\cong} \prod_{n=1}^{\infty} M_n(A_n)$ and A_n are abelian self-injective *-regular rings with positive definite involution and satisfying LP $\stackrel{*}{\sim}$ RP matricially. Since all simple homomorphic images of an abelian regular ring are division rings, the result follows.

2. Pseudo-rank functions on *-regular rings. In this section, we study property LP $\stackrel{*}{\sim}$ RP for completions of *-regular rings with respect to pseudo-rank functions. In particular, we show that if R is a *-regular unit-regular ring satisfying LP $\stackrel{*}{\sim}$ RP and N is a pseudo-rank function on R, then its N-completion also satisfies LP $\stackrel{*}{\sim}$ RP. In [3], Burke showed this holds for an irreducible *-regular rank ring with order k, with $k \ge 4$, in which comparability holds, which turns out to be a very special case of the result here. Our result follows from Theorem 2.8, which is also used in §3.

A pseudo-rank function on a regular ring R is a map N: $R \rightarrow [0, 1]$ such that

(a) N(1) = 1

(b) $N(xy) \le N(x)$ and $N(xy) \le N(y)$

(c) N(e + f) = N(e) + N(f) for all orthogonal idempotents $e, f \in R$.

A rank function on R is a pseudo-rank function with the additional property

(d) N(x) = 0 implies x = 0.

If N is a pseudo-rank function on R, then the rule $\delta(x, y) = N(x - y)$ defines a pseudo-metric on R. Clearly, δ is a metric iff N is a rank function. The Hausdorff completion of R with respect to δ , \overline{R} , is showed [5, Chapter 19] to be a right and left self-injective regular ring which is complete with respect to the \overline{N} -metric, where \overline{N} is the unique extension of N to \overline{R} .

If R is *-regular, it follows as in [8, Prop. 1] that we can extend * in a natural way to the N-completion of R, \overline{R} , so that \overline{R} becomes a *-regular ring.

We now show the analogue of [5, Lemma 19.5] for projections in *-regular rings.

LEMMA 2.1. Let R be a *-regular ring with pseudo-rank function N, let \overline{R} be its N-completion and let φ : $R \to \overline{R}$ be the natural map. If p, $q \in P(\overline{R})$ are orthogonal, then there exists a sequence $\{(p_n, q_n)\} \subseteq R \times R$ such that

(a) $\varphi(p_n) \to p, \varphi(q_n) \to q$.

(b) For all n, p_n and q_n are orthogonal projections.

Proof. By [5, Lemma 19.5], there exists a sequence $\{(e_n, f_n)\} \subseteq R \times R$ such that $\varphi(e_n) \to p$, $\varphi(f_n) \to q$ and for all n, e_n and f_n are orthogonal idempotents. Set $p_n = LP(e_n)$, $q_n = RP(f_n)$, and note that $p_n e_n = e_n$, $e_n p_n = p_n$, $q_n f_n = q_n$, $f_n q_n = f_n$. We have $q_n p_n = q_n f_n e_n p_n = 0$, so, for all n, p_n and q_n are orthogonal projections in R.

Given $\varepsilon > 0$, we can choose M such that $\overline{N}(p - \varphi(e_n)) < \varepsilon/2$ and $\overline{N}(p - \varphi(e_n^*)) < \varepsilon/2$ for n > M. Now, we have

$$N(p_n - e_n) = N(p_n e_n^* - p_n e_n) \le N(e_n^* - e_n)$$

$$\le \overline{N}(\varphi(e_n^*) - p) + \overline{N}(p - \varphi(e_n)) < \varepsilon \quad \text{if } n > M.$$

It follows that $\varphi(p_n) \to p$, and similarly $\varphi(q_n) \to q$.

PROPOSITION 2.2. (a) Let R be a regular ring and let N be a pseudo-rank function on R. Let $\varphi: R \to \overline{R}$ be the natural map from R to its N-completion, \overline{R} . If e, f are equivalent idempotents in \overline{R} , then there exist sequences $\{e_n\}, \{f_n\}$ such that, for all n, e_n and f_n are equivalent idempotents in R and $\varphi(e_n) \to e, \varphi(f_n) \to f$.

(b) In (a), if e and f are orthogonal, then we can choose $\{e_n\}, \{f_n\}$ such that e_n and f_n are equivalent orthogonal idempotents for all n.

(c) If R is *-regular and p, q are (orthogonal) equivalent projections in \overline{R} , then there exist $\{p_n\}, \{q_n\}$ such that, for all n, p_n and q_n are (orthogonal) equivalent projections in R and $\varphi(p_n) \rightarrow p$, $\varphi(q_n) \rightarrow q$.

Proof. (a) It suffices to see that given $\varepsilon > 0$, there exist equivalent idempotents h, g in R such that $\overline{N}(e - \varphi(h)) < \varepsilon$ and $\overline{N}(f - \varphi(g)) < \varepsilon$. We observe that we can get idempotents e', f' in R, and elements

222

 $x \in e'Rf'$ and $y \in f'Re'$ such that $\overline{N}(e - \varphi(e')) < \varepsilon/2$, $\overline{N}(f - \varphi(f')) < \varepsilon/2$ while $N(e' - xy) < \varepsilon/6$ and $N(f' - yx) < \varepsilon/6$. Note that $xy \in e'Re'$. Clearly, xyR + (e' - xy)R = e'R and so there exists an idempotent h in R such that e'h = he' = h, hR = xyR and $(e' - h)R \le (e' - xy)R$. Thus, we have $N(e' - h) < \varepsilon/6$.

Let $\lambda \in Rh$ with $xy\lambda = h$. We have

$$N(e'\lambda - e') \le N(e'\lambda - h) + N(h - e')$$

= $N((e' - xy)\lambda) + N(h - e') < \varepsilon/6 + \varepsilon/6 = \varepsilon/3.$

Set $g = y\lambda x$. Clearly, g is idempotent, g is equivalent to h and $g \le f'$. We have

$$N(f'-g) = N(f'-y\lambda x) \le N(f'-yx) + N(yx-y\lambda x)$$

<\varepsilon / 6 + N(y(e'-e'\lambda)x) < \varepsilon / 6 + \varepsilon / 3 = \varepsilon / 2.

So, g and h are equivalent idempotents and

$$\overline{N}(e - \varphi(h)) \le \overline{N}(e - \varphi(e')) + N(e' - h) < \varepsilon/2 + \varepsilon/6 < \varepsilon,$$

$$\overline{N}(f - \varphi(g)) \le \overline{N}(f - \varphi(f')) + N(f' - g) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

(b) We note that, by [5, Lemma 19.5] we can choose the idempotents e', f' in the proof of (a) to be orthogonal. Since $h \in e'Re', g \in f'Rf', h$ and g are orthogonal and so the result follows.

(c) If p, q are (orthogonal) equivalent projections in \overline{R} , then by ((b)) (a) there exist $\{e_n\}, \{f_n\}$ with $\varphi(e_n) \to p, \varphi(f_n) \to q$, and for all n, e_n and f_n (orthogonal) equivalent idempotents in R. Set $p_n = LP(e_n), q_n = RP(f_n)$. As in the proof of Lemma 2.1, we obtain $\varphi(p_n) \to p$ and $\varphi(q_n) \to q$. Also, it is easily shown that, for all n, p_n and q_n are (orthogonal) equivalent projections in R.

Let R be any *-ring. We say that R satisfies the *-cancellation law for projections (briefly, R has *-cancellation) if whenever $e \stackrel{\star}{\sim} f$ with e, $f \in P(R)$, we have $1 - e \stackrel{\star}{\sim} 1 - f$. This is equivalent to saying that two *-equivalent projections in R are unitarily equivalent. Also, it is easy to see that if R has *-cancellation and $e, f, g, h \in P(R)$ are such that e and f are orthogonal, g and h are orthogonal, $e + f \stackrel{\star}{\sim} g + h$ and $f \stackrel{\star}{\sim} h$, then $e \stackrel{\star}{\sim} g$.

Examples of *-regular rings with *-cancellation are the *-regular rings with general comparability for *-equivalence. Also, the *-regular rings with primitive factors artinian and the *-regular self-injective rings of type I satisfy the *-cancellation law. The key to prove this is the following lemma.

LEMMA 2.3. Let R be any simple artinian ring with proper involution *. Then, R satisfies the *-cancellation law.

Proof. We note that R is *-regular. Since R is simple artinian, there exist orthogonal equivalent idempotents e_1, e_2, \ldots, e_n such that $e_1 + \cdots + e_n = 1$ and each $e_i R$ is a simple R-module. Since R is *-regular, we can assume that e_1, e_2, \ldots, e_n are projections, so that $e_1Re_1 = D$ is a division ring with involution. Choose $x_i \in e_1 R e_i$, $y_i \in e_i R e_1$, i =1,..., n, such that $x_i y_i = e_1$, $y_i x_i = e_i$ for i = 1, ..., n. Endow $M_n(D)$ with an involution # given by $(a_{ij})^{\#} = (b_{ij})$, where $b_{ij} =$ $(x_i x_i^*) a_{ii}^* (y_i^* y_i), i, j = 1, ..., n$. The map $R \to M_n(D)$ given by $a \mapsto$ $(x_i a y_i)$ is a *-isomorphism from R onto $M_n(D)$ with inverse map $(a_{ij}) \mapsto$ $\sum_{i,j=1}^{n} y_i a_{ij} x_j$. Note that $x_i x_i^*$, $y_j^* y_j \in e_1 R e_1 = D$ are such that $(x_i x_i^*)(y_i^* y_i) = (y_i^* y_i)(x_i x_i^*) = e_1 = 1_D$. So, $x_i x_i^* = (y_i^* y_i)^{-1}$ in D. Thus, if we put $t_i = y_i^* y_i$ for i = i, ..., n we have $t_i = t_i^*$ and $b_{ij} = t_i^{-1} a_{ji}^* t_j$, where $(a_{ij})^{\#} = (b_{ij})$.

If x_1, \ldots, x_n are in D, and some x_i is nonzero, then, since # is a proper involution on $M_n(D)$, we have $x_1^*t_1x_1 + \cdots + x_n^*t_nx_n \neq 0$. Define $\langle , \rangle : D^n \times D^n \to D$ by

$$\langle a,b\rangle = \langle (a_1,\ldots,a_n), (b_1,\ldots,b_n)\rangle = a_1^*t_1b_1 + \cdots + a_n^*t_nb_n.$$

 \langle , \rangle has the following properties:

(1)
$$\langle a, b + c \rangle = \langle a, b \rangle + \langle a, c \rangle$$
,
(2) $\langle a, b \rangle = \langle b, a \rangle^*$

$$(2) \langle u, b \rangle = \langle b, u \rangle$$

pg. 162].

 $(1) \langle a, b \rangle = \langle a, b \rangle \lambda,$ $(2) \langle a, b \rangle = 0 \text{ iff } a = 0$

$$(4)(u, u) = 0 \text{ III } u = 0$$

for $a, b, c \in D^n$, $\lambda \in D$. So, \langle , \rangle is a nonsingular hermitian form over D^n . It is easy to verify that $\langle Tx, y \rangle = \langle x, T^{\#}y \rangle$ for $T \in M_n(D)$, $x, y \in D^n$, and so isometric spaces in D^n correspond to *-equivalent projections in $M_n(D)$. So, the result follows from Witt's theorem for division rings with involution [12,

PROPOSITION 2.4. Let R be a *-regular ring and assume that either R has all primitive factor rings artinian or R is self-injective of type I. Then, R satisfies the *-cancellation law.

Proof. Let R be a *-regular ring with all primitive factor rings artinian. By [5, Corollary 6.7], all indecomposable factor rings of R are simple artinian. Thus, by Lemma 2.3, they satisfy the *-cancellation law. Also, note that we can write the *-cancellation law in equational terms. So, we can proceed as in [5, Thm. 6.10].

If R is a *-regular, self-injective ring of type I, then $R \cong \prod_{n=1}^{\infty} R_n$, where each R_n is of type I_n and so, R_n has all primitive factor rings artinian. Thus, each R_n satisfies the *-cancellation law and so, also R satisfies the *-cancellation law.

We note that the *-cancellation law is preserved in direct products and direct limits of *-rings. If R is *-regular and R satisfies the *-cancellation law, then, by Lemma 1.6, R/I has *-cancellation and unitaries in R/I lift to unitaries in R, for every two-sided ideal I of R.

LEMMA 2.5 (cf. [3, Lemma 6.5]). Let R be a *-regular ring with *-cancellation and let N be a pseudo-rank function on R. Let e_1 , e_2 , f_1 , $f_2 \in P(R)$ such that $e_1 \stackrel{*}{\sim} f_1$, $e_2 \stackrel{*}{\sim} f_2$ and let u_1 be a unitary such that $f_1 = u_1 e_1 u_1^*$. Then, there exists a unitary u_2 such that $u_2 e_2 u_2^* = f_2$ and $N(u_2 - u_1) \leq 2(N(e_2 - e_1) + N(f_2 - f_1))$.

Proof. We first observe that if $e, f \in P(R)$ are such that $eR \cap fR = 0$, then $eR \leq (e - f)R$, $fR \leq (e - f)R$ and so $N(e) + N(f) \leq 2N(e - f)$. Set $f_3 = u_1e_2u_1^*$, and note that $f_3 \stackrel{*}{\sim} f_2$ and

$$N(f_3 - f_1) = N(u_1(e_2 - e_1)u_1^*) = N(e_2 - e_1).$$

So,

(1)
$$N(f_3 - f_2) \le N(f_3 - f_1) + N(f_2 - f_1) = N(e_2 - e_1) + N(f_2 - f_1).$$

We have orthogonal decompositions $f_2 = f_2 \wedge f_3 + f'_2$, $f_3 = f_2 \wedge f_3 + f'_3$, where f'_2 , $f'_3 \in P(R)$. Note that $f'_2 R \cap f'_3 R = 0$.

Since R has *-cancellation, $f'_2 \stackrel{*}{\sim} f'_3$. Set $g = f'_2 \lor f'_3$. Then, there exists $u'_3 \in gRg$ such that $u'_3u'_3 = u'_3 u'_3 = g$ and $u'_3f'_2u'_3 = f'_3$. Set $u_3 = u'_3 + 1 - g$ and note that $u_3f_2u'_3 = f_3$ and $1 - u_3 = (1 - u_3)g = g(1 - u_3)$.

Finally, define $u_2 = u_3^* u_1$. We have $u_2 e_2 u_2^* = u_3^* u_1 e_2 u_1^* u_3 = u_3^* f_3 u_3 = f_2$, and

$$N(u_2 - u_1) = N(u_3^*u_1 - u_1) = N(1 - u_3) = N((1 - u_3)g)$$

$$\leq N(g) = N(f_2') + N(f_3') \leq 2N(f_2' - f_3')$$

$$= 2N(f_2 - f_3) \leq 2(N(e_2 - e_1) + N(f_2 - f_1)).$$

So, the result follows.

LEMMA 2.6. Let R be a *-regular ring with pseudo-rank function N. Let \overline{R} be the N-completion of R and let $\varphi: R \to \overline{R}$ denote the natural map. If w is a partial isometry in \overline{R} , then there exists a sequence $\{w_n\} \subseteq R$ such that

 $\varphi(w_n) \rightarrow w$ and, for all n, w_n is a partial isometry in R. If, in addition, R satisfies the *-cancellation law, then the group of unitaries of R is dense in that of \overline{R} . (These groups are endowed with the relative pseudo-rank-metric topology and they are topological groups.)

Proof. Set $e = ww^* \in P(\overline{R})$. Choose sequences $\{e_n\}, \{\alpha_n\}$ such that $e_n \in P(R), \alpha_n \in R$, for all n and $\varphi(e_n) \to e, \varphi(\alpha_n) \to w$. Note that we can assume that $\alpha_n \in e_n R$ for all n. Set $\gamma_n = e_n - \alpha_n \alpha_n^*$. Then, $\varphi(\gamma_n) \to e - ww^* = 0$. Put $e'_n = \operatorname{RP}(\gamma_n) = \operatorname{LP}(\gamma_n)$, all n. Clearly, $\varphi(e'_n) \to 0$. Consequently, $e''_n = e_n - e'_n$ are projections in R and $\varphi(e''_n) \to e$. Now, we note that $0 = e''_n \gamma_n e''_n = e''_n - e''_n \alpha_n \alpha_n^* e''_n$. So, $e''_n = (e''_n \alpha_n)(e''_n \alpha_n)^*$. We deduce that $w_n = e''_n \alpha_n$ are partial isometries such that $\varphi(w_n) \to ew = w$.

Clearly, the group of unitaries of R and that of \overline{R} are topological groups (see [8, Prop. 8]). If u is a unitary in \overline{R} , then there exists a sequence $\{w_n\}$ such that each w_n is a partial isometry and $\varphi(w_n) \to u$. If R has *-cancellation, then there exist unitaries u_n such that $w_n w_n^* u_n = w_n$ for all n. Since $\varphi(w_n w_n^*) \to 1$, we obtain $\varphi(u_n) \to u$.

In the next theorem, we show that the *-cancellation law extends from R to \overline{R} . This is not new in case \overline{R} is type I, by Proposition 2.4.

THEOREM 2.7. Let R be a *-regular ring with pseudo-rank function N. Let \overline{R} be the N-completion of R. If R satisfies the *-cancellation law, then so does \overline{R} .

Proof. Let φ : $R \mapsto \overline{R}$ denote the natural map.

Let e, f be two *-equivalent projections in \overline{R} , and let w be a partial isometry in \overline{R} such that $ww^* = e$ and $w^*w = f$. By Lemma 2.6, there exists a sequence $\{w_n\}$ of partial isometries in R such that $\varphi(w_n) \to w$. Set $e_n = w_n w_n^*$ and $f_n = w_n^* w_n$ and note that $e_n, f_n \in P(R)$ and $\varphi(e_n) \to e$, $\varphi(f_n) \to f$. By passing to subsequences of $\{e_n\}$ and $\{f_n\}$, we can assume that $N(e_{n+1} - e_n) < 2^{-n}$ and $N(f_{n+1} - f_n) < 2^{-n}$. Let u_1 be a unitary in R with $u_1 e_1 u_1^* = f_1$. We construct, by using Lemma 2.5, a sequence of unitaries $\{u_n\}$ in R such that $u_n e_n u_n^* = f_n$ and

$$N(u_{n+1} - u_n) \le 2(N(e_{n+1} - e_n) + N(f_{n+1} - f_n))$$

< 2(2⁻ⁿ + 2⁻ⁿ) = 2⁻ⁿ⁺².

It follows that $\{u_n\}$ is a Cauchy sequence. Let $u = \lim_{n \to \infty} \varphi(u_n) \in \overline{R}$. Clearly, $ueu^* = f$ and so, e and f are unitarily equivalent in \overline{R} . \Box Next, we show the following technical, but useful, result.

THEOREM 2.8. Let R be a *-regular ring with *-cancellation and let N be a pseudo-rank function on R. Let \overline{R} be its N-completion. Then, \overline{R} satisfies LP $\stackrel{*}{\sim}$ RP if and only if given $\varepsilon > 0$ and equivalent projections e, f in R, there exist subprojections $e' \le e, f' \le f$ such that $e' \stackrel{*}{\sim} f'$ and $N(e - e') < \varepsilon$, $N(f - f') < \varepsilon$.

Proof. Let φ : $R \mapsto \overline{R}$ denote the natural map.

Assume that \overline{R} satisfies LP $\stackrel{*}{\sim}$ RP. If e, f are equivalent projections in R, then $\varphi(e) \sim \varphi(f)$ and, since \overline{R} satisfies LP $\stackrel{*}{\sim}$ RP, we have $\varphi(e) \stackrel{*}{\sim} \varphi(f)$. Let w be a partial isometry in \overline{R} such that $ww^* = \varphi(e)$ and $w^*w = \varphi(f)$. We observe that, in this situation, we can choose the partial isometries $\{w_n\}$ constructed in the proof of Lemma 2.6 in such a way that $w_n \in eRf$. Set $e_n = w_n w_n^*$, $f_n = w_n^* w_n$. Clearly, $\varphi(e_n) \rightarrow \varphi(e)$ and $\varphi(f_n) \rightarrow \varphi(f)$, and $e_n \stackrel{*}{\sim} f_n$ for all n. It follows that $N(e - e_n) \rightarrow 0$ and $N(f - f_n) \rightarrow 0$. So, given $\varepsilon > 0$, there exist e', f' such that $e' \leq e, f' \leq f$, $e' \stackrel{*}{\sim} f'$ and $N(e - e') < \varepsilon$, $N(f - f') < \varepsilon$.

Conversely, assume that e and f are equivalent projections in \overline{R} . By Proposition 2.2, (c), there exist sequences $\{e_n\}, \{f_n\}$, with $e_n, f_n \in P(R)$, $\varphi(e_n) \to e, \varphi(f_n) \to f$, and $e_n \sim f_n$ for all n. Thus, by application of our hypothesis with $\varepsilon_n = 2^{-n}$, we have that there exist, for each n, subprojections $e'_n \leq e_n$, $f'_n \leq f_n$ such that $e'_n \stackrel{*}{\sim} f'_n$, $N(e_n - e'_n) < 2^{-n}$ and $N(f_n - f'_n) < 2^{-n}$. It follows that $\varphi(e'_n) \to e$ and $\varphi(f'_n) \to f$. Now, as in the proof of Theorem 2.7, we get a unitary u in \overline{R} such that $ueu^* = f$. In particular, we obtain that $e \stackrel{*}{\sim} f$.

So, if R has *-cancellation, then \overline{R} satisfies LP $\stackrel{*}{\sim}$ RP iff any two equivalent projections e, f in R can be "well approximated" with respect to N by *-equivalent subprojections in R. Since any *-regular unit-regular ring with LP $\stackrel{*}{\sim}$ RP obviously satisfies the *-cancellation law, we have

THEOREM 2.9. Let R be a *-regular unit-regular ring with pseudo-rank function N, and let \overline{R} be its N-completion. If R satisfies LP $\stackrel{*}{\sim}$ RP, then so does \overline{R} .

REMARK. Let R be any regular ring. Denote by P(R) the set of pseudo-rank functions of R. Define ([6]), if $P(R) \neq \emptyset$, $N^*(x) = \sup\{P(x) | P \in P(R)\}$ and $N^*(x) = 0$ if $P(R) = \emptyset$. Then, N^* induces a

pseudo-metric $\delta(x, y) = N^*(x - y)$ on R and the completion of R with respect to δ , S, is a regular ring, called the N*-completion of R. If R is *-regular, then S is also *-regular in a natural way. It can be seen that the results of this section also hold for the N*-completion of a *-regular ring. In particular, the *-cancellation law and, if R is unit-regular, the LP ~ RP axiom, extends from R to S.

Applications to the study of property LP $\stackrel{*}{\sim}$ RP for certain *-regu-3. lar self-injective rings. Let R be a *-regular ring with positive definite involution. We assume throughout in this section that $M_n(R)$ is endowed with the *-transpose involution (see §1). We proceed to construct a Grothendieck group for R which is attached to the *-equivalence of projections in the rings $M_n(R)$. We shall call this group $K_0^*(R)$. For to construct it, we follow the construction in [7] for C*-algebras. Set $P_{\infty}(R)$ $= \bigcup_{n=1}^{\infty} P(M_n(R)). \text{ For } e, f \in P_{\infty}(R), \text{ set } e \oplus f = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} \in P_{\infty}(R). \text{ If }$ $e, f \in P_{\infty}(R)$, then we say that e and f are *-equivalent, $e \stackrel{*}{\sim} f$, if $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ $\stackrel{*}{\sim} \begin{pmatrix} f & 0 \\ 0 & 0 \end{pmatrix}$ in some ring $M_m(R)$, for some suitably-sized zero matrices. Also, define e, $f \in P_{\infty}(R)$ to be stably *-equivalent, written $e \stackrel{*}{\approx} f$, provided $e \oplus g \stackrel{*}{\sim} f \oplus g$ for some $g \in P_{\infty}(R)$. Let $P_{\infty}(R) / \stackrel{*}{\approx}$ denote the family of all the equivalence classes defined by $\stackrel{*}{\approx}$ (which is clearly an equivalence relation). For $e \in P_{\infty}(R)$, we use $[e]_*$ to denote the equivalence class of e with respect to $\stackrel{*}{\approx}$. It follows easily that $P_{\infty}(R)/\stackrel{*}{\approx}$, with the operation $[e]_* + [f]_* = [e \oplus f]_*$, is an abelian semigroup with cancellation. So, we may formally adjoin inverses to $P_{\infty}(R)/\stackrel{*}{\approx}$, obtaining an abelian group, denoted by $K_0^*(R)$.

Recall that, if we use in the above construction equivalence instead of *-equivalence, we obtain the group $K_0(R)$, which can also be defined by using finitely generated projective modules over R (see [5, Chapter 15]).

We have a map $\Phi: K_0^*(R) \to K_0(R)$ given by $\Phi([e]_*) = [e]$ where [e] denotes the corresponding equivalence class of e in $K_0(R)$. This map is clearly a group homomorphism from $K_0^*(R)$ onto $K_0(R)$.

Define a cone C in $K_0^*(R)$ by $C = K_0^*(R)^+ = \{[e]_* | e \in P_{\infty}(R)\}$. It follows from [1, Thm. 3.1, (b)] that $(K_0^*(R), [1]_*)$ is a partially ordered group with order unit ([5, pg. 203]) for any *-regular ring R with positive definite involution. Also, we may view $\Phi: (K_0^*(R), [1]_*) \to (K_0(R), [1])$ as a morphism in the category \mathscr{P} defined in [5, pg. 203].

Now, we study $K_0^*(F)$, where F is any *-field with positive definite involution. In this case, $K_0^*(F)$ and $K_0(F)$ admit in a natural way a structure of ring, where the product is induced by the tensor product. Recall that $M_n(F) \otimes M_m(F) \cong M_{nm}(F)$ and the usual isomorphism is in

 $\mathbf{228}$

fact a *-isomorphism of *-algebras, if we define $(x \otimes y)^* = x^* \otimes y^*$ for $x \in M_n(F)$ and $y \in M_m(F)$. Also, note that $K_0(F) \cong \mathbb{Z}$, and so $\Phi: K_0^*(F) \mapsto K_0(F)$ induces a ring map $r: K_0^*(F) \to \mathbb{Z}$ given by $r([e]_* - [f]_*) = \operatorname{rank}(e) - \operatorname{rank}(f)$. If we set $K = \operatorname{Ker}(r)$, we have an exact sequence of groups

$$0 \to K \to K_0^*(F) \to \mathbb{Z} \to 0$$

Hence, $K_0^*(F) \cong \mathbb{Z} \oplus K$ as abelian groups. In fact, $K_0^*(F)$ is the ring generated by [1]_{*} and K. Since K is an ideal of $K_0^*(F)$, this is the unitification of the (non unital) ring K.

We now relate $K_0^*(F)$ with the Witt ring of F, W(F). The construction of W(F) can be found in [15]. There are no extra difficulties in constructing W(F) using hermitian forms instead of symmetric bilinear forms. We now fix some notation.

For any *-field F, an hermitian form over F is a map $\Phi: V \times V \rightarrow F$, where V is a finite-dimensional vector space over F, such that

- (1) $\Phi(e_1 + e_2, v) = \Phi(e_1, v) + \Phi(e_2, v),$
- (2) $\Phi(\lambda e, v) = \lambda \Phi(e, v)$ for $\lambda \in F$,
- (3) $\Phi(e, v) = \Phi(v, e)^*$.

Let F_s denote the fixed field of F, that is $F_s = \{x \in F | x = x^*\}$. For $a \in V$, we note that $\Phi(a, a) \in F_s$. We define $D_F(\Phi) = \{\lambda \in \dot{F} | \lambda = \Phi(a, a) \text{ for some } a \in V\} \subseteq \dot{F}_s$.

Each hermitian form Φ is isometric to a form $\langle a_1, \ldots, a_n \rangle$, with $a_1, \ldots, a_n \in D_F(\Phi)$, where $\langle a_1, \ldots, a_n \rangle$ denotes the hermitian form ψ : $F^n \times F^n \to F$ defined by $\psi((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = a_1 x_1 y_1^*$ $+ \cdots + a_n x_n y_n^*$.

If $ch(F) \neq 2$, then we construct W(F) as in [15, Chapter 2] using hermitian forms instead of symmetric bilinear forms. Recall [15, Prop. II.1.4] that

(1) The elements of W(F) are in one-one correspondence with the isometry classes of all anisotropic hermitian forms.

(2) Two nonsingular hermitian forms Φ, Φ' represent the same element in W(F) iff the anisotropic part of Φ , Φ_a , is isometric to the anisotropic part of Φ', Φ'_a ; in symbols, $\Phi_a \simeq \Phi'_a$.

(3) If dim Φ = dim Φ' (where Φ , Φ' are nonsingular) then Φ and Φ' represent the same element in W(F) iff $\Phi \simeq \Phi'$.

We now return to the case where * is positive definite. For $e \in P(M_n(F))$, we have an hermitian form associated $H(e) = (e(F^n), h_e)$, where h_e is the restriction to $e(F^n)$ of the hermitian form $\langle x, y \rangle = x_1 y_1^* + \cdots + x_n y_n^*$ over F^n . Set $-H(e) = (e(F^n), -h_e)$; and note that $\{-H(e)\} = -\{H(e)\}$, where $\{\Phi\}$ denotes the class of Φ in W(F).

PROPOSITION 3.1. (a) There exists an injective ring map φ : $K_0^*(F) \mapsto W(F)$ such that $\varphi([e]_* - [f]_*) = \{H(e) \oplus (-H(f))\}, \text{ for } e, f \in P_{\infty}(F).$

(b) The hermitian form $H(e) \oplus (-H(f))$ is isotropic if and only if there exist nonzero subprojections $e' \leq e$, $f' \leq f$ such that $e' \stackrel{*}{\sim} f'$ in $P_{\infty}(F)$.

Proof. Define $\varphi': K_0^*(F)^+ \to W(F)$ by $\varphi'([e]_*) = \{H(e)\}$. We show that φ' is well-defined, $\varphi'([e]_* + [f]_*) = \varphi'([e]_*) + \varphi'([f]_*)$ and $\varphi'([e]_* \cdot [f]_*) = \varphi'([e]_*) \cdot \varphi'([f]_*)$, for $e, f \in P_{\infty}(F)$. For, assume that $[e]_* = [f]_*$, with $e \in M_n(F)$, $f \in M_m(F)$. There exist $g \in P_{\infty}(F)$ and suitably-sized zero matrices such that

1	e	0	0)		$\int f$	0	0)	
	0	0 g 0	0	*	0	g	0	
	0 /	0	0)		0	0	0 /	

in some ring $M_k(F)$. By Lemma 2.3, $M_k(F)$ has *-cancellation, so $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \stackrel{*}{\sim} \begin{pmatrix} f & 0 \\ 0 & 0 \end{pmatrix}$ in $M_k(F)$. It follows easily that $(e(F^n), h_e)$ is isometric to $(f(F^m), h_f)$. So, $\{H(e)\} = \{H(f)\}$ and φ' is well-defined. If e, $f \in P_{\infty}(F)$, then

$$\begin{aligned} \varphi'([e]_* + [f]_*) &= \varphi'([e \oplus f]_*) = \{H(e \oplus f)\} \\ &= \{((e \oplus f)(F^{n+m}), h_{e \oplus f})\} = \{(e(F^n), h_e)\} + \{(f(F^m), h_f)\} \\ &= \{H(e)\} + \{H(f)\} = \varphi'([e]_*) + \varphi'([f]_*). \end{aligned}$$

Since the products in $K_0(F)$ and in W(F) are both induced by the tensor product, we obtain similarly $\varphi'([e]_* \cdot [f]_*) = \varphi'([e]_*) \cdot \varphi'([f]_*)$.

From this, we deduce that we can define $\varphi: K_0^*(F) \to W(F)$ such that $\varphi([e]_* - [f]_*) = \varphi([e]_*) - \varphi([f]_*)$. So,

$$\varphi([e]_* - [f]_*) = \{H(e)\} - \{H(f)\} = \{H(e)\} + \{-H(f)\}$$
$$= \{H(e) \oplus (-H(f))\}.$$

We note that, since the involution on F is positive definite, H(e) is anisotropic for every $e \in P_{\infty}(F)$.

Suppose that $\varphi([e]_* - [f]_*) = 0$. Then, $\{H(e)\} = \{H(f)\}$ and so, $H(e) = H(e)_a \simeq H(f)_a = H(f)$. It follows that $e \stackrel{*}{\sim} f$ in $P_{\infty}(F)$ and so, $[e]_* = [f]_*$.

(b) Assume that $H(e) \oplus (-H(f))$ is isotropic. Then, there exist nonzero vectors $u = (u_1, \ldots, u_n)$, $v = (v_1, \ldots, v_m)$ such that $u \in e(F^n)$, $v \in f(F^m)$ and $u_1u_1^* + \cdots + u_nu_n^* = v_1v_1^* + \cdots + v_mv_m^*$. We infer that there exist (nonzero) subprojections $e' \leq e$ and $f' \leq f$ with $e'(F^n) = uF$ and $f'(F^m) = vF$. It follows that $e' \stackrel{*}{\sim} f'$. Conversely, assume that $e' \le e$, $f' \le f$ are nonzero *-equivalent projections. Then, H(e') and H(f') are nonzero isometric subspaces of H(e) and H(f) respectively. So, $H(e) \oplus (-H(f))$ is isotropic. \Box

We define $D_F(m) = D(m\langle 1 \rangle)$ and $D_F(\infty) = \bigcup_{m=1}^{\infty} D_F(m)$. Let $W_t(F)$ denote the subgroup of additive torsion of W(F). Clearly, $W_t(F)$ is an ideal and by [15, Corollary XI.3.2], $W_t(F)$ is a 2-primary group. If $w \in D_F(\infty)$, let 2^n be the smallest power of 2 for which $w \in D_F(2^n)$. Then, by [15, Prop. XI.1.3], the additive order of the form $\langle 1, -w \rangle$ is precisely 2^n . So, $\langle 1, -w \rangle \in W_t(F)$ if $w \in D_F(\infty)$ and, by [15, Prop. XI.3.3 and supplement], $W_t(F)$ coincides with the ideal generated by these elements.

PROPOSITION 3.2. Let K be the kernel of the map $r: K_0^*(F) \mapsto \mathbb{Z}$ given by $r([e]_* - [f]_*) = \operatorname{rank}(e) - \operatorname{rank}(f)$ and let $\varphi: K_0^*(F) \mapsto W(F)$ be the map defined in Proposition 3.1. Then, $\varphi(K) \subseteq W_i(F)$ and so, K is a 2-primary group. Moreover, $\varphi(K) = \tilde{W}_i(F)$, where $\tilde{W}_i(F)$ is the (non unital) subring of W(F) generated by $\{\langle 1, -w \rangle | w \in D_F(\infty)\}$ and $K_0^*(F)$ is ring isomorphic, via φ , to the unitification of $\tilde{W}_i(F)$.

Proof. We first observe that K is generated by the elements $[1]_* - [e]_*$, where $e \in P_{\infty}(F)$ is of rank 1. If $e \in M_n(F)$, then we deduce that $\varphi([1]_* - [e]_*) = \{\langle 1, -w \rangle\}$, where $w \in D_F(n)$. Thus, clearly $\varphi(K) = \tilde{W}_t(F)$. We have a commutative diagram

0	\rightarrow	K	\rightarrow	$K_0^*(F)$	$\stackrel{r}{\rightarrow}$	Z	\rightarrow	0
		t		ſφ		ſ		
0	\rightarrow	$W_t(F)$	\rightarrow	W(F)	\rightarrow	$W(F)/W_t(F)$	\rightarrow	0

So, $K_0^*(F) = \mathbb{Z} \oplus K \xrightarrow{\sim} \mathbb{Z} \oplus \tilde{W}_t(F) \subseteq W(F)$ and clearly $K_0^*(F)$ is ring isomorphic to the unitification of $\tilde{W}_t(F)$.

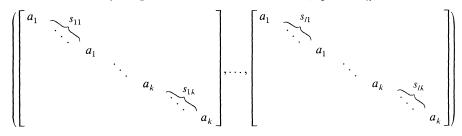
If $D_F(\infty)$ induces a total ordering on F, that is, if $F = D_F(\infty) \cup \{0\}$ $\cup (-D_F(\infty))$, then $K_0^*(F) \cong W(F)$. On the other hand, if F is *-Pythagorean, then $W_t(F) = \tilde{W}_t(F) = 0$ and $K_0^*(F) \cong \mathbb{Z}$.

DEFINITIONS. Let (F, *) be a field with positive definite involution. A *-algebra A over F is said to be *matricial* if A is isomorphic as *-algebra to $M_{n(1)}(F) \times \cdots \times M_{n(r)}(F)$ for some positive integers $n(1), \ldots, n(r)$. The *-algebra is *ultramatricial* if A contains a sequence $A_1 \subseteq A_2 \subseteq \cdots$ $\subseteq A_n \subseteq \cdots$ of matricial *-algebras such that $\bigcup_{n=1}^{\infty} A_n = A$.

In [7, Prop. 16.1], it is shown that a *-algebra A is ultramatricial iff A is isomorphic as *-algebra to a direct limit (in the category of *-algebras) of a sequence of matricial *-algebras and *-algebra maps.

The *-algebra A is standard matricial if $A = M_{n(1)}(F)$ $\times \cdots \times M_{n(r)}(F)$ for some positive integers $n(1), \ldots, n(r)$; (see [7, Chapter 17]).

If $A = M_{n(1)}(F) \times \cdots \times M_{n(k)}(F)$ and $B = M_{m(1)}(F)$ $\times \cdots \times M_{m(l)}(F)$ are standard matricial *-algebras, then a standard map from A to B is any map which sends the element (a_1, \ldots, a_k) of A to



where s_{ij} are nonnegative integers such that $s_{i1}n(1) + \cdots + s_{ik}n(k) = m(i)$ for all *i*. Clearly any standard map is a *-algebra map. We observe that the maps we obtain by iterated composition of standard ones are precisely the "block diagonal" maps.

A standard ultramatricial *-algebra is a direct limit of a sequence $A_1 \xrightarrow{\Phi_1} A_2 \xrightarrow{\Phi_2} A_3 \xrightarrow{\Phi_3} \cdots$ of standard matricial *-algebras A_n and standard maps Φ_n : $A_n \rightarrow A_{n+1}$.

PROPOSITION 3.3. If F is *-Pythagorean then every ultramatricial *-algebra over F is isomorphic as *-algebra to a standard ultramatricial *-algebra. Moreover, if A and B are ultramatricial *-algebras over F, then A and B are isomorphic as rings if and only if they are isomorphic as *-algebras.

Proof. We know that property LP $\stackrel{*}{\sim}$ RP holds in $M_n(F)$ for all n. So we can adapt the proofs of [7, Prop. 17.2] and [7, Thm. 20.6].

We do not know if Proposition 3.3 remains true for arbitrary fields with positive definite involution. By using [5, Thm. 15.26] one can show that any ultramatricial algebra over a field F is isomorphic as F-algebra to a standard ultramatricial algebra.

Now we proceed to study completions of direct limits of direct systems of standard matricial *-algebras and standard maps with respect to a pseudo-rank function. We need a lemma which gives a characterization of those pseudo-rank functions N on a regular ring R such that the N-completion of R is type II.

LEMMA 3.4. Let R be a regular ring with pseudo-rank function N and let \overline{R} be its N-completion. Then, \overline{R} is type II if and only if for each idempotent e in R, for each $\varepsilon > 0$, and for each $m \ge 1$ there exist equivalent orthogonal idempotents $e_1, e_2, \ldots, e_m \in R$ such that $e_i e = ee_i = e_i$ for all i, and $N(e - (e_1 + \cdots + e_m)) < \varepsilon$.

Proof. Let φ : $R \to \overline{R}$ denote the natural map.

Assume that for each idempotent $e \in R$, $\varepsilon > 0$, and $m \ge 1$, there exist equivalent orthogonal idempotents e_1, \ldots, e_m such that $ee_i = e_i e = e_i$ for all *i*, and $N(e - (e_1 + \cdots + e_m)) < \varepsilon$. If \overline{R} is not type II then there exists a central idempotent $h \in \overline{R}$ such that $h \neq 0$ and $h\overline{R}$ is type I_n for some $n \ge 1$. Set $\varepsilon = \overline{N}(h)$, where \overline{N} denotes the natural extension of N to \overline{R} . There exist equivalent orthogonal idempotents $e_1, e_2, \ldots, e_{n+1} \in R$ such that $N(1 - (e_1 + \cdots + e_{n+1})) < \varepsilon$. We observe that $h\varphi(e_1), \ldots, h\varphi(e_{n+1})$ are equivalent orthogonal idempotents of \overline{R} . We have

$$\overline{N}(h(1-(\varphi(e_1)+\cdots+\varphi(e_{n+1}))))$$

$$\leq N(1-(e_1+\cdots+e_{n+1})) < \varepsilon = \overline{N}(h).$$

In particular $h(\varphi(e_1) + \cdots + \varphi(e_{n+1})) \neq 0$. So $h\varphi(e_1), \ldots, h\varphi(e_{n+1})$ are nonzero equivalent orthogonal idempotents in $h\overline{R}$. This contradicts [5, Thm. 7.2] and consequently we deduce that \overline{R} is type II.

Conversely, assume that \overline{R} is type II. First we show that for each $e \in R$, for each $\varepsilon > 0$, and for each $n \ge 1$, there exist 2^n equivalent orthogonal idempotents $e_1, e_2, \ldots, e_{2^n} \in R$ such that $ee_i = e_i e = e_i$ for all *i*, and $N(e - (e_1 + \cdots + e_{2^n})) < \varepsilon$. We proceed by induction on *n*. Set n = 1. If N(e) = 0 then the result is trivial. So assume that $N(e) \neq 0$ and consider the pseudo-rank function N' on eRe defined by N'(z) = N(z)/N(e) for $z \in eRe$. Then the N'-completion of eRe is precisely $\varphi(e)\overline{R}\varphi(e)$ which is also type II. So we can assume without loss of generality that e = 1. Since \overline{R} is type II it follows from [5, Prop. 10.28] that there exist equivalent orthogonal idempotents $g_1, g_2 \in \overline{R}$ such that $1 = g_1 + g_2$. By Proposition 2.2, (b) we can choose sequences $\{g_{1r}\}$, $\{g_{2r}\}$ such that, for each r, g_{1r} and g_{2r} are equivalent orthogonal idempotents $e_1, e_2 \in R$ such that $\overline{N}(g_1 - \varphi(e_1)) < \varepsilon/2$ and $\overline{N}(g_2 - \varphi(e_2) < \varepsilon/2$. Hence

$$N(1 - (e_1 + e_2)) \le N(g_1 - \varphi(e_1)) + N(g_2 - \varphi(e_2)) < \varepsilon.$$

Now assume that the result is true for $1 \le k < n$ with $n \ge 2$. Taking k = 1 we see that there exist equivalent orthogonal idempotents e'_1 , $e'_2 \in R$ such that $e'_1 + e'_2 \le e$ and $N(e - (e'_1 + e'_2)) < \varepsilon/3$. Taking now k = n - 1 we obtain 2^{n-1} equivalent orthogonal idempotents $e_1, \ldots, e_{2^{n-1}} \in R$ such that $e_1 + \cdots + e_{2^{n-1}} \le e'_1$ and $N(e'_1 - (e_1 + \cdots + e_{2^{n-1}})) < \varepsilon/3$. Since $e'_1 \sim e'_2$ there exist equivalent orthogonal idempotents $e_{2^{n-1}+1}, \ldots, e_{2^n} \in R$ such that $e_{2^{n-1}+1} + \cdots + e_{2^n} \le e'_2$ and $e_1 \sim e_{2^{n-1}+1} \sim \cdots \sim e_{2^n}$. We have

$$N(e'_{2} - (e_{2^{n-1}+1} + \dots + e_{2^{n}}))$$

= $N(e'_{2}) - N(e_{2^{n-1}+1}) - \dots - N(e_{2^{n}})$
= $N(e'_{1}) - N(e_{1}) - \dots - N(e_{2^{n-1}}) < \varepsilon/3$

So, e_1, \ldots, e_{2^n} are 2^n equivalent orthogonal idempotents such that $e_1 + \cdots + e_{2^n} \le e$ and

$$\begin{split} N(e - (e_1 + \dots + e_{2^n})) &\leq N(e - (e_1' + e_2')) \\ &+ N(e_1' - (e_1 + \dots + e_{2^{n-1}})) \\ &+ N(e_2' - (e_{2^{n-1}+1} + \dots + e_{2^n})) < \varepsilon. \end{split}$$

Now let $e \in R$ be an idempotent and let $\varepsilon > 0$, $m \ge 1$. Choose $n \ge 1$ such that $m/2^n < \varepsilon/2$ and put $2^n = mr + k$ where $r \ge 0$ and $0 \le k < m$. As we have seen there exist equivalent orthogonal idempotents $e'_1, \ldots, e'_{2^n} \in R$ such that $e'_i e = ee'_i = e'_i$ for all *i*, and $N(e - (e'_1 + \cdots + e'_{2^n})) < \varepsilon/2$. Observe that $N(e'_i) \le 2^{-n}$ for all *i*. Define $e_i = e'_{(i-1)r+1} + \cdots + e'_{ir}$ for $i = 1, \ldots, m$. Then e_1, \ldots, e_m are equivalent orthogonal idempotents of *R* such that $e_i e = ee_i = e_i$ all *i*. Moreover we have

$$N(e - (e_1 + \dots + e_m)) = N(e - (e'_1 + \dots + e'_{mr}))$$

$$\leq N(e - (e'_1 + \dots + e'_{2^n})) + N(e'_{mr+1} + \dots + e'_{2^n})$$

$$< \varepsilon/2 + kN(e'_{2^n})$$

$$\leq \varepsilon/2 + m/2^n < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence $N(e - (e_1 + \cdots + e_{2^n})) < \varepsilon$ as desired.

THEOREM 3.5. Let F be a *-field with positive definite involution. Let $\{R_i, \Phi_{j_i}\}_{i,j \in I}$ be a direct system such that, for every $i \in I$, R_i is a standard matricial *-algebra over F and, if $i \leq j$, Φ_{j_i} : $R_i \rightarrow R_j$ is a composition of standard maps. Let R be the direct limit of $\{R_i, \Phi_{j_i}\}$ and let N be a pseudo-rank function on R. Then the type II part of the N-completion of R satisfies LP $\stackrel{\sim}{\sim}$ RP matricially.

234

Proof. It suffices to see that the type II part of the N-completion of R satisfies LP $\stackrel{*}{\sim}$ RP.

Let \overline{R} be the N-completion of R and let $\varphi: R \to \overline{R}$ denote the natural map. There exists a unique decomposition $\overline{R} = R_1 \times R_2$ where R_1 is type I and R_2 is type II. Let \overline{N} be the natural extension of N to \overline{R} , and note that \overline{N} is a rank function on \overline{R} . If R_1 and R_2 are nonzero, then there exists a central projection $h \neq 0, 1$ such that $h\overline{R} = R_1$ and $(1 - h)\overline{R}$ $= R_2$. By [5, Prop. 16.4] there exist unique rank functions N'_1 , N'_2 on R_1 , R_2 such that

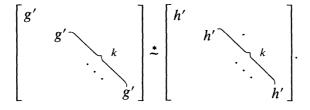
$$\overline{N}(x) = \overline{N}(h)N_1'(hx) + \overline{N}(1-h)N_2'((1-h)x)$$

for all $x \in \overline{R}$. For $y \in R$, define $N_2(y) = N'_2((1 - h)\varphi(y))$. Then, it is easily seen that N_2 is a pseudo-rank function on R. Also, one can see that the map ψ : $R \to R_2$ defined by $\psi(y) = (1 - h)\varphi(y)$ is the natural map from R to its N_2 -completion, so that the completion of (R, N_2) is precisely (R_2, N'_2) .

If $R_2 = 0$, there is nothing to prove. If $R_2 \neq 0$, then we see from the above discussion that R_2 is the completion of R with respect to a certain pseudo-rank function on R. So, we can assume without loss of generality that \overline{R} is of type II.

Since each R_i has *-cancellation, so does R. Thus, by Theorem 2.8, it suffices to prove that given $\varepsilon > 0$ and equivalent projections e, f in R, there exist subprojections $e' \le e$, $f' \le f$ such that $e' \stackrel{*}{\sim} f'$ and N(e - e') $< \varepsilon$, $N(f - f') < \varepsilon$. For $i \in I$, let θ_i : $R_i \mapsto R$ be the natural map from R_i to the direct limit. There exist $i \in I$ and projections g, h in R_i such that $\theta_i(g) = e, \ \theta_i(h) = f$ and $g \sim h$ in R_i . Since R_i is a standard matricial *-algebra, there exist some positive integers $c(1), \ldots, c(n)$ such that $R_i = M_{c(1)}(F) \times \cdots \times M_{c(n)}(F)$. Clearly, we may assume without loss of generality that $g = (0, \ldots, 0, g', 0, \ldots, 0)$ and $h = (0, \ldots, 0, h', 0, \ldots, 0)$ where g' and h' are projections of rank one in some ring $M_{c(\alpha)}(F)$ for some $1 \le \alpha \le n$.

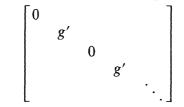
Let k be the additive order of $[g']_* - [h']_*$ in $K_0^*(F)$. By Proposition 3.2, k is a power of 2. Moreover, since $M_n(F)$ has *-cancellation for all n, we have



Let *l* be a positive integer with $1/l < \varepsilon/2$, and set m = kl. By Lemma 3.4 (and a standard argument) there exist *m* orthogonal equivalent projections e_1, \ldots, e_m in *R* such that $e_1 + \cdots + e_m \le e$ and $N(e - (e_1 + \cdots + e_m)) < \varepsilon/2$. Now, there exist $j \in I$ such that $j \ge i$ and *m* orthogonal equivalent projections g_1, \ldots, g_m in R_j such that $g_p \le \Phi_{ji}(g)$ and $\theta_j(g_p) = e_p$ for $p = 1, \ldots, m$. There exist positive integers $d(1), \ldots, d(r)$ such that $R_j = M_{d(1)}(F) \times \cdots \times M_{d(r)}(F)$. Set $g_p = (g_{p1}, \ldots, g_{mq})$ for $p = 1, \ldots, m$, and note that, for each q = $1, \ldots, r, g_{1q}, \ldots, g_{mq}$ are *m* orthogonal equivalent projections in $M_{d(q)}(F)$. Without loss of generality, we can assume that $g_{11}, \ldots, g_{1r'} \ne 0$ and $g_{1r'+1} = \cdots = g_{1r} = 0$. Set $\Phi_{ji}(g) = (e'_1, \ldots, e'_r)$. We note that

$$N(\theta_j((0,\ldots,0,e'_{r'+1},\ldots,e'_r))) \le N(\theta_j(\Phi_{ji}(g)-(g_1+\cdots+g_m)))$$
$$= N(e-(e_1+\cdots+e_m)) < \varepsilon/2.$$

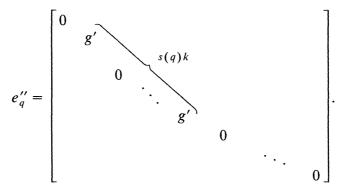
Since Φ_{μ} is a composition of standard maps, each e'_{q} has the form



for suitably-sized zero matrices.

Since $g_{1q} + \cdots + g_{mq} \le e'_q$ for $q = 1, \ldots, r$, we have $\operatorname{rank}(e'_q) \ge m$ for $q = 1, \ldots, r'$. If we put $\Phi_{ji}(h) = (f'_1, \ldots, f'_r)$ we see that $\operatorname{rank}(f'_q) \ge m$ for $q = 1, \ldots, r'$.

For q = 1, ..., r', set $t(q) = \operatorname{rank}(e'_q)$ and note that t(q) is precisely the number of copies of g' that appear in the expression of e'_q . Put t(q) = s(q)k + t'(q) with $0 \le t'(q) < k$. We observe that $m \le s(q)k$. For each q = 1, ..., r', let e''_q be the projection of $M_{d(q)}(F)$ which has s(q)k g'-blocks in the same places as the first s(q)k g'-blocks of e'_q and zeroes elsewhere, that is



236

For q = 1, ..., r', let f''_q be the projection of $M_{d(q)}(F)$ formed in the same way as e''_q but with h' instead of g'.

Set $e' = \theta_j((e''_1, ..., e''_r, 0, ..., 0)), \quad f' = \theta_j((f''_1, ..., f''_r, 0, ..., 0)).$ Clearly, $e' \le e$ and $f' \le f$. Since $e''_q \stackrel{*}{\sim} f''_q$ for q = 1, ..., r', we have $e' \stackrel{*}{\sim} f'$.

Set $N_j = N\theta_j$. Then, N_j is a pseudo-rank function on R_j and by [5, Corollary 16.6], we have that there exist nonnegative real numbers $\alpha_1, \ldots, \alpha_r$ with $\alpha_1 + \cdots + \alpha_r = 1$ such that

$$N_j((x_1, \dots, x_r)) = \alpha_1 \operatorname{rank}(x_1)/d(1) + \dots + \alpha_r \operatorname{rank}(x_r)/d(r).$$

For $q = 1, \dots, r'$ we have

$$\operatorname{rank}\left(e'_{q} - e''_{q}\right)/d(q) = t'(q)/d(q)$$
$$\leq t'(q)/m < k/m = k/(kl) = 1/l < \varepsilon/2.$$

Finally,

$$N(e - e') = N(\theta_j(e'_1 - e''_1, \dots, e'_{r'} - e''_{r'}, e'_{r'+1}, \dots, e'_{r}))$$

$$\leq N_j((e'_1 - e''_1, \dots, e'_{r'} - e''_{r'}, 0, \dots, 0))$$

$$+ N_j((0, \dots, 0, e'_{r'+1}, \dots, e'_{r}))$$

$$< N_j((e'_1 - e''_1, \dots, e'_{r'} - e''_{r'}, 0, \dots, 0)) + \varepsilon/2$$

$$= \alpha_1 \operatorname{rank}(e'_1 - e''_1)/d(1)$$

$$+ \dots + \alpha_{r'} \operatorname{rank}(e'_{r'} - e''_{r'})/d(r') + \varepsilon/2$$

$$< (\alpha_1 + \dots + \alpha_{r'})\varepsilon/2 + \varepsilon/2 \le \varepsilon.$$

Similarly, $N(f - f') < \varepsilon$. So, the proof is complete.

As a consequence of Theorem 3.5, we see that if F is any *-field with positive definite involution, then there exists a simple, *-regular, self-injective ring of type II satisfying LP $\stackrel{*}{\sim}$ RP whose center is F. For example, let $n(1) < n(2) < \cdots$ be positive integers such that n(k) | n(k + 1) for all k, and set $S = \lim M_{n(k)}(F)$ (with respect to the obvious standard maps). Let R be the completion of S with respect to the unique rank function on S. Then, R is a simple, *-regular, self-injective ring of type II whose center is F ([4, Thm. 2.8]). By Theorem 3.5, R satisfies LP $\stackrel{*}{\sim}$ RP matricially.

Next, we shall construct a simple, *-regular, self-injective ring of type II which does not satisfy LP $\stackrel{*}{\sim}$ RP. In [9, pg. 31, Example 1] Handelman tries to offer an example of a simple, *-regular, type II self-injective ring R which does not satisfy LP $\stackrel{*}{\sim}$ RP and a Baer *-subring S of R which

contains all the partial isometries of R and does not satisfy neither LP $\stackrel{*}{\sim}$ RP nor the (EP)-axiom. The ring R constructed by Handelman is the completion of $\lim M_{2^n}(\mathbf{Q}(x))$ with respect to its unique rank function. So, it follows from Theorem 3.5 that R satisfies LP $\stackrel{*}{\sim}$ RP and therefore, also the Baer *-subring S has LP $\stackrel{*}{\sim}$ RP. It is true, however, that they do not satisfy the (SR)-axiom of [2, pg. 66].

EXAMPLE 3.6. There exists a simple, *-regular, self-injective ring of type II which does not satisfy LP $\stackrel{*}{\sim}$ RP.

Proof. Let F be a formally real field such that $D_F(1) \subseteq D_F(2) \subseteq \cdots$ (for example we can take $F = \mathbf{R}(x_1, x_2, \ldots)$, [15, Exercise 6, pg. 315]). Set $S = \prod_{n=1}^{\infty} M_{2^n}(F)$. Let M be a maximal two-sided ideal of S which contains the direct sum $\bigoplus_{n=1}^{\infty} M_{2^n}(F)$. Set R = S/M. By [5, Thm. 10.30] R is a simple, regular, right and left self-injective ring of type II. Clearly, both R and S are *-regular rings (here, the involution on F is the identity). For $n \ge 1$, choose $w_n \in D_F(2^n) - D_F(2^{n-1})$. From Propositions 3.1 and 3.2, we see that there exist rank one projections $f_{n,i} \in M_{2^n}(F)$, $i = 1, \ldots, 2^n$ such that for each n, $f_{n,i}$ are 2^n orthogonal *-equivalent projections adding to the identity in $M_{2^n}(F)$, that is $f_{n,1} + \cdots + f_{n,2^n} =$ 1_{2^n} , and $\varphi([f_{n,i}]_*) = \{\langle w_n \rangle\}$ for $i = 1, \ldots, 2^n$. Set

$$g_{n,1} = f_{n,1} + \dots + f_{n,2^{n-1}}; \quad g_{n,2} = f_{n,2^{n-1}+1} + \dots + f_{n,2^n};$$

$$h_{n,1} = \operatorname{diag}\left(\underbrace{2^{n-1}}_{1,\dots,1}, 0,\dots, 0\right); \quad h_{n,2} = \operatorname{diag}\left(0,\dots,0, \underbrace{1,\dots,1}_{1,\dots,1}\right).$$

From [15, Corollary X.1.6] and 3.1 (b) we deduce that for each n, $g_{n,1}$ and $h_{n,1}$ does not have nonzero *-equivalent subprojections. Set $g_1 = (g_{1,1}, g_{2,1}, \ldots); g_2 = (g_{1,2}, g_{2,2}, \ldots); h_1 = (h_{1,1}, h_{2,1}, \ldots); h_2 = (h_{1,2}, h_{2,2}, \ldots).$ We have $g_1 \stackrel{\sim}{\sim} g_2, h_1 \stackrel{\sim}{\sim} h_2$ and $g_1 + g_2 = h_1 + h_2 = 1$. Note that $g_1 \sim h_1$ and $g_2 \sim h_2$ in S. So, in R we have $\overline{g}_1 \sim \overline{h}_1$ and $\overline{g}_2 \sim \overline{h}_2$. Clearly, $\overline{g}_1, \overline{h}_1 \neq 0$.

Suppose that $\bar{g}_1 \stackrel{*}{\sim} \bar{h}_1$. By Lemma 1.6, there exist orthogonal decompositions $g_1 = g'_1 + g''_1$, $h_1 = h'_1 + h''_1$ such that $g'_1 \stackrel{*}{\sim} h'_1$ and g''_1 , $h''_1 \in M$. But $g_{n,1}$ does not have any nonzero subprojection *-equivalent to a subprojection of $h_{n,1}$. We conclude that $g'_1 = h'_1 = 0$, and so g_1 , $h_1 \in M$ which is a contradiction. So, \bar{g}_1 and \bar{h}_1 are equivalent but not *-equivalent projections in R and we conclude that R does not have LP $\stackrel{*}{\sim}$ RP. \Box

We now consider the special case in which F is chosen to be a formally real number field.

LEMMA 3.7. Let F be a formally real number field and let e, f be two projections in $M_n(F)$. Then, if $e \sim f$, there exist subprojections $e' \leq e$, $f' \leq f$ such that $e' \stackrel{*}{\sim} f'$ and $\operatorname{rank}(e - e') < 4$, $\operatorname{rank}(f - f') < 4$.

Proof. If rank(e) < 4, then the result is trivial. If rank(e) \geq 4, set q = H(e). By [15, Thm. XI.1.4] we see that q represents 1 (since dim $q \geq$ 4) and so $q \approx \langle 1 \rangle \perp q'$. Thus, we conclude that we can get a quadratic form r such that dim r = 3 and

$$q\simeq\left(\widehat{1,\ldots,1}\right)\perp r.$$

This implies that there exists an orthogonal decomposition

$$e = e' + e''$$
 with $e' \stackrel{*}{\sim} \operatorname{diag}\left(\overbrace{1,\ldots,1}^{s}, 0, \ldots, 0\right)$.

Similarly,

$$f = f' + f''$$
 with $f' \stackrel{*}{\sim} \operatorname{diag}\left(1, \dots, 1, 0, \dots, 0\right)$

So, $e' \stackrel{*}{\sim} f'$ and $\operatorname{rank}(e - e') = \operatorname{rank}(e'') = \operatorname{rank}(f'') = \operatorname{rank}(f - f') = 3$.

PROPOSITION 3.8. Let F be a formally real number field.

(a) Let $\{R_i, \Phi_{ji}\}_{j,i \in I}$ be any direct system where each R_i is a matricial *-algebra over F (with the identity involution on F). Set $R = \lim R_i$ and let N be a pseudo-rank function on R. Then, the type II part of the N-completion of R satisfies LP $\stackrel{*}{\sim}$ RP matricially.

(b) Set $S = \prod_{i=1}^{\infty} M_{n(i)}(F)$ with $n(1) < n(2) < \cdots$, and let M be any maximal two-sided ideal of S which contains $\bigoplus_{i=1}^{\infty} M_{n(i)}(F)$. Then, the factor ring S/M is a simple, *-regular, self-injective ring of type II satisfying LP $\stackrel{*}{\sim}$ RP matricially.

Proof. (a) The proof is analogous to that of Theorem 3.5, using Lemma 3.7 adequately.

(b) Set R = S/M. By [5, Thm. 10.30], R is a simple, regular, right and left self-injective ring of type II. Also, R is *-regular with positive definite involution. It suffices to show that R satisfies LP $\stackrel{*}{\sim}$ RP.

Let e, f be two nonzero equivalent projections in R. By Proposition 1.5, we only have to prove that there exist nonzero subprojections $e' \le e$, $f' \le f$ such that $e' \stackrel{*}{\sim} f'$. Let n be any integer such that $n \ge 6$. By [5, 10.28] (and a standard argument), there exist n orthogonal equivalent projections e_1, \ldots, e_n in R such that $e = e_1 + \cdots + e_n$.

Choose equivalent projections $p, q \in S$ such that $\overline{p} = e$ and $\overline{q} = f$. By applying [5, Prop. 2.18] we obtain orthogonal projections $p'_1, \ldots, p'_n \in S$ such that $p'_j \leq p$ and $\overline{p}'_j = e_j$ for $j = 1, \ldots, n$. By [5, Prop. 2.19] there exist projections $p_j \leq p'_j$ such that $p_1 \sim \cdots \sim p_n$ and $\overline{p}_j = \overline{p}'_j = e_j$ for $j = 1, \ldots, n$. Set $g = p_1 + \cdots + p_n \leq p$. Since $p \sim q$ there exists a projection $h \leq q$ such that $g \sim h$. Note that $\overline{g} = \overline{p}_1 + \cdots + \overline{p}_n = e_1 + \cdots + e_n$ = e and $\overline{h} \sim \overline{g} = e \sim f$. Since $\overline{h} \leq f$ and R is directly finite, we obtain $\overline{h} = f$. Summarizing we have $\overline{g} = e, \overline{h} = f, g \sim h$ and $g = p_1 + \cdots + p_n$ where the p_j are equivalent orthogonal projections.

Set $g = (g_1, g_2, ...)$, $h = (h_1, h_2, ...)$ where g_i , $h_i \in P(M_{n(i)}(F))$. Note that $g_i \sim h_i$ in $M_{n(i)}(F)$ and that each g_i (and so each h_i) is the sum of *n* equivalent orthogonal projections. By Lemma 3.7 we can choose subprojections $g'_i \leq g_i$, $h'_i \leq h_i$, for i = 1, 2, ... such that $g'_i \stackrel{*}{\sim} h'_i$, rank $(g_i - g'_i) < 4$ and rank $(h_i - h'_i) < 4$. Set $g''_i = g_i - g'_i$, $h''_i = h_i - h'_i$. Since $n \geq 6$ we have $g''_i \leq g'_i$ and $h''_i \leq h'_i$ for i = 1, 2, ... Set $g' = (g'_i)$, $h' = (h'_i)$, $g'' = (g''_i)$, $h'' = (h''_i)$. We have $g' \stackrel{*}{\sim} h'$, g' + g'' = g, h' + h'' = h, $g'' \leq g'$ and $h'' \leq h'$. Hence $\bar{g}' \stackrel{*}{\sim} \bar{h}'$, $\bar{g}' \leq \bar{g} = e$ and $\bar{h}' \leq \bar{h} = f$. It only remains to prove that $g' \notin M$. If $g' \in M$ then since $g'' \leq g'$ we have $g'' \in M$ and so $g \in M$ which is a contradiction. Therefore $\bar{g}' \neq 0$ and this completes the proof.

EXAMPLE 3.9. There exists a *-regular ring such that

(a) The intersection of the maximal two-sided ideals is zero.

(b) For every maximal two-sided ideal M of R, R/M satisfies LP ~ RP matricially, but R does not satisfy LP ~ RP.

Proof. Set $R = \{x \in \prod_{n=1}^{\infty} M_n(\mathbf{R}) | x_n \in M_n(\mathbf{Q}) \text{ for all but finitely many } n\}$. Clearly the intersection of the maximal two-sided ideals of R is zero. If M is a maximal two-sided ideal of R such that M does not contain the direct sum $\bigoplus_{n=1}^{\infty} M_n(\mathbf{R})$, then $R/M \stackrel{*}{=} M_m(\mathbf{R})$ for some m and so R/M satisfies LP $\stackrel{*}{\sim}$ RP matricially. If M contains the direct sum $\bigoplus_{n=1}^{\infty} M_n(\mathbf{R})$ then $R/M \stackrel{*}{=} \prod_{n=1}^{\infty} M_n(\mathbf{Q})/(M \cap \prod_{n=1}^{\infty} M_n(\mathbf{Q}))$ and so, by Proposition 3.8, (b), R/M satisfies LP $\stackrel{*}{\sim}$ RP matricially. On the other hand it is clear that R does not satisfy LP $\stackrel{*}{\sim}$ RP.

References

- [1] P. Ara and P. Menal, On regular rings with involution, Arch. Math., 42 (1984), 26-30.
- [2] S. K. Berberian, Baer *-rings, Grundlehren Band 195, Springer-Verlag, Berlin and New York, 1972.

- [3] J. L. Burke, On the property (PU) for *-regular rings, Canad. Math. Bull., 19 (1976), 21-38.
- [4] K. R. Goodearl, Centers of regular self-injective rings, Pacific J. Math., 76 (1978), 381-395.
- [5] _____, Von Neumann Regular Rings, Pitman, London, 1979.
- [6] ____, Metrically complete regular rings, Trans. Amer. Math. Soc., 272 (1982), 275-310.
- [7] _____, Notes on Real and Complex C*-algebras, Shiva, Nantwich (Cheshire), 1982.
- [8] D. Handelman, Completions of rank rings, Canad. Math. Bull., 20 (1977), 199-205.
- [9] ____, Coordinatization applied to finite Baer *-rings, Trans. Amer. Math. Soc., 235 (1978), 1–34.
- [10] ____, Finite Rickart C*-algebras and their properties, Studies in Analysis, Adv. in Math. Suppl. Studies, 4 (1979), 171-196.
- [11] _____, Rings with involution as partially ordered abelian groups, Rocky Mountain J. Math., 11 (1981), 337–381.
- [12] N. Jacobson, Algebra, Volume 2, Van Nostrand, Princeton 1953.
- [13] I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math., (2), 61 (1955), 524–541.
- [14] _____, Rings of Operators, Benjamin, New York, 1968.
- [15] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin Inc., Reading Mass., 1973.
- [16] N. Prijatelj and I. Vidav, On special *-regular rings, Michigan Math. J., 18 (1971), 213-221.
- [17] E. Pyle, The regular ring and the maximal ring of quotients of a finite Baer *-ring, Trans. Amer. Math. Soc., 203 (1975), 201–213.

Received June 3, 1985. This work was partially supported by CAICYT grant 3556/83.

Universitat Autonoma de Barcelona Bellaterra (Barcelona) Spain