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MATRIX RINGS OVER *-REGULAR RINGS
AND PSEUDO-RANK FUNCTIONS

PERE ARA

In this paper we obtain a characterization of those * -regular rings

whose matrix rings are *-regular satisfying LP ~ RP. This result allows

us to obtain a structure theorem for the *-regular self-injective rings of

type I which satisfy LP ~ RP matricially.

Also, we are concerned with pseudo-rank functions and their corre-

sponding metric completions. We show, amongst other things, that the

LP ~ RP axiom extends from a unit-regular * -regular ring to its comple-

tion with respect to a pseudo-rank function. Finally, we show that the

property LP ~ RP holds for some large classes of *-regular self-injective

rings of type II.

All rings in this paper are associative with 1.

Let R be a ring with an involution *. Recall that * is said to be

n-positiυe definite if Σ^x X/X* = 0 implies xλ = = xn = 0. The in-

volution * is said to be proper if it is 1-positive definite; and if * is

^-definite positive for all n, then we say that * is positive definite.

Recall than an element e e R is said to be a projection if e2 = e* = e

and R is called a Rickart *-ring if for every x e R there exists a

projection e in R generating the right annihilator of x, that is t(x) = eR.

Because of the involution, we have £(x) = Rf for some projection /.

Notice that t(x) Π x*R = 0, hence the involution * is proper and R is

nonsingular. The above projections e, f depend on x only, 1 — e (1 — f)

is called the right (left) projection of x and, as usual, we shall write

1 - e = RP(JC), 1 - / = LP(JC).

If R is a *-ring, we denote by P(i?) the set of projections of R

partially ordered by e < f iff ef = e. Thus, if e < f we have eR c fR and

Re c Rf. Recall [2, pg. 14] that if R is Rickart, then P(R) is a lattice.

Two idempotents e, / of a ring R are said to be equivalent, e ~ /, if

there exist x e eRf, y e fRe such that xy = e, yx = f. If e9f are

projections in a ring with involution and we can choose y = x* then e9f

are said to be *-equivalent, e ~ /. A ring is directly finite if e ~ 1 implies

e = 1. A ring with involution is said to be finite if e ~ 1 implies e = 1.
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A ring R is regular if for every a e R there exists an element b e R
such that a = aba. If R, in addition, possesses a proper involution, then
R is called a *-regular ring. By a theorem of von Neumann [14, Exercise
5, pg. 38] a regular ring with involution is *-regular iff it is a Rickart
*-ring and in fact, if R is *-regular, then xR = LP(x)R and Rx =
i?(RP(jc)) for every x e R.

If R is a *-regular ring and r E Λ with e = RP(r), / = LP(r), then it
is well-known [13] that e ~ /, in fact there exists a unique s e eRf (the
relative inverse of r) such that 5Ά* = e and rs = /.

1. The property LP ~ RP for *-regular rings. We say that a Rickart
*-ring R satisfies the property LP ~ RP if LP(JC) ~ RP(x) for every x in
R. Also, we say that R has partial comparability (PC) if for every e,
/ G P(i?) such that ei?/ # 0 there exist nonzero subprojections ef < e and
/ ' < / such that e' - / ' . Clearly, in any Rickart *-ring, we have LP ~ RP
=> (PC).

LEMMA 1.1. For a *-regular ring R, the following conditions are
equivalent:

(a) R satisfies LP ~ RP.
(b) Any two equivalent projections are ^-equivalent.
(c) If xx* G eRe with e ^ P(i?), ί/*e« /λere eJM sta z

. (a) ** (b). Since LP(JC) - RP(x) for every X G Λ .

(a) => (c). See [16, Theorem 1].
(c) => (a). First we show that R is directly finite. If xy = 1, then we

can assume that yx = e e P(R) and y e eR, x G Re. We have yy* e
eRe, so there exists z ^ ei?e such that yy* = zz*. Now, we have 1 =
xyy*x* = xzz*x*. By [1, Theorem 3.1, (ii)], i? is finite so z*x*xz = 1.
This implies e = 1. Now, by [16, Theorem 1], the result follows. D

Let R be a *-ring. We say that R is a Baer *-ring if for every subset
S Q R there exists a projection e in R such that *(S) = eR (and so
/(S1) = Rf for some projection / in R). Obviously, a Baer *-ring is
Rickart and the partially ordered set P(iί) is in fact a complete lattice.

An element w e R is said to be a partial isometry if ww*w = w. In
this case ww* = e and w*w = / are projections with wR = eR and
w*i? = fR. An element w is called unitary if ww* = u*u = 1.

It follows easily from Lemma 1.1 that the elements of a *-regular ring
with LP ^ RP have weak polar decomposition, that is, if JC G 7? then
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x = wz where w is a partial isometry and LP(z) = RP(^) = RP( c). If, in
addition, R is unit-regular (that is, for every x in R there exists a unit u
in R such that x = xux), then w can be chosen to be a unitary.

Let R be a Baer *-ring. We say that the *-equivalence is additive in R
if for any families ( e ^ gj , (/)), e / °f orthogonal projections of i? such
that £, ~ / , , for all / e / , we have V,<=/£,- Vi€/yj- (where V denotes
supremum). The partial isometries are addable in i? if for any family
(w,.) / e / of partial isometries such that (>v /w*).e/ and (w/Ίv,)^, are
families of orthogonal projections, there exists a partial isometry w in R

such that ww*^ = W,ΛV*W = w for all / e /, and ww* = V ^ ^ w ^ * ) and

LEMMA 1.2. (i) // i? is <z self-injective *-regular ring, then the partial

isometries are addable in R.

(ii) If R is a Baer * -regular ring, then the * -equivalence is additive in R.

Proof, (i) Set et = w^*, / = w*wt, with ( ^ ) / G / and (/)),• e / families

of orthogonal projections. Consider the i?-homomorphism φ: θ i G / / / Λ

-> φ . G / e / i? for which φ(/)) = wf , all / G /. Since R is self-injective, φ is

given by left multiplication by some element, say x. Set e = V / G / ^ and

/ = V / G / / . If w = ^x/ then it is easily seen that eyw = H>/) = w, and

(ii) Since any Baer *-regular ring R is complete, it follows from [13,
Thm. 3, p. 535] that R is a continuous ring. By [5, Thm. 13.17] R = RλX

R2, where Rλ is self-injective and R2 is an abelian continuous ring. Since
a central idempotent of a Rickart *-ring is a projection, we have that Rλ

and R2 are *-regular. Moreover two *-equivalent projections in R2 are
equal so the *-equivalence is obviously additive in R2. Since Rλ is
self-injective and *-regular the partial isometries are addable in Rv In
particular the *-equivalence is additive in Rv Therefore the *-equivalence
is additive in i?. D

For a ring R, we denote by QT(R) (Qι(R)) the maximal ring of right
(left) quotients of R. Recall that if R is right nonsingular then QΓ(R) is a
regular right self-injective ring.

LEMMA 1.3. Let R be a nonsingular *-ring. Then, the involution *
extends to Qr(R) if and if Qr(R) = β/(#). In case * extends to Qr(R),

this extension is unique and if * is n-positive definite on R, then the extended

involution is also n-positive definite.
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Proof. The proof is contained in [17, Thm. 3.2], except the /ί-positive

definite part.

It is well-known that if xl9...9xm are nonzero elements in QT(R),

then there exist 1 < k < m and r e R such that xtr e R for i = 1,. . . , m

and xkr Φ 0. Assume that * is ^-positive definite on R and let xl9...9xm

be nonzero elements in Q = QT(R) = Q/(R), with m < n.lί k and r are

as above, then we have (x1r)*(xιr) + +(x m r)*( jc m r) # 0, and so

r*(xfxx 4- +jc*x m )r # 0 (we also denote by * the extended involu-

tion). Hence * is ^-positive definite on Q. D

REMARKS. (1) In particular, if A is a nonsingular *-ring with proper

involution and Q = Qr(R) = Qi(R), then Q is a self-injective *-regular

ring.

(2) Recall that for a nonsingular ring R the condition Qτ(R) = Qι(R)

is equivalent to the Utumi's conditions:

(a) For every right ideal /, *f( J) = 0 implies I < e R.

(b) For every left ideal /, *(/) = 0 implies I < eR.

Obviously, (a) <=> (b) in any *-ring.

Let R be any *-ring. We say that R satisfies general comparability for

*-equivalence (GC) if for every e, / G P(i?) there exists a central projec-

tion h in R such that he < hf and (1 - h)f< (1 - h)e, cf. [2, p. 77].

THEOREM 1.4. Let R be a *-regular ring such that Q = Qt(R) = Qι(R).

Then R satisfies (PC) if and only if Q satisfies LP ~ RP.

Proof. By Lemma 1.3, Q is a self-injective *-regular ring.

Assume that R satisfies (PC). Let e, f be two projections in Q such

that eQf Φ 0. Since Q is regular, there exist nonzero subprojections

ex< e and fλ < f in Q such that eλQ = fλQ. Hence there exist x e eλQfλ

and y e fxQeλ such that ex = xy and fx = yx. Let / be a right ideal of R

such that I < e R and j / < R. We have 7/ = (ye^I = y(eλl) and eλl

< e eλQ. Choose a nonzero projection e0 in R such that e 0 e eλl. We

note that ^ 0 Φ 0, ^ o i ? < / β and (ye o )R < R. Set / 0 = LP(je 0 ), and

note that f0 e P(i?) and / 0 < /. We observe that left multiplication by y

induces an isomorphism from e0R onto f0R (since it is the restriction of

an isomorphism from exQ onto fλQ), and so e0R = f0R. Since R satisfies

(PC), there exist nonzero projections e'θ9 /0' in R such that e'o < e0 < e,

/o <fo<f and eό Z / o I ι follows that β satisfies (PC). By Lemma 1.2

and [2, Prop. 4, p. 79], we have that Q satisfies (GC). Now it follows from

[9, Prop. 3.2] that Q satisfies LP ~ RP.
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Conversely, assume that Q satisfies LP ~ RP. Let e, f be projections

in R such that eRf Φ 0. Then there exist nonzero projections e0, f0 in R

such that e0 < e, fQ<f and e0 ~ f0. Thus, eQ ~ / 0 in Q, and so there

exists x in Q such that xx* = e0, x*x = fQ. Let / be a right ideal in R

such that I < e R and x*I < R. Choose a nonzero projection e' in R such

that e' e eoi? Π / and note that / ' = (x*e')(e'x) is a projection in i?

such that e' ~ / ' . Inasmuch, e' < e0 < e and f'<fo< f. So, R satisfies

(PC). D

PROPOSITION 1.5. Let R be a Rickart ""-ring. Consider the following

axioms for R.

(a) R has LP ~ RP.

(b) R has (PC).

(c) R satisfies general comparability for *-equivalence, (GC).

(d) The parallelogram law ( P ) ( e - e A f ~ e V / - /, for e,f e P ( i ? ) ) .

( e ) If e ~ f, then there exists a unitary u in R such thatf = ueu*.

If R is a unit-regular ^-regular ring, then (a) <=> (d) <=> (e) and (c) =>

(a) => (b). // R is a Baer ^-regular ring, then all these conditions are

equivalent.

Proof. Assume that R is a unit-regular *-regular ring,

(a) => (d). Since R is regular we have e — e Λ / - e V / - / for all

projections e, f in R [13, Lemma 1]. The result is immediate.

(d) => (a). This is a standard argument, cf. [10, Proof of Corollary 1.1,

(g)i
(a) <=> (e). This is routine.

(c) => (a). For this, note that we can adapt the proof of [9, Prop. 3.2].

(a) => (b). Obvious.

If R is a Baer *-regular ring, then R is unit-regular. By Lemma 1.2

and [2, Prop. 4, p. 79], (b) => (c). This completes the proof. D

If R is *-regular and / is a two-sided ideal of R, then it is well-known

that / is a *-ideal and the factor ring R/I is also *-regular with the

natural involution. It is easy to see that if the involution on R is

^-positive definite, then that on R/I is also ^-positive definite.

LEMMA 1.6. Let R be a *-regular ring and let I be a two-sided ideal of

R. Every projection in R/I has the form e, where e G P(i?). // υ is any

partial isometry in R/I and e, f e P(i?) are such that e = vv* and/ = v*v,
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then there exists a partial isometry w in R such that w = υ9 ww* = eλ < e
and w*w = fλ < f. In particular, there exist orthogonal decompositions
e = eι + ei> f = Λ + fi with ei ~ f\ and e2> fi G L

Proof. Set R = R/L From LP(x)JR = xR = LP(x)R we deduce that
LP(JC) = LP(Λ ) and similarly RP(3c) = RP(JC). So, any projection in R/I
has the form e, where e e P(i?). If v is a partial isometry in R and e,
/ e P(i?) are such that ^ = vv*, / = ϋ*ϋ then we observe that we can
choose w' G eRf such that w' = y. We have

(1) wV* = g + j / with y G /.

Put Λ = LP(j>), and note that h < e. By multiplying the relation (1)
on right and left by e — h, we obtain

(2) ( e - Λ ) w V * ( e - A ) = e - Λ .

Set w = (e — h)w'. Since Λ G /, we have w = ϋ. Also, by (2), we have

ww* — e — h < e. Putting ex = e — h, fλ = w*w = wr*(e — h)w\ we

have eι < e, fx < f and ex ^ /x. Moreover, eλ = e and /i = / and so, if

we put e2 = h = e - ev f2 = f — fv then we have e2, /2 e /. D

It is obvious from the relations LP(3c) = LP(JC) and RP(3c) = RP(Λ )

that if R satisfies LP ~ RP, then R = R/I also satisfies LP ~ RP. How-
ever, it is not true that property (PC) is preserved in factor rings, as the
following example shows.

EXAMPLE 1.7. There exists a *-regular ring R such that
(a) R is S^-continuous and S0-injective (see [5] for definitions) and

QT(R) = Q iR).
(b) R has (PC) but R does not have LP ~ RP.
(c) There exists a maximal two-sided ideal M such that the factor ring

R/M does not satisfy (PC).

Proof. Let X be any uncountable infinite set. For / e X, set Rt =
M2(R). Consider Λ = { j c e Π / e Λ | x i e Λ/2(Q) for all but countably
many i ^ X}. Obviously, R is a *-regular ring.

(a) If (O«<ΞN i s a n y sequence of projections of ϋ , then clearly
VneNen exists in Π ^ / l , . and V n e N * n e R. So, since Π ^ ^ i ? , is con-
tinuous, R is N0-continuous. Since R = M2(S), where S = (x G
ΠΪ•<= XKX \Kt = R for all / G A', and xy e Q for all but countably many
/ G X), it follows from [5, Corollary 14.13] that R is S0-injective. Clearly,
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(b) If eRf Φ 0, with e, f G P(i?), then there exist nonzero subprojec-
tions eλ < e, fx < f such that eλ ~ fv There exist some i e X such that
e l f is nonzero, and we observe that eu ~ fu in M2(R). Define nonzero
projections e2, /2 in R by e2 y = f2j. = 0 iί j e X and 7 =£ i; e2i = βlf.,
Λ. = Λ, Clearly, e2 < el9 f2 < fx and e2 ~ f2.

To show that R does not satisfy LP ~ RP, note first that the
projections (}^2 J f̂) a n c * (0 0) a r e equivalent but not *-equivalent in
M2(Q). Set pί = ( $ $ ) for all i e JSΓ; ^ = (J g) for all i e X, and put
/? = (Pi)j^x, q = (ί, )ieΛ- Then, /? and g are equivalent but not ^equiv-
alent projections in i?.

(c) Let J = {x E: R\xt = 0 for all but countable many / ε Jf}.
Clearly, / is a proper two-sided ideal of R. Let M be a maximal
two-sided ideal of R such that J is contained in M. It follows from [5,
Thm. 14.33] that R/M is a simple self-injective *-regular ring. So, by
Theorem 1.4, R/M has LP ~ RP if and only if it has (PC). Consider the
projections p, q constructed in (b). We note that neither p nor q belong to
M. We have p - q in R and so p - q in R = R/M. If R satisfies (PC),
then p ~ q, and by applying Lemma 1.6, we see that there exist orthogo-
nal decompositions p = p' + />", q = q' + q" with pf ~ q! and /?", q" G
M. Since all /?/? ^̂  have rank one, we deduce that each p\ is either 0 or pim

It follows that p\ qr e / and so /?, ^ e M. This is a contradiction. So,
Λ/M does not satisfy (PC). D

PROPOSITION 1.8. Let R be a *-regular ring such that the intersection of
the maximal two-sided ideals of R is zero. If R/M satisfies (PC) for all
maximal two-sided ideals M of R, then R satisfies (PC).

Proof. It suffices to see that given two nonzero equivalent projections
e9f in i?, there exist nonzero subprojections eλ < e, fλ<f such that
eλ ~ fv Let M be a maximal two-sided ideal of R such that e, f £ M.
Then, e and / are nonzero projections in R = R/M. By hypothesis, R
satisfies (PC) so there exist nonzero subprojections e' < e, / ' < / such
that e'~ΐ in R. Set e" = LP(ee% f" = LP(/jΓ) and observe that
e" = er, / " = /', β" < e, / " < /. Thus, there exist orthogonal decom-
positions e" = ex 4- e2, /

/r = Λ + /2 with ex ^ /x and e2, /2 G M. Clearly,
ex and /2 are nonzero *-equivalent projections and eλ < e, fx < f. D

Proposition 1.8 and Example 1.7 suggest that maybe any *-regular

ring such that the intersection of the maximal two-sided ideals is zero and

the simple homomorphic images satisfy LP ~ RP has LP ^ RP. However,

this is not true and we offer a counterexample in §3.
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Now, we examine property LP ~ RP in matrix rings. Recall that if R

is a *-regular ring with w-positive definite involution, then the ring Mn(R)

of n X n matrices over R is also *-regular with involution A# = (#*),

where A = (α / y) (the *-transpose involution). We shall assume in the rest

of this section that Mn(R) is endowed with this involution.

LEMMA 1.9. Let Rbe a *-regular ring with 2-positive definite involution.

Set S = M2(R). If E is a projection in S, then there exists an orthogonal

decomposition E = Eλ + E2, where Eλ = (β °), with p, q e P(i?)
Ei = C1! 23

2)> w ^ a ι R = β 2 Λ anda\R = tf3i?.

Proo/. Set £ = (g J). We have

(1) a2 + 66* = α,

(2) c2 + 6*6 = c,

(3) ab + bc = 6,

and tf = Λ*, c = c*.

Set ^ = LP(α) = RP(^); / = LP(c) = RP(c); g = LP(6); h =

LP(6*). From (1) and (2) we have 66* = a(l - a) and 6*6 = c(l - c)

and so, g < e, h < f.

We claim that ag = ga. Set d = 66*, and note that ad = da. We have

g = LP(d) = RP(d), and so g<zd = da = ad. Right multiplying this rela-

tion by d, the relative inverse of d, we obtain gag = ag. Analogously,

ga = gag, and we conclude that ag = ga.

Similarly, we can show he = ch.

Now, we have

(4) (e - g)a = a(e - g) = ((e - g)a)*,

(5) (e - g)a2(e - g) = (e - g)a(e - g).

It follows that (e — g)a is a projection. Note that (e — g)aR =

(e- g)eR = (e- g)R. Hence,

(6) e - g = (e- g)a

and, similarly

(7) f-h = (f-h)c.

It follows from (l)-(7) that we have an orthogonal decomposition

a b\ = (e-g 0 \ (ga b

b* c) \ 0 f-h

 +[b* hc
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Now, (ga)R = geR = gR = bR and (hc)R = hfR = hR = 6*Λ. Put-
ting

e-g 0

o / -
we have the desired projections.

he

D

We note that the decomposition given in Lemma 1.9 is unique. Set

S = M2(R). We say that a projection E of 5 is of type A if E = (p

0 °q)

with /?, q <Ξ P(Λ). We say that E is of (y/^ B if £ = (^ £ ) w i t h

d^lί = «2i?, βfi? = α3i?. By Lemma 1.9, every projection of S is, in a

unique way, an orthogonal sum of a projection of type A and a projection

of type B.

We now construct some projections of type B. If e e P(i?) and wv

w2 e iϊ, we say that (w1? w2) is an isometric pair for e if wλR = wfi? =

w2i? = eR and w ^ f + w2w2* = e. It is routine to verify that if (w1? w2) is

an isometric pair for e, then

is a projection of S of type B which is *-equivalent to (o o) (implemented

by (? o2))-

PROPOSITION 1.10. Let R be a *-regular ring with 2-positive definite

involution such that S = M2(R) satisfies LP ~ RP. If E is a projection in

S9 then there exists an orthogonal decomposition E = Eλ + E2, where Ex is

a projection of type A and there exist a projection e in R and an isometric

pair for e, (wl9w2)9 such that

Proof. By Lemma 1.9, E = Eγ + E2, where Ex is type A and E2 is

type B. Set E2 = Q %), and put e = LP(αx) = RP(αx) = LP(^ 2 ); / =

LP(^ 3 ) = RP(α 3) = LP(0*). Set G = (e

o °); Gλ = (g g); G2 = (g «). It is

not difficult to see that

G 5 = Gλ - S Θ G2 S = Gλ - S Θ E2 S = G2 51 θ E2 - S.

We conclude that Gλ - S = G2S = E2- S. Since, by hypothesis, S

satisfies LP ^ RP, we have E2 ~ G^ Let If be a partial isometry of S

implementing this *-equivalence. It is easy to see that W has the form

(o1 o2) f°Γ wv W2 G ^ An easy computation shows that (W1 ?M;2) is an

isometric pair for e. D
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PROPOSITION 1.11. Let R be a ^-regular ring with 2-ρositive definite

involution and satisfying LP ~ RP. Set S = M2(R). Then, S satisfies

LP ~ RP // and only if for every projection (£* b

c) of S of type B with

e = LP(a) = LP(Z>), we have (J. h

c) i ($ g).

Proof. We first observe that every subprojection of a projection of

type B is itself of type B. This follows from Lemma 1.9 by observing that

a projection of type B cannot contain a nonzero projection of type A. For,

if (po °q) £ (l % w h e r e (S c ) i s o f type B> then />α = p, pb = 0, 46* = 0,
#c = #. But aR = W? implies £{ά) = /(ft), so pa = 0 = p, and similarly
qc = 0 = q.

If £ = (£ g), then we say £ is type Ax and if E = (g J), then we say

that 2? is type A 2 . Note that every projection in S is an orthogonal sum

of projections of types A l 9 A 2 and B. Also, note that any subprojection of

a projection E of type Al9 A 2 or B is itself of the same type as E.

Suppose that E, F are two equivalent projections in S. We will show

that E ~ F provided S satisfies the stated condition. Let E = Eλ + E2 +

E3 be the decomposition of E into projections Ev E2 and E3 of types Av

A 2 and B respectively. Since E - i% there exists an orthogonal decom-

position F = Fλ + £ 2 + F3, with £ x - JFΊ, E2 - F2 and £ 3 - F3. For

/ = 1,2,3, we have orthogonal decompositions Ft = Fa + Fi2 + JF)3 of Fi

into projections of types A l 9 A 2 and B respectively. Returning to E, we

obtain E{ = Ea + Ei2 + Ei3 with E{ - FfJ for /, y = 1,2,3. So, we have

decomposed E and F into nine orthogonal projections, each one of pure

type. It follows that it suffices to consider the following cases:

(a) E is type Ax and F is type A1#

(b) E is type Aλ and F is type A 2 .

(c) E is type Aλ and F is type B.

(d) E is type B and F is type B.

Case (a). If E = (β g), F = (£ g) with p, pf e P(Λ), then it follows

that p ~ p' in 7?. Since i? satisfies LP - RP, we have p ~ ρ\ and so

Case (b). Similar to case (a).

Case (c). By hypothesis, F = (£* *) - (J g), where eR = aR

bR. So, (5 2) - ^ . By case (a), (J g) i £ , and so, F ^ F.
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Case (d). Each one of E, F is *-equivalent, by hypothesis, to a
projection of type Aλ and so, case (a) applies.

If S satisfies LP ~ RP, then it follows as in the proof of Proposition
1.10 that for a projection E = (£„ b

c) of S of type B, with e = LP(α), we
have E ~ (5 g). D

Recall that a *-ring is said to be *-Pythagorean if for every x, y in R
there exists Z G Λ such that xx* + jy* = zz*. Following [11], we say
than an element a in R is a worm in R if it has the form a = xx*, with
X G Λ . Clearly, in a *-Pythagorean ring any sum of norms is a norm.

The following theorem is an extension of some results of Handelman,
cf. [9, Theorem 4.5] and [11; Theorem 4.9, Corollary 4.10].

THEOREM 1.12. Let R be a *-regular ring with 2-positive definite
involution and satisfying LP ~ RP. Then, M2(R) satisfies LP ~ RP if and
only if R is *-Pythagorean. In this case, * is positive definite and Mn{R)
satisfies LP ~ RP for all n > 1.

Proof. The "only i f part follows from [16, Lemma 1].

Assume now that R is *-Pythagorean. By Proposition 1.11, it suffices
to see that for any projection E = (£* h

c) in M2(R) with aR = bR,
b*R = cR, e = LP(tf), we have E ~ (g g). We have a = tf2 + bb* =
tf<z* 4- 66*, so there exists vt> in R such that α = WH>*. Since i? has
LP ~ RP, we see from Lemma 1.1 that we can choose w e eRe. Let w be
the relative inverse of w and note that

(1) ww = vPw = e.

Consider the relation

(2) w * w * + bb* = ww*.

By multiplying the relation (2) on the left by w and on the right by
ΐv* = w* and using (1), we get

(3) w*w + wbb*w* = e.

Hence,

wb\l w 0\ /
0 /U*w* 0/ l

VO 0 l\b*w* 0) \0 0

and so (Q* £*) is a partial isometry. It follows that

w 0\ίw* wb
,b*w* O/lo 0
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is a projection in S and we compute that

a b
F \b* b*w*wb

Note that b*ϊv*wbR = b*R = cR, so F is of type B. To see that E = F,
we observe that for any projection (°\ **) of type B, a3 is uniquely
determined by ax and a2. For, note that a2 = #ifl2 + β2β3 Let <z2 be the
relative inverse of a2. Multiplying the above relation on the left by a2,
and observing that / = ά2a2 = RP(α2)

 = LP(α£) = LP(α3), we get / =
a2axa2 4- a3, so a3 = <z2(l — aλ)a2.

Clearly, if R is *-Pythagorean, then * is positive definite. By applying
[16, Theorem 3], we see that M2n(R) is *-Pythagorean for all n > 0, and
so, Mr{R) satisfies LP ~ RP for all n > 0. Since any ring Mm{R) is a

corner in some ring M2*(R), it follows that Mm(R) satisfies LP ~ RP for
all m > 1. D

Let R be a *-ring such that Mn(R) is Rickart for all n > 1. We say
that i? satisfies LP ~ RP matricially if Mn(R) satisfy LP ~ RP for all
n > 1.

COROLLARY 1.13. Let R be a ^-regular ring with 2-positive definite

involution. Then, R is a *-regular ring satisfying LP ^ RP matricially if and

only if R satisfies the following condition

If aa* + bb* e elte, wΛm? a,b <Ξ R, e

z G ei?^ Λ WCΛ ίΛαί ^ α * + bb* = zz*.

If i? is a self-injective *-regular ring, we see from Propositions 1.5 and

1.8 that R satisfies LP - RP if and only if all simple homomorphic

images of R satisfy LP ̂  RP. Now we obtain a characterization of the

self-injective *-regular rings of type I which satisfy LP ~ RP matricially.
The background of the structure theory for regular, right self-injective
rings can be found in [5, Chapter 10].

COROLLARY 1.14. Let R be a ^-regular self-infective ring of type I.

Then, Mm(R) is a *-regular self-injective ring of type I satisfying LP - RP,

for all m > 1, // and only if R is *-isomorphic to a direct product

Γί™=iMn(An), where each An is an abelian self-injective ^-regular ring and

all its simple homomorphic images are *-Pythagorean division rings with

positive definite involution.



MATRIX RINGS OVER * - REGULAR RINGS 221

Proof. If R = Yl^=1Mn(An), where each An is an abelian self-injective
*-regular ring with all division ring images *-Pythagorean and with
positive definite involution, we see from 1.5, 1.8 and 1.12 that R satisfies
LP ~ RP matricially. Also, it is well-known that Mm(R) is a regular
self-injective ring of type I, for all m > 1.

For the converse, note that by [5, Thm. 10.24] there exist regular,
self-injective rings Rv i? 2 , . . . such that R = Π^=1i?w and each Rn is of
type ln. It follows that there exist orthogonal central projections el9 e 2 , . . .
in R with Vnen = 1, and orthogonal projections /zl, f i 2 , . . . , / / 7 for i =
1,2,... such that fa ~ fi2 ~ ••^~fii and ei=fa+fi2+ ••• +fit foτ
i = 1,2, Since iϊ satisfies LP ~ RP, also etR satisfies LP ~ RP and so

fα zfii~ " * ~//, Set An=fnlRfnV and observe that eni? s M ^ J .
We deduce that ϋ s Π£Li-/>/„(-4,,) and An are abelian self-injective

*-regular rings with positive definite involution and satisfying LP ~ RP
matricially. Since all simple homomorphic images of an abelian regular
ring are division rings, the result follows. D

2. Pseudo-rank functions on *-regular rings. In this section, we
study property LP ~ RP for completions of *-regular rings with respect to
pseudo-rank functions. In particular, we show that if R is a *-regular
unit-regular ring satisfying LP ~ RP and N is a pseudo-rank function on

JR, then its ΛΓ-completion also satisfies LP ~ RP. In [3], Burke showed this
holds for an irreducible *-regular rank ring with order k, with k > 4, in
which comparability holds, which turns out to be a very special case of the
result here. Our result follows from Theorem 2.8, which is also used in §3.

A pseudo-rank function on a regular ring R is a map N: R -» [0,1]
such that

(a) N(l) = 1
(b) N(xy) < N(x) and N(xy) < N(y)
(c) N(e + /) = N(e) + N(f) for all orthogonal idempotents e, / e R.
A rank function on R is a pseudo-rank function with the additional

property
(d) N(x) = 0 implies x = 0.
If N is a pseudo-rank function on i?, then the rule δ(.x, y) = N(x — y)

defines a pseudo-metric on R. Clearly, 8 is a metric iff TV is a rank
function. The Hausdorff completion of R with respect to δ, i?, is showed
[5, Chapter 19] to be a right and left self-injective regular ring which is
complete with respect to the JV-metric, where N is the unique extension of
N toR.
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If JR is *-regular, it follows as in [8, Prop. 1] that we can extend * in a

natural way to the Λf-completion of R, R, so that R becomes a *-regular

ring.

We now show the analogue of [5, Lemma 19.5] for projections in

*-regular rings.

LEMMA 2.1. Let R be a *-regular ring with pseudo-rank function N, let

R be its N-completion and let φ: R -> R be the natural map. If p,

q G P(R) are orthogonal, then there exists a sequence {(pn,qn)} Q R X R

such that

(a) φ(Pn)-*p>φ(<in)-* q
(b) For all n, pn andqn are orthogonal projections.

Proof. By [5, Lemma 19.5], there exists a sequence {(en,fn)} c Rx R

such that φ(en) -* p, φ(fn) -> q and for all n, en and fn are orthogonal

idempotents. Set pn = LP(eJ, qn = R P ( / J , and note that pnen = en,

e»Pn = Pn> Qnfn = 4n> ίn<ln = fn W e h a V e QnPn = infanPn = ^ S O ' f θ Γ a 1 1

«, pn and qn are orthogonal projections in R.

Given ε > 0, we can choose M such that N(p — φ(en)) < ε/2 and

N(p — φ(e*)) < ε/2 for n > M. Now, we have

N(Pn - en) = N{pne: - pnen) < N(e* - eH)

<N(φ{e:)-p)+N(p-φ(en))<ε if n>M.

It follows that φ(pn) -» p, and similarly φ(qn) -> q. •

PROPOSITION 2.2. (a) Let Rbe a regular ring and let N be a pseudo-rank

function on R. Let φ: R -> R be the natural map from R to its N-comple-

tion, R. If e,f are equivalent idempotents in R, then there exist sequences

{en}, {/„} such that, for all n, en and fn are equivalent idempotents in R

andφ(en) -> e, φ(fn) ->/.

(b) In (a), if e and f are orthogonal, then we can choose {en}, {/„}

such that en andfn are equivalent orthogonal idempotents for all n.

(c) If R is *-regular andp,q are (orthogonal) equivalent projections in

R, then there exist {/>„}, {qn} such that, for all n, pn and qn are

(orthogonal) equivalent projections in R and φ(pn) -» /?, ψ(qn) ~^ 4-

Proof, (a) It suffices to see that given ε > 0, there exist equivalent

idempotents h, g in R such that N(e - φ(h)) < ε and N(f — φ(g)) < ε.

We observe that we can get idempotents e',f in R, and elements
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x e e'Rf and y e /'ite' such that N(e - φ(e')) < ε/2, N(f - φ(/')) <
ε/2 while N(e' - xy) < ε/6 and N{f - yx) < ε/6. Note that xy e
e'Re'. Clearly, jcyi? + (e' — xy)i? = e'i? and so there exists an idempo-
tent A in R such that e'h = Ae' = A, Aiί = cyiϊ and (e' - h)R <
(e' - xy)R. Thus, we have N(e' - A) < ε/6.

Let λ e Rh with xyλ = A. We have

iV(£>'λ - e') < ΛΓ(erλ - A) + N(h - er)

= N((e' - xy)λ) + N(h - e') < ε/6 + ε/6 = ε/3.

Set g = yλx. Clearly, g is idempotent, g is equivalent to h and
g < /'. We have

N(Γ - g) = M/' - ^λ^) ^ #(/' " ^ ) + M ^ - yλx)
< ε/6 + N(y(e' - e'λ)x) < ε/6 + ε/3 = ε/2.

So, g and A are equivalent idempotents and

N(e - φ(A)) < N(e - φ(e')) + N(e' - h) < ε/2 + ε/6 < ε,

N(f- φ(g)) < N(f- φ(/')) + N(f - g) < ε/2 + ε/2 = ε.

(b) We note that, by [5, Lemma 19.5] we can choose the idempotents
e\f in the proof of (a) to be orthogonal. Since A e e'Re', g e f'Rf\ h
and g are orthogonal and so the result follows.

(c) If /?, q are (orthogonal) equivalent projections in i?, then by ((b))
(a) there exist {en}> {/„} with φ(en)-+p9 φ ( / J -• ̂ , and for all n9 en

and fn (orthogonal) equivalent idempotents in R. Set pn = LP(^rt), qn =
RP(/M). As in the proof of Lemma 2.1, we obtain ψ(pn) -> /? and
φ(9«) "^ ί Also, it is easily shown that, for all «, /?„ and qn are
(orthogonal) equivalent projections in R. D

Let i? be any *-ring. We say that R satisfies the *-cancellation law for
projections (briefly, R has ^cancellation) if whenever e ~ f with e,

/ e P(R), we have 1 — e ~ 1 — f. This is equivalent to saying that two
*-equivalent projections in R are unitarily equivalent. Also, it is easy to
see that if R has '•'-cancellation and e,/, g, A e P(i?) are such that e and
/ are orthogonal, g and A are orthogonal, e + / ^ g + A and / ^ A, then
e~g.

Examples of *-regular rings with *-cancellation are the *-regular rings
with general comparability for *-equivalence. Also, the *-regular rings
with primitive factors artinian and the *-regular self-injective rings of type
I satisfy the '•'-cancellation law. The key to prove this is the following
lemma.
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LEMMA 2.3. Let R be any simple artinian ring with proper involution *.

Then, R satisfies the *-cancellation law.

Proof. We note that R is *-regular. Since R is simple artinian,

there exist orthogonal equivalent idempotents el9e2,...,en such that

ex + - - +en = 1 and each e(R is a simple i?-module. Since R is *-regu-

lar, we can assume that ev e2,...yen are projections, so that e1Re1 = D

is a division ring with involution. Choose xt e exRei9 yt e eέRel9 i =

1,...,«, such that xiyi = ex, Ĵ .JC, = ei for / = 1,. . . , n. Endow Mn{D)

with an involution # given by ( α , y ) # = {btj)9 where 6/7 =

(*/**)fl*O/.y/)> ij=l,...,n. The map i? -» MW(D) given by α ^

(jcf.έϊyy ) is a *-isomorphism from i? onto Mn{D) with inverse map (atJ) »->

Σ 7 j=ιyiaiJxJ. Note that jcyxf, 7 / ^ e e ^ ^ ! = Z) are such that

.) = (y*yi)(XiX?) = ex = lD. So, xiX* = ( j * ^ ) " 1 in D. Thus,

if we put tt = j * ^ for / = /,...,« we have ίf = /* and 6/y = tjlajttp

where (ύf/ y)
# = (6 l7)-

If JCX, , xn are in /), and some xf. is nonzero, then, since # is a

proper involution on Mn(D), we have xftxxx H- +x*/n;cM # 0. Define

< , ) : Dn X i ) " - > D b y

( 0 , 6) = ( ( ^ , . . . , an)9 (bl9..., bn)) = a*tλbλ + + α ^ Λ

( , ) has the following properties:

(ΐ)(a9b + c) =(a9b) + (a9c)9

(2)(a,b) = (b,a)*,

(3)(a9bλ) = (a9b)λ9

(4) (a9a) = 0 iff a = 0
for α , ί , c G Z)w, λ E ΰ .

So, ( , > is a nonsingular hermitian form over Dn. It is easy to verify

that (Tx9y) = {x9T*y) for Γ E Mn(D), x, y e D n , and so isometric

spaces in D" correspond to *-equivalent projections in Mn(D). So, the

result follows from Witt's theorem for division rings with involution [12,

pg. 162]. D

PROPOSITION 2.4. Let R be a *-regular ring and assume that either R

has all primitive factor rings artinian or R is self-injective of type I. Then, R

satisfies the *-cancellation law.

Proof. Let R be a *-regular ring with all primitive factor rings

artinian. By [5, Corollary 6.7], all indecomposable factor rings of R are

simple artinian. Thus, by Lemma 2.3, they satisfy the *-cancellation law.

Also, note that we can write the ̂ cancellation law in equational terms.

So, we can proceed as in [5, Thm. 6.10].
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If R is a *-regular, self-injective ring of type I, then R s Π^= 1i?w,
where each Rn is of type \n and so, Rn has all primitive factor rings
artinian. Thus, each Rn satisfies the '"-cancellation law and so, also R
satisfies the '"-cancellation law. D

We note that the '•'-cancellation law is preserved in direct products
and direct limits of *-rings. If R is *-regular and R satisfies the *-cancel-
lation law, then, by Lemma 1.6, R/I has *-cancellation and unitaries in
R/I lift to unitaries in 7?, for every two-sided ideal / of R.

LEMMA 2.5 (c/. [3, Lemma 6.5]). Let R be a *-regular ring with
*-cancellation and let N be a pseudo-rank function on R. Let el9 e2, fl9

f2 ^ P(i?) such that eλ ~ fv e2~f2

 and let uλ be a unitary such that
fx — uxexu*. Then, there exists a unitary u2 such that u1e2u% = / 2 and
N(u2 - ux) < 2(N(e2 - ex) + N(f2 - Λ)).

Proof. We first observe that if e, f e ?(R) are such that eR Π fR = 0,
then eR<(e- f)R, fR < (e - f)R and so N(e) + N(f) < 2N(e - /) .
Set /3 = uxe2u*, and note that /3 ~ f2 and

N(f3-A) = N{Ul(e2 - ejuf) = N(e2 - ex).

So,

(1) N(f3-f2) < N(f3 -Λ) + N(fi-fi) = N(e2 - ex) + N(f2- fx).

We have orthogonal decompositions f2 = f2 A /3 + f2, f3 = f2 Λ /3 +
//, where f{, // e P(/?). Note that f2'R n ///? = 0.

Since i? has *-cancellation, f2 ~ //. Set g = f{ V //. Then, there
exists M3 e giϊg such that M3M3* = M3*M3 = g and u'3f2'u3* = /3'. Set «3 =
M3 + 1 - g and note that u3f2u^ = f3 and 1 - u3 = (1 - M3)g

= g(l - «3)
Finally, define M2 = «3

(tM1. We have u2e2u* = u*uxe2uxu3 = u*f3u3

= /2, and

7V(«2 - ux) = iV(«3*Ml - ux) = ΛΓ(1 - t/3) = N((l - u3)g)

< N(g) = N{f2') + N{f3') < 2N{f2' - //)

= 2N(f2-f3) < 2(N(e2 - ex) + N(f2- fx)).

So, the result follows. D

LEMMA 2.6. Let R be a ^-regular ring with pseudo-rank function N. Let
R be the N-completion of R and let φ: R -» R denote the natural map. If w
is a partial isometry in R, then there exists a sequence {wn} c R such that
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φ(wn) -> w and, for all n, wn is a partial isometry in R. If, in addition, R
satisfies the *-cancellation law, then the group of unitaries of R is dense in
that of R. (These groups are endowed with the relative pseudo-rank-metric
topology and they are topological groups.)

Proof. Set e = ww* e P(R)> Choose sequences {en}, {an} such that
en G P(Λ), an G R, for all n and ψ(en) -» e, φ(an) -> w. Note that we
can assume that an e enR for all n. Set yn = en - <xna*. Then, φ(yn) -> e
- ww* = 0. Put e'n = RP(γΛ) = LP(γπ), all Λ. Clearly, φ(e'n) -> 0. Con-
sequently, e" = £„ - e'n are projections in 2? and φ(e") -» e. Now, we
note that 0 = e';Ίne'; = *" ~ ^ A * C So, < = ( e X X e X ) . We de-
duce that wn = e'n'an are partial isometries such that φ(wn) -* ew = w.

Clearly, the group of unitaries of R and that of R are topological
groups (see [8, Prop. 8]). If u is a unitary in R, then there exists a
sequence {wn) such that each wn is a partial isometry and φ(wn) -> w. If
i? has ^cancellation, then there exist unitaries un such that wnw*un = wπ

for all n. Since φ(wrtww*) -> 1, we obtain φ(ww) -> w. •

In the next theorem, we show that the *-cancellation law extends from
R to R. This is not new in case R is type I, by Proposition 2.4.

THEOREM 2.7. Let R be a ^-regular ring with pseudo-rank function N.
Let R be the N-completion of R. If R satisfies the *-cancellation law, then so
does R.

Proof. Let φ: R •-> R denote the natural map.

Let e,f be two *-equivalent projections in R, and let w be a partial
isometry in R such that ww* = e and w*w = / . By Lemma 2.6, there
exists a sequence {wn} of partial isometries in R such that φ(wn) -> u>.
Set en = uyv* and /„ = w*wn and note that en, fn e P(i?) and φ(en) -> e,
φ(/n) •* /• % passing to subsequences of {en} and {/π}, we can assume
that N(en+ι - en) < 2~n and N(fn+1 - fn) < 2~n. Let uλ be a unitary in
R with uλeλu^ = /x. We construct, by using Lemma 2.5, a sequence of
unitaries {un) in ϋ such that unenu* = /Λ and

^(« n + 1 - u j < 2{N(en+1 - ej

< 2(2"" + 2'") = 2-" + 2

It follows that {un} is a Cauchy sequence. Let u = limπ_0Oφ(Mπ) e R.
Clearly, ueu* = / and so, e and / are unitarily equivalent in R. Ώ
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Next, we show the following technical, but useful, result.

T H E O R E M 2.8. Let Rbe a ^-regular ring with *-cancellation and let N be

a pseudo-rank function on R. Let R be its N-completion. Then, R satisfies

L P ~ R P if and only if given ε > 0 and equivalent projections e,f in R,

there exist subprojections ef < e, ff < f such that er ~ f andN(e — e') < ε,

N(f-f')<ε.

Proof. Let φ: R »-> R denote the natural map.

Assume that R satisfies LP ~ RP. If e, f are equivalent projections in

i?, then φ(e) ~ φ(f) and, since R satisfies LP - RP, we have

φ(e) ~ φ(/) . Let w be a partial isometry in R such that ww* = φ(e) and
w*w = φ(/) . We observe that, in this situation, we can choose the partial
isometries {wn} constructed in the proof of Lemma 2.6 in such a way that
wn €= eRf. Set en = wnw*9 fn = <w Λ . Clearly, φ(en) -> φ(e) and φ ( / J
-> φ(/), and en ~ fn for all n. It follows that N(e — en) -> 0 and
^ ( / - Λ) -* 0. So, given ε > 0, there exist e\ f such that e' < e, f < /,
^' ~ f' and 7V(̂  - ^') < ε, N(f - f) < ε.

Conversely, assume that e and / are equivalent projections in R. By
Proposition 2.2, (c), there exist sequences {en}, {/„}, with en, fn e P(i?),
φ(ew) -> ^, φ(/Λ) -> /, and ert - /π for all w. Thus, by application of our
hypothesis with εn = 2"w, we have that there exist, for each n, subpro-
jections e'n<en, f^<fn such that < ^ / ; , N(en - e'n) < 2~n and
N(fn ~ O < 2~" l i follows that φ(e'n) -> β and_φ(/;) -»/. Now, as in
the proof of Theorem 2.7, we get a unitary w in R such that wew* = /. In
particular, we obtain that e ~ f. Π

So, if R has •-cancellation, then R satisfies LP - RP iff any two
equivalent projections e,f in R can be "well approximated" with respect
to N by *-equivalent subprojections in R. Since any *-regular unit-regular
ring with LP ^ RP obviously satisfies the *-cancellation law, we have

THEOREM 2.9. Let R be a ^-regular unit-regular ring with pseudo-rank
function TV, and let R be its N-completion. If R satisfies LP ^ RP, then so
does R. D

REMARK. Let R be any regular ring. Denote by P(i?) the set of
pseudo-rank functions of R. Define ([6]), if P(R) Φ 0 , 7V*(x) =
sup{ P(JC) IP G P(R)} and N*(x) = 0 if P(#) = 0 . Then, N* induces a
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pseudo-metric δ(x, y) = N*(x — y) on R and the completion of R with
respect to δ, S, is a regular ring, called the iV*-completion of R. If R is
*-regular, then 5* is also *-regular in a natural way. It can be seen that the
results of this section also hold for the N*-completion of a *-regular ring.
In particular, the *-cancellation law and, if R is unit-regular, the LP ~ RP
axiom, extends from R to S.

3. Applications to the study of property LP ~ RP for certain ^regu-

lar self-injective rings. Let R be a *-regular ring with positive definite
involution. We assume throughout in this section that Mn(R) is endowed
with the *-transpose involution (see §1). We proceed to construct a
Grothendieck group for R which is attached to the *-equivalence of
projections in the rings Mn(R). We shall call this group Kg(R). For to
construct it, we follow the construction in [7] for C*-algebras. Set P^R)
= U^ιP(Mn(R)). For e, / e P J Λ ) , set e Θ / = (g °) ePJR). If
e, f G P00(/ϊ), then we say that e and / are *-equivalent, e ~ f, if (e

0 °)
~ (f

0 Q) in some ring Mm(R), for some suitably-sized zero matrices.
Also, define e, / G P^R) to be stably ^-equivalent, written e «/, pro-
vided £? Θ g ~ / Θ g for some g G P^Λ). Let P^{R)/ έ denote the

family of all the equivalence classes defined by « (which is clearly an
equivalence relation). For e G P^R), we use [^]% to denote the equiva-
lence class of e with respect to « . It follows easily that PJ^R)/ ^ , with
the operation [e]* + [/]^ = [e θ / ] # , is an abelian semigroup with
cancellation. So, we may formally adjoin inverses to P00(i?)/ « , obtain-
ing an abelian group, denoted by K£(R).

Recall that, if we use in the above construction equivalence instead of
*-equivalence, we obtain the group K0(R), which can also be defined by
using finitely generated projective modules over R (see [5, Chapter 15]).

We have a map Φ: Kg(R) -> K0(R) given by Φ([e]*) = [e] where
[e] denotes the corresponding equivalence class of e in K0(R). This map
is clearly a group homomorphism from K£(R) onto K0(R).

Define a cone C in K$(R) by C = Kg(R) + = {[e]*\e G PJi?)} . It
follows from [1, Thm. 3.1, (b)] that (#*(£),[1]*) is a partially ordered
group with order unit ([5, pg. 203]) for any *-regular ring R with positive
definite involution. Also, we may view Φ: (Kζ{R), [1]*) -> (K0(R), [1]) as
a morphism in the category & defined in [5, pg. 203].

Now, we study K£(F), where F is any *-field with positive definite
involution. In this case, K£(F) and K0(F) admit in a natural way a
structure of ring, where the product is induced by the tensor product.
Recall that Mn(F) ® Mm(F) = Mnm(F) and the usual isomorphism is in
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fact a *-isomorphism of *-algebras, if we define (x ® y)* = x* ® y*
for x e Mn(F) and J G M J F ) . Also, note that K0(F) = Z, and
so Φ: Kg(F) »-> # 0 ( F ) induces a ring map r: Kg(F) -» Z given by
r([e]* " [/]*) = rank(e) - rank(/). If we set K = Ker(r), we have an
exact sequence of groups

0 -+ K^ K*(F) ^ Z ^ O

Hence, Kg(F) = Z Θ K as abelian groups. In fact, Kg(F) is the
ring generated by [1]* and K. Since K is an ideal of K$(F), this is the
unitification of the (non unital) ring K.

We now relate Kξ(F) with the Witt ring of F, W(F). The construc-
tion of W(F) can be found in [15]. There are no extra difficulties in
constructing W(F) using hermitian forms instead of symmetric bilinear
forms. We now fix some notation.

For any *-field F, an hermitian form over F is a map Φ: V X V -* F,
where V is a finite-dimensional vector space over F, such that

(1) Φ ( ^ + e29 v) = Φ(ev υ) + Φ(e2, v),
(2) Φ(λe, υ) = λΦ(e, v) for λ e F,
(3)Φ(e9v) = Φ(ϋ9e)*.
Let Fs denote the fixed field of F, that is Fs = {x e F \ x = x*}. For

α G V, we note that Φ(α,α) G F5. We define i) F (Φ) = {λ G F | λ =
Φ(α, α) for some α G F} C F5.

Each hermitian form Φ is isometric to a form (αι,...,αn), with
α l 5 ...,flw G Z)F(Φ), where (αv...,αn) denotes the hermitian form ψ:
F " X F" -> F defined by ψ((x l 9 . . . , x J , ( Λ , . . . , yn)) = αιXlyf

If ch(F) ¥= 2, then we construct W(F) as in [15, Chapter 2] using
hermitian forms instead of symmetric bilinear forms. Recall [15, Prop.
Π.1.4] that

(1) The elements of W(F) are in one-one correspondence with the
isometry classes of all anisotropic hermitian forms.

(2) Two nonsingular hermitian forms Φ,Φr represent the same ele-
ment in W{F) iff the anisotropic part of Φ, Φα, is isometric to the
anisotropic part of Φ', Φ ;̂ in symbols, Φα ~ Φ .̂

(3) If dimΦ = dimΦ' (where Φ, Φ' are nonsingular) then Φ and Φ'
represent the same element in W(F) iff Φ — Φr.

We now return to the casfe where * is positive definite. For e G
P(M n(F)), we have an hermitian form associated H(e) = (e(Fn),he),
where he is the restriction to e(Fn) of the hermitian form (x, y) = xλy?
+ •*' +χ

nyϊ o v e Γ F"' S e t ~H{e) = (e(Fn),-he)\ and note that
(-H(e)} = -{H(e)}9 where {Φ} denotes the class of Φ in W(F).
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PROPOSITION 3.1. (a) There exists an injectiυe ring map φ: K£(F) »->
W{F) such that φ([eU ~ [/]*) = {H(e) Φ (-#(/))}, forej* PJF).

(b) Γλe hermitian form H(e) Θ (-H(f)) is isotropic if and only if there
exist nonzero subprojections e' < e, f < f such that e' ~ f in

Proof. Define φ': K${F) + -+ W{F) by φ'([<?]*) = {H(e)}. We
show that φ' is well-defined, φ'([e]* + [/]*) = φ'([e]*) + φ'([/]*) and
ψ'([e]* [/]*) = <p'([e]*) ψ'([fU), for e, f e P J F ) . For, assume that
[*]• = [/]*, with e e Mn(F), f <Ξ Mm{F). There exist g e P^ίF) and
suitably-sized zero matrices such that

7 o o'
0 g 0

,0 0 0/

in some ring Mk(F). By Lemma 2.3, Mk(F) has ""-cancellation, so
(o o) ~(o o) i n MΛF) l t follows easily that (e(F"),he) is isometric
to (f(Fm),hf). So, {#(<?)} = {H(/)} and φ' is well-defined. If e,
/ e P J F ) , then

e
0

, o

0
g
0

0
0
0

= {{{e ® f){F»+m),heBf)) = {{e{F»),he)} +{{f{Fm),hf))

Since the products in K0(F) and in W(F) are both induced by the tensor
product, we obtain similarly φ'([e]* [/]*) = φ'([e]*) φ'([/]*)

From this, we deduce that we can define φ: K£(F) -* W(F) such
that φ([e]m - [/]*) = φ([eU) - φ([/]*) So,

We note that, since the involution on F is positive definite, H(e) is
anisotropic for every e G P J F ) .

Suppose that φ([£?]* - [/]*) = 0. Then, {H(e)} = {#(/)} and so,
H(e) = i/(e)α ^ if(/)α = //(/). It follows that e - / in P^ίF) and so,

(b) Assume that H(e) Θ (-H(f)) is isotropic. Then, there exist non-
zero vectors w = (ul9..., un), v = (ϋ l 5 . . . , ϋm) such that u G ̂ (i7"), t; e
/(JF W ) and M f̂ + +wrt«* = i ̂ f + -hywy*. We infer that there
exist (nonzero) subprojections e' < e and f <f with e'(Fn) = uF and

) = yF. It follows that ef ~f.
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Conversely, assume that ef < e, f'<f are nonzero *-equivalent
projections. Then, H(ef) and H(f') are nonzero isometric subspaces of
H(e) and H(f) respectively. So, H(e) Θ ( - # ( / ) ) is isotropic. D

We define DF(m) = D(m<l» and DF(oo) = U™=1DF(m). Let Wt(F)
denote the subgroup of additive torsion of W(F). Clearly, Wt{F) is an
ideal and by [15, Corollary XI.3.2], Wt{F) is a 2-primary group. If
w e DF(oo), let 2" be the smallest power of 2 for which w e DF(2n).
Then, by [15, Prop. XI.1.3], the additive order of the form (1, -w) is
precisely 2". So, (1, -w) e Wt(F) if w e DF(OO) and, by [15, Prop. XI.3.3
and supplement], Wt(F) coincides with the ideal generated by these
elements.

PROPOSITION 3.2. Let K be the kernel of the map r: Kg(F) -> Z given
by r([e]* - [/]*) = rank(e) - rank(/) and let φ: K*(F) ~> W{F) be the
map defined in Proposition 3.1. Then, φ(K) c Wt(F) and so, K is a
2'primary group. Moreover, φ(K) = Wt{F), where Wt{F) is the (non
unital) subring of W(F) generated by {(1, -w) \ w e Z>F(oo)} and Kg(F)
is ring isomorphic, via φ, to the unitification of Wt{F).

Proof. We first observe that K is generated by the elements [1]* — [e]*,
where e e P^iF) is of rank 1. If e e Mn{F\ then we deduce that
<P([1]* ~ M*) = {(l.-^)}^ where w e DF(n). Thus, clearly φ(K) =

). We have a commutative diagram

0 -> K -+ K*(F) Λ Z ^ 0

0 -> Wt{F) -> ίF(F) ^ ί F ( F ) / ^ ( F ) -* 0

So, ΛΓ0*(F) = Z θ ί A Z θ Ϊ^(F) c ίΓ(F) and clearly Kξ{F) is

ring isomoφhic to the unitification of Wt{F). D

If DF(oo) induces a total ordering on F, that is, if F = JDF(OO) U {0}
U (-Z>F(oo)), then ΛΓQ*^) = W(F). On the other hand, if F is *-Pytha-
gorean, then Wt{F) = ^ ( F ) = 0 and Kξ(F) = Z.

DEFINITIONS. Let (i% *) be a field with positive definite involution. A
*-algebra A over F is said to be matricial if Λί is isomoφhic as *-algebra
to Mn(1)(F) X ••• xΛfπ(r)(F) for some positive integers π(l) , . . . , n(r).
The *-algebra is ultramatricial if 4̂ contains a sequence Aλ Q A2Q
<Ξ v4rt c of matricial *-algebras such that U^xAn = A.
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In [7, Prop. 16.1], it is shown that a *-algebra A is ultramatricial iff A

is isomorphic as *-algebra to a direct limit (in the category of *-algebras)

of a sequence of matricial *-algebras and *-algebra maps.

The *-algebra A is standard matricial if A = Mn(l)(F)

X ••• XMn(r)(F) for some positive integers n(l),..., n(r); (see [7,

Chapter 17]).

If A = Λ f l ι m ( F ) X and

X

from

XMm(l)(F) are standard matricial *-algebras, then a standard map

to 5 is any map which sends the element (al9..., ak) of A to

where stJ are nonnegative integers such that san(l) -f +slk

m(i) for all i. Clearly any standard map is a *-algebra map. We observe

that the maps we obtain by iterated composition of standard ones are

precisely the "block diagonal" maps.
A standard ultramatricial *-algebra is a direct limit of a sequence

Φ} Φ2 Φ3

Aλ -> A2 -> A3 -> of standard matricial *-algebras An and standard

mapsΦ n : An -» An+ι.

PROPOSITION 3.3. If F is *-Pythagorean then every ultramatricial

*-algebra over F is isomorphic as *-algebra to a standard ultramatricial

*-algebra. Moreover, if A and B are ultramatricial *-algebras over F, then

A and B are isomorphic as rings if and only if they are isomorphic as

*-algebras.

Proof. We know that property LP ~ RP holds in Mn(F) for all n. So

we can adapt the proofs of [7, Prop. 17.2] and [7, Thm. 20.6]. D

We do not know if Proposition 3.3 remains true for arbitrary fields

with positive definite involution. By using [5, Thm. 15.26] one can show

that any ultramatricial algebra over a field F is isomorphic as F-algebra

to a standard ultramatricial algebra.

Now we proceed to study completions of direct limits of direct

systems of standard matricial *-algebras and standard maps with respect

to a pseudo-rank function. We need a lemma which gives a characteriza-
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tion of those pseudo-rank functions TV on a regular ring R such that the

TV-completion of R is type II.

LEMMA 3.4. Let Rbe a regular ring with pseudo-rank function TV and let

R be its N-completion. Then, R is type II if and only if for each idempotent

e in R, for each ε > 0, and for each m > 1 there exist equivalent orthogonal

idempotents eve2,... ,em ^ R such that eie = eei = ei for all /, and

N{e-(ex+ --. + em))<ε.

Proof. Let φ: R -> R denote the natural map.

Assume that for each idempotent e e R, ε > 0, and m > 1, there

exist equivalent orthogonal idempotents el9...9em such that eet = ete = et

for all /, and N(e — (ex + +em)) < ε. If R is not type II then there

exists a central idempotent h e R such that h Φ 0 and /z/? is type \n for

some n > 1. Set ε = TV(/z), where TV denotes the natural extension of TV to

R. There exist equivalent orthogonal idempotents el9 e2,.. .9en + 1 e R

such that TV(1 - (ex + ••• + en+χ)) < ε. We observe that

2 + 1) are equivalent orthogonal idempotents of R. We have

N{h{l-{φ(eι)+ ••• +φ(en

In particular ΛίφίeO + ••• + φ ( e w + 1)) ^ 0. So_ftφ(e1),...,Λφ(eπ + 1)

are nonzero equivalent orthogonal idempotents in hR. This contradicts [5,

Thm. 7.2] and consequently we deduce that R is type II.

Conversely, assume that R is type II. First we show that for each

e G R, for each ε > 0, and for each n > 1, there exist 2" equivalent

orthogonal idempotents ev e2,...,e2n^R such that eet = £,£ = e, for

all /, and TV(e - (eλ + +^ 2

w)) < ε We proceed by induction on n.

Set « = 1. If N(e) = 0 then the result is trivial. So assume that N(e) Φ 0

and consider the pseudo-rank function TV' on eRe defined by TVr(z) =

N(z)/N(e) for z e eRe. Then the TV'-completion of eRe is precisely

ψ(e)Rφ(e) which is also type II. So we can assume without loss of

generality that e = 1. Since R is type II it follows from [5, Prop. 10.28]

that there exist equivalent orthogonal idempotents gl9 g2 e R such that

1 = gx + g2. By Proposition 2.2, (b) we can choose sequences {glr}>

{Sir) s u c h that, f°Γ e a c h r. Sir a n ( ^ Sir a r e equivalent orthogonal

idempotents in R and φ(g^) -> g i ? φ(g2r) ~* ?2 Consequently

there exist equivalent orthogonal idempotents ev e2 e i? such that

^ - φ(^i)) < «/2 and TV(g2 - φ(e2) < ε/2. Hence

TV(1 -{eλ + e 2)) < TV(gl - φ ( ^ ) ) + TV(g2 - φ(e2)) < ε.
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Now assume that the result is true for 1 < k < n with n > 2. Taking

k = 1 we see that there exist equivalent orthogonal idempotents e[,

e2 e R such that e[ + e2 < e and N(e - (e[ + e'2)) < ε/3. Taking now

k = n — 1 we obtain 2"" 1 equivalent orthogonal idempotents ev...,e2n-i

G i? such that ex + +e2n-i < e[ and N(e[ - (eλ + + e2«-i)) <

ε/3. Since e( — e2 there exist equivalent orthogonal idempotents

e2n-ι + v . . . ,e2» G 1? such that e2»-i + ι + +e2« < e'2 and ex ~ e2n-i + ι

— - - e2«. We have

= N{e[) - N(ei) N(e2.-ι)<e/3.

So, ev..., e2n are 271 equivalent orthogonal idempotents such that eλ

+ +e2n < e and

Now let e G i? be an idempotent and let ε > 0, m > 1. Choose w > 1

such that m/2n < ε/2 and put 2n = mr + k where r > 0 and 0 < k < m.

As we have seen there exist equivalent orthogonal idempotents e[,...,e'2n

G R such that e/e = ee\ = e[ for all /, and N(e - (e[ + +e2»)) <

ε/2. Observe that # ( < ) < 2~rt for all /. Define et = e'{ι_l)r+ι + +e'ιr
for / = 1, . . . , m. Then ev...,em are equivalent orthogonal idempotents

of R such that eze = eet = et all /. Moreover we have

N(e - (eλ + +ej) = N(e-{e[+ - + ^ r ) )

< ε/2 + kN(e'2n)

< ε/2 + m/2" < ε/2 + ε/2 = ε.

Hence N{e — (ex 4- +e2n)) < ε as desired. D

THEOREM 3.5. Let F be a *-field with positive definite involution. Let

{ Rn Φ } G j be a direct system such that, for every i G /, Ri is a standard

matricial *-algebra over F and, if i < j \ Φ : Rt -> i?. w ^ composition of

standard maps. Let R be the direct limit of {Ri9ΦJt} and let N be a

pseudo-rank function on R. Then the type II part of the N-completion of R

satisfies LP ~ RP matricially.
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Proof. It suffices to see that the type II part of the N-completion of R
satisfies LP ~ RP.

Let R be the N-completion of R and let φ: R -> R denote the
natural map. There exists a unique decomposition R = Rx X R2 where Rλ

is type I and R2 is type II. Let N be the natural extension of N to R, and
note that N is a rank function on R. If Rτ and R2 are nonzero, then
there exists a central projection A Φ 0,1 such that hR = i?1 and (1 - h)R
= R2. By [5, Prop. 16.4] there exist unique rank functions N{, N2 on Rl9

R2 such that

N(x) = N(h)N{(hx) - h)x)

for all x E Λ. For j ; € Λ, define N2(y) = ΛΓ2'((1 - A)φ(j )). Then, it is
easily seen that N2 is a pseudo-rank function on R. Also, one can see that
the map ψ: R -* R2 defined by ψ(j>) = (1 - h)φ(y) is the natural map
from R to its Λ^-completion, so that the completion of (R9N2) is
precisely (R 2, Af2).

If i?2 = 0, there is nothing to prove. If R2 Φ 0, then we see from the
above discussion that R2 is the completion of i? with respect to a certain
pseudo-rank function on R. So, we can assume without loss of generality
that R is of type II.

Since each Ri has *-cancellation, so does R. Thus, by Theorem 2.8, it
suffices to prove that given ε > 0 and equivalent projections e,f in i?,
there exist subprojections e' < e, f < f such that e' ~ / ' and N(e - e')
< ε, N(f- /') < ε. For / e /, let βy: Rt^> R be the natural map from Rt

to the direct limit. There exist i Ξ / and projections g, A in i?z such that
0,(g) = ^9 ^.(A) = / and g - A in Rim Since i?̂  is a standard matricial
*-algebra, there exist some positive integers c(l),. . ., c(n) such that Ri =
Mc{l){F) X XMc(n)(F). Clearly, we may assume without loss of gen-
erality that g = (0,...,0,g',0,...,0)and A = (0,.. .,0, A',0,.. .,0) where
g' and A' are projections of rank one in some ring Mc{a)(F) for some
1 < a < n.

Let k be the additive order of [g']* - [A']* in Kg(F). By Proposition
3.2, A: is a power of 2. Moreover, since Mn(F) has "'-cancellation for all n,
we have

g' W
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Let / be a positive integer with 1/7 < ε/2, and set m = kl. By

Lemma 3.4 (and a standard argument) there exist m orthogonal equiva-

lent projections el9...,em in R such that eι+ -+em<e and

N(e - (eλ + + O ) < ε / 2 Now, there exist ' e / such that j > i

and m orthogonal equivalent projections gl9...9gm in Rj such that g^ <

and θj(gp) = ep for /? = 1, . . . , m. There exist positive

integers d{l),..., d(r) such that Rj = Md{l)(F) X ••• X M ^ ί F ) . Set

£/> = (gpi> ' >gpr) f o r ^ = l , . . ,m, and note that, for each q =

1, . . . , r, glq9 ...9gmq are m orthogonal equivalent projections in Md(q)(F).

Without loss of generality, we can assume that g n , . . . , glr, Φ 0 and g l r + 1

= . . . = g l r = 0. Set Φjάg) = (e[,..., <?;). We note that

Since Φ7/ is a composition of standard maps, each e'q has the form

"0
g'

0

for suitably-sized zero matrices.

Since glq + + g w ^ < e'q for ^ = 1,.. . , r, we have rank(ep > m

for r̂ = 1, . . . , r'. If we put ΦjΊ(h) = (//,..., //) we see that τank(fq) > m

for q = 1, . . . , r'.

For <y = 1,. . . , r\ set t(q) = rank(e^) and note that t(q) is precisely

the number of copies of g' that appear in the expression of eq. Put

t(q) = s(q)k 4- /'(#) with 0 < r r(^) < k. We observe that m < s(q)k.

For each q = l , . . . ,^ ' , let β^ be the projection of Md{q)(F) which has

•*(#)£ g'-blocks in the same places as the first s(q)k g'-blocks of eq and

zeroes elsewhere, that is

/? —-

0

s(q)k
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For q = 1,..., r\ let f'q' be the projection of Md(q)(F) formed in the
same way as eq but with W instead of g'.

Set e' = 0 / ( < , . . . , <,(),...,())), / ' =
Clearly, e' < e and / ' < / . Since eq ~fq for # = 1 , . . . , / * ' , we have

e'~f>.
Set Λ̂ . = Nθj. Then, Af is a pseudo-rank function on Rj and by [5,

Corollary 16.6], we have that there exist nonnegative real numbers
av . . . , ar with αx + 4- ar = 1 such that

ΛΓ((*1,...,x r)) = ^ r a n k U J M l ) + ••• + a rrank(x r)/</(r).

For g = 1,..., r' we have

< k/m = k/(kl) = \/l < ε/2.

Finally,

j((e[- el',...^',- e';909...,0))

[- e?,...^',, - e';909...90)) + ε/2

= a1mnk(e[-e[')/d(l)

+ + α ^ r a n k ( ^ - e " ) M f ' ) + ε/2

< (aλ + +α^)ε/2 4- ε/2 < ε.

Similarly, N(f — f) < ε. So, the proof is complete. D
As a consequence of Theorem 3.5, we see that if F is any *-field with

positive definite involution, then there exists a simple, *-regular, self-injec-
tive ring of type II satisfying LP ~ RP whose center is F. For example, let
n(l) < n(2) < be positive integers such that n(k) \n(k 4- 1) for all
/c, and set S = lim Mn{k)(F) (with respect to the obvious standard maps).
Let R be the completion of S with respect to the unique rank function on
S. Then, R is a simple, *-regular, self-injective ring of type II whose
center is F ([4, Thm. 2.8]). By Theorem 3.5, R satisfies LP - RP matri-
cially.

Next, we shall construct a simple, *-regular, self-injective ring of type
II which does not satisfy LP ~ RP. In [9, pg. 31, Example 1] Handelman
tries to offer an example of a simple, *-regular, type II self-injective ring
R which does not satisfy LP ~ RP and a Baer *-subring S of R which
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contains all the partial isometries of R and does not satisfy neither
LP ~ RP nor the (EP)-axiom. The ring R constructed by Handelman is
the completion of lim Mr(Q(x)) with respect to its unique rank function.
So, it follows from Theorem 3.5 that R satisfies LP ~ RP and therefore,

also the Baer *-subring S has LP ~ RP. It is true, however, that they do
not satisfy the (SR)-axiom of [2, pg. 66].

EXAMPLE 3.6. There exists a simple, *-regular, self-injective ring of type
II which does not satisfy LP ~ RP.

Proof. Let F b e a formally real field such that DF{1) C DF(2) c
(for example we can take F = R(x l9 x29 -.), [15, Exercise 6, pg. 315]). Set
S = Π™=1M2n(F). Let M be a maximal two-sided ideal of S which
contains the direct sum ®™=χM2n(F). Set R = S/M. By [5, Thm. 10.30]
R is a simple, regular, right and left self-injective ring of type II. Clearly,
both R and S are *-regular rings (here, the involution on F is the
identity). For n > 1, choose wn e DF(2") - DF{2n~ι). From Propositions
3.1 and 3.2, we see that there exist rank one projections fni e M2*(F),
i = 1,...,2" such that for each n, fni are 2" orthogonal *-equivalent
projections adding to the identity in M2»(F\ that is fn λ 4- +/π τ =
12,, and φ d / J Λ = {(wM» for i = 1,...,2". Set

\ /
From [15, Corollary X.1.6] and 3.1 (b) we deduce that for each n, gnl

and hnl does not have nonzero *-equivalent subprojections. Set gx =
(£u> #2,i> )' Si = (#i,2> #2,2> ); Ax = ( A u , A21, . . . ) ; A2 =

(A 1 2,A 2 2,. . .). We have gx - g2, Ax ~ h2 and gx + g2 = hλ + h2 = 1.
Note that gλ - hλ and g2~ h2 in S. So, in i? we have gλ - hλ and
g2~h2. Clearly, g1? A2 ¥= 0.

Suppose that gλ ~ hv By Lemma 1.6, there exist orthogonal decom-
positions gλ = g[ + gΓ, Ai = Aί + h'{ such that g[ - AJ and g{', A" e M.
But g n l does not have any nonzero subprojection *-equivalent to a
subprojection of hnl. We conclude that g[ = h[ = 0, and so gl9 hx e M
which is a contradiction. So, gx and At are equivalent but not *-equivalent
projections in R and we conclude that R does not have LP ~ RP. D

We now consider the special case in which F is chosen to be a
formally real number field.
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LEMMA 3.7. Let F be a formally real number field and let e, f be two

projections in Mn(F). Then, if e ~ /, there exist subprojections er < e,

f < fsuch that e' ~ / ' and rank(e - e') < 4, rank(/ - /') < 4.

Proof. If rank(e) < 4, then the result is trivial. If rank(e) > 4, set

q = H{e). By [15, Thm. XI.1.4] we see that q represents 1 (since dimg > 4)

and so q ^ (1) ± q'. Thus, we conclude that we can get a quadratic form

r such that dim r = 3 and

q - / CTTl \ J- r.

This implies that there exists an orthogonal decomposition

e = e> + e" withe' - d i a g C 7 7 l , 0 , . . . , 0 1 .

Similarly,

So, e' ~ ff and rank(e - e') = mnk(e") = rank(/") = rank(/ - /') =

3. D

PROPOSITION 3.8. Let F be a formally real number field.

(a) Let {Rn Φy/J^/e / be any direct system where each i?z is a matricial

*-algebra over F {with the identity involution on F). Set R = l imR. and let

N be a pseudo-rank function on R. Then, the type II part of the N-comple-

tion of R satisfies LP - RP matricially.

(b) Set S = Yl?=λMn{i)(F) with n(l) < n(2) < - , and let M be any

maximal two-sided ideal of S which contains Θ ^ M ^ ^ i 7 ) . Then, the

factor ring S/M is a simple, ^-regular, self-injective ring of type II

satisfying LP ~ RP matricially.

Proof, (a) The proof is analogous to that of Theorem 3.5, using

Lemma 3.7 adequately.

(b) Set R = S/M. By [5, Thm. 10.30], R is a simple, regular, right

and left self-injective ring of type II. Also, R is *-regular with positive

definite involution. It suffices to show that R satisfies LP - RP.

Let e,f be two nonzero equivalent projections in R. By Proposition

1.5, we only have to prove that there exist nonzero subprojections er < e,

/ ' < / such that e' - / ' . Let n be any integer such that n > 6. By [5,

10.28] (and a standard argument), there exist n orthogonal equivalent

projections ex,...,en in R such that e = eι + + en.
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Choose equivalent projections p, q e S such that p = e and q = f.
By applying [5, Prop. 2.18] we obtain orthogonal projections p[,..., p'n e S
such that Pj < p and p'3 = e} for j = 1,...,«. By [5, Prop. 2.19] there
exist projections pj < pj such that ρλ~ - pn and /?7 = jpj = βj for
7 = 1,...,«. Set g = pγ + +/?„ < p. Since p ~ q there exists a projec-
tion /z < q such that g ~ h. Note that g = px + +/>w = eγ + + ew

= e and Ίi ~ g = e ~ f. Since A < / and i? is directly finite, we obtain
Ji = f. Summarizing we have g = e, 7ι = /, g - Λ and g = /?x + +/?„
where the /7Z are equivalent orthogonal projections.

Set g = (g 1 ,g 2 , . . ), A = (Λi,Λ2, ) where g | , Λ, e P(M Π ( | ) (F)) .
Note that gt - ht in Mn{ι)(F) and that each g, (and so each Λf.) is the
sum of n equivalent orthogonal projections. By Lemma 3.7 we can choose
subprojections g[ < g/? h < hi9 for z = 1,2,... such that g- ~ h\,
rank( g / - g[) < 4 and mnk(hι - AJ) < 4. Set g/' = g | - g;, *;' = A,. -
A;. Since π > 6 we have g / " < g\ and h" <h\ for / = 1,2,.... Set
g' = (g/), Λ' = (Λ ), g" = (gΓ)? Λ" = (AH. We have g ' - A', g ' + g " =

g ? ft' + h» = h, g" < g' and h" < W. Hence gr - h\ g' < g = e and

A' < Jι = /. It only remains to prove that g' ί M. If g' G M then since
g" < gr we have gr/ e Λf and so g e M which is a contradiction.
Therefore gf Φ 0 and this completes the proof. D

EXAMPLE 3.9. There exists a ^-regular ring such that
(a) The intersection of the maximal two-sided ideals is zero.

(b) For every maximal two-sided ideal MofR, R/M satisfies LP - RP

matricially, but R does not satisfy LP ^ RP.

Set R = {x e Π^= 1Mw(R)|xn e MΠ(Q) for all but finitely
many n}. Clearly the intersection of the maximal two-sided ideals of R is
zero. If M is a maximal two-sided ideal of R such that M does not
contain the direct sum © ^ MM(R), then i?/M = MW(R) for some m and
so R/M satisfies LP ^ RP matricially. If M contains the direct sum

®;i i M «( R ) t h e n Λ / M ^ Π ^ A ( Q ) / ( M n Π ^ A ( Q ) ) and so, by

Proposition 3.8, (b), R/M satisfies LP ~ RP matricially. On the other

hand it is clear that R does not satisfy LP - RP. D
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