GROUPS OF KNOTS IN HOMOLOGY 3-SPHERES THAT ARE NOT CLASSICAL KNOT GROUPS

Magnhild Lien

Abstract

In this paper we attempt to enlarge classical knot groups K by adding a root to a meridian of K. Thus if K is a classical knot group with a meridian μ, then the groups we study are of the form $G=K_{\mu=t^{q}}^{*}\langle t\rangle$. This group can always be realized as the group of a knotted 3-sphere in S^{5}. By using explicit geometric constructions we also show that such a group G is a 2-knot group and the group of a knot in a homology 3-sphere. Finally, we show that G is not realizable by any knot in S^{3}.

1. Introduction. In $\left[\mathbf{R}_{\mathbf{1}}\right]$ J. Ratcliffe gave an example of a group Γ that is the group of a fibered knot in a homology 3 -sphere which cannot be realized as the group of a classical knot. Let K be the group of the trefoil knot and let $\mu \in K$ represent a meridian. As seen in $\left[\mathbf{R}_{\mathbf{1}}\right] \Gamma$ can be expressed as a free product with amalgamation $K \underset{\mu=t^{2}}{*}\langle t\rangle$.

In this paper we generalize the result in $\left[\mathbf{R}_{\mathbf{1}}\right]$. We study groups G obtained from classical knot groups K by forming an amalgamated free product of K with Z. More specifically if K is a classical knot group with meridian μ, then $G=K \underset{\mu=t^{q}}{*}\langle t\rangle$. Note that if $q=1$ then $G=K$. Hence we assume $q>1$. One natural question to ask about G is if G is the group of a knot in any dimension. We show that G is the group of a knotted 2-sphere in S^{4}. Furthermore we show that G can be realized as the group of a knot in a homology 3 -sphere. However, G is not a classical knot group.

I would like to thank the referee for his suggestion of how to construct the 2 -sphere in $\S 3$. This made the third section a lot simpler than it was in the first version of this paper.
2. Preliminaries. In this paper we work in the smooth category. S^{n} and B^{n} denote the standard n-sphere and n-ball. If N and M are manifolds and $f: M \rightarrow N$ is a map then both of the induced homomorphisms $\pi_{1}(M) \rightarrow \pi_{1}(N)$ or $H_{1}(M) \rightarrow H_{1}(N)$ will be denoted by f_{*}. Homeomorphism between spaces and isomorphism between groups are denoted by \cong. An n-dimensional knot is the image of a smooth
embedding Σ^{n} of S^{n} into S^{n+2} or R^{n+2}. By the knot group we mean $\pi_{1}\left(S^{n+2}-\Sigma^{n}\right)$. For $n=1$, we call these groups classical knot groups.

We define the deficiency of a group presentation with n generators and m relators to be the integer $n-m$. The following well known proposition is due to Kervaire [K].

Proposition 2.1. If a group K has a deficiency one presentation and $K / K^{\prime} \cong Z$ then $H_{2}(K)=0$.

Consider an oriented knot Σ in S^{3}. Remove an open neighbourhood N of Σ in S^{3} to produce the knot manifold $X=S^{3}-N$. The preferred meridian, longitude pair (μ, λ) of Σ are two nontrivial simple closed curves on $\operatorname{Bd}(X)$ such that μ bounds a disk in N and λ is homologically trivial in X.

Definition 2.2. A (p, q)-curve is a simple closed curve J on $\operatorname{Bd}(X)$ that is homotopic to $\mu^{p} \lambda^{q}$ where p and q are relatively prime. We also call J a (p, q)-cable about Σ.
3. A 2-knot with group $K \underset{\mu=t^{q}}{*}\langle t\rangle$. Let K be a classical knot group with meridian μ. We construct a new group G by adding a q th root (via amalgamted free product) to the meridian μ of K, i.e., $G=K \underset{\mu=t^{q}}{*}\langle t\rangle$. The following proposition is easy to verify using Kervaire's characterization of high dimensional knot groups ([K], Theorem 1).

Proposition 3.1. The group G is a high dimensional knot group.
Proof. Since K is a classical knot group it has a deficiency one presentation. We can thus obtain a deficiency one presentation of G from a presentation of K by adding one more generator (t) and one more relation ($\mu=t^{q}$). Moreover since K is a knot group and hence satisfies the conditions of Kervaire's characterization it is straightforward to check that $G / G^{\prime} \cong Z$ and that $G /\langle\langle t\rangle\rangle=1$. By Proposition 2.1 we obtain $H_{2}(G)=0$, and it follows that G can be realized as the group of a knotted 3 -sphere in S^{5}.

Let Σ be a knot in S^{3} with group K. We shall construct a knotted 2-sphere Σ^{4} with $\pi_{1}\left(S^{4}-\Sigma^{2}\right)=\underset{\mu=t^{q}}{*}\langle t\rangle$. The equatorial cross-section of this 2 -sphere will be a $(1, q)$-cable about the composite knot $\Sigma \#-\Sigma^{*}$, where $-\Sigma^{*}$ is the mirror image of Σ with its orientation reversed.

Definition 3.2. A knot Σ in S^{3} is a slice knot if there exists a smooth disk D in B^{4} such that $\operatorname{Bd}(D)=\Sigma$.

Theorem 3.3. Let Σ be a knot in S^{3} and let L be the (1,q)-cable about $\Sigma \#-\Sigma^{*}$. Then L is a slice knot.

Proof. For any knot Σ, the knot $\Sigma \#-\Sigma^{*}$ is a slice knot $[\mathbf{F}, \mathbf{M}]$. To construct a slice disk D in B^{4} with $\operatorname{Bd}(D)=\Sigma \#-\Sigma^{*}$, we do as follows. First note that $\left(S^{3}, \Sigma\right)=\left(B^{3}, \beta\right) \cup_{\partial}\left(B^{3}, B^{1}\right)$ where β is a knotted arc and $\left(B^{3}, B^{1}\right)$ is a standard ball pair. Remove the ball pair (B^{3}, B^{1}) from $\left(S^{3}, \Sigma\right)$ and cross $\left(B^{3}, \beta\right)$ with the interval to obtain a disk $D=\beta \times I$ contained in B^{4}. Then $\operatorname{Bd}(D)=\Sigma \#-\Sigma^{*}$. Thus D is the desired disk. Let $N=D \times$ int B^{2} be an open neighbourhood of the slice disk and let $M=B^{4}-N$. Then $D \times \operatorname{Bd}\left(B^{2}\right)$ is in $\operatorname{Bd}(M)$. We shall attach a 2-handle $B^{2} \times B^{2}$ which contains a slice disk for the trivial $(1, q)$-torus knot to M along $D \times \operatorname{Bd}\left(B^{2}\right)$. If $B^{2} \times B^{2}$ is attached along $S^{1} \times B^{2}$ then let the torus knot be the $(1, q)$-cable about the core of the solid torus $B^{2} \times S^{1}$. Note that the attaching sphere $S^{1} \times\{0\}$ represents the q th power of the meridian of the torus knot. Since the image of $\{*\} \times S^{1}$ under the attaching map is $\operatorname{Bd}(D)=\Sigma \#-\Sigma^{*}$ it follows that the image of the boundary of the slice disk for the $(1, q)$-torus knot is L. Thus there exists a disk in B^{4} with boundary L.

Since L is a slice knot, we can use L as the equatorial section of a knotted 2-sphere in S^{4} by joining together smooth disks in B_{+}^{4} and B_{-}^{4} bounded by L. We denote the 2 -sphere obtained this way by $S(\Sigma, q)$.

Theorem 3.4. Let Σ be a knot in S^{3} with group K and meridian μ, $q>1$ and let $S(\Sigma, q)$ be the 2-knot described above. Then

$$
\pi_{1}\left(S^{4}-S(\Sigma, q)\right)=K_{\mu=t^{q}}^{*}\langle q\rangle
$$

Proof. If \tilde{D} is the slice disk for the $(1, q)$-cable about $\Sigma \#-\Sigma^{*}$ it suffices to show that $\pi_{1}\left(B^{4}-\tilde{D}\right)=K \underset{\mu=t^{q}}{*}\langle t\rangle$. Using the notation from the proof of Theorem 3.3 we have that

$$
B^{4}-\tilde{D}=M \cup_{S^{1} \times B^{2}-\operatorname{Bd}(\tilde{D})}\left(B^{2} \times B^{2}\right)-\tilde{D}
$$

Since M is homotopic to $B^{4}-D$ which equals $\left(B^{3}-\beta\right) \times I$ it follows that $\pi_{1}(M)=\pi_{1}\left(B^{3}-\beta\right)=K$. Moreover, since $\operatorname{Bd}\left(\tilde{D}_{1}\right)$ is the (trivial) $(1, q)$-torus knot we get that the fundamental group of $B^{2} \times B^{2}-\tilde{D}$ is
infinite cyclic generated by the meridian of the torus knot. Thus the fundamental group of $B^{4}-\tilde{D}$, is obtained from $\pi_{1}(M)$ by attaching a q th root of the original meridian μ, i.e. $\pi_{1}\left(B^{4}-\tilde{D}\right)=K \underset{\mu=t^{q}}{*}\langle t\rangle$.
4. 3-manifolds that can realize the group $K \underset{\mu=t^{\varphi}}{*}\langle t\rangle$. We now consider how close G is to being a classical knot group. As the following shows the Alexander polynomial $\Delta_{G}(t)$ for G is symmetric and it satisfies $\Delta_{G}(1)= \pm 1$.

Theorem 4.1. Let K be a classical knot group with Alexander polynomial $\Delta_{K}(t)$ and let $G=K \underset{\mu=t^{\alpha}}{*}\langle t\rangle$. Then the Alexander polynomial $\Delta_{G}(t)$ for G satisfies $\Delta_{G}(t)=\Delta_{K}\left(t^{q}\right)$.

Proof. Let $K=\left\langle x_{0}, x_{1}, \ldots, x_{n} ; R_{1}, \ldots, R_{n}\right\rangle$ be a standard Wirtinger presentation for K and let $A=\left[\partial R_{i} / \partial x_{j}\right]$ be the $n \times(n+1)$ Alexander matrix with respect to this presentation.

$$
A \text { is equivalent to } B=\left[\begin{array}{cccc}
\frac{\partial R_{1}}{\partial X_{0}} & \cdots & \frac{\partial R_{1}}{\partial X_{n-1}} & 0 \\
& & & \vdots \\
\frac{\partial R_{n}}{\partial X_{0}} & \cdots & \frac{\partial R_{n}}{\partial X_{n-1}} & 0
\end{array}\right]
$$

which is obtained from A by adding the first n columns to the last column. The Alexander polynomial for $K, \Delta_{K}(t)$ is the generator of the principal ideal generated by the determinants of all the $n \times n$ submatrices of B. Thus $\Delta_{K}(t)=$ determinant of the $n \times n$ submatrix obtained from B by deleting the last column. The group G has a presentation $\left\langle t, x_{0}, \ldots, x_{n}\right.$; $\left.R_{1}, \ldots, R_{n}, x_{0} t^{-q}\right\rangle$ and its Alexander matrix is

$$
\left[\begin{array}{cccc}
& & A\left(t^{q}\right) & \\
& & 0 \\
1 & 0 & \cdots & 0
\end{array}\right)
$$

where $k(t)=\partial\left(x_{0} t^{-q}\right) / \partial t$. This matrix is equivalent to

$$
C=\left[\begin{array}{cccccc}
\frac{\partial R_{1}}{\partial X_{0}}\left(t^{q}\right) & & \cdots & \frac{\partial R_{1}}{\partial X_{n-1}}\left(t^{q}\right) & 0 & 0 \\
\frac{\partial R^{n}}{\partial X_{0}}\left(t^{q}\right) & & & \frac{\partial R_{n}}{\partial X_{n-1}}\left(t^{q}\right) & 0 & 0 \\
1 & 0 & \cdots & 0 & 1 & k(t)
\end{array}\right] .
$$

The ideal generated by all $(n+1) \times(n+1)$ minors of C is easily seen to be principal and its generator is $\Delta_{K}\left(t^{q}\right)$. Hence G has an Alexander polynomial $\Delta_{G}(t)$ and moreover $\Delta_{G}(t)=\Delta_{K}\left(t^{q}\right)$.

Since K is a classical knot group there is a knot Σ in S^{3} with knot manifold X such that $\pi_{1}(X)=K$. Let (μ, λ) be the preferred meridian, longitude pair for $\operatorname{Bd}(X)$, and let $A=\mu \times I$ be an annulus on $\operatorname{Bd}(X)$. By T^{3} we mean the standard solid torus $S^{1} \times D^{2}$ in R^{3}. Furthermore, let J be a $(1, q)$-curve on the boundary of T^{3} and let $B=J \times I$ be an annulus on $\operatorname{Bd}\left(T^{3}\right)$. We construct a cabled 3-manifold $M[\mathbf{J}, \mathbf{M}]$ by glueing together X and T^{3} along the two annuli A and B, i.e. $M=X \cup_{A=B} T^{3}$.

Proposition 4.2. $\pi_{1}(M)=K \underset{\mu=t^{q}}{*}\langle t\rangle$.
Proof. Let $\pi_{1}\left(T^{3}\right)=\langle t\rangle, \pi_{1}(A)=\langle\mu\rangle$ and $\pi_{1}(B)=\langle j\rangle$. The image of μ in $\pi_{1}(X)$ under the homomorphism induced by the inclusion map $A \rightarrow M$ is μ, and the image of j in $\pi_{1}\left(T^{3}\right)$ under the homomorphism induced by the inclusion map $B \rightarrow T^{3}$ is t^{q}. Thus by the Van-Kampen Theorem we conclude that $\pi_{1}(M)=K \underset{\mu=t^{q}}{*}\langle t\rangle$.

The boundary of M is homeomorphic to $S^{1} \times S^{1}$, and if (μ, λ) is a standard meridian, longitude pair for $\operatorname{Bd}(X)$, then a basis for $\operatorname{Bd}(M)$ is $\mu, \lambda t^{-1}$.

Theorem 4.3. If K is a classical knot group with meridian μ, then $G=K \underset{\mu=t^{q}}{*}\langle t\rangle$ is the group of a knot in a homology 3-sphere.

Proof. We construct a 3-manifold M^{\prime} by sewing a solid torus to M in such a way that a meridian of the solid torus is identified with the curve λt^{-1}. Then $\pi_{1}\left(M^{\prime}\right)$ is obtained from $\pi_{1}(M)$ by adding the relation $t=\lambda$. Since $\pi_{1}(M)=K \underset{\mu=t^{q}}{*}\langle t\rangle$ we get that $\pi_{1}\left(M^{\prime}\right)=K /\left\langle\left\langle\mu \lambda^{-q}\right\rangle\right\rangle$. It is now easy to see that $\stackrel{\mu=t^{q}}{H_{1}}\left(M^{\prime}\right) \cong 0$ and we conclude, using the usual Poincaré duality argument that M^{\prime} is a homology 3-sphere.

In some recent work done by Culler, Gordon, Luecke, and Shalen, it is shown that if $(1, q)$-surgery on a nontrivial knot yields a simply connected manifold then $|q|=0$ or $1[\mathbf{C}, \mathbf{G}, \mathbf{L}, \mathbf{S}]$. If a knot Σ has group K and $m, l \in K$ is the meridian and the longitude, then the fundamental group of the surgery manifold $\Sigma(1, q)$ is $K /\left\langle\left\langle m l^{q}\right\rangle\right\rangle$. We thus have the following proposition.

Proposition 4.3. If K is a classical knot group and $q>1$ then $K /\left\langle\left\langle m l^{q}\right\rangle\right\rangle \neq 1$.

Theorem 4.4. Let K be a classical knot group with meridian μ and let $G=K \underset{\mu=t^{q}}{*}\langle t\rangle, q>1$. Then G is not a classical knot group .

Proof. Let $M=X \cup_{A} T^{3}$ be the cabled manifold we constructed in the paragraph preceding Proposition 4.2, then $\pi_{1}(M) \cong G$. Suppose there exists a knot L in S^{3} with $\pi_{1}\left(S^{3}-L\right)=G$. We shall eventually show that L must be a cable knot about some core L^{\prime} and that the surgery manifold $L^{\prime}(1, q)$ is simply connected which contradicts Proposition 4.3.

The knot manifold X is aspherical [\mathbf{P}]. Moreover, M as the union of aspherical spaces sewn together along an incompressible subspace is aspherical $\left[\mathbf{W}_{2}\right]$. Let N be the knot manifold for L. Since $\pi_{1}(M)$ is isomorphic to $\pi_{1}(N)$ and M and N are aspherical spaces, there exists a homotopy equivalence $f: N \rightarrow M$ that induces the group isomorphism.

The annulus A is bicollared in M. Furthermore, $\pi_{1}(A) \rightarrow \pi_{1}(M)$ is injective since $\pi_{1}(A) \rightarrow \pi_{1}(X)$ and $\pi_{1}(A) \rightarrow \pi_{1}\left(T^{3}\right)$ are injective; also $\pi_{2}(A)=\pi_{2}(M)=\pi_{3}(M)=\pi_{2}(M-A)=0$ since M, X and T^{3} are aspherical spaces. Hence $\operatorname{ker}\left(\pi_{j}(A) \rightarrow \pi_{j}(M)\right)=0, j=1,2$. By Lemma 1.1 in $\left[\mathbf{W}_{\mathbf{1}}\right]$ there exists a map g that is homotopic to f such that:

1. g is transverse with respect to A, i.e. there exists a neighbourhood $g^{-1}(A) \times I$ of $g^{-1}(A)$ so that $g(x, y)=(g(x), y)$ for every $x \in$ $g^{-1}(A)$ and $y \in I$.
2. $g^{-1}(A)$ is an orientable compact 2-manifold and $g^{-1}(A) \cap \operatorname{Bd}(M)=$ $\operatorname{Bd}\left(g^{-1}(A)\right)$.
3. If F is a component of $g^{-1}(A)$ then $\operatorname{ker}\left(\pi_{j}(F) \rightarrow \pi_{j}(N)\right)=0, j=$ $1,2$.
Choose a map g that minimizes the number of components of $g^{-1}(A)$. We shall show that for such a map $g, g^{-1}(A)$ is just one annulus F and that F separates N into a solid torus V and a knot manifold Y having the same group as X. We use techniques similar to those used in [F,W] and [S] to prove the following assertions. (Some proofs are omitted since they are the same as proofs in $[\mathbf{F}, \mathbf{W}]$ and $[\mathbf{S}]$.)

Claim 4.4.1. $g^{-1}(A)$ is nonempty.
Claim 4.4.2. Let F be a component of $g^{-1}(A)$. Then F is an essential annulus.

We thus have $g^{-1}(A)=F_{1} \cup \cdots \cup F_{K}, k \geq 1$. Since each component of $g^{-1}(A)$ is an essential annulus we get that the core L of $S^{3}-\operatorname{Int}(N)$ is either a composite knot or a cable knot ([$\left.\mathbf{W}_{3}\right]$, Lemma 1.1).

Claim 4.4.3. L is a cable knot.
Since $g^{-1}(A)=F_{1} \cup \cdots \cup F_{K}$ and L is a $\left(p^{\prime}, q^{\prime}\right)$-cable about a knot L^{\prime} we have for each $i, 1 \leq i \leq k, N=Y_{i} \cup_{F_{i}} V_{i}$ where V_{i} is a solid torus and Y_{i} is a knot manifold. Moreover a boundary component of $\operatorname{Bd}\left(F_{i}\right)$ is a $\left(p^{\prime}, q^{\prime}\right)$-curve on $S^{3}-\operatorname{Int}\left(Y_{i}\right)$.

Claim 4.4.4. $\pi_{1}(N)$ has trivial center.
Proof of 4.4.4. Since $\pi_{1}(N)=K \underset{ }{*}\langle t\rangle$, the center of $\pi_{1}(N)=$ $C(K) \cap\langle\mu\rangle\left([\mathbf{M}, \mathbf{K}, \mathbf{S}]\right.$, Cor. 4.5). If $\stackrel{\mu=t^{q}}{K}$ is not a torus knot group then $C(K)=1$ and consequently $\pi_{1}(N)$ has no center. On the other hand if K is a torus knot group then $C(K)=\left\langle\mu^{p q} \lambda\right\rangle$, but $\left\langle\mu^{p q} \lambda\right\rangle \cap\langle\mu\rangle=1$ in K and consequently in $K \underset{\mu=t^{q}}{*}\langle t\rangle$.

Claim 4.4.5. The annuli F_{1}, \ldots, F_{K} are parallel in N.
Proof of 4.4.5. N is prime since it is a cable knot manifold. Moreover N is irreducible. Since $\pi_{1}(N)$ has trivial center, N cannot be a Siefert fiber space with decomposition surface a disk with 3 singular fibers as such a space has fundamental group with nontrivial center [J]. By Lemma 2.4 in [J, M] there exists a unique (up to ambient isotopy) essential annulus embedded in N. Hence each annulus F_{i} is parallel to F_{1}.

Claim 4.4.6. For each $i, 1 \leq i \leq k,\left.g\right|_{F_{i}}$ is homotopic to a homeomorphism.

Proof of 4.4.6. It suffices to show that $g_{*}: H_{1}\left(F_{i}\right) \rightarrow H_{1}(A)$ is an isomorphism. Since $H_{1}\left(F_{i}\right) \cong \pi_{1}\left(F_{i}\right)$ and $H_{1}(A) \cong \pi_{1}(A)$, this implies that $g_{*}: \pi_{1}\left(F_{i}\right) \rightarrow \pi_{1}(A)$ is an isomorphism. Hence $\left.g\right|_{F_{l}}$ is a homotopy equivalence and is therefore homotopic to a homeomorphism.

Let f_{i} be a generator for $H_{1}\left(F_{i}\right)$ and let a be a generator for $H_{1}(A)$. Then $g_{*}\left(f_{i}\right)=a^{r}$. We wish to show that $r= \pm 1$. We use a homotopy inverse h of $g(h: M \rightarrow N)$. As done earlier in the proof we can modify h such that $h^{-1}\left(F_{i}\right)$ is a collection of essential annuli, B_{1}, \ldots, B_{n}. Since M is irreducible ([J], Lemma 3.1) and M is not a twisted I-bundle over the Klein bottle (if M is a twisted I-bundle over the Klein bottle then $\pi_{1}(M)$
abelianizes to $Z \oplus Z_{2}$) there exists an isotopy $h_{t}(0 \leq t \leq 1)$ such that $h_{1}\left(\operatorname{Bd}\left(B_{i}\right)\right) \cap \operatorname{Bd}(A) \neq \varnothing$. Hence $\operatorname{Bd}\left(B_{i}\right)$ is homologous to $\operatorname{Bd}(A)$ in $H_{1}(M)$, i.e. the generator a for $H_{1}(A)$ is homologous to a generator b_{i} for $H_{1}\left(B_{i}\right)$. Furthermore, $h_{*}\left(b_{i}\right)=f_{i}^{s}$. Since h is a homotopy inverse of g we get $g_{*}\left(h_{*}\left(b_{i}\right)\right)=b_{i}$, i.e. $a^{s r}=b_{i}$. Since a is homologous to b_{i} in $H_{1}(M)$ we obtain $a^{s r}=a$ in $H_{1}(M)$. Hence $s r=1$, and it follows that $r= \pm 1$.

Claim 4.4.7. $p^{\prime} q^{\prime}=q$.
Proof of 4.4.7. $z_{p^{\prime} q^{\prime}} \cong H_{1}(N) / H_{1}\left(F_{i}\right) \cong H_{1}(M) / H_{1}(A) \cong Z_{q}$.
Recall that $g^{-1}(A)=F_{1} \cup \cdots \cup F_{K}$.

Claim 4.4.8. k is odd.
Proof of 4.4.8. Since the annuli $F_{i}, 1 \leq i \leq k$ are all parallel V_{k} contains a core v_{1} of V_{1}. Let α be a path in V_{1} from F_{1} to v_{1}, then $\pi_{1}\left(Y_{1}\right)$ and $\alpha v_{1} \alpha^{-1}$ generate $\pi_{1}(N)$. If k is even then g maps $\operatorname{Int}\left(Y_{1}\right)$ and v_{1} into the same component of $M-A$. If Y_{1} and v_{1} are both mapped into $X-A$, then $\pi_{1}(M) / \pi_{1}(X) \cong 1$ which contradicts the fact that $H_{1}(M) / H_{1}(X) \cong Z_{q}$. On the other hand Y_{1} cannot be mapped into T^{3}, because that would imply that $g_{*}: \pi_{1}\left(Y_{1}\right) \rightarrow \pi_{1}\left(T^{3}\right)$ is $1-1$ which contradicts the fact that Y_{1} is a knot manifold.

Claim 4.4.9. $k=1$.
The proof of 4.4.9 is the same as the proof of Claim 7 in [S].
Since $k=1$, we have that $N=Y \cup_{F} V$, where Y is the knot manifold for the knot L^{\prime}, V is a solid torus, and a boundary component of $\operatorname{Bd}(F)$ is a $\left(p^{\prime}, q^{\prime}\right)$-curve of the boundary of $S^{3}-\operatorname{Int}(Y)$. Moreover we have a homotopy equivalence $g: Y \cup_{F} V \rightarrow X \cup_{A} T^{3}$ such that $g_{\mid F}$ is a homeomorphism. We saw in the proof of Claim 4.4.8 that $g(Y)$ is not contained in T^{3}. Hence $g(Y) \subseteq X$ and $g(V) \subseteq T^{3}$ and $g_{*}\left(\pi_{1}(Y)\right) \subset \pi_{1}(X)$ and $g_{*}\left(\pi_{1}(V)\right) \subseteq \pi_{1}\left(T^{3}\right)$. Let s be a generator for $\pi_{1}(V)$ and let m, l be a meridian, longitude pair for $\pi_{1}(Y)$, then $\pi_{1}(N)=\pi_{1}(Y) *_{\pi_{1}(F)} \pi_{1}(V)=$ $\pi_{1}(Y) * m_{\left.p^{\prime} \mid q^{\prime}=s^{q^{\prime}},\langle s\rangle \text {. Recall that } \pi_{1}(M)=\pi_{1}(x) * \pi_{\pi_{1}(A)} \pi_{1}\left(T^{3}\right) \text { where } \pi_{1}(x), ~\left(T^{3}\right)\right)}$ $=K$ and $\pi_{1}\left(T^{3}\right)=\langle t\rangle$. Since g_{*} is an isomorphism and $g_{*}\left(\pi_{1}(F)\right)=$ $\pi_{1}(A)$ we have the following $g_{*}\left(\pi_{1}(N)\right)=g_{*}\left(\pi_{1}(Y)\right){ }_{\pi_{1}(A)} g_{*}\left(\pi_{1}(V)\right)=$ $K *{ }_{\pi_{1}(A)}\langle t\rangle$. By Proposition 2.5 in [B] we conclude that $\left.g_{*}\right|_{\pi_{1}(Y)}: \pi_{1}(Y) \rightarrow$ K and $\left.g_{*}\right|_{\pi_{1}(V)}: \pi_{1}(V) \rightarrow \pi_{1}\left(T^{3}\right)$ is an isomorphism. Therefore, since
$q=p^{\prime} q^{\prime}$ we have the following: $g_{*}\left(\left(m^{p^{\prime}} l^{q^{\prime}}\right)^{p^{\prime}}\right)=g_{*}\left(s^{q^{\prime} p^{\prime}}\right)=g_{*}\left(s^{q}\right)=t^{ \pm q}$ $=\mu^{ \pm 1}$. Hence $\pi_{1}(Y) /\left\langle\left\langle\left(m^{p^{\prime}} l^{q^{\prime}}\right)^{p^{\prime}}\right\rangle\right\rangle \cong K /\left\langle\left\langle\mu^{ \pm 1}\right\rangle\right\rangle=1$. Since $\pi_{1}(Y) /\left\langle\left\langle\left(m^{p^{\prime}} l^{q^{\prime}}\right)^{p^{\prime}}\right\rangle\right\rangle$ abelianizes to $Z_{\left(p^{\prime}\right)^{2}}$ this implies that $p^{\prime}= \pm 1$ which in turn implies that $q^{\prime}= \pm q$. Hence $\pi_{1}(Y) /\left\langle\left\langle m l^{q}\right\rangle\right\rangle=1$ which contradicts Proposition 4.3.

References

[B] E. M. Brown, Unknotting in $M^{2} \times I$, Trans. Amer. Math. Soc., 123 (1966), 480-505.
[C, G, L, S] M. Culler, C. McA. Gordon, J. Luecke, and P. Shalen, Dehn surgery on knots, Bull. Amer. Math. Soc., 13, no. 1 (1985), 43-45.
[F, W] C. D. Feustel, and W. Whitten, Groups and complements of knots, Canad. J. Math., 30, no. 6 (1978), 1284-1295.
[F] R. H. Fox, A quick trip through knot theory, in Topology of 3-Manifolds and Related Topics, M. K. Fort, Ed., Prentice Hall (1966), 120-167.
[F, M] R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math., 3 (1966), 257-267.
[J] W. Jaco, Lectures on three-manifold topology, Conference Board of the Mathematical Sciences by the Amer. Math. Soc. no. 43, (1977).
[J, M] W. Jaco and R. Meyers, An algebraic determination of closed orientable 3-manifolds, Trans. Amer. Math. Soc., 253 (1979), 149-170.
[K] M. Kervaire, On higher dimensional knots, in Differential and Combinatorial Topology, S. S. Cairns, Ed., Princeton University Press.
[M, K, S] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, (2nd revised ed.), Dover Pub. Inc., New York (1966).
[P] C. D. Papakyriakopoulos, On Dehn's Lemma and the asphericity of knots, Proc. Nat. Acad. Sci., 43 (1957), 169-172.
$\left[\mathbf{R}_{1}\right] \quad$ J. G. Ratcliffe, A fibered knot in a homology 3-sphere whose group is non-classical, Contemporary Math., 20 (1983).
$\left[\mathrm{R}_{2}\right] \quad$ D. Rolfsen, Knots and Links, Publish or Perish Inc. (1976).
[S] J. K. Simon, An algebraic classification of knots in S^{3}, Ann. of Math., (2) 97 (1973), 1-13.
$\left[\mathrm{W}_{1}\right] \quad \mathrm{F}$. Waldhausen, Gruppen mit zentrum und 3-dimensionale mannigfaltigeiten, Topology, 6 (1967), 505-517.
$\left[\mathrm{W}_{2}\right] \quad$ J. H. C. Whitehead, On the asphericity of regions in a 3-sphere, Fund. Math., 32 (1939), 259-270.
[W_{3}] W. Whitten, Algebraic and geometric characterizations of knots, Invent. Math., 26 (1974), 259-270.

Received June 1, 1986 and in revised form September 8, 1986.

College of Charleston
Charleston, SC 29424

Current address: Department of Mathematics California State University, Northridge Northridge, CA 91330

