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ALGEBRAS OF UNBOUNDED SCALAR-TYPE
SPECTRAL OPERATORS

P. G. DODDS AND B. DE PAGTER

If P: Σ -* Jδf (X) is a closed spectral measure in the quasicomplete
locally convex space X and if T is a densely defined linear operator in X
with domain invariant under each operator of the form /Ω fdP, with / a
complex bounded Σ-measurable function then T is closable and there
exists a complex Σ-measurable function / such that the closure of T is
the spectral integral /Ω fdP if and only if T leaves invariant each closed
subspace of X which is invariant under the range of the spectral measure
P.

0. Introduction. Let X be a complex locally convex Hausdorff
space, assumed quasicomplete throughout. Let <£?( X) be the space of all
continuous linear operators in X equipped with the topology of pointwise
convergence in X. Let P: Σ -> JS?(X) be a spectral measure with domain
Σ a σ-algebra of subsets of some point set Ω and with range a closed
subset of JSP(X). The intention of the present paper is to characterize
those densely defined operators T on X that can be represented as a
spectral integral f^fdP for some complex, Σ-measurable function / on Ω.
More precisely, we show (Theorem 6.2) that if T is densely defined with
domain 3){T) invariant under each operator of the form JafdP with / a
bounded, complex Σ-measurable function, then T is closable and there
exists a complex Σ-measurable function / on Ω such that T is given by
the spectral integral JQfdP if and only if T leaves invariant each closed
linear subspace of <&(X) which is invariant under the range of the
spectral measure P. That part of the conclusion which asserts that T is
closable appears to be new, even if X is a Banach space, and is not valid if
the stated assumption on 3){T) is replaced by the weaker assumption that
S>(T) is invariant under merely the range of P. Under this weaker
assumption on @(T), the above characterization remains valid if, in
addition, T is assumed closed (Corollary 6.3) and this result extends to
the locally convex setting a characterization of scalar-type spectral opera-
tors given by Sourour [22] for the case that X is Banach. Further, for
everywhere defined operators on locally convex space, our results special-
ize to the reflexivity criteria of [6], [4].
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The method of the present paper is based on the observation implicit
in [4] and explicit in [5] (Proposition 2.2) that the strongly closed algebra
generated by the range of P admits an order structure with particularly
strong algebraic and topological properties and our approach is to exploit
the very special features of this order structure by appropriately refining
the techniques of [4], thus bypassing those Banach space methods based
on the existence of a (so-called) "Bade functional", which are not valid in
the locally convex setting, even for metrizable spaces. More precisely, if Jί
denotes the range of P, and {Jί) the strongly closed algebra in £P(X)
generated by the range of P, we show first that the set of all densely
defined linear mappings in X which admit a representation as a spectral
integral JΩfdP for some complex, Σ-measurable function /, has the
structure of a Dedekind complete /-algebra {Jί)^ which may be identi-
fied with the universal completion of the /-algebra {Jί). It is then shown
that the restriction of {Jί)^ to each cyclic subspace Jί\x\ x e X, itself a
Dedekind complete Riesz space for the natural ordering induced by that
of ( ^ > , coincides precisely with the Riesz space Orth°°(^#[x]) of all
linear, densely defined, order bounded linear maps in Jί\x\ which are
band preserving. If now T has domain satisfying the condition stated in
the first paragraph and leaves invariant each ^-invariant subspace in X
then the restriction of T to each cyclic subspace induces a densely defined
linear mapping which is band-preserving. A key point in our argument is
then to use appropriate extensions of the result of [14] to show that T is
automatically order bounded and thus given in a local sense by (the
restriction of) an element oί {Jί)^.

With a view to applications of the main results we consider certain
aspects of the spectral theory of (unbounded) scalar-type spectral opera-
tors. In particular, we show in §6 below, that each scalar-type spectral
operator T (in the sense of Dunford) admits a uniquely determined
resolution of the identity which commutes with each continuous operator
commuting with T and whose support coincides with the spectrum of T.
Special cases of these results are of course well known and contained in
[12] and [17] for everywhere defined operators and in [20] for a restricted
class of densely defined operators. Rather than reduce our results to those
known for the continuous case, we have preferred here to give a treatment
which applies simultaneously to both continuous and unbounded scalar-
type operators, basing our approach as closely as possible on that outlined
in [7] Chapter XV, but using the established algebraic and order structure
as a tool for computation, the link between the present and earlier
approaches being supplied by the abstract spectral theorem of Freu-
denthal. Finally, we show that the main results of the paper provide the
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tools necessary to extend to the locally convex setting, certain reflexivity
theorems for (in general non-commutative) closed algebras of operators
on Banach spaces containing Boolean algebras of uniform multiplicity
one, due to Sourour [21] and Rosenthal and Sourour [19].

The authors wish to thank A. R. Sourour for bringing to their
attention the papers [21], [22], [18], [19], [13]. Part of this paper was
written while the authors were guests of the Institut fur Mathematik,
Johannes Kepler Universitat Linz and the authors wish to thank J. B.
Cooper and members of the Institut for the kind hospitality extended
during the period of their visit.

1. Some preliminary information. This paper is based mainly on

the techniques developed in [4] (and [5]). We assume that the reader has
some familiarity with the theory of Riesz spaces. For terminology and
basic facts used we refer to the books [11], [24] (for some information on
topological Riesz spaces see [1]). The purpose of the present section is to
gather for the convenience of the reader some of the results obtained in [4]
(and [5]) concerning the structure of strongly closed operator algebras
generated by Boolean algebras of projections, and the corresponding
cyclic subspaces.

Let X be a (complex) locally convex vector space. We assume that X
is quasi-complete. By J?#(X) we denote the space of all linear operators
in X, and by <S£{X) we denote the subspace of SP^{X) consisting of all
continuous operators. In J?#(X) and ^(X) we consider the strong
operator topology (i.e., topology of pointwise convergence). Note that
^#(X) is quasi-complete. Let Jί be an equicontinuous Boolean algebra
of projections in X, i.e., Jί is an equicontinuous collection of mutually
commuting idempotents in JS?(Jf), partially ordered by range inclusion,
which is a Boolean algebra with respect to the lattice operations defined
by E A F = EF and E V F = E + F - EF for E,F ^Jί. We always
assume that / e Jί. We denote by {Jί) the strongly closed subalgebra of
Se(X) generated by Jί, i.e., {Jί) is the closure of M = {Σ"=1 «,-£,:
E; e«y#, at e C (/ = 1,..., n), n e N}. Moreover, {Jί)# denotes the
closure of M in JSP #(X). We recall that Jί is called strongly equicontinu-
ous if En -> 0 (strongly) for any disjoint sequence {En}™:=1 in Jί. It
should be observed that the range of a (σ-additive) equicontinuous
spectral measure is a strongly equicontinuous Boolean algebra of projec-
tions. Furthermore, Jί is called Bade-complete if Jί is complete as a
Boolean algebra and Ea t E in Jί implies that Ea-> E with respect to
the strong operator topology. As observed in [4], Proposition 4.7, an
equicontinuous Boolean algebra Jί is strongly equicontinuous if and only
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if the strong closure Jί is Bade-complete. Therefore, for the study of
{Jί) and {Jί)* we may assume, without loss of generality, that Jί is
Bade-complete. From now on we assume that Jί is an equicontinuous
Bade-complete Boolean algebra of projection in X.

An element Γ e M has a unique standard representation T =
Σ"=i \-E/, where Et Φ 0 in Jί are such that EtEj = 0 (/ Φ j), Σ ^ i ^ = /
and λ 1 ?..., λn are mutually different scalars. Now it is clear that M has
the structure of a complex Riesz space, where the absolute value of
Γ = Σ5Lχλ,./?,• (standard representation) is given by |Γ| = Σ"βl|λ,•!£,..
Furthermore, with respect to the topology induced by «£?(X), M is a
complex locally solid Riesz space ([4], Lemma 3.2). Since the strong
closure {Jί)* of M in <JS?#(X) is, in fact, the topological completion of
M ([4], Proposition 3.12) the lattice operations extend to {Jί)*. Now
{Jί)* has the structure of a complex Dedekind complete Riesz space
with locally convex locally solid Lebesgue topology ([4], Proposition 3.6).
In particular, 0 < Ta | T in {Jί)* implies that Ta-> T strongly. More-
over, as shown in [4], Proposition 4.2, with respect to composition as
multiplication, {Jί)* is a complex /-algebra (i.e., the product of positive
elements is likewise positive and if S,T,R e {Jί)* with S ± T, then
RS ± T and SR JL T; see [24], Chapter 20 for general properties of
/-algebras). In particular, {Jί)* is commutative. As observed at the end
of §2 in [5], {Jί) is an order ideal in {Jί)*, and therefore {Jί) has the
structure of a Dedekind complete complex /-algebra with locally sohd
Lebesgue topology (but {Jί) is in general not topologically complete;
however, if ££(X) is sequentially complete, then {Jί)* = ( . # ) , as shown
in [4], Proposition 4.3). We note that, since we assume that Jί is
Bade-complete, the Boolean algebra of idempotents in {Jί) is precisely^
([4], Proposition 4.4).

Next we say a few words about the structure of the cyclic subspaces
of Jί. Fix x e X and put M(x) = {Tx: T tΞJί}. The mapping x -> Tx
from M onto M(x) induces the structure of a complex Riesz space in
M(JC), and the topology induced by X in M(x) is locally solid ([4],
Lemma 3.3). Let Jί(x) be the closure of M(x) in X. Since Jί(x) is equal
to the topological completion of M(x), Jί(x) has the structure of a
complex Dedekind complete Riesz space with a complete locally solid
convex Lebesgue topology ([4], Proposition 3.9).

Clearly, Jί(x) is Γ-invariant for any T e {Jί)*. The restriction
T[x] of T to Jί{x) is, in fact, an orthomorphism in the Riesz space
Jί{x) (i.e., T[x] is order bounded and y ± z in Jί(x) implies T[x]y ± z;
see [24], Chapter 20 for the general theory of orthomorphisms). The
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mapping T -> T[x] from (Jί)# into the space Orth(^#(x)) of all ortho-
morphisms in Jί{x) is a Riesz and algebra homomoφhism ([4], Proposi-
tions 4.1 and 4.2). This homomoφhism is, in general, not surjective.
However, denoting by (Jf)f the principal order ideal in {Jί) generated
by the identity, and, as usual, denoting by Z{Jί{x)) the centre of Jί{x)
(i.e., Z(Jί{x)) is the principal order ideal generated by the identity in
Orth(^#(x))), the homomoφhism maps {Jt)j onto Z(Jf(x)) ([4], Pro-
position 4.10). In particular, the band projections in Jί{x) are precisely
the operators of the form E[x] with E e Jί.

2. Scalar-type spectral operators. Throughout this section, X will

denote a quasi-complete locally convex space, and JS?( X) will denote the
space of all continuous linear operators in X. In <£?( X) we consider the
strong topology. In this section we will be concerned with linear operators
T: @{T) -» X, where the domain 3){T) is a linear subspace of X. If Tx

and T2 are such operators, then we write Tλ c T2 if ®{T^) c 2{T2) and
Tλx = T2x for all x e ^(Tx). Suppose now that Jί is a Bade complete
Boolean algebra of projections in X and let {Jί) be the strongly closed
subalgebra of J£?( X) generated by Jί.

DEFINITION 2.1. The linear operator T will be called a spectral
element with respect to Jί if there exists a sequence {En}™=1 in Jί such
that

(i) £„ T / in Jί\
(ii) En(X) c S(Γ) and Γ£n e <uT> for all Λ;

(iii) Tx = l i m ^ ^ ΓJEWΛ: for all x e ^ ( Γ ) .

Such a sequence {£„} will be called determining for T.

It is clear from Definition 2.1 above that each spectral element T is
densely defined. Further, it is easily checked that if T is a spectral element
with respect to Jί and if {Fn} QJί is any sequence for which Fn t „ /
holds in ΛT, and such that Fn{X) c S(Γ) and ΓFΛ e (^#> for all n e N,
then also {i^} is a determining sequence for Γ. In particular if {En} <zJί
is a determining sequence for Γ, and if { Fn} c ^ is a sequence such that
Fn < En for all n e N and Fw t n / holds in Jί, then { i^} is a determin-
ing sequence for T. It follows that if S and T are spectral elements with
respect to ^ then there exists a sequence {En} c ^# which is determin-
ing for S and T simultaneously.

Spectral elements Γ, T' are called equivalent, written T - T' if there
exists a sequence {£„} c^T with En

J\ nI such that £W(X) c Q){T) Π
and Γ ^ = ΓΈΛ e (^#) for all n e N. It is clear that such a
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sequence {En} is determining for both T and T\ Further, it is clear that
the relation so defined is reflexive and symmetric. Since EnFn

/[ I whenever
{En} and { Fn} are sequences in Jί with En\ I and Fn T /, it follows
readily that the given relation is transitive as well, and so is an equivalence
relation. If T is a spectral element, we denote by [T] the equivalence class
of spectral elements determined by T. It is not difficult to see that spectral
elements T and T" are equivalent if and only if there exists a spectral
element S such that S c Γ and S c T'.

The following Proposition plays a basic role in what follows, and
should be compared with XVIII 2.6 of [7].

PROPOSITION 2.2. If T is a spectral element with respect to M then
there exists a unique maximal representative f G [T], which has the follow-
ing properties:

(i) f is densely defined and closed.
(ii) 3ϊ(T) is Jί-invariant and TEx = ETx for all E G Jί and x G

@}{T). Moreover, if To is any representative of [T] and if [Fn] tiJί is any
determining sequence for To, then

(iii) Fn(X) Q2){t) andfFn = T0Fn for all n.
(iv) x G βl(T) if and only if limn_^ooT0Fnx exists, in which case

fx = ]imn^OQT0Fnx.

Proof. Let {En} be a determining sequence for the given spectral
element T. Define 2{t) = [x G X: l i m ^ ^ TEnx exists} and if x G
S){T) define tx = limπ_0 0 TEnx. It is clear that f is a spectral element
with determining sequence {En}, and that T Q t, so t s [T], Note that
ΓJ?Λ = TEn for all w. Furthermore, observe that TEnz = £Λ7z for all
z G Θ{T) and all π. In fact, z <= @(t) implies that

^ Γ z = lim En(TEmz) = lim

We now show that t is closed. Suppose that {xτ} c β)(T\ x, j G X are
such that x r -* x and Γxτ -» j ; . For any l?w we have TEn G (^#), so

7 ΐ n x = lim ΓJEπxτ = Um Enfxτ = Wlim 7xτ) = £ ^ .

Hence, since En T /, we find that

lim TEnx — lim Eny — y,
n—* oo n—>oo

which implies that x e J ( Γ ) and ί x = j .
To see that S)(f) is ^-invariant, let E^Jί and suppose that

x G ̂ ( Γ ) . Then TEn(Ex) = E(TEnx) for all Λ, and so limn_0O TEn(Ex)
= J^Γx, which shows that £x G ,@(Γ) and TΈx =
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Next we prove that t is maximal in [T]. To this end, take any
S G [Γ], and we will show that S c f. Since S and T are equivalent,
there exists a sequence {Fn} Qjf such that Fn | /, Fn{X) Q @{S) C\ 2{T)
and TFn = SFn e ( ^ ) for all n. As observed earlier, {Fn) is a determin-
ing sequence for both S and Γ. Replacing Fn by i 7 ^ , we may assume
that Fn < En for all n. For x e X we then get

Fm{TEnx) = (TΈji^x = (TFm)Enx = ( 5 F w ) ^ x =

for all m, « = 1,2,.... Hence, if JC e ^(S), then

Γ£ M x= Urn Fm(TEnx)= lim JE^S^x) = £„( Urn

and so l i m , , ^ r£MJc = lim,,.^ EnSx = SJC. Therefore, x e ^ ( Γ ) and
7JC = SJC for all x e ^(S), i.e., S e t , Thus, f is the largest element in
[T] and is therefore unique. Since we can construct this maximal element
starting with any representative of [T] and any determining sequence, (iii)
and (iv) of the Proposition follow at once, and the proof is complete.

It is now appropriate to make the following definition; see, however,
the discussion in §6 below.

DEFINITION 2.3. A spectral element T with respect to J( will be
called a spectral operator of scalar-type with respect to J( if there exists a
determining sequence {En} for T such that 2{T) = {x e X:
lim,,.^ TEnx exists} and Tx = lim,,.^ TEnx for all x e 2(T).

It is an immediate consequence of (iii) and (iv) of Proposition 2.2 that
if T is a scalar-type spectral operator, then T is precisely the unique
maximal representive f of [T]. Moreover, if T is any spectral element,
then the unique maximal representative t of [T] is a scalar-type spectral
operator. We have the following immediate consequence of parts (i), (ii) of
Proposition 2.2.

COROLLARY 2.4. If T is a scalar-type spectral operator (with respect to
Jί), then

(i) T is densely defined and closed
(ii) 2(T) is ^-invariant and TEx = ETx for all X G ® ( Γ ) and

E^Ji
(iii) If Y Q X is a closed Jί-inυariant subspace of X, then

T(2(J) Π Y) c Y.

Let (J?)# denote the strongly closed algebra generated by Jί in
JS?#( X), the space of all (everywhere defined) linear operators on X. Take

, then there exists a sequence {En}™=1 in Jί such that En

/\ I
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in Jί and \TEn\ < nl for all n (we use here the canonical Riesz space
structure of {Jί)*). In fact, let En be the component of the identity
operator / in the band generated by the operator (nl - \T\)+ in {Jί)*.
Hence, the sequence {En} has the properties that En ΐ / in Jί, TEn e
{Jί) for all n and l i m ^ ^ TEnx = Tx for all x e X. This shows that T
is a scalar-type spectral operator with respect to Jί. Conversely, assume
that T is an everywhere defined scalar-type spectral operator. It follows
from the definition that there exists a sequence {En} c Jί such that
TEn e {Jί) for all n and TEn -> Γ strongly in &*(X). Hence, Γ G

As observed in [4], Proposition 4.3, if ^(X) is assumed to be
sequentially complete, then {Jί)* = {Jί). Combining these remarks we
get the following result.

COROLLARY 2.5. Let Jί be a Bade complete Boolean algebra of

projections in the quasi-complete space X.

(i) {Jί)* consists precisely of the everywhere defined scalar-type

spectral operators with respect to Jί.

(ii) // cS?( X) is assumed to be sequentially complete, then any every-

where defined scalar-type spectral operator with respect to Jί, is continuous.

We denote by {Jί)^ the collection of all scalar-type spectral opera-
tors with respect to Jί. We show now that {Jί)^ may be endowed with
the structure of a commutative algebra, which extends that of {Jί). As
usual, if S and T are linear operators in X with domain «®(5) and 3){T)
respectively, then Q(S + T) = 9{S) Π 2{T) and (S + T)x = Sx + Tx
for all x e 9(S + T). Furthermore, 2{ST) = {x e 9{T)\ Tx e 2{S)}
and (ST)x = S(Tx) for all x e ^(ST). We need the following pre-
liminary result, the proof of which is straightforward and therefore
omitted.

LEMMA 2.6. If S and T are scalar-type spectral operators with respect to

Jί, then S + T and ST are spectral elements.

We may now exhibit the algebraic structure on ( ^ ) 0 0 .

DEFINITION 2.7. If S and T are scalar-type spectral operators with
respect to Jί, then the scalar-type spectral operators S 4- T and S T are
defined to be the maximal representatives of the corresponding classes
[S + T], [ST].
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It is useful to observe that, if S,T,Re (Jί)^ are given, then
(1) S + T = R if and only if there exists a sequence {En} in Jί

which is determining for both S and Γ, such that En(X) c Sι{R) and
SEn + F£w = i?£M for all n.

(2) S T = 2? if and only if there exists a sequence { i?π} in Jί which
is determining for both S and Γ, such that En(X) Q @(R) and

The proof of the following result is now straightforward and accord-
ingly the details are omitted.

PROPOSITION 2.8. With respect to the above introduced operations,
(Jί)^ is a complex vector space and a commutative algebra with the identity
operator as unit, which contains (Jί) as a subalgebra.

3. (Jί)^ as the universal completion of (Jί). In this section we
will show that the algebra (Jί)^ of scalar-type spectral operators can be
endowed with the structure of a universally complete unital /-algebra,
which can be identified with the universal completion of the Dedekind
complete unital /-algebra (Jί).

We recall first that the (real) Riesz space L is called laterally complete
if every disjoint system in L+ has a supremum. If L is Dedekind complete
as well as laterally complete, then L is called universally complete. Any
Archimedean Riesz space L has a (unique) universal completion Lu

9 i.e.,
Lu is a universally complete Riesz space which contains L as an order
dense Riesz subspace (see e.g. [11], §50). If L is Dedekind complete, then
L is an order ideal in ZΛ The universal completion of a complex Riesz
space is, by definition, the complexification of the universal completion of
the real part of L.

If L is a (complex) Dedekind complete Riesz space with universal
completion L", then the Boolean algebra of band projections in Lu is
isomorphic (by restriction) to the Boolean algebra of band projections in
L. Moreover, if we assume in addition that L has a weak order unit e,
then there exists for any / e Lu a sequence {Pn}™~ι of band projections
such that Pn

/\ I and such that \PJ\ < ne, and hence PJ e L, for all
n = 1,2, In fact, we may take Pn to be the projection onto the band
generated by the element (ne - | / | ) + . Furthermore, if L is an /-algebra
with unit e, then the /-algebra multiplication in L extends uniquely to an
/-algebra multiplication in L", such that the element e is the unit element
in ZΛ For details, see [15].
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Suppose now that Jί is a Bade-complete Boolean algebra of projec-
tions in the quasi-complete space X. The strongly closed subalgebra {Jί)
of J?(X) generated by Jί, has the structure of a Dedekind complete
(complex) /-algebra with unit element /. In the universal completion
{Jl)u we consider the /-algebra structure which extends the structure of

LEMMA 3.1. For every Tu e {Jί)u there exists a unique element
Γ G {Jί)^ such that for any E <^Jΐ with TUE e {Jί), it follows that
E(X) c &(T) and TUE = TE.

(Remark: by TUE is meant the product of Γ" and E in the universal
completion {Jί)u\ by TE is meant the composition of the operators T
and E)

Proof. Suppose that Tu G {Jί)u. Observe first that if x G X and
E <Ξ Jί are such that TUE G {Jί) and Ex = 0, then (TuE)x = (TuE)Ex
= 0. Since Tu ^ {Jί)u, there exists a sequence {En} QJt with £„ T /
such that T 1 "^ G (~#) for all n. It follows from the above observation
that if x G X, w > m and x = Enx = Emx, then (TuEn)x = (TuEm)x.
We define the linear operator To by setting 2{T0) = \J™=ιEn(X) and if
x G S(Γ0), define ΓOJC = {TuEn)x if JC = £WJC. Note that Γ0£w = ΓM£n

for all w. It follows now that To is well-defined and is a spectral element
with determining sequence {En}. We define T = To, the maximal exten-
sion of Tθ9 and note that {En} is a determining sequence for T (see
Proposition 2.2). Suppose now that E ^Jΐ and TUE G ( ^ > . If JC e I ,
then (T0En)Ex = (TuEn)Ex =.(TuE)Enx9 which implies that (T0En)Ex
-> (TuE)x (n -» oo), since £nx -> x (« -> oo). Consequently £(X) c
^ ( f 0 ) = 9(T) and ΓEJC = TuEx for all x G X.

Now assume that S G <^> 0 0 has the property that ΐ '(X) c S(S)
and SE = TUE whenever E ^M with TUE G (^#). This implies im-
mediately that ^(-Y) c ^(S) Π ̂ ( Γ ) and Sf:π = TEn for all w, and so
S and 71 are equivalent. Since S and T are both maximal, it follows that
S = T and the lemma is proved.

If Tu G (-#)", we denote by ψ(ΓM) the unique element of {Jί)
whose existence is shown in Lemma 3.1. Note that ψ(Γ) = T for all
T ^ {Jί). It follows from the proof of the above lemma that the
sequence {En} in Jί is a determining sequence for ψ(Γ") whenever
En T / in Λf and Γ"£n G <^#) for all n. We now show that {Jί)^ may
be identified with {Jί)u.
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PROPOSITION 3.2. The above defined mapping \p is an algebra isomor-
phism of the f-algebra {Jί)u onto the algebra

Proof. First of all, using the remark following Definition 2.7 in
combination with the observation preceding this proposition, it is routine
to show that ψ is an algebra homomorphism. To see that ψ is injective,
suppose that Tu e {Jί)u is such that ψ(ΓM) = 0. This implies that
TUE = ψ(Tu)E = 0 for all E e Jί with TUE e {Jί), and since {Jί) is
an order dense ideal in {Jί)u, we conclude that Tu = 0. To show that ψ
is surjective, let T e {Jί)^ be given and let {En) c ^# be a determining
sequence for Γ. Define i^ = JÊ  and Fn = En — En_1 (n = 2,3,...). It is
clear that {Fn} is a disjoint sequence in Jί and suρM .FΛ = /. Moreover,
{TFn} is a disjoint sequence in {Jί). Now let Tu = supnTFn in {Jί)u,
and note that Γ"FM = TFn for all w. Hence TuEn = Γ£w, and so ψ{Tu)En

= TuEn= TEn for all «, which shows that T = ψ(Γ"). Therefore ψ is a
bijection of {Jί)u onto {Jf)oo9 and by this the proof of the proposition is
complete.

We observe that, if {Jί)^ is given the partial ordering induced by the
mapping ψ, then {Jί)^ is a universally complete unital /-algebra con-
taining {Jί) as an order dense sub-algebra. From now on, we will
identify the universal completion {Jί)u with {Jί)^.

We conclude this section by observing that each element of
has a familiar polar decomposition.

PROPOSITION 3.3. If S e {Jί)^ (hen there exists F e {Jί) with
\V\ = I such that S=V-\S\ and \S\ = F " 1 S.

The proposition is an immediate consequence of the complex form of
the Freudenthal spectral theorem and the fact that Z((^#)o o) is precisely
the order ideal generated by / in {Jί). See [5], Proposition 2.3 and [24],
Theorem 141.1 for details. We note for future reference that an immediate
consequence of Proposition 3.3 is the simple fact that 3>(S) = 2(\S\) for
each S e (^#>00.

4. Scalar-type spectral operators as extended orthomorphisms of
cyclic subspaces. If Jί is an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X, and if x e X, then
Jί{x) will denote the cyclic subspace generated by x. With the canonical
order structure induced by the Boolean algebra Jί, the space Ji(x) is a
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complex, Dedekind complete Riesz space, with a complete, locally solid
Lebesgue topology. In this section, we will show that the restrictions to
Jί(x) of the scalar-type spectral operators relative to Jί coincide with the
extended orthomorphisms of the Riesz space Jt(x). We recall first some
relevant facts from the theory of orthomorphisms. See, for example, [24]
Chapter 20, and [9].

Let L be an Archimedean (real) Riesz space. An extended orthomor-
phism in L is an order bounded linear mapping TΓ from an order dense
ideal 3){m) in L into L, with the property that πf ± g for all / e S(τr)
and g e L with / ± g. Each extended orthomorphism TΓ is order continu-
ous, i.e., w τ | 0 in ,®(τr) implies that infτ|τrt/τ| = 0 in L ([10], Theorem
1.3). By the same method as used in the proof of [24], Theorem 140.4, it
follows that any extended orthomorphism π can be written as TΓ = τr+ —
τr~, where π+ and π" are positive extended orthomorphisms with domain
B(m\ and τr+w = (τrw)+, ττ~u = (ττw)~ for all 0 < u e ^(TΓ). Further-
more, the absolute value of π is defined by |τr| = τr+ + ττ~. Note that
I77/! = M/ll = M(l/D f°Γ a ^ / G ^ ( ^ ) An extended orthomorphism TΓ
such that .©(TΓ) = L is called, simply, an orthomorphism in L. Since
extended orthomorphisms are order continuous, it follows that any ex-
tended orthomorphism TΓ has a unique maximal domain <2>w(τr). Two
extended orthomorphisms are considered to be the same if they agree on
some order dense ideal (equivalently, if their maximal extensions coincide).
The set of all extended orthomorphisms in L (with the above identifica-

tion) is denoted by Orth°°(L), which is clearly a vector space with respect
to the pointwise operations. A partial ordering in Orth°°(L) is defined by
setting ττx < ττ2 if πλu < τr2w for all 0 < u e ^(πx) Π S(τr2), and with
respect to this partial ordering, Orth°°(L) is a Riesz space, such that
(ττx V ττ2)w = (T^W) V (τr2w) and (πλ A TT2)U = (ττxw) Λ (τr2w) for all 0 <
u e 9{τrγ) Π ®(ir2). Moreover, Orth°°(L) is laterally complete ([10]).

If ττx, τr2 e Orth°°(L), then ^(τrxτr2) = ^ 1 ( ^ ( τ r 1 ) ) is an order dense
ideal in L ([10]), and the composition ττx τr2 is an extended orthomor-
phism. With respect to composition as multiplication, Orth°°(L) is an
/-algebra with the identity operator as the unit element. The space of all
orthomorphisms in L is denoted by Orth(L), which is a subalgebra of
Orth°°(L). If L is Dedekind complete, then Orth°°(L) is Dedekind com-
plete, hence universally complete, and Orth(L) is an order ideal in
Orth°°(L).

All of the above results extend immediately to the complex setting, by
means of complexification. We shall have need for the following simple
characterization of the maximal domain of an extended orthomorphism.
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LEMMA 4.1. Let L be a complex Dedekind complete Riesz space and let
π e Orth°°(L) with domain 3(m) and maximal domain Sm(τr). An ele-
ment f in L belongs to @m(π) if and only if the set {πg: g e i^(τr),
\g\ < 1/1} is order bounded in L. In particular if 0 < mι < π2 in Orth°°(L),
then Sm(τr2) c 9m{itx) and @m(\π\) = S>m(m) for all π G Orth°°(L).

Proof. First assume that 0 < π e Orth°°(L) with domain 3>(m\ and
let tττm: @m(π) -> L be the maximal extension of TΓ. Denote by / the set
of all / ^ L for which {πg: g e <©(τr), |g| < |/|} is order bounded in L.
Clearly, / is an order ideal in L. If / G S>m(π) and g e 9(π) with
|g| < I/I, then |πg| = |τr-g| = Kw |(|g|) < |τ7-|(|/|), which shows that / e
/, and so <@m(ττ) c /. For the proof of the converse inclusion, define for
0 < / e /

τro/= sup{τrg: g G ^ ( τ r ) , 0 < g<f).

Note that, by the order continuity of TΓ, we have ττ0/ = 77/ for all
0 < / e S ( π ) . Then 77O is an additive mapping from J + into L+, which
has an extension to a positive linear mapping from / into L, which will be
denoted by π0 again. Clearly, ττ0 is an extended orthomorphism, which
extends 77, and hence / = ®(ir0) £ ^ m ( ^ )

At this point it is clear already that 0 < ττx < τr2 in Orth°°(L) implies
«@ m (π 2 )^^ m K)> and @m(\π\) c Sw(ττ) for TΓ G Orth°°(L). Further-
more, a moment's reflection shows that 3m{<n) c ^ w ( |τr |), hence Sw(|τr|)
= @m(π) for all TΓ G Orth°°(L). This observation, combined with the first
part of the proof, yields the result of the lemma.

Observe that it follows from the lemma that, if TΓ G Orth°°(L) and if
P is a band projection in L such that TΓP G Orth(L), then P(L) c Sm(τr).
Further, it follows from the above result, that if 0 < τrα f Λ TΓ holds in
Orth°°(L), then ^ w (τr) c Π α ^ m (ττJ and if 0 < u G Π α ^ m (ττJ is such
that τrαw T a f, then w G ̂ m (τr) and TΓW = /.

Now assume that L is a locally solid Dedekind complete Riesz space
with Lebesgue topology, and suppose TΓ Ξ Orth°°(L) is given with domain
Si (IT). We claim that i^(τr) = ^ m (τr) if TΓ is closed. Indeed, since TΓ is
closed if and only if |τr| is closed we may assume that TΓ > 0. Now take
0 < / G @m(<ττ). Since S(τr) is an order dense ideal in L, there exists a
net {/τ} in S(τr) such that 0 < / τ T / By order continuity we have
0 < τr/τ = τrm/τ t πmf, where τrm denotes the maximal extension of TΓ.
Since the topology in L is Lebesgue, this implies that /τ -> / and
τr/τ -> τrw/ (topological convergence). Since TΓ is closed, this implies that
/ G 2{m\ and hence 9(π) = Sw(τr).
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Suppose now that Jt is an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. If x e X, as above,
we denote by Jt{x) the smallest closed ^-invariant subspace of X
containing x. With the canonical Riesz space structure induced by Jt,
Jt(x) is a complex, Dedekind complete Riesz space with a complete
Lebesgue topology (see, for example, Proposition 3.9 of [4]). We gather
some simple properties of the domains of scalar-type spectral operators.

LEMMA 4.2. Let Ί be a scalar-type spectral operator with respect to Jt\
with domain 9{T) c X.

(i) Ifx e 3{J) and if S e {Jt), then Sx e 9(T) and TSx = STx.
(ii) If x e X, then 2ΰ(T) C\Jt(x) is an order dense ideal in the Riesz

space Jt{x).
(iii) If x <Ξ X, then Jt(x) is invariant under T, i.e., if y e 2{T) Π

Jt(x) then Ty <=Jt(x).

Proof, (i) This follows simply from the ^-invariance of 3){T) and the
fact that T is closed.

(ii) If x e X is given, suppose that y, z e ^ ( x ) and that |z| < \y\
holds in ^#(x) with y e S(Γ). By the Freudenthal spectral theorem,
there exists A e Z ( ^ ( J C ) ) such that z = ^4j. By Proposition 4.10 of [4],
there exists S e <-#> such that A is the restriction of S to ^#(x). It
follows from part (i) that z e S(Γ), and so 3){T) C\Jί{x) is an order
ideal in Jt(x). To see that 2{T) Γ\Jί{x) is order dense in Jί{x) it
suffices to note that if 0 < y e ^#(x) and if {En} Qjf is any determin-
ing sequence for Γ, then £nj> e S)(T) Π ̂ ( x ) for all n and £ r t ^ t J Part
(iii) follows immediately from Corollary 2.4(iii).

If T is any linear mapping in X with domain 2(T) c X, and if
j c G l i s such that T leaves invariant Jί{x), then we denote by T[x] the
restriction of T to ^ ( Γ ) C\Jf(x).

LEMMA 4.3. // Γ G {Jί)^ has domain 2{T) and if x <= X then
T[x] e Orth°°(^#(x)). Moreover, the maximal domain ofT[x] is precisely
®(T)CιJί{x).

Proof. Let{ En} c Jt be any determining sequence for T. Suppose
that J , Z G @(T) Γ)Jf(x) and that |j^| < \z\in uίr(jc). Since TEn e ( ^ ) ,
it follows from Proposition 4.1 of [4] that \TEny\ < \TEnz\ for n = 1,2,....
Taking the limit as w -> oo, we obtain \Ty\ < \Tz\, which shows that T[x]
is order bounded.
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If now y e S)(T) C\Jt{x) and z e l ( j c ) such that y ± z, then it
follows once again from Proposition 4.1 of [4] that TEny ± z for all «,
and consequently Ty JL z. Hence T[x] e Orth°°(^(x)). Finally, since Γ
is closed, it is clear that T[x) is closed as well, and so it follows from the
remark following Lemma 4.1 that <3(T) nJK(x) is the maximal domain
of T[x].

The carrier Ex e Jί of x e X is defined by setting 2?̂  = inf{2? e ^#:
2£x = JC}. The mapping Φx from {Jί)^ into Orth°°(^(x)) is defined by
setting ΦX(T) = Γ[x]. By the preceding lemma, it should be noted that
T[x] is in fact the maximal representative of the equivalence class it
determines in Ort\f°(Jί(x)). Further, for any x e l w e denote
= {7ΈX:T

In the proof of the next result the following observation concerning
orthomorphisms will be needed. Let L be a (complex) Dedekind Riesz
space, and take 0 < ί r G Orth°°(L). We assert that there exists a disjoint
sequence {PΛ}~βl of band projections in L such that supnPn = / and
0 < <πPn < nl (and hence πPn e Z(L)) for all n. Indeed, let Qn be the
component of / in the band {(nl — π) + }dd. Then Qn t / and ττQn < nl
for all n. Defining Pλ = β! and Pn = Qn - Qn_1 ίoτ n > 2, the sequence
{Pn } has the desired properties.

PROPOSITION 4.4. Ifx&X, then the restriction map Φx: T •-> Γ[x] w
α/2 order continuous surjective f-algebra homomorphism from (^)0O onto

)), wλ/cA induces an f-algebra isomorphism from E^Jί)^ onto

Proof. It is not difficult to see that Φx is a positive algebra homomor-
phism from (^#) 0 0 into Orth°°(^#(x)), and consequently, Φx is a Riesz
homomorphism.

To see that Φx is order continuous, suppose that To > Tτ 10 in
{Jί)^ It may be assumed that Γo > /, so that ΓQ"1 exists in (^> 0 0 , by
[24] Theorem 146.3. It follows from the order continuity of the multiplica-
tion in the /-algebra ( ^ > 0 0 that / > TQXTT | 0 in {Jί). Since the restric-
tion of Φx to (Jf) is order continuous ([4], §4), we get TQ1TT[X] iθ in
Z(Jΐ{x)). Since Tτ[x] = TQIX^T^TJIX], the order continuity of the
multiplication in Orth°°(^(x)) implies that Tτ[x] | 0 in Orth°°(^#(jc)).

We show now that the mapping Φx is surjective. To this end, let
0 < A e Orth°°(^(x)) be given. By the remark preceding the proposi-
tion, there exists a sequence {Pn}™=ι of band projections in the Riesz
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space Jί{x) such that Pn A Pm = 0 for n Φ ra, supM Pn = / and 0 < APn

< nl in OτX\f°(Jί(x)). Clearly, {APn} is a disjoint sequence in Z(Jί(x))
and supnAPn = yi. By (Jt)j we denote the order ideal in (Jί)^ gen-
erated by /, and let Ex be the carrier projection of x. It follows from [4],
Corollary 4.12, that Φx induces an /-algebra isomorphism from Ex{Jί)j
onto Z(Jί(x)). Therefore, there exist {Tn}^x in (Jί)I such that 0 < Tn

< nEx for all n, and Tn A Tm = 0 for n Φ m such that Φx(Tn) = Tn[x] =
APn for n = 1,2, Since (Λί)^ is universally complete, there exists an
element Γ G ( ^ r ) 0 0 such that T = supwΓw. By the order continuity of Φx

we find

Φ,(Γ)-Φx(sup L7i)-sup ΣΦx(Tk)

= SUp Σ APk = S UP
n

which shows that Φx is surjective.
For the proof of the last statement of the proposition, let Nx be the

kernel of Φx. Since Φx is an order continuous Riesz homomorphism, Nx is
a band, and so ( ^ ) 0 0 = Nx Θ Nx. By the above, Φx is surjective so Φx

induces an isomorphism from Nx onto Oτύf°(jf(x)). It is easily checked
that Ex is precisely the component of / in Nχ9 and so Nx = Ex(Jί)^.
Therefore, Φx induces an isomorphism from EX(M)^ onto Orth°°(~#(x)),
and by this the proof of the proposition is complete.

We conclude this section with a result which generalizes Theorem 3.15
in Chapter XVII of [7]. See also [6], Proposition 2.2. First assume that L
is a Dedekind complete Riesz space with weak order unit 0 < e e L. We
claim that for every / e L there exists a (unique) π e Orth°°(L) such that
πe = /. In fact, first note that we may restrict ourselves to the case that
/ > 0. Let un be the component of / in the band generated by (ne - f) +

for n = 1,2,..., then 0 < un t „ / and 0 < un < ne for all n. Now define
wλ = uλ and wn = un - un_λ for n > 2, then {wn}™=1 is a disjoint se-
quence in L such that 0 < wn < ne for all n and / = supMwn. By the
Freudenthal spectral theorem, for each n there exists πn& Z(L) such that
ττne = wn and 0 < πn < nl. Since {wn} is a disjoint sequence, we can
assume that {πn} is a disjoint sequence as well. Since Orth°°(L) is
universally complete, π = supnπn exists in Orth°°(L). Since s u p ^ e =
S UP»WΛ — f ^ L9 it follows from the remark following Lemma 4.1, that
e G ,®(7r) and me = / , where 9>(ii) denotes the maximal domain of π.
Combining this observation with the result of the preceding proposition,
we obtain the following result.
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PROPOSITION 4.5. Let Jί be an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. For x e X and
y^M{x) there exists T e (Jί)^ such that x e Sd(T) and Tx = y.
Hence, Jί{x) = {Tx: Γ G (Jί)^ andx e 9{T)}.

5. Reflexivity of scalar-type spectral operators. Let Jί be an

equicontinuous Bade complete Boolean algebra of projections in the
quasi-complete space X. As before, we denote by (Jί) the strongly closed
subalgebra of <£?( X) generated by Jί, in which we consider the canonical
Riesz space structure. By (Jί)jwe denote the order ideal generated by /
in (Jί). Let T be a densely defined linear operator in X with (Λ?)/-in-
variant domain 2{T). Suppose that T leaves invarant each ^-invariant
subspace of X, i.e., if Y c X is a closed, ^-invariant subspace, then
T(@(T) Π y) c 7. In particular, if £ G ^ # , then T{2{T) Π £(ΛΓ)) c
£(X). It follows routinely that TEx = ETx for all JC e 0 ( Γ ) and
E ^Jί. Note that we do not assume that T is closed.

If x G I , then we denote by T[x] the restriction of Γ to Q){T) Π
c^(x), so T\x\ is a linear operator in Jί{x) with domain «@(Γ) C\Jί(x).
In the next proposition we collect some properties of T[x].

PROPOSITION 5.1. If T is a densely defined linear operator in X with
(Jί)Γinvariant domain, if T leaves invariant each Jί-invariant closed
subspace of X and if x e X, then

(i) 2){T) Π Jί{x) is an order ideal in Jί{x).
(ϋ) T[x] is a band preserving operator.

Proof, (i) Suppose y,z <= Jί{x) and \y\ < |z|, z e 2ι{T) Γ\Jί(x). As
in the proof of Lemma 4.2(ϋ), there exists S G («^)/> such that j ; = Sz.
Since ^ ( Γ ) is (^)Γinvariant, it follows that y e S(Γ) Γ\Jf(x).

(ii) Now suppose that j ; e S(Γ) C\Jί(x) and z G ^ ( χ ) such that
y ± z. Then there exists E ^Ji such that £y = ^ and Ez = 0. Since
y ^2){T\'\\ follows that 7> = TEy = £7>, so £ ( 7 » = Ty and £z = 0,
which shows that Ty ± z.

Our next objective is to show that T[x] is in fact an order bounded
operator from @)(T) Π Jί{x) into Jί(x). For this puφose we make some
remarks concerning band preserving operators. Let L be an Archimedean
Riesz space and let A be an ideal in L. Suppose that T is a band
preserving operator from A into L. A straightforward modification of the
proof of [14], Proposition 6 shows that if T is order bounded on some
order dense ideal in A, then T is order bounded on A.
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LEMMA 5.2. Let L be a uniformly complete Riesz space with a separat-
ing family of order continuous linear functional. Suppose that A is an ideal
in L and that T is a band preserving operator from A into L. Then T is order
bounded.

Proof. By the above remark, it is sufficient to prove that T is order
bounded on some order dense ideal in A. As in the proof of [4], Lemma
2.6, we may restrict ourselves to the situation that there exists a strictly
positive order continuous linear functional. It is then clear that for any
positive disjoint sequence {wn}^>

==1 in L there exist real numbers λn > 0
(n = 1,2,...) such that {λnwn}™=ι is not order bounded in L. Consider-
ing T as a disjointness preserving operator from A into L, we can apply
[14], Theorem 8, which shows that T is order bounded on some order
dense ideal in A.

We now return to the situation of Proposition 5.1. Applying the above
observations to the operator T[x] we get the following result.

PROPOSITION 5.3. Let T be as in Proposition 5.1. For each x G X the
operator T[x] is band preserving and order bounded from the ideal Sf{T) Π
Jί(x) into Jί(x). If x G X is such that 3){T) dJf(x) is order dense in
Jί{x\ then T[x] G Orth°°(^(x)). In particular, T[x] e Orth°°(ur(jt))
for all x e 9)(T).

Proof. Since Jt{x) is a locally convex solid Riesz space with Lebesgue
topology, and since T[x] is band preserving (by Proposition 5.1), it
follows from Lemma 5.2 that T[x] is order bounded. Therefore, by
definition, Γ[JC] e Orth°°(^(x)) whenever 2{T) C\Jf{x) is order dense
in Jt(x). If x e B{Ύ\ then 3)(T) CλJί(x) is order dense in Jl(x\ as x
is a weak order unit in Jί{x).

We remark that it follows from the above proposition that, if x e
2{T) and S G (Jf)τ, then STx = TSx. In fact, if x G S(Γ), then
T[x] G Orth°°(^(x)) - and S[x] is an element of Z(Jί(x)) c
Orth°°(^#(x)), which implies that T\x\ and S[x] commute. Note that, if
x e 3)(T), then 2{T) ΠJf(x) is, in general, not the maximal domain of
T[x], since we do not assume that T is closed.

For any E^Jί, the operator TE is defined by TEx = T(Ex) for all
x G 2(TE) = J E - ^ Γ ) ) . Note that ®(T) c ^(ΓB), so 7Έ is densely
defined. An appropriate modification of the proof of Lemma 5.3 in [4]
yields the following result.
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LEMMA 5.4. Suppose that T is as above and x e 3>(T). If Tx = 0, then
TEX c 0, where Ex is the carrier projection of x in Jί.

PROPOSITION 5.5. Let T be a densely defined linear operator in X with
(Jί) rinvariant domain 3){T). If x e 2{T) and if Ex is the carrier
projection of x in Jί, then there exists S e Ex(Jί)^ such that TEX c S.

Proof. Since x e 2){T\ it follows from Proposition 5.3 that T\x\ e
Orth°°(^(jc)). Therefore, by Proposition 4.4, there exists a (unique)
S e Ex(Jί)^ such that T[x] c S[x]. We assert that TEX c S. Indeed, let
{En)™=i be a determining sequence for S, and define the operators
Rn = SEn- TEn with domain 2(Rn) = 2{TEn) = [y ^ X: Eny e
<@(Γ)} for π = l,2,. . . . Since ^ ( Γ ) c ^(i? n ), it follows that #„ is
densely defined. Furthermore, 3)(Rn) is (./#)rinvariant and i?Λ leaves
invariant all ^-invariant closed subspaces of X. Moreover, x G S){Rn)
and i?wx = S£njc - Γ£nx = ^ [ X I ^ J C - ΓfxJ^jc = 0, and so it follows
from Lemma 5.4 that RnEx c 0. We thus have shown that TEnEx c
SEnEχ9 i.e., that Γ ^ ^ c SEn for all Λ. NOW take y e 2{TEX) i.e.,

). Then £Λ<y -> 7 as £w T / in Jί, and

= TEnExy = Γ £ , £ ^ = En(TExy) - Γ £ ^ .

Hence, since S is closed, 7 G S(S) and Sy = Γ ^ j . This shows that
TEX c S, and the proposition is completely proved.

LEMMA 5.6. Let T be a densely defined linear operator with (Jί) fin-
variant domain 3)(T). Assume that T leaves invariant each Jί-invariant
closed subspace of X. There exists a family {xa} c ® ( Γ ) with mutually
disjoint carrier projections {Ea} c Jί, such that supα2?α = /.

Proof. By Zorn's lemma, there exists a maximal disjoint system {Ea)
of carrier projections in Jί corresponding to elements {xa} in 2{T). Set
Eo = supl?α in Jί and suppose that Eo Φ I. Let Fo = / — Eθ9 then
Fo Φ 0. Since 2{T) is dense in X, there exists y ^ 2(T) such that
FQy Φ 0, If z = FQy, then z Φ 0 and z e .©(Γ). The carrier projection £ z

of z satisfies Ez Φ 0 and £ 2 < i^, as Foz = z. Hence £ z ± £ 0 , contradict-
ing the maximality of the system {Ea}.

We are finally in a position to prove the main result of this paper.

THEOREM 5.7. Let Jί be an equicontinuous Bade complete Boolean

algebra of projections in the quasi-complete space X. Let T be a densely
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defined linear operator in X with (<^)finvariant domain 3){T). The

following statements are equivalent.

(i) T leaves invariant all ^-invariant closed subspaces of X.

(ii) T is closable and its closure f belongs to

Proof, (ii) => (i). If f e (~#)α» t h e n > bY Corollary 2.4, f leaves
invariant all ^-invariant closed subspaces of X, and since Γ c f , we
conclude that T has the same property.

(i) => (ii). Now suppose that Γ leaves invariant all ^-invariant closed
subspaces of X By Lemma 5.6, there exists a disjoint system of carrier
projections [Ea: a e l ) in Jί, corresponding to elements {xa: α G i }
in @(T), with supaEa = /. By Proposition 5.5, for each a there exists
Sa e Ea(^) s u c h Λat TEa c Sα. Then {,Sα: α G i } i s a disjoint system
in ( ^ ) 0 0 , and since ( ^ ) 0 0 is laterally complete, there exists a unique
element S e {^)oo such that 5Ί?α = *Sα for all a. We will show now that
T Q S. To this end, we define for every finite subset & of & the
projection Estr= Σa&^Ea. Clearly, E^\I in ^T. Take JC e ^ ( Γ ) , then
£^x -^ JC and Λ; G @{TEa) for all α e i Hence, c e <^(Sα) and Sax =
TEax for all a. Therefore, E^x G ̂ ( 5 ) for all finite subsets J*" of £ and

S£^x = TE^x = Ec?Tx -> Γx.

Since 5 is closed, this implies that x & 2{S) and Sx = 7!x, which shows
that T Q S.

It follows from the inclusion T Q S and from the closedness of S,
that T is closable. Let f denote the closure of Γ, so T c f c S. We claim
that f = S. First note that ^ ( f ) is ^-invariant. Indeed, suppose that
x e ^ ( f ) and E^Jί. Then there exists a net {xα} in 2){T) such that
xα -* jc and Γxα -* 73c. Hence, Exa -> £x and Γ£;cα = ίTx^ -> ETx,
which shows that Ex e S ( f ) and TTEJc = J?73c. This implies that Q(T)
c 2){TE\ and hence ^(7Έ) is dense, for all E^Jί. Now let { £ J be a
determining sequence for S in ^ . Clearly 72?π c *SJ?Λ for all /i = 1,2, —
Since 7!EΠ is closed and densely defined, and since SEn is continuous, it
follows that TEn = SEn for all w. Now take x e S(5), then 5£ΠJC -* 5x.
We thus have Enx -• JC, J?ΛJC e S ( f ) and f£πjc = SEnx ~> 5x. Since f
is closed we may conclude that x e S ( f ) and 7x = Sx. This shows that
S c f , and hence f = 5 e (^> 0 0 ? by which the theorem is proved.

Note that, by the observation in Corollary 2.5(i), the above theorem
includes the result of Theorem 5.5 in [4].
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COROLLARY 5.8. Let Jί be an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. Let T be a densely
defined, closed linear operator in X with Jί-invaήant domain 3){T). The
following statements are equivalent.

(i) T leaves invariant all Jί-invariant subspaces of X.
(ii) T e {Jί)^, i.e., T is a scalar-type spectral operator with respect to

Proof. Only the implication (i) => (ii) needs a proof. By the above
theorem it is sufficient to show that 2{T) is in fact {Jί)/-invariant. To
this end, first observe that TEx = ETx for all X G S ( Γ ) and E ^.Jί
(same argument as at the beginning of the present section). Let M be the
linear subspace of ^(X) generated by Jt. Clearly, 3){T) is M-invariant
and TSx = STx for all X G ® ( Γ ) and S e M. Now take c e S ( Γ ) and
R & {Jt)v Then there exists a net {Sa] c M such that Sa-+ R strongly.
Hence Sax e 2(T) for all α, Sax -* Rx and TSax = SaTx -> RTx. Since
T is closed, this implies that Rx e 2{T), and we are done.

We end this section with an example which shows that in Theorem 5.7
the condition that 2(T) is {Jί)j invariant cannot be weakened to
^-invariance of 8){T).

EXAMPLE 5.9. Consider the unit interval [0,1] with Lebesgue measure,
let X be the Banach space Lp[0,1] (1 < p < oc) and let Jί be the
Boolean algebra of all band projections in Lp[Q, 1]. Note that the projec-
tions in Jί are precisely the multiplications by characteristic functions of
measurable subsets of [0,1], Then Jί is equicontinuous and Bade com-
plete. The ^-invariant closed subspaces of Lp[0y 1] are precisely the bands
(cf. [5], Proposition 2.4). Furthermore, {Jί) = {Jί)j can be identified
with £^[0,1], acting on ^[0,1] by multiplication. Let 9(T) be the
subspace of 2^(0,1] consisting of all functions which can be written as
/ = Σΐ-iPΪXES where Ev...,En are disjoint measurable subsets of [0,1],
and pλ{x),...,pn(x) are linear functions. Clearly, Θ(T) is dense in
Lp[Q, 1] and ^-invariant, but 3){T) is not {Jί)/-invariant. For / =
Σ!τ

i=ιρiχEι in 2{T\ define Tf= Σ"==ιp'iχE., where p\ denotes the deriva-
tive of pt. Clearly T is a linear operator from Sι{T) into Lp[0,1], which
leaves invariant all ^-invariant closed subspaces of Lp[0,1], Now it is not
difficult to find a sequence {/„}JLX in @(T) such that fn -> 0 (norm) and
Tfn = 1 for all w, which shows that T is not closable.
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We will indicate in the next section that the preceding Theorem 5.7
and Corollary 5.8 extend results of Masani and Rosenberg [13], Rosenthal
and Sourour [18], [19] and Sourour [21], [22]. Moreover, even in the case
that X is Banach, the result of Theorem 5.1 appears to be new.

6. The spectrum of a scalar-type spectral operator. We begin by

showing that if Jί is a Bade complete Boolean algebra of projections in X
and if T is scalar-type spectral with respect to Jί i.e. if T e (Jί)^ then
T is scalar-type spectral in the sense of Dunford. Conversely, if T is
scalar-type spectral in the sense of Dunford, then there exists a Bade
complete Boolean algebra of projections Jί for which T e (Jί)^.

A spectral measure in X is a countably additive map E: $8 -> &(X)
whose domain 3$ is a σ-algebra of subsets of some set Ω, which is
multiplicative and satisfies E(Ω) = /. The spectral measure E is called
equicontinuous if the range of E is an equicontinuous subset of JP(X)
and closed if its range is a Bade complete Boolean algebra of projections
in X. If E: ^?->JS?(X) is a spectral measure and / a complex valued
^-measurable function, then / is said to be is-integrable if / is integrable
with respect to the complex measure (Ex, x') for each x e X, xf e X'
and there exists an operator, denoted fQfdE, in &*(X) such that

for each x e X, x' e X'.
The class &ι(E) of all 2?-integrable complex functions on Ω is a

Riesz space for the pointwise ordering on Ω, containing all bounded
^-measurable functions. The ^-measurable function / on Ω is said to be
2?-null if / is 2?-integrable and JQ jdE = 0. The class of complex £-null
functions on Ω is an order ideal in 3?ι(E) and the corresponding quotient
space is denoted by Lι(E). If E is closed, then the map / -» j^fdE is an
order isomorphism of Lι(E) onto (Jί)* where Jί is the closure of the
range of E in ££{X). If now / is a ^-measurable complex valued
function on Ω, the spectral integral j^fdE is defined as follows. If {Bn}
is any sequence of ^-measurable subsets of Ω such that χB t nχQ in
L\E) and fχκ e L\E\ n = 1,2,..., then x e @(JΩfdE) if and only
if limrι^oo(JfχBdE)(x) exists in X, in which case (jQfdE)(x) =
\imn( JQfχBdE)(x). The linear mapping T in X is called a scalar-type
spectral operator in the sense of Dunford if there exists an equicontinuous
spectral measure E: 3ί -»J?(X) and a ^-measurable complex function /
such that T = /Ω /dE. We remark that if Jδ?( X) is sequentially complete
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and if T is scalar-type spectral in the sense of Dunford then T e Jδ?( X) if
&(T) = X. For example, see [5] Proposition 1.2.

Suppose now that T is a scalar-type spectral operator in X in the
sense of Dunford, with representation as a spectral integral given by
fafdE, with E: 36 -* J?(X) an equicontinuous spectral measure. If Jt
denotes the closure in <£?(X) of the range of the spectral measure E, then
Jί is a Bade complete Boolean algebra of projections in X and it follows
from Definition 2.3 above and [6], Proposition 1.8 that T is a scalar-type
spectral operator with respect to Jί, i.e. that T is an element of (Jί)^.
Conversely, if Jί is a Bade complete Boolean algebra of projections in X,
and if Γ G (^)OO Λ e n ^ *s a consequence of the Freudenthal spectral
theorem that there is an equicontinuous spectral measure E defined on the
Borel subsets of the complex plane C such that Jc z dE is a representation
of T as a spectral integral. In fact, we may write T = ReT + ΠmΓ with
ReΓ, I m Γ G R e < ^ > 0 0 . Denote by {F(λ): λ e R}, (G(λ): λ e R )
respectively the Freudenthal spectral systems ([11], §§38, 40) of Re Γ, Im T
in the Dedekind complete (real) Riesz space Re(Jί)O0 with respect to the
weak order unit /. The Freudenthal system {E(z): z e C} of T in Jί is
then defined by setting E(z) = F(λ)G(μ) if z = λ + j>, λ,μ e R. The
spectral system {E(z): Z E C ) induces, in the usual way, a countably
additive, multiplicative ^-valued set function Eo on the ring generated by
the collection of all half-open cells in C of the form

[zl9z2) = {x + iy e C: Rezx < x < Rez2, Imzx < y < Imz 2 } .

Since (Jί) is Dedekind complete and has Lebesgue topology, it follows
from the Kluvanek extension theorem ([8] p. 118; see also [23] Chapter 11)
that Eo extends to a countably additive measure, which we denote by E,
on the Borel subsets of C. As in Proposition 3.6 of [6], it follows that E is
an ^-valued equicontinuous spectral measure. From the Freudenthal
spectral theorem and the dominated convergence theorem, it follows that

TE(δ)= ί zχδdE
Jr

holds for all compact subsets δ c C and it follows immediately that
T = jcz dE, so that T is a scalar-type spectral operator in the sense of
Dunford. In the sequel, we will use the term scalar-type spectral operator
without risk of confusion of terminology.

Suppose now that P: Σ -* J?(X) is a closed spectral measure with Σ
a σ-algebra of subsets of some set Ω, and let Jί be the range of P. We
denote by J£?0(P) the linear space of all complex valued Σ-measurable
functions on Ω. JS?°(P) is clearly a complex Riesz space, in fact an
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/-algebra with respect to the pointwise ordering, and by [6], Proposition
1.8, it follows that the order ideal of P-null functions in <g°(P) is an
algebraic ideal as well as an /-subalgebra. We denote by L°(P) the
corresponding quotient space.

PROPOSITION 6.1. If P: Σ -> ̂ (X) is a closed spectral measure and if
Jί is the range of P, then the map P: f -> fafdP, f e J2?0(P) induces an
f-algebra isomorphism of L°(P) onto

Proof. We continue to denote the induced mapping by P. We show
first that P maps L° onto {Jί)^ If T e (Jί)^ it suffices to show that
there exists / e &°(P) such that T = fQfdP. From above, there exists an
equicontinuous spectral measure E defined on the Borel subsets 3$ of the
complex plane such that T = fczdE. Let {Bn} be any sequence of
compact subsets of C for which Bn | n C. For each n = 1,2,... there
exists G n e Σ and /„ e L\P) such that P{Gn) = E(Bn) and

TE(Bn) = / fndP = P(Gn)ί fndP = / χGJndP

for w = 1,2, Without loss of generality, it may be assumed that
Gn T n Ω and that /„ = 0 on Ω \ (?„, n = 1,2,.... It follows that

so that we may further assume that fn+ι = fn holds on Gn, for « = 1,2,
We now define / by setting /(ω) = fn(ω) if ω e Gn. It is clear that / is
Σ-measurable and from

jjχGndP=TP(Gn)=TE(Bn), /i = 1,2,...,

it follows readily that T = /Ω /dP. To see that P is an algebra isomor-
phism of L°(P) onto (^> 0 0 ? suppose that /, g e <5?°(P) and let {Grt} be
any sequence in Σ such that Gn | MΩ and such that /χGn, gχGn e &\P\
n = 1,2, Since the restriction of P to L 1 ^ ) is an algebraic isomor-
phism of L\P) onto <^#>#, it follows that

P(fgXon) =

and
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for n = 1,2, It follows readily from the remark following Definition
2.7 that P(fg) = />(/) P(g), P(f+ g) = P(f) 4- P(g) hold in (*)„.
Finally, since the restriction of P to L\P) is* a Riesz isomorphism of
L\P) onto ( ^ ) # , it follows that P is a Riesz isomorphism of L°(P)
onto < ^ ) 0 0 and by this the proposition is completely proved.

In view of Proposition 6.1 preceding, Theorem 6.2 and Corollary 6.3
following are now no more than a reformulation of Theorem 5.7 and
Corollary 5.8 above. If P: Σ -> 3?{X) is a spectral measure, we denote by
«S?°°(P) the linear space of all bounded complex Σ-measurable functions
on the underlying set Ω.

THEOREM 6.2. Let P: Σ -* J?(X) be a closed spectral measure and let
T be a densely defined operator in <&(X) with domain 3>{X) invariant
under fa fdPfor each/ e J?°°(P). The following statements are equivalent.

(i) T leaves invariant all closed subspaces of X which are invariant
under the range of P.

(ii) T is closable and there exists f &<2?0(P) such that the closure of T is
given by the spectral integral fQ fdP.

COROLLARY 6.3. Let P: Σ -> &{X) be a closed spectral measure and
let T be a densely defined closed linear operator in X with domain @(T)
invariant under the range of P. The following statements are equivalent.

(i) T leaves invariant all closed subspaces of X which are invariant
under the range of P.

(ϋ) There exists/ e &°(P) such that T = fQfdP.

We remark that Corollary 6.3 above was proved by Masani and
Rosenberg [13] for the case that X is a Hubert space; by Bade [2] for the
case that X is Banach and T continuous and by Sourour [22] for the case
that X is Banach and T is densely defined and closed. The methods of
these papers do not extend to the locally convex setting. For the case that
X is locally convex and T is continuous, then Corollary 6.3 was proved,
explicitly, in [6] (Proposition 1.5 and Theorem 3.1) and, implicitly, in [4],
Corollary 5.6. The methods of the present paper follow those of [4], and
this approach yields the stronger result, Theorem 6.2 above, which ap-
pears to be new, even for the case that X is Banach. In the Banach space
setting, a special case of Theorem 6.2 may be found in [19], Theorem 7.

We turn now to questions related to the spectrum of scalar-type
spectral operators. If X is a Banach space and T a scalar-type spectral
operator on X, then it is well known ([7], Chapters XV, XVIII) that T has
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a uniquely determined resolution of the identity which commutes with
each continuous linear operator commuting with T and whose support is
precisely the spectrum of T. In the locally convex setting, these questions
have been considered for continuous operators in [12] and [17], and for
unbounded operators with non-empty resolvent set in [20]. We show now
that these results permit exact extensions to locally convex setting. As in
previous sections, our approach is via order structure and this permits a
treatment which applies simultaneously to bounded and unbounded cases.
While we follow as closely as possible the arguments of [7], Chapter XV,
the main difference in the present approach is that we exploit the
algebraic structure of the algebras (Jί)^ where Jί is a Bade complete
Boolean algebra of projections in X.

Let T be a linear operator in X with domain S(Γ). The complex
number z0 is said to belong to the resolvent set ρ(T) of T if there exists
an open neighbourhood U of z0 such that, for all z e [/, the linear map
zl - T is injective, has dense range and (zl - Γ ) " 1 extends to a continu-
ous operator R(z T): X -> X, such that R(z; T)(zl - T) is the identity
on 2{T), {zl - T)R(z; T) is the identity map of the range of zl - T
and such that the map z »-> R(z; T) is analytic on U. The map R(-,T) is
called the resolvent of T on p(Γ). The spectrum σ(Γ) of T is then
defined to be the complement of ρ(T) in C.

LEMMA 6.4. Let Jί be a Bade complete Boolean algebra of projections
in X and let T e (Jί)^ Let E: 3S -> 3?{X) be the equicontinuous spectral
measure on the Borel subsets Si of the complex plane C generated by the
Freudenthal system of T in Jί. If z e C, if δ e a and if d(z, 8) is the
distance of z to δ, then

\zE(8) - TE(δ)\E(8) > d(z9δ)E(δ)

holds in

The preceding lemma may be proved by a direct application of
Proposition 6.1 above. An intrinsic proof may be based alternatively on
the properties of the Freudenthal spectral system as in [11] §§38, 56. We
omit the details.

If Jt\ T and E are as in the statement of the preceding lemma and if
δ is a Borel subset of C, we denote by δ the closure of δ and by Γδ, Jίδ

the restrictions of Γ, Jί to E(δ)(X) respectively. Note that Jί\ is a Bade
complete Boolean algebra of projections in E(δ)( X) and that T8
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PROPOSITION 6.5. Let Jί be a Bade complete Boolean algebra of
projections in X, let T e {Jt)^ and let E: 3ί -> £f(X) be the equicontinu-
ous spectral measure on the Borel subsets of the complex plane C generated
by the Freudenthal system of T in Jt. If 8 is a Borel subset of C, then

(i) o(Tδ) c S
(n)\R(z;Tδ)\<(d(z;δ)y%_

holds in (Λf)99 wheneverz e C \ ί .

Proof. It is clear that we may assume that 8 is not dense in G
Suppose then that 0 Φ U c C is open with distance ε > 0 to δ. From
Lemma 6.2, it follows that

\ z l 8 - T 8 \ > ε l 8 , z e U

holds in (^s)oo a n ^ consequently, it follows from [24], Theorem 146.3
that zlδ — Tδ is invertible in {Jί^^ with inverse R(z; Tδ) e
satisfying

\R(z;Tδ)\<ε-ιIδ9 z e U.

Since

« = 0

holds /δ-uniformly in (Jίδ) for w,z e t/, |w — z\ < ε/2, it follows that
the map z -> JR(Z; Γδ) is analytic in £/. Further, since

i?(z; Tδ)(zlδ - Γβ) = (z/δ - Tδ)R(z; Tδ) = /δ

holds in (Jt'5)^, it follows that

Ώ{ 7- T \i 7I — T W — v 7 e= π
K V Z > 28)\ZI8 Iδ)x ~- x-> Z *= U

holds for all JC e ^(Γδ) so that (z/δ - Tδ) is injective for all z & U;
further, it follows that

holds for all x e E(8)(X) for which R(z; Tδ)x e ^(Γ δ), so that z/δ - i?δ

has dense range for all z G [/. It follows that U c p(Γδ) and by this the
proposition is proved.

If Γ, £, Jί are as above, the essential step required to characterize
the range in X of each projection in the range of E is given by the
following lemma. See, for example [7] Lemma XVIII 2.3. As the proof
may be based on Proposition 6.5 above and arguments similar to those of
[7], XV 3.1, 3.2, 3.4, the details will be omitted.
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LEMMA 6.6. Let Jί be a Bade complete Boolean algebra of projections
in X, let T G (Jί)^ and let E: 3$ -> £P(X) be the equicontίnuous spectral
measure on the Borel subsets of the complex plane generated by the Freu-
denthal system of T in Jί. If x e Sf(T), if 8 c C is compact and if f:
C \ δ -* 9(T) is an analytic map for which {zl - T){f(z)) = x for all
z e C \ 5 , then E(σ)x = x.

The preceding lemma, combined with an inspection of the proof of [7]
XV 3.7 now yields the following result. We recall first that if A G &{X)
and T: 2{T) -»S£(X) is a linear map, then A is said to commute with T
if and only if A{2(T)) c 9(T) and ATx = TMx for all * G

PROPOSITION 6.7. Let Jί be a Bade complete Boolean algebra of
projections in X, let T G (M)^ and let E: 38 -> JδP( JΓ) fo? fΛe equicontinu-
ous spectral measure on the Borel subsets of the complex plane generated by
the Freudenthal system of T in Jί. IfΆ G oS?( X) commutes with T, then A
commutes with E(δ), for each Borel subset δ of the complex plane.

If T is a scalar-type spectral operator in X, a resolution of the
identity for T is any equicontinuous spectral measure F: 3& -> «£?( X)
defined on the Borel subsets Si of the complex plane such that jczdF is a
representation of T as a spectral integral. We remark that if F is a
resolution of the identity for T and if Jί is the closure of the range of F
in J?(X), then it is a consequence of the uniqueness of the Freudenthal
system ([11], Theorem 40.8) that F coincides with the spectral measure on
38 generated by the Freudenthal system of T in Jί.

PROPOSITION 6.8. // T is a scalar-type spectral operator in X then T has
a unique resolution of the identity.

Proof. Suppose E, F are resolutions of the identity for T. By the
remark immediately preceding the proposition, it may be assumed that E,
F are generated by the Freudenthal systems of T in (^> 0 0 , (^Ooo where
Jί, JΓ denote respectively the closures of the range of E, F in <S?(X). If
δ c C is compact then it follows from Proposition 6.5 that the restriction
of zl - T to F(δ)(X) is invertible for z G C \ δ , with inverse R(z; T8),
such that R( , Tδ) is analytic in C \ δ. Here T8 denotes the restriction of T
to F(δ)(X). Since

(zl - T)F(δ)R(z; Tδ)F(δ)x = F(δ)x
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holds for all x e X and z e C \ ί , it follows from Lemma 6.6 that
E(δ)F(8) = F(δ). It follows similarly that F(8)E(8) = E(δ). From Pro-
position 6.7, it follows that E(8) = F(8) for all compact δ c C and this
clearly suffices to prove the Proposition.

LEMMA 6.9. // T is a scalar-type spectral operator in X with resolution of
the identity E and if 0 Φ 8 c C is compact, then the restriction of T to
E(δ)(X) has non-void spectrum, provided E(8) Φ {0}.

Proof. Denote by Tδ the restriction of T to the range of E(8). If
o(Tδ) = 0 , it follows that the map z -» R(z; Tδ) is entire. From Proposi-
tion 6.5(ii), it follows that

\R(z;Ts)x\<\R(z,Ts)\x < (dizj))-^

holds in the Riesz space Jί\x\ whenever z ί ί . Consequently R(z; T8)x
-> 0 as z -» oo for each x & X, since 8 is compact. The result now
follows from Liouville's theorem.

If T is a scalar-type spectral operator in X, with resolution of the
identity E, we denote by suppi? the complement in C of the largest open
set V for which E(V) = 0.

PROPOSITION 6.10. // T is a scalar-type spectral operator in X with
resolution of the identity E, then σ(T) = supp£.

Proof. Since E(suppE) = J, it follows from Proposition 6.5(i) that
σ(Γ) c supp£. To show that supp£ c σ(Γ)? observe first that if σ(Γ) =
C, there is nothing to prove. It suffices then to show that if ρ(T) Φ 0 and
if 8 c p(Γ) is compact, then E(8) = 0. If 8 c p(Γ) is compact, it is
simply checked that the restriction of the resolvent map R(z; T) to the
range of E{8) is the resolvent of the restriction Tδ of T to the range of
E(8) so that σ(Γδ) c σ(T). By Proposition 6.5(i) σ(Γ) c δ so that
o(Tδ) = 0 . This however contradicts Lemma 6.9 and by this, the proposi-
tion is proved.

We remark that if T is a scalar-type spectral operator in X with
resolution of the identity E, then it follows immediately from the preced-
ing result that

σ(Γ) = Π{δ: δBorel, E(δ) = l}.

If now / is a complex-valued Borel function on C, we denote by f(T) the
spectral integral fcfdE. Just as in [7], XVII 2.17 it follows that the
resolution of the identity of f(T) is the spectral measure E(f~ι(-)). It
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follows that

°(f(T)) = Π{y(δ): 8 Borel, E(8) = /}.
In particular, it follows that o{f(T)) c f(σ(T)). Observe now that if
S c C i s Borel and E(δ) = I, then 8(T)Π8 = σ(T). Hence, if 8 c C is
Borel and E(δ) = I, and if / is continuous on σ(T), then

f(o(T)) =/(σ(Γ)nδ) c / ( σ ( Γ ) n δ ) c / ( σ )

so that f(σ(T)) c σ(Γ). These remarks constitute the proof of the

following spectral mapping theorem (cf. [17] Theorem 2).

PROPOSITION 6.11. // T is a scalar-type spectral operator in X and iff:
C -* C is a complex Borel function which is continuous on σ(T) then

The final result of this section may be proved by an appropriate
modification of the proof of [23], Theorem XI 7.1 and accordingly we
omit the details. Note, however, that the reasoning of the first part of the
proof of Proposition 6.1 does not apply.

PROPOSITION 6.12. // S, T are scalar-type spectral operators in X with
resolutions of the identity i% E respectively then there exists a complex Borel
function /: C -* C such that S = f(T) if and only if the range of F is
contained in the range ofE.

7. Concluding remarks. The results of the preceding sections, to-
gether with the main reflexivity theorem of [5], provide the key tools
necessary to extend to the locally convex setting certain theorems concern-
ing (not necessarily commutative) reflexive algebras of operators due to
Sourour [21] and Rosenthal and Sourour [19].

We begin with the following complement to, and consequence of,
Theorem 3.8 of [5]. If s/Q &(X\ the double commutant of J / is the set
of all continuous linear operators on X which commute with each
continuous operator commuting with J / . If si is a unital subalgebra of
J?(X) then s/ is called reflexive if J / contains each continuous linear
operator which leaves invariant each ^invariant subspace.

PROPOSITION 7.1. Let Jί be a Bade complete Boolean algebra of
projections in X and let si be a closed unital subalgebra of {Jί). If each
sf-invariant subspace is range of a continuous projection which commutes
with s/ then

(i) s/ is equal to its double commutant.
(ii) There exists a Bade complete Boolean subalgebra JΓ^Jί such that
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Proof, (i) It follows immediately that each element of the double
commutant of si leaves invariant each ^invariant subspace and hence
belongs to si ^ since si is reflexive, by [5], Theorem 3.8.

(ii) From Proposition 6.7 it follows that the spectral resolution of each
element of si lies in the double commutant of si hence in si, by (i). It
follows that the Boolean subalgebra JΓ0 of Jί generated by the set of all
projections in the ranges of the spectral resolutions of all elements of si is
again contained in si. If Jί is the closure of JV0, then Jί is Bade
complete by [4], Proposition 4.5 and it is clear that si= {Jί)~

We remark that if X is Banach, then the preceding result was proved
by Sourour [21], Theorem 8, under the additional assumption that the
Boolean algebra Jί is of uniform multiplicity one (see below).

The papers [18], [19] are concerned with the extension to the Banach
space setting of reflexivity results for strongly closed algebras of operators
on, in general, non separable Hubert spaces, which contains a maximal
abelian von Neumann algebra. If X is a Banach space, a Bade complete
Boolean algebra of projections in X is said to be of uniform multiplicity
one if the restriction of Ji to E(X) has a cyclic vector whenever £ E ^ #
is countably decomposable (the projection E e Jί is said to be countably
decomposable if every family of disjoint projections in Jί majorized by E
is at most countable). We observe the following simple characterization of
Boolean algebras of uniform multiplicity one.

LEMMA 7.2. Let X be a Banach space and let Jί be a Bade complete
Boolean algebra of projections in X. The following statements are equivalent:

(i) Jί is of uniform multiplicity one.
(ii) For each x e X, there exists a projection E ^Jί such that E(X) =

M\x\

Proof, (i) => (ii). Suppose that Jί is of uniform multiplicity one, let
x e X, and let Ex be the carrier of x in Jί. By [7], Lemma XVIII 3.5, Ex

is countably decomposable so that, by (i), there exists y e X with
Exy = y such that {ExJί)[y] = EX(X). Without loss of generality, we
may assume that Ex = I and that y is cyclic for Jί. From Propositions
2.1, 2.4 (ii) of [5] it follows that Jί\x\ is a band in the Riesz space Jί[y]
and that the corresponding band projection is given by an element of Jί.
It now follows from the fact that Ex = /, that Jί\x\ = Jί\y\ and so the
implication (i) => (ii) follows.
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(ii) => (i). If E G Jί is countably decomposable, then by [7], Lemma
XVIII 3.5, it follows that E is the carrier projection Ex of some element
x G I By (i), there exists a projection F e Jί such that F(X) = Jί\x\
Necessarily F = Ex = E and by this, the implication is proved.

If now X is a locally convex quasicomplete space, a Bade complete
Boolean algebra of projections in X will be called quasi-cyclic if condition
(ii) of the preceding Lemma 7.2 is valid. It follows from Propositions 2.4,
2.7 of [5] that if Jί is a Bade complete quasi-cyclic Boolean algebra of
projections in X, then X admits the structure of a locally solid topologi-
cally complete, Dedekind complete Riesz space with Lebesgue topology
such that the Boolean algebra of band projections coincides with the
Boolean algebra Jί and such that the closed ^-invariant subspaces of X
are precisely the bands in X. If now J / is a strongly closed subalgebra of
<&(X) which contains a Bade complete quasi-cyclic Boolean algebra of
projections then each ^-invariant subspace, being ^-invariant, is the
range of a projection in Jί and it follows that each j#invariant subspace
which has an ^invariant complement is the range of projection in Jί
which commutes with si. We may now state the following extension of
[19] Theorem 5.

PROPOSITION 7.3. Let si be a strongly closed subalgebra of J?(X)
which contains a Bade complete quasi-cyclic Boolean algebra of projections.
If every invariant subspace of si has an invariant complement then

(i) si is equal to its double commutant.
(ii) si is reflexive.

The proof of the preceding proposition now follows exactly as in [19],
with Theorem 7 of [19] replaced by Theorem 5.7 of the present paper. We
omit the details.

In a similar vein, we leave to the interested reader the task of checking
that the tools provided by the present paper are sufficient to extend
verbatim to the locally convex setting the proofs in [18] of the following
results for Banach spaces due to Rosenthal and Sourour. See [18], Theo-
rem 8.12.

PROPOSITION 7.4. If si is a closed subalgebra of J?(X) which contains
a Bade complete quasi-cyclic Boolean algebra of projections and if the only
si-invariant subspaces are {0} andX, then si=Jέ?(X).
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PROPOSITION 7.5. Ifs/ is a closedsubalgebra of ££(X) which contains

a Bade complete quasi-cyclic Boolean algebra of projections, and if the

stf-invariant subspaces of X are totally ordered, then si is reflexive.

REFERENCES

[I] C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, New York-San
Francisco-London: Academic Press 1978.

[2] W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans.
Amer. Math. Soc, 80 (1955), 343-359.

[3] P. G. Dodds, Orthomorphisms of a commutative W*-algebra, J. Austral. Math. Soc.
(Series A), 35 (1983), 143-168.

[4] P. G. Dodds and B. de Pagter, Orthomorphisms and Boolean algebras of projections,
Math. Z., 187 (1984), 361-381.

[5] P. G. Dodds, B. de Pagter and W. Ricker, Reflexiυity and order properties of
scalar-type spectral operators in locally convex spaces, Trans. Amer. Math. Soc, 293
(1986), 355-380.

[6] P. G. Dodds and W. Ricker, Spectral measures and the Bade reflexivity theorem, J.
Functional Anal., 61 (1985), 136-163.

[7] N. Dunford and J. Schwartz, Linear operators Part III. Spectral Operators, New
York: Wiley-Interscience 1971.

[8] I. Kluvanek, The extension and closure of vector measures, in Vector and Operator-val-
ued Measures and Applications, pp. 175-189. New York: Academic Press 1973.

[9] W. A. J. Luxemburg, Some aspects of the theory of Riesz spaces, University of
Arkansas Lecture Notes in Mathematics 4: Fayetteville 1979.

[10] W. A. J. Luxemburg and A. R. Schep, A Radon-Nikodym theorem for positive
operators and a dual, Nederl. Akad. Wetens. Proc. Ser. A, 81 (1978), 357-375.

[II] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, Amsterdam-London: North
Holland, 1971.

[12] F. Maeda, Spectral theory in locally convex spaces, Ph.D. Thesis, Yale University
1961.

[13] P. Masani and M. Rosenberg, When is an operator the integral of a given spectral
measure!, J. Functional Anal., 21 (1976), 88-121.

[14] B. de Pagter, Disjointness preserving operators, Proc. Amer. Math. Soc, 90 (1984),
543-549.

[15] , The space of extended orthomorphisms in a Riesz space, Pacific J. Math., 112
(1984), 193-210.

[16] W. Ricker, On Boolean algebras of projections and scalar-type spectral operators, Proc.
Amer. Math. Soc, 87 (1983), 73-77.

[17] , A spectral mapping theorem for scalar-type spectral operators in locally convex
spaces, Integral Equations Operator Theory, 8 (1985), 276-288.

[18] P. Rosenthal and A. R. Sourour, On operator algebras containing cyclic Boolean
algebras I, Pacific J. Math., 70 (1977), 243-252.

[19] , On operator algebras containing cyclic Boolean algebra II, J. London Math.
Soc, 16 (1977), 501-506.

[20] H. H. Schaefer, Spectral measures in locally convex algebras, Acta Math., 107 (1962),
125-173.

[21] A. R. Sourour, On algebras of Banach space operators and invariant subspaces, Bull.
London Math. Soc, 9 (1977), 305-309.



74 P. G. DODDS AND B. DE PAGTER

[22] , Unbounded operators generated by a given spectral measure, J. Functional
Analysis, 29 (1978), 16-22.

[23] B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-
Noordhoff, Groningen, 1967.

[24] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam-New York-Oxford,
1983.

Received April 17, 1986. Work of the second author on this paper was supported by the
Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

INSTITUT FUR MATHEMATΊK

JOHANNES KEPLER UNIVERSITAT LINZ

LINZ, AUSTRIA

SCHOOL OF MATHEMATICAL SCIENCES

THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA

BEDFORD PARK S. A. 5042

AUSTRALIA

AND

DEPARTMENT OF MATHEMATICS

DELFT UNIVERSITY OF TECHNOLOGY

JULIANALAAN 132, 2628 BL DELFT

THE NETHERLANDS




