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ALGEBRAS OF UNBOUNDED SCALAR-TYPE
SPECTRAL OPERATORS

P. G. DopDSs AND B. DE PAGTER

H P: 2 - Z(X) is a closed spectral measure in the quasicomplete
locally convex space X and if T is a densely defined linear operator in X
with domain invariant under each operator of the form [, fdP, with f a
complex bounded Z-measurable function then T is closable and there
exists a complex =-measurable function f such that the closure of 7 is
the spectral integral [, fdP if and only if T' leaves invariant each closed
subspace of X which is invariant under the range of the spectral measure
P.

0. Introduction. Let X be a complex locally convex Hausdorff
space, assumed quasicomplete throughout. Let .Z( X) be the space of all
continuous linear operators in X equipped with the topology of pointwise
convergence in X. Let P: 2 — Z(X) be a spectral measure with domain
S a o-algebra of subsets of some point set € and with range a closed
subset of Z(X). The intention of the present paper is to characterize
those densely defined operators 7 on X that can be represented as a
spectral integral [, fdP for some complex, Z-measurable function f on (.
More precisely, we show (Theorem 6.2) that if T is densely defined with
domain 2(T') invariant under each operator of the form [, fdP with f a
bounded, complex Z-measurable function, then 7 is closable and there
exists a complex Z-measurable function f on @ such that T is given by
the spectral integral [, fdP if and only if T leaves invariant each closed
linear subspace of £(X) which is invariant under the range of the
spectral measure P. That part of the conclusion which asserts that T is
closable appears to be new, even if X is a Banach space, and is not valid if
the stated assumption on 2(T) is replaced by the weaker assumption that
9(T) is invariant under merely the range of P. Under this weaker
assumption on Z(T), the above characterization remains valid if, in
addition, T is assumed closed (Corollary 6.3) and this result extends to
the locally convex setting a characterization of scalar-type spectral opera-
tors given by Sourour [22] for the case that X is Banach. Further, for
everywhere defined operators on locally convex space, our results special-
ize to the reflexivity criteria of [6], [4].
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The method of the present paper is based on the observation implicit
in [4] and explicit in [5] (Proposition 2.2) that the strongly closed algebra
generated by the range of P admits an order structure with particularly
strong algebraic and topological properties and our approach is to exploit
the very special features of this order structure by appropriately refining
the techniques of [4], thus bypassing those Banach space methods based
on the existence of a (so-called) “Bade functional”, which are not valid in
the locally convex setting, even for metrizable spaces. More precisely, if #
denotes the range of P, and (/) the strongly closed algebra in #(X)
generated by the range of P, we show first that the set of all densely
defined linear mappings in X which admit a representation as a spectral
integral [, fdP for some complex, 2-measurable function f, has the
structure of a Dedekind complete f-algebra (.#)  which may be identi-
fied with the universal completion of the f-algebra (). It is then shown
that the restriction of () to each cyclic subspace #[x], x € X, itself a
Dedekind complete Riesz space for the natural ordering induced by that
of (M), coincides precisely with the Riesz space Orth®(.#[x]) of all
linear, densely defined, order bounded linear maps in #[x] which are
band preserving. If now T has domain satisfying the condition stated in
the first paragraph and leaves invariant each .#-invariant subspace in X
then the restriction of T to each cyclic subspace induces a densely defined
linear mapping which is band-preserving. A key point in our argument is
then to use appropriate extensions of the result of [14] to show that T is
automatically order bounded and thus given in a local sense by (the
restriction of) an element of { #) .

With a view to applications of the main results we consider certain
aspects of the spectral theory of (unbounded) scalar-type spectral opera-
tors. In particular, we show in §6 below, that each scalar-type spectral
operator T (in the sense of Dunford) admits a uniquely determined
resolution of the identity which commutes with each continuous operator
commuting with T and whose support coincides with the spectrum of 7.
Special cases of these results are of course well known and contained in
[12] and [17] for everywhere defined operators and in [20] for a restricted
class of densely defined operators. Rather than reduce our results to those
known for the continuous case, we have preferred here to give a treatment
which applies simultaneously to both continuous and unbounded scalar-
type operators, basing our approach as closely as possible on that outlined
in [7] Chapter XV, but using the established algebraic and order structure
as a tool for computation, the link between the present and earlier
approaches being supplied by the abstract spectral theorem of Freu-
denthal. Finally, we show that the main results of the paper provide the
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tools necessary to extend to the locally convex setting, certain reflexivity
theorems for (in general non-commutative) closed algebras of operators
on Banach spaces containing Boolean algebras of uniform multiplicity
one, due to Sourour [21] and Rosenthal and Sourour [19].

The authors wish to thank A. R. Sourour for bringing to their
attention the papers [21], [22], [18], [19], [13]. Part of this paper was
written while the authors were guests of the Institut fur Mathematik,
Johannes Kepler Universitat Linz and the authors wish to thank J. B.
Cooper and members of the Institut for the kind hospitality extended
during the period of their visit.

1. Some preliminary information. This paper is based mainly on
the techniques developed in [4] (and [S]). We assume that the reader has
some familiarity with the theory of Riesz spaces. For terminology and
basic facts used we refer to the books [11], [24] (for some information on
topological Riesz spaces see [1]). The purpose of the present section is to
gather for the convenience of the reader some of the results obtained in [4]
(and [5]) concerning the structure of strongly closed operator algebras
generated by Boolean algebras of projections, and the corresponding
cyclic subspaces.

Let X be a (complex) locally convex vector space. We assume that X
is quasi-complete. By ##( X) we denote the space of all linear operators
in X, and by #(X) we denote the subspace of ##*( X) consisting of all
continuous operators. In ##*(X) and #Z(X) we consider the strong
operator topology (i.e., topology of pointwise convergence). Note that
L#(X) is quasi-complete. Let # be an equicontinuous Boolean algebra
of projections in X, i.e., # is an equicontinuous collection of mutually
commuting idempotents in Z( X), partially ordered by range inclusion,
which is a Boolean algebra with respect to the lattice operations defined
by EAF=FF and EV F=E + F— EF for E, F € /. We always
assume that I € /. We denote by (/) the strongly closed subalgebra of
ZL(X) generated by #, ie., (M) is the closure of M = (¥ ", «,E;:
E e, a,eC (i=1,...,n), n € N}. Moreover, (M )* denotes the
closure of M in £ #(X). We recall that ./ is called strongly equicontinu-
ous if E, — 0 (strongly) for any disjoint sequence { E, }7_; in /. It
should be observed that the range of a (o-additive) equicontinuous
spectral measure is a strongly equicontinuous Boolean algebra of projec-
tions. Furthermore, ./ is called Bade-complete if .# is complete as a
Boolean algebra and E, 1 E in # implies that E, — E with respect to
the strong operator topology. As observed in [4], Proposition 4.7, an
equicontinuous Boolean algebra ./ is strongly equicontinuous if and only
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if the strong closure .# is Bade-complete. Therefore, for the study of
(M) and (M )* we may assume, without loss of generality, that # is
Bade-complete. From now on we assume that .# is an equicontinuous
Bade-complete Boolean algebra of projection in X.
An element T € M has a unique standard representation 7T =
i—1\E;, where E; # 0 in / are such that ELE, =0 (i #j), L], E; =1
and A,,..., A, are mutually different scalars. Now it is clear that M has
the structure of a complex Riesz space, where the absolute value of
T =X ,\E, (standard representation) is given by |T|= X! |A|E..
Furthermore, with respect to the topology induced by #(X), M is a
complex locally solid Riesz space ([4], Lemma 3.2). Since the strong
closure (A )* of M in £#*(X) is, in fact, the topological completion of
M ([4], Proposition 3.12) the lattice operations extend to (.#)*. Now
(M )Y* has the structure of a complex Dedekind complete Riesz space
with locally convex locally solid Lebesgue topology ([4], Proposition 3.6).
In particular, 0 < 7,1 T in (#)* implies that 7, — T strongly. More-
over, as shown in [4], Proposition 4.2, with respect to composition as
multiplication, { .#)* is a complex f-algebra (i.e., the product of positive
elements is likewise positive and if S,T, R € (#)* with S L T, then
RS 1 T and SR L T; see [24], Chapter 20 for general properties of
f-algebras). In particular, { #)* is commutative. As observed at the end
of §2 in [5], (A) is an order ideal in (. )*, and therefore { .# ) has the
structure of a Dedekind complete complex f-algebra with locally solid
Lebesgue topology (but () is in general not topologically complete;
however, if #( X) is sequentially complete, then ( #)* = (), as shown
in [4], Proposition 4.3). We note that, since we assume that #Z is
Bade-complete, the Boolean algebra of idempotents in (.#') is precisely 4
([4], Proposition 4.4).

Next we say a few words about the structure of the cyclic subspaces
of #. Fix x € X and put M(x) = {Tx: T € #}. The mapping x — Tx
from M onto M(x) induces the structure of a complex Riesz space in
M(x), and the topology induced by X in M(x) is locally solid ([4],
Lemma 3.3). Let /#(x) be the closure of M(x) in X. Since #(x) is equal
to the topological completion of M(x), .#(x) has the structure of a
complex Dedekind complete Riesz space with a complete locally solid
convex Lebesgue topology ([4], Proposition 3.9).

Clearly, #(x) is T-invariant for any T € (#)*. The restriction
T[x] of T to #(x) is, in fact, an orthomorphism in the Riesz space
A (x) (i.e., T[x]1is order bounded and y L z in #(x) implies T[x]y L z;
see [24], Chapter 20 for the general theory of orthomorphisms). The
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mapping T — T[x] from (#)* into the space Orth(.#(x)) of all ortho-
morphisms in #(x) is a Riesz and algebra homomorphism ([4], Proposi-
tions 4.1 and 4.2). This homomorphism is, in general, not surjective.
However, denoting by (), the principal order ideal in (.#) generated
by the identity, and, as usual, denoting by Z(.#(x)) the centre of .#(x)
(i.e., Z(A#(x)) is the principal order ideal generated by the identity in
Orth(.#(x))), the homomorphism maps (.#), onto Z(.#(x)) ([4], Pro-
position 4.10). In particular, the band projections in .#(x) are precisely
the operators of the form E[x] with E € /.

2. Scalar-type spectral operators. Throughout this section, X will
denote a quasi-complete locally convex space, and Z( X) will denote the
space of all continuous linear operators in X. In #(X) we consider the
strong topology. In this section we will be concerned with linear operators
T: 9(T) — X, where the domain 2(T') is a linear subspace of X. If T}
and T, are such operators, then we write 7; C T, if 2(T) € 2(T,) and
T\x = T,x for all x € 9(T;). Suppose now that .# is a Bade complete
Boolean algebra of projections in X and let (.#) be the strongly closed
subalgebra of £ ( X) generated by /.

DEefFINITION 2.1. The linear operator T' will be called a spectral
element with respect to ./ if there exists a sequence { E,}5_; in ./ such
that

(1) E,?1in A;

(i) E,(X) C 9(T)and TE, € (M) for all n;

(i) Tx = lim,_,  TE,x for all x € 9(T).

Such a sequence { E,} will be called determining for T.

It is clear from Definition 2.1 above that each spectral element T is
densely defined. Further, it is easily checked that if T is a spectral element
with respect to 4 and if { F,} C # is any sequence for which F, 1,1
holds in #, and such that F,(X) C 9(T)and TF, € (M) forall n € N,
then also { F, } is a determining sequence for 7. In particular if { E,} € A
is a determining sequence for T, and if { F,} € .# is a sequence such that
F,<E, forall neNand F,1,I holds in #, then { F,} is a determin-
ing sequence for T. It follows that if S and T are spectral elements with
respect to . then there exists a sequence { E,} C .# which is determin-
ing for S and T simultaneously.

Spectral elements 7, T’ are called equivalent, written T ~ T’ if there
exists a sequence { E,} C # with E, 1,1 such that E,(X) C 2(T) N
P(T’) and TE,=T’E, € (M) for all n € N. It is clear that such a
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sequence { E,} is determining for both T" and 7. Further, it is clear that
the relation so defined is reflexive and symmetric. Since E, F, 1 I whenever
{E,} and { F,} are sequences in .# with E, 11 and F, 11, it follows
readily that the given relation is transitive as well, and so is an equivalence
relation. If T is a spectral element, we denote by [T'] the equivalence class
of spectral elements determined by 7. It is not difficult to see that spectral
elements 7 and T’ are equivalent if and only if there exists a spectral
element S such that S € Tand S C T".

The following Proposition plays a basic role in what follows, and
should be compared with XVIII 2.6 of [7].

ProrosiTION 2.2. If T is a spectral element with respect to M then
there exists a unique maximal representative T € [T, which has the follow-
ing properties:

(i) T is densely defined and closed.

(i) @(T) is M-invariant and TEx = ETx for all E € M and x €
9D(T). Moreover, if T, is any representative of [T and if { F,} C M is any
determining sequence for T,, then

(iiiy F,(X) € 9(T) and TF, = T,F, for all n.

(iv) x € @(T) if and only if lim, T, F,x exists, in which case
Tx = lim,_,  T,F,x.

Proof. Let { E,} be a determining sequence for the given spectral
element T. Define 9(T) = {x € X: lim,_,  TE, x exists} and if x €
9(T) define Tx = lim, _, TE, x. It is clear that T is a spectral element
with determining sequence { E, }, and that T C T, so T € [T]. Note that
TE, = TE, for all n. Furthermore, observe that TE,z = E, Tz for all
z € 9(T) and all n. In fact, z € 2(T) implies that

E,Tz = lim E,(TE,z)= lim (TE,E,)z = TE,z = TE,:.
m— o0 m— o0
We now show that T is closed. Suppose that {x,} € 9(T), x, y € X are
such that x, — x and Tx, — y. For any E, we have TE, € (M), s0

TE,x = lim TE,x, = lim E,Tx, = E,(lim Tx, ) = E,y.

Hence, since E, 1 I, we find that
lim TE,x = lim E,y =y,

n— o0 n—oo
which implies that x € 2(T) and Tx = y.
To see that D(T) is M-invariant, let E € # and suppose that
x € 9(T). Then TE,(Ex) = E(TE,x) for all n, and so lim, _, , TE,( Ex)
= ETx, which shows that Ex € 9(T) and TEx = ETx.
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Next we prove that T is maximal in [T]. To this end, take any
S € [T}, and we will show that S C T. Since S and T are equivalent,
there exists a sequence { F,} € . suchthat F, 11, F,(X) € 2(S) N 2(T)
and TF, = SF, € (M) for all n. As observed earlier, { F,} is a determin-
ing sequence for both S and 7. Replacing F, by F,E,, we may assume
that F, < E, for all n. For x € X we then get
forall m,n = 1,2, .... Hence, if x € 2(S), then
TE,x = lim F,(TE,x)= lim E,(SF,x)=E,( lim SF,x)= E,Sx
and so lim, , TE,x =lim,_  E,Sx = Sx. Therefore, x € 2(T) and
Tx = Sx for all x € 2(S5), e, S C T. Thus, T is the largest element in
[T'] and is therefore unique. Since we can construct this maximal element
starting with any representative of [7'] and any determining sequence, (iii)
and (iv) of the Proposition follow at once, and the proof is complete.

It is now appropriate to make the following definition; see, however,
the discussion in §6 below.

DEFINITION 2.3. A spectral element 7 with respect to .# will be
called a spectral operator of scalar-type with respect to ./ if there exists a
determining sequence {E,} for T such that 9(T) = {x € X:
lim,_,  TE, x exists} and Tx = lim, , TE,x for all x € 9(T).

It is an immediate consequence of (iii) and (iv) of Proposition 2.2 that
if T is a scalar-type spectral operator, then T 1is precisely the unique
maximal representive T of [T]. Moreover, if T is any spectral element,
then the unique maximal representative 7" of [T] is a scalar-type spectral
operator. We have the following immediate consequence of parts (i), (ii) of
Proposition 2.2.

COROLLARY 2.4. If T is a scalar-type spectral operator (with respect to
M), then
(i) T is densely defined and closed :
(1) 2(T) is M-invariant and TEx = ETx for all x € 9(T) and
Eca
(i) If YC X is a closed M-invariant subspace of X, then
T(9(T)nY)cCY.

Let (#)* denote the strongly closed algebra generated by . in
L#(X), the space of all (everywhere defined) linear operators on X. Take
T € (M )*, then there exists a sequence { E,}%_, in . such that E, 1]
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in A and |TE,| < nl for all n (we use here the canonical Riesz space
structure of (. )*). In fact, let E, be the component of the identity
operator I in the band generated by the operator (nl — |T|)* in (M )*.
Hence, the sequence { E,} has the properties that E, 11 in #, TE, €
(M) for all n and lim,_,  TE,x = Tx for all x € X. This shows that T
is a scalar-type spectral operator with respect to #. Conversely, assume
that T is an everywhere defined scalar-type spectral operator. It follows
from the definition that there exists a sequence { E,} C # such that
TE, € (M) for all n and TE, — T strongly in £*(X). Hence, T €
(MY*.

As observed in [4], Proposition 4.3, if #(X) is assumed to be
sequentially complete, then (#)* = (#). Combining these remarks we
get the following result.

COROLLARY 2.5. Let M be a Bade complete Boolean algebra of
projections in the quasi-complete space X.

(i) (A)Y* consists precisely of the everywhere defined scalar-type
spectral operators with respect to M .

(i) If L(X) is assumed to be sequentially complete, then any every-
where defined scalar-type spectral operator with respect to M, is continuous.

We denote by (&) the collection of all scalar-type spectral opera-
tors with respect to .#. We show now that (.#)_ may be endowed with
the structure of a commutative algebra, which extends that of (.#). As
usual, if S and T are linear operators in X with domain 2(S) and 9(T)
respectively, then (S + T) =D(S)ND(T) and (S + T)x = Sx + Tx
for all x € 2(S + T). Furthermore, 2(ST) = {x € 4(T): Tx € 2(S)}
and (ST)x = S(Tx) for all x € (ST). We need the following pre-
liminary result, the proof of which is straightforward and therefore
omitted.

LemMMA 2.6. If S and T are scalar-type spectral operators with respect to
M, then S + T and ST are spectral elements.

We may now exhibit the algebraic structure on (. A') .

DerINITION 2.7. If S and T are scalar-type spectral operators with
respect to ./, then the scalar-type spectral operators S + T and S - T are
defined to be the maximal representatives of the corresponding classes
[S+ T [ST].
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It is useful to observe that, if S, T, R € () are given, then

(1) S + T =R if and only if there exists a sequence {E,} in ./
which is determining for both S and T, such that E, (X) C 2(R) and
SE, + TE, = RE, for all n.

(2) S - T = R if and only if there exists a sequence { E, } in ./ which
is determining for both S and 7, such that E, (X)C 2(R) and
(SE,XTE,) = RE, for all n.

The proof of the following result is now straightforward and accord-
ingly the details are omitted.

PROPOSITION 2.8. With respect to the above introduced operations,
(M), is a complex vector space and a commutative algebra with the identity
operator as unit, which contains (M) as a subalgebra.

3. (M), as the universal completion of (.#). In this section we
will show that the algebra () of scalar-type spectral operators can be
endowed with the structure of a universally complete unital f-algebra,
which can be identified with the universal completion of the Dedekind
complete unital f-algebra (A ).

We recall first that the (real) Riesz space L is called laterally complete
if every disjoint system in L* has a supremum. If L is Dedekind complete
as well as laterally complete, then L is called universally complete. Any
Archimedean Riesz space L has a (unique) universal completion L¥ i.e.,
L* is a universally complete Riesz space which contains L as an order
dense Riesz subspace (see e.g. [11], §50). If L is Dedekind complete, then
L is an order ideal in L* The universal completion of a complex Riesz
space is, by definition, the complexification of the universal completion of
the real part of L.

If L is a (complex) Dedekind complete Riesz space with universal
completion L¥ then the Boolean algebra of band projections in L is
isomorphic (by restriction) to the Boolean algebra of band projections in
L. Moreover, if we assume in addition that L has a weak order unit e,
then there exists for any f € L* a sequence { P,}5_, of band projections
such that P, 17 and such that |P,f| < ne, and hence P,f € L, for all
n=1,2,.... In fact, we may take P, to be the projection onto the band
generated by the element (ne — |f|)*. Furthermore, if L is an f-algebra
with unit e, then the f-algebra multiplication in L extends uniquely to an
f-algebra multiplication in L*, such that the element e is the unit element
in L* For details, see [13].
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Suppose now that .# is a Bade-complete Boolean algebra of projec-
tions in the quasi-complete space X. The strongly closed subalgebra { /)
of £(X) generated by .#, has the structure of a Dedekind complete
(complex) f-algebra with unit element I. In the universal completion
(M )* we consider the f-algebra structure which extends the structure of
(M.

LEMMA 3.1. For every T" € (M)" there exists a unique element
T € (M), such that for any E € M with T'E € (M), it follows that
E(X)<C9(T) and T'E = TE.

(Remark: by T“E is meant the product of 7* and E in the universal
completion ()", by TE is meant the composition of the operators T
and E.)

Proof. Suppose that T* € (A )*. Observe first that if x € X and
E € A are such that T'E € (M) and Ex = 0, then (T“E)x = (T“E)Ex
= 0. Since T“ € (M )*, there exists a sequence { E,} C # with E, 11
such that T“E, € (M) for all n. It follows from the above observation
that if x€ X, n>m and x = E,x = E_x, then (T"E,)x = (T"E,,)x.
We define the linear operator 7, by setting 2(7;,) = UX_, E,(X) and if
x € 9(T,), define Tyx = (T"E,)x if x = E,x. Note that T,E, = T"E,
for all n. It follows now that T, is well-defined and is a spectral element
with determining sequence { E,}. We define T = T;, the maximal exten-
sion of T, and note that { E,} is a determining sequence for T (see
Proposition 2.2). Suppose now that E € # and TYE € (M). If x € X,
then (T E,)Ex = (T“E,)Ex = (T“E)E,x, which implies that (T, E,) Ex
- (T“E)x (n — ), since E,x = x (n — o0). Consequently E(X) C
D(T,) = D(T) and TEx = T“Ex for all x € X.

Now assume that S € () has the property that E(X) C 2(S)
and SE = T“E whenever E € # with T"E € (). This implies im-
mediately that E,(X) C 2(S) NY(T) and SE, = TE, for all n, and so
S and T are equivalent. Since S and 7 are both maximal, it follows that
S = T and the lemma is proved.

If T“ e (M), we denote by ¢(T*) the unique element of (&)
whose existence is shown in Lemma 3.1. Note that (7) = T for all
T e (M). It follows from the proof of the above lemma that the
sequence { E£,} in 4 is a determining sequence for (7*) whenever
E,?1in A and T'E, € (M) for all n. We now show that (/) may
be identified with {4 )*.
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PROPOSITION 3.2. The above defined mapping  is an algebra isomor-
phism of the f-algebra { M )" onto the algebra { M ).

Proof. First of all, using the remark following Definition 2.7 in
combination with the observation preceding this proposition, it is routine
to show that ¢ is an algebra homomorphism. To see that y is injective,
suppose that T* € (A )* is such that (T*) = 0. This implies that
TYE = y(T*)E = 0 for all E € # with T"E € (), and since { .#) is
an order dense ideal in (. )*, we conclude that T = 0. To show that v
is surjective, let T € (), be given and let { E,} C .# be a determining
sequence for 7. Define F, = E; and F,=E, — E, ; (n=2,3,...). Itis
clear that { F,} is a disjoint sequence in .# and sup, F, = I. Moreover,
{TF,} is a disjoint sequence in {(#). Now let T* = sup,TF, in (M )",
and note that T*F, = TF, for all n. Hence T"E, = TE,, and so y(T*“)E,
= T*E, = TE, for all n, which shows that T = (T*). Therefore ¢ is a
bijection of { .#)* onto (A ), and by this the proof of the proposition is
complete.

We observe that, if (#), is given the partial ordering induced by the
mapping ¢, then (#)_ is a universally complete unital f-algebra con-
taining (.#) as an order dense sub-algebra. From now on, we will
identify the universal completion { # )* with (&) .

We conclude this section by observing that each element of (&)
has a familiar polar decomposition.

PROPOSITION 3.3. If S € (M), then there exists V € (M) with
\V| = IsuchthatS =V -|S|and |S|=V"1-8S.

The proposition is an immediate consequence of the complex form of
the Freudenthal spectral theorem and the fact that Z({.#)_) is precisely
the order ideal generated by 7 in (.#'). See [5], Proposition 2.3 and [24],
Theorem 141.1 for details. We note for future reference that an immediate
consequence of Proposition 3.3 is the simple fact that 2(S) = 2(|S)) for
each S € (M),

4. Scalar-type spectral operators as extended orthomorphisms of
cyclic subspaces. If .# is an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X, and if x € X, then
A (x) will denote the cyclic subspace generated by x. With the canonical
order structure induced by the Boolean algebra .#, the space #(x) is a
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complex, Dedekind complete Riesz space, with a complete, locally solid
Lebesgue topology. In this section, we will show that the restrictions to
A (x) of the scalar-type spectral operators relative to .# coincide with the
extended orthomorphisms of the Riesz space .#(x). We recall first some
relevant facts from the theory of orthomorphisms. See, for example, [24]
Chapter 20, and [9].

Let L be an Archimedean (real) Riesz space. An extended orthomor-
phism in L is an order bounded linear mapping 7 from an order dense
ideal (=) in L into L, with the property that #f L g for all f € 9(7)
and g € L with f L g. Each extended orthomorphism = is order continu-
ous, i.e, u. |0 in 9(x) implies that inf, |7u |= 0 in L ([10], Theorem
1.3). By the same method as used in the proof of [24], Theorem 140.4, it
follows that any extended orthomorphism 7 can be written as 7 = 7" —
a~, where 7™ and «#~ are positive extended orthomorphisms with domain
D(7), and 7wru = (wu)*, 7 u = (wu)” for all 0 < u € 9(=). Further-
more, the absolute value of « is defined by |7| = #*+ #~. Note that
|l7f| = |7|f]] = |=[(|f]) for all f € P(7). An extended orthomorphism =
such that 9(«) = L is called, simply, an orthomorphism in L. Since
extended orthomorphisms are order continuous, it follows that any ex-
tended orthomorphism # has a unique maximal domain 2™(7). Two
extended orthomorphisms are considered to be the same if they agree on
some order dense ideal (equivalently, if their maximal extensions coincide).

The set of all extended orthomorphisms in L (with the above identifica-
tion) is denoted by Orth™( L), which is clearly a vector space with respect
to the pointwise operations. A partial ordering in Orth*(L) is defined by
setting m < m, if mu < mu for all 0 < u € (m) N D(m,), and with
respect to this partial ordering, Orth®(L) is a Riesz space, such that
(m V m)u = (mu) V (mu) and (m A m)u = (mu) A (mu) for all 0 <
u € 29(m) N 2(m,). Moreover, Orth*( L) is laterally complete ([10]).

If =, 7, € Orth*(L), then 9(mm,) = 7, }(D(m,)) is an order dense
ideal in L ([10]), and the composition , - 7, is an extended orthomor-
phism. With respect to composition as multiplication, Orth®(L) is an
f-algebra with the identity operator as the unit element. The space of all
orthomorphisms in L is denoted by Orth(L), which is a subalgebra of
Orth®(L). If L is Dedekind complete, then Orth*(L) is Dedekind com-
plete, hence universally complete, and Orth(L) is an order ideal in
Orth™(L).

All of the above results extend immediately to the complex setting, by
means of complexification. We shall have need for the following simple
characterization of the maximal domain of an extended orthomorphism.
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LEMMA 4.1. Let L be a complex Dedekind complete Riesz space and let
o € Orth®(L) with domain 2(n) and maximal domain 2™ (7). An ele-
ment f in L belongs to 2™ (w) if and only if the set {wg: g € D(w),
|g| < |f|} is order bounded in L. In particular if 0 < m; < 7, in Orth®(L),
then D™(my) C D"(m,) and D" (|7w|) = D™ (7) for all w € Orth®(L).

Proof. First assume that 0 < # € Orth®(L) with domain (), and
let #™: 2™(7w) — L be the maximal extension of 7. Denote by J the set
of all f € L for which {wg: g € @(=), |g| < |f|} is order bounded in L.
Clearly, J is an order ideal in L. If f€ 92™(w) and g € 9(«) with
|gl < |}, then |ng| = |="g| = [="(|g) < |="(|f], which shows that f &
J, and so @™(w) C J. For the proof of the converse inclusion, define for
O<feJ

mf =sup{7g: g€ 2(7),0<g<f}.

Note that, by the order continuity of =, we have =,f= «f for all
0 < f € (). Then 7, is an additive mapping from J* into L*, which
has an extension to a positive linear mapping from J into L, which will be
denoted by 7, again. Clearly, =, is an extended orthomorphism, which
extends 7, and hence J = 9(m,) € 2™ (7).

At this point it is clear already that 0 < m; < 7, in Orth*(L) implies
9™(my) C 2"(m), and 2™(|7|) € 2™(w) for w € Orth®(L). Further-
more, a moment’s reflection shows that 2™(7) € 2™(|7|), hence 2"(|=|)
= 9™() for all # € Orth®(L). This observation, combined with the first
part of the proof, yields the result of the lemma.

Observe that it follows from the lemma that, if # € Orth®(L) and if
P is aband projectionin L such that #P € Orth(L), then P(L) C 2™ ().
Further, it follows from the above result, that if 0 < 7,1 7 holds in
Orth®(L), then 9™(w) c N, 2™(7,) and if 0 < u € N,2™(x,) is such
that w,u 1, f, then u € 2™(7) and wu = f.

Now assume that L is a locally solid Dedekind complete Riesz space
with Lebesgue topology, and suppose = € Orth*( L) is given with domain
Y(7). We claim that 9(7) = 9™(7) if 7 is closed. Indeed, since 7 is
closed if and only if |7|is closed we may assume that = > 0. Now take
0 < fe 2™(xw). Since Z() is an order dense ideal in L, there exists a
net {f,} in (=) such that 0 < f 1 f. By order continuity we have
0 <af =a"f 1 7"f, where =™ denotes the maximal extension of .
Since the topology in L is Lebesgue, this implies that f, — f and
af, = w™f (topological convergence). Since = is closed, this implies that
f € &(m), and hence D(7) = D™(x).
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Suppose now that . is an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. If x € X, as above,
we denote by #(x) the smallest closed .#-invariant subspace of X
containing x. With the canonical Riesz space structure induced by ./,
A (x) is a complex, Dedekind complete Riesz space with a complete
Lebesgue topology (see, for example, Proposition 3.9 of [4]). We gather
some simple properties of the domains of scalar-type spectral operators.

LEMMA 4.2. Let T be a scalar-type spectral operator with respect to M ,
with domain 9(T) C X.
(1) Ifx€DT)andif S € (M), then Sx € D(T) and TSx = STx.
(i) If x € X, then 9(T) N M (x) is an order dense ideal in the Riesz
space M (x).
(iil) If x € X, then M (x) is invariant under T, i.e., if y € 9(T) N
M (x) then Ty € M (x).

Proof. (1) This follows simply from the .#-invariance of 2(T) and the
fact that T is closed.

(i) If x € X is given, suppose that y,z € #(x) and that |z| < |y|
holds in #(x) with y € 9(T). By the Freudenthal spectral theorem,
there exists A € Z(.#(x)) such that z = Ay. By Proposition 4.10 of [4],
there exists S € () such that A4 is the restriction of S to #(x). It
follows from part (i) that z € 2(T), and so 9(T) N A(x) is an order
ideal in #(x). To see that 2(T) N.#(x) is order dense in #(x) it
suffices to note that if 0 <y € #(x) and if { E,} C ./ is any determin-
ing sequence for T, then E,y € 9(T) N #(x) for all n and E,y 7 y. Part
(iii) follows immediately from Corollary 2.4(iii).

If T is any linear mapping in X with domain 9(T') C X, and if
x € X is such that T leaves invariant .#(x), then we denote by T[x] the
restriction of T to 2(T) N M (x).

LemMa 43. If Te (M), has domain D(T) and if x € X then
T[x] € Orth®(A#(x)). Moreover, the maximal domain of T|x] is precisely
9(T) N M(x).

Proof. Let{ E,} C # be any determining sequence for 7. Suppose
that y,z € 9(T) NA(x) and that |y| < |z|in A (x). Since TE, € (M),
it follows from Proposition 4.1 of [4] that |TE, y| < |TE,z|forn = 1,2,....
Taking the limit as » — oo, we obtain |Ty| < |Tz|, which shows that T[x]
is order bounded.
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If now y € 9(T) N A (x) and z € #(x) such that y L z, then it
follows once again from Proposition 4.1 of [4] that TE,y L z for all n,
and consequently 7y L z. Hence T[x] € Orth®(.#(x)). Finally, since T
is closed, it is clear that T'[x] is closed as well, and so it follows from the
remark following Lemma 4.1 that 9(T) N #(x) is the maximal domain
of T[x].

The carrier E, € # of x € X is defined by setting E, = inf{ E € /-
Ex = x}. The mapping ®, from (A ) into Orth®(.#(x)) is defined by
setting @ (7T') = T[x]. By the preceding lemma, it should be noted that
T[x] is in fact the maximal representative of the equivalence class it
determines in Orth®(.#(x)). Further, for any x € X we denote E (&)
={TE;:Te (M)}

In the proof of the next result the following observation concerning
orthomorphisms will be needed. Let L be a (complex) Dedekind Riesz
space, and take 0 < 7 € Orth®(L). We assert that there exists a disjoint
sequence { P,}>_; of band projections in L such that sup, P, = I and
0 < 7P, < nl (and hence 7P, € Z(L)) for all n. Indeed, let Q, be the
component of I in the band {(n — #)*}4%. Then Q, 11 and 7#Q, < nl
for all n. Defining P, = Q, and P, = Q, — Q,_, for n > 2, the sequence
{ P,} has the desired properties.

PROPOSITION 4.4. If x € X, then the restriction map ® : T — T[x] is
an order continuous surjective f-algebra homomorphism from (M) onto
Orth®(#(x)), which induces an f-algebra isomorphism from E (.M ), onto
Orth™( A (x)).

Proof. It is not difficult to see that @, is a positive algebra homomor-
phism from () into Orth®(.#(x)), and consequently, @, is a Riesz
homomorphism.

To see that @ is order continuous, suppose that 7, > T, |0 in
(M),. It may be assumed that T, > I, so that T; ! exists in (A, by
[24] Theorem 146.3. It follows from the order continuity of the multiplica-
tion in the f-algebra (#)_ that I > T;'T. |0 in (). Since the restric-
tion of @, to (/) is order continuous ([4], §4), we get T 'T,[x]} 0 in
Z(M(x)). Since T,[x]= Ty[x}(Ty'T.)[x], the order continuity of the
multiplication in Orth®(#(x)) implies that 7,[x]| 0 in Orth®(.#(x)).

We show now that the mapping @, is surjective. To this end, let
0 < 4 € Orth®(#(x)) be given. By the remark preceding the proposi-
tion, there exists a sequence { P,}5_; of band projections in the Riesz
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space #(x) such that P, A P, =0 for n + m, sup, P, =1 and 0 < AP,
< nl in Orth®(#(x)). Clearly, { AP,} is a disjoint sequence in Z(#(x))
and sup, AP, = A. By (# ), we denote the order ideal in (&), gen-
erated by 7, and let E_ be the carrier projection of x. It follows from [4],
Corollary 4.12, that @, induces an f-algebra isomorphism from E (.#),
onto Z(.#(x)). Therefore, there exist {7,}5_, in (A ), such that 0 < 7,
< nE_for all n, and T, A T,, = O for n # m such that ® (T7,) = T,[x] =
AP, for n =1,2,.... Since (A ) is universally complete, there exists an
element T € (A, such that T = sup, T,. By the order continuity of ®,
we find

o) = o swp 7| - swp ¥ &,(7)

n k=1 n k=1

=sup Y, AP, =sup AP, = A,
n k=1 n
which shows that ®_ is surjective.

For the proof of the last statement of the proposition, let N, be the
kernel of ®_ . Since @, is an order continuous Riesz homomorphism, N, is
a band, and so (), = N, & NZ. By the above, @, is surjective so @,
induces an isomorphism from N onto Orth®(.#(x)). It is easily checked
that E, is precisely the component of I in Nf, and so N? = E(M),,.
Therefore, ®, induces an isomorphism from E (4 ) onto Orth®(.#(x)),
and by this the proof of the proposition is complete.

We conclude this section with a result which generalizes Theorem 3.15
in Chapter XVII of [7]. See also [6], Proposition 2.2. First assume that L
is a Dedekind complete Riesz space with weak order unit 0 < e € L. We
claim that for every f € L there exists a (unique) # € Orth®( L) such that
a7e = f. In fact, first note that we may restrict ourselves to the case that
f= 0. Let u, be the component of f in the band generated by (ne — f)*
forn=1,2,..., then0<u,?1,fand 0 < u, < ne for all n. Now define
wy =u; and w,=u, —u,_, for n > 2, then {w,}, is a disjoint se-
quence in L such that 0 < w, < ne for all n and f= sup,w,. By the
Freudenthal spectral theorem, for each n there exists 7, € Z( L) such that
m.e =w, and 0 <a, < nl. Since {w,} is a disjoint sequence, we can
assume that {,} is a disjoint sequence as well. Since Orth®(L) is
universally complete, = = sup,, exists in Orth®(L). Since sup,m,e =
sup,w, = f € L, it follows from the remark following Lemma 4.1, that
e € 9(m) and me = f, where 9(7) denotes the maximal domain of .
Combining this observation with the result of the preceding proposition,
we obtain the following result.
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PROPOSITION 4.5. Let M be an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. For x € X and
y € M(x) there exists T € (M), such that x € D(T) and Tx = y.
Hence, #M(x)={Tx: T € (M), andx € D(T)}.

5. Reflexivity of scalar-type spectral operators. Let .# be an
equicontinuous Bade complete Boolean algebra of projections in the
quasi-complete space X. As before, we denote by ( .#) the strongly closed
subalgebra of .£( X) generated by .#, in which we consider the canonical
Riesz space structure. By (.# ), we denote the order ideal generated by I
in (). Let T be a densely defined linear operator in X with () in-
variant domain 2(T'). Suppose that T leaves invarant each .#-invariant
subspace of X, i.e, if Y C X is a closed, .#-invariant subspace, then
T(2(T)N Y)C Y. In particular, if £ € 4, then T(2(T) N E(X)) C
E(X). It follows routinely that TEx = ETx for all x € 9(T) and
E € 4. Note that we do not assume that T is closed.

If x € X, then we denote by T[x] the restriction of T to 2(T) N
A (x), so T[x] is a linear operator in #(x) with domain 2(T) N A (x).
In the next proposition we collect some properties of T'[x].

PROPOSITION 5.1. If T is a densely defined linear operator in X with
(M ) rinvariant domain, if T leaves invariant each M-invariant closed
subspace of X and if x € X, then

(1) 2(T) N A (x) is an order ideal in M (x).

(ii) T'[x] is a band preserving operator.

Proof. (i) Suppose y,z € #(x) and |y| < |z|, z € D(T) N M (x). As
in the proof of Lemma 4.2(ii), there exists S € (.#),, such that y = Sz.
Since 9(T') is (M ) Finvariant, it follows that y € 9(T) N A (x).

(ii) Now suppose that y € 2(T) N A#(x) and z € #(x) such that
y L z. Then there exists £ € # such that Ey =y and Ez = 0. Since
y € 9(T), it follows that Ty = TEy = ETy, so E(Ty) = Ty and Ez = 0,
which shows that Ty 1 z.

Our next objective is to show that T[x] is in fact an order bounded
operator from 2(T) N .#(x) into #(x). For this purpose we make some
remarks concerning band preserving operators. Let L be an Archimedean
Riesz space and let 4 be an ideal in L. Suppose that T is a band
preserving operator from A into L. A straightforward modification of the
proof of [14], Proposition 6 shows that if T is order bounded on some
order dense ideal in A4, then T is order bounded on A.
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LEMMA 5.2. Let L be a uniformly complete Riesz space with a separat-
ing family of order continuous linear functionals. Suppose that A is an ideal
in L and that T is a band preserving operator from A into L. Then T is order
bounded.

Proof. By the above remark, it is sufficient to prove that T is order
bounded on some order dense ideal in 4. As in the proof of [4], Lemma
2.6, we may restrict ourselves to the situation that there exists a strictly
positive order continuous linear functional. It is then clear that for any
positive disjoint sequence {w, }>_; in L there exist real numbers A, > 0
(n=1,2,...) such that {A,w,}>_, is not order bounded in L. Consider-
ing T as a disjointness preserving operator from A into L, we can apply
[14], Theorem 8, which shows that T is order bounded on some order
dense ideal in A4.

We now return to the situation of Proposition 5.1. Applying the above
observations to the operator T'[x] we get the following result.

PROPOSITION 5.3. Let T be as in Proposition 5.1. For each x € X the
operator T|x] is band preserving and order bounded from the ideal 2(T) N
M(x) into M (x). If x € X is such that D(T) N\ M(x) is order dense in
M (x), then T[x] € Orth®(A(x)). In particular, T[x] € Orth*(#(x))
forall x € 9(T).

Proof. Since #(x) is a locally convex solid Riesz space with Lebesgue
topology, and since T[x] is band preserving (by Proposition 5.1), it
follows from Lemma 5.2 that T'[x] is order bounded. Therefore, by
definition, T'[x] € Orth*(#(x)) whenever 2(T) N A (x) is order dense
in A(x). If x € D(T), then D(T) N A (x) is order dense in A (x), as x
is a weak order unit in #(x).

We remark that it follows from the above proposition that, if x €
P(T) and S € (M), then STx = TSx. In fact, if x € Y(T), then
T[x] € Orth*(#(x)) .and S[x] is an element of Z(#(x)) C
Orth®(#(x)), which implies that T[x] and S[x] commute. Note that, if
x € 9(T), then 2(T) N A(x) is, in general, not the maximal domain of
T'[x], since we do not assume that T is closed.

For any E € .#, the operator TE is defined by TEx = T(Ex) for all
x € 9(TE) = E"Y(9(T)). Note that 2(T) € 9(TE), so TE is densely
defined. An appropriate modification of the proof of Lemma 5.3 in [4]
yields the following result.
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LemMA 5.4. Suppose that T is as above and x € 2(T). If Tx = 0, then
TE, C 0, where E, is the carrier projection of x in M .

PROPOSITION 5.5. Let T be a densely defined linear operator in X with
(M) rinvariant domain D(T). If x € D(T) and if E, is the carrier
projection of x in M, then there exists S € E{ M), such that TE, C S.

Proof. Since x € 2(T), it follows from Proposition 5.3 that T[x] €
Orth®(.#(x)). Therefore, by Proposition 4.4, there exists a (unique)
S € E(M ), such that T[x] C S[x]. We assert that TE, C S. Indeed, let
{E,}%_, be a determining sequence for S, and define the operators
R, = SE,— TE, with domain 9(R,)=%(TE,)={y€ X: E,y€
2(T)} for n=1,2,.... Since 2(T) C 9(R,), it follows that R, is
densely defined. Furthermore, 9(R,) is (4 ) invariant and R, leaves
invariant all #-invariant closed subspaces of X. Moreover, x € Z(R,)
and R,x = SE,x — TE,x = S[x]E,x — T[x]E,x = 0, and so it follows
from Lemma 5.4 that R, E_C 0. We thus have shown that TE E_C

n—x — nT—x =

SE,E,, ie., that TE E_C SE, for all n. Now take y € 9(TE,) ie,

n-—x»

E ye€2(T). Then E,y > yas E,11in #, and
SEny = TEnExy =T xEny = En(TExy) - TExy

Hence, since S is closed, y € 2(S) and Sy = TE_y. This shows that
TE, C S, and the proposition is completely proved.

LEMMA 5.6. Let T be a densely defined linear operator with { M) rin-
variant domain 9(T). Assume that T leaves invariant each #-invariant
closed subspace of X. There exists a family {x,} C D(T) with mutually
disjoint carrier projections { E,} C M, such that sup, E, = I.

Proof. By Zorn’s lemma, there exists a maximal disjoint system { E, }
of carrier projections in .# corresponding to elements { x,} in 2(T). Set
E,=supE, in # and suppose that E,# I. Let F,=1— E,, then
F, # 0. Since 2(T) is dense in X, there exists y € Z(T) such that
F,y # 0.If z = F,y, then z # 0 and z € 9(T). The carrier projection E,
of z satisfies E, # 0 and E, < F,, as Fyz = z. Hence E, L E,, contradict-
ing the maximality of the system { E_}.

We are finally in a position to prove the main result of this paper.

THEOREM 5.7. Let M be an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. Let T be a densely
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defined linear operator in X with (M) invariant domain 2D(T). The
following statements are equivalent.

(i) T leaves invariant all #-invariant closed subspaces of X.

(i) T is closable and its closure T belongs to (M ),,,.

Proof. (ii) = (i). If T € (M), then, by Corollary 2.4, T leaves
invariant all .#-invariant closed subspaces of X, and since T C T, we
conclude that T has the same property.

(i) = (ii). Now suppose that T leaves invariant all .#-invariant closed
subspaces of X. By Lemma 5.6, there exists a disjoint system of carrier
projections { E,;: « € 2} in #, corresponding to elements { x,: a € 2}
in 9(T), with sup, E, = I. By Proposition 5.5, for each « there exists
S, € E{ M) such that TE, C S,. Then {S,: a € 2} is a disjoint system
in (M), and since (A ), is laterally complete, there exists a unique
element S € (&) such that SE, = S, for all a. We will show now that
T C S. To this end, we define for every finite subset % of 2 the
projection Ez=Y .5 E,. Clearly, E; 11 in /. Take x € 2(T), then
Ezx — x and x € 9(TE)) for all a € 2. Hence, x € 2(S,) and S, x =
TE x for all a. Therefore, Ezx € 2(S) for all finite subsets # of 2 and

SEzx = TEgx = EgTx — Tx.

Since S is closed, this implies that x € 2(S) and Sx = Tx, which shows
that T C S.

It follows from the inclusion 7 C S and from the closedness of S,
that T is closable. Let T denote the closure of T, so T € T € S. We claim
that T = S. First note that 9(T) is A-invariant. Indeed, suppose that
% € 9(T) and E € #. Then there exists a net {x,} in 2(T) such that
x, = % and Tx, - T%. Hence, Ex, > EX and TEx,= ETx, - ET%,
which shows that Ex € 9(T) and TEx = ET%. This implies that 2(7T)
C 9(TE), and hence 9(TE) is dense, for all E € .#. Now let {E,} be a
determining sequence for S in .#. Clearly TE, C SE, forall n = 1,2,....
Since TE,, is closed and densely defined, and since SE, is continuous, it
follows that TE, = SE,, for all n. Now take x € 9(S), then SE,x — Sx.
We thus have E,x — x, E,x € 9(T) and TE,x = SE,x — Sx. Since T
is closed we may conclude that x € 2(T') and Tx = Sx. This shows that
S c T,and hence T = S € (M), by which the theorem is proved.

Note that, by the observation in Corollary 2.5(i), the above theorem
includes the result of Theorem 5.5 in [4].
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COROLLARY 5.8. Let M be an equicontinuous Bade complete Boolean
algebra of projections in the quasi-complete space X. Let T be a densely
defined, closed linear operator in X with M-invariant domain D(T). The
following statements are equivalent.

(1) T leaves invariant all M-invariant subspaces of X.

(i) T € (M), i.e., T is a scalar-type spectral operator with respect to
M.

Proof. Only the implication (i) = (ii) needs a proof. By the above
theorem it is sufficient to show that 2(T) is in fact (/) invariant. To
this end, first observe that TEx = ETx for all x € 9(T) and E € A
(same argument as at the beginning of the present section). Let M be the
linear subspace of #( X) generated by #. Clearly, 9(T) is M-invariant
and TSx = STx for all x € 9(T) and S € M. Now take x € Z(T) and
R € (M),. Then there exists a net { S,} € M such that S, — R strongly.
Hence S,x € 9(T) for all a, S,x = Rx and TS,x = S, Tx — RTx. Since
T is closed, this implies that Rx € 9(T'), and we are done.

We end this section with an example which shows that in Theorem 5.7
the condition that 9(T) is (), invariant cannot be weakened to
AM-invariance of 9(T).

ExaMPLE 5.9. Consider the unit interval [0, 1] with Lebesgue measure,
let X be the Banach space L,[0,1] (1 <p < o) and let /# be the
Boolean algebra of all band projections in L,[0,1]. Note that the projec-
tions in # are precisely the multiplications by characteristic functions of
measurable subsets of [0,1]. Then  is equicontinuous and Bade com-
plete. The .#-invariant closed subspaces of L,[0, 1] are precisely the bands
(cf. [5], Proposition 2.4). Furthermore, (#) = (.# ), can be identified
with L_[0,1], acting on L,[0,1] by multiplication. Let 2(T) be the
subspace of L,[0,1] consisting of all functions which can be written as
f=2X!_,p:Xg, Where E,,..., E, are disjoint measurable subsets of [0, 1],
and p,(x),..., p,(x) are linear functions. Clearly, 9(T) is dense in
L,[0,1] and #-invariant, but Z(T) is not (M) invariant. For f=
i1 pxg in D(T), define Tf = X', p/x , where p; denotes the deriva-
tive of p;. Clearly T is a linear operator from 2(T) into L,[0,1], which
leaves invariant all #-invariant closed subspaces of L [0, 1]. Now it is not
difficult to find a sequence { £}, in 2(T) such that f, — 0 (norm) and
Tf, = 1 for all n, which shows that T is not closable.
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We will indicate in the next section that the preceding Theorem 5.7
and Corollary 5.8 extend results of Masani and Rosenberg [13], Rosenthal
and Sourour [18], [19] and Sourour [21], [22]. Moreover, even in the case
that X is Banach, the result of Theorem 5.1 appears to be new.

6. The spectrum of a scalar-type spectral operator. We begin by
showing that if .# is a Bade complete Boolean algebra of projections in X
and if T is scalar-type spectral with respect to A ie.if T € (M), then
T is scalar-type spectral in the sense of Dunford. Conversely, if T is
scalar-type spectral in the sense of Dunford, then there exists a Bade
complete Boolean algebra of projections # for which T € (/).

A spectral measure in X is a countably additive map E: & — Z(X)
whose domain % is a o-algebra of subsets of some set €, which is
multiplicative and satisfies E({) = I. The spectral measure E is called
equicontinuous if the range of E is an equicontinuous subset of .Z(X)
and closed if its range is a Bade complete Boolean algebra of projections
in X. If E: #— %(X) is a spectral measure and f a complex valued
#-measurable function, then f is said to be E-integrable if f is integrable
with respect to the complex measure ( Ex, x") for each x € X, x’ € X’
and there exists an operator, denoted [, fdE, in £ *( X) such that

<(fﬂde)x,x’>=fﬂfd<Ex,x’>

foreach x € X, x' € X".

The class #Y(E) of all E-integrable complex functions on Q is a
Riesz space for the pointwise ordering on {2, containing all bounded
Z%-measurable functions. The %-measurable function f on € is said to be
E-null if f is E-integrable and [, fdE = 0. The class of complex E-null
functions on € is an order ideal in #*( E) and the corresponding quotient
space is denoted by L'(E). If E is closed, then the map f — [, fdE is an
order isomorphism of L'(E) onto {.#)* where # is the closure of the
range of E in Z(X). If now f is a %-measurable complex valued
function on {, the spectral integral [, fdE is defined as follows. If { B, }
is any sequence of %-measurable subsets of & such that xz 1,xe in
LYE)and fx, € LE), n=1,2,..., then x € 9( [, fdE) if and only
if lim,_  (/fxpdE)(x) exists in X, in which case ([qfdE)(x)=
lim,( fo fx 5 dE)(x). The linear mapping 7 in X is called a scalar-type
spectral operator in the sense of Dunford if there exists an equicontinuous
spectral measure E: # — #(X) and a %-measurable complex function f
such that T = [, fdE. We remark that if #(X) is sequentially complete
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and if T is scalar-type spectral in the sense of Dunford then T € Z( X) if
9(T) = X. For example, see [5] Proposition 1.2.

Suppose now that T is a scalar-type spectral operator in X in the
sense of Dunford, with representation as a spectral integral given by
[ofdE, with E: # — £(X) an equicontinuous spectral measure. If /4
denotes the closure in .Z( X) of the range of the spectral measure E, then
A is a Bade complete Boolean algebra of projections in X and it follows
from Definition 2.3 above and [6], Proposition 1.8 that 7 is a scalar-type
spectral operator with respect to ./#, i.e. that T is an element of (/).
Conversely, if # is a Bade complete Boolean algebra of projections in X,
and if T € (A),, then it is a consequence of the Freudenthal spectral
theorem that there is an equicontinuous spectral measure E defined on the
Borel subsets of the complex plane C such that [-zdE is a representation
of T as a spectral integral. In fact, we may write 7= ReT + iIm T with
ReT, ImT € Re(#),. Denote by {F(A): A €R}, {G(A\): A €R}
respectively the Freudenthal spectral systems ([11], §§38, 40) of Re 7, Im T
in the Dedekind complete (real) Riesz space Re( .# ) with respect to the
weak order unit /. The Freudenthal system { E(z): z € C} of T in A is
then defined by setting E(z) = F(A)G(p) if z= A+ ip, A,pn € R. The
spectral system { E(z): z € C} induces, in the usual way, a countably
additive, multiplicative .#-valued set function E, on the ring generated by
the collection of all half-open cells in C of the form

[21,2,) ={x+ipeC:Rez; <x <Rez,,Imz <y <Imz,}.

Since (/) is Dedekind complete and has Lebesgue topology, it follows
from the Kluvanek extension theorem ([8] p. 118; see also [23] Chapter 11)
that E, extends to a countably additive measure, which we denote by E,
on the Borel subsets of C. As in Proposition 3.6 of [6], it follows that E is
an .#-valued equicontinuous spectral measure. From the Freudenthal
spectral theorem and the dominated convergence theorem, it follows that

TE(8) = fc zxsdE

holds for all compact subsets 8 C C and it follows immediately that
T = [.zdE, so that T is a scalar-type spectral operator in the sense of
Dunford. In the sequel, we will use the term scalar-type spectral operator
without risk of confusion of terminology.

Suppose now that P: 2 — #(X) is a closed spectral measure with =
a o-algebra of subsets of some set 2, and let .# be the range of P. We
denote by Z°(P) the linear space of all complex valued Z-measurable
functions on Q. Z°(P) is clearly a complex Riesz space, in fact an
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f-algebra with respect to the pointwise ordering, and by [6], Proposition
1.8, it follows that the order ideal of P-null functions in #°(P) is an
algebraic ideal as well as an f-subalgebra. We denote by L°(P) the
corresponding quotient space.

PROPOSITION 6.1. If P: 2 — £ (X) is a closed spectral measure and if
M is the range of P, then the map P: f— [o fdP, f € L°(P) induces an
f-algebra isomorphism of L°( P) onto { M),

Proof. We continue to denote the induced mapping by P. We show
first that P maps L° onto (M) . If T € (M), it suffices to show that
there exists f € £°(P) such that T = [ fdP. From above, there exists an
equicontinuous spectral measure E defined on the Borel subsets & of the
complex plane such that 7= [.zdE. Let {B,} be any sequence of
compact subsets of C for which B, 1 ,C. For each n=1,2,... there
exists G, € = and f, € L'(P) such that P(G,) = E(B,) and

TE(B,) = [ f,dP = P(G,) [ /,dP = [ xo,f,dP

for n=1,2,.... Without loss of generality, it may be assumed that
G,7,2andthat f,=00n 2\ G,, n =1,2,.... It follows that

fﬂxcnfn+1dP=fﬂfndP, n=1,2,...

so that we may further assume that f, ., = f, holdsonG,, forn = 1,2,....
We now define f by setting f(w) = f,(w) if w € G,. It is clear that f is
2-measurable and from

ffo dP = TP(G,)=TE(B,), n=12,...,
Q n

it follows readily that T = [, fdP. To see that P is an algebra isomor-
phism of L%(P) onto (A )., suppose that f, g € Z°(P) and let {G,} be
any sequence in = such that G, 1 ,Q and such that fx;, gx; € L' (P),
n=1,2,.... Since the restriction of P to L'(P) is an algebraic isomor-
phism of L'( P) onto ( #)¥, it follows that

P(fgxs,) = P(/xq,)(Pexa,)

and

P((f+ g)xq,) = P(fxs,) + P(gxs,)
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for n =1,2,.... It follows readily from the remark following Definition
2.7 that P(fg) = P(f) - P(g), P(f + &) = P(f) + P(g) hold in (M),
Finally, since the restriction of P to L!(P) is a Riesz isomorphism of
LY(P) onto (M )¥, it follows that P is a Riesz isomorphism of L°(P)
onto { /) and by this the proposition is completely proved.

In view of Proposition 6.1 preceding, Theorem 6.2 and Corollary 6.3
following are now no more than a reformulation of Theorem 5.7 and
Corollary 5.8 above. If P: 2 — £( X) is a spectral measure, we denote by
Z*°(P) the linear space of all bounded complex X-measurable functions
on the underlying set .

THEOREM 6.2. Let P: 2 — L (X) be a closed spectral measure and let
T be a densely defined operator in £ (X) with domain 9(X) invariant
under [, fdP for each f € L*(P). The following statements are equivalent.

(1) T leaves invariant all closed subspaces of X which are invariant
under the range of P.

(ii) T is closable and there exists f € L °(P) such that the closure of T is
given by the spectral integral [, fdP.

COROLLARY 6.3. Let P: £ - L(X) be a closed spectral measure and
let T be a densely defined closed linear operator in X with domain 29(T)
invariant under the range of P. The following statements are equivalent.

(1) T leaves invariant all closed subspaces of X which are invariant
under the range of P.

(ii) There exists f € LO(P) such that T = [, fdP.

We remark that Corollary 6.3 above was proved by Masani and
Rosenberg [13] for the case that X is a Hilbert space; by Bade [2] for the
case that X is Banach and T continuous and by Sourour [22] for the case
that X is Banach and T is densely defined and closed. The methods of
these papers do not extend to the locally convex setting. For the case that
X is locally convex and T is continuous, then Corollary 6.3 was proved,
explicitly, in [6] (Proposition 1.5 and Theorem 3.1) and, implicitly, in [4],
Corollary 5.6. The methods of the present paper follow those of [4], and
this approach yields the stronger result, Theorem 6.2 above, which ap-
pears to be new, even for the case that X is Banach. In the Banach space
setting, a special case of Theorem 6.2 may be found in [19], Theorem 7.

We turn now to questions related to the spectrum of scalar-type
spectral operators. If X is a Banach space and T a scalar-type spectral
operator on X, then it is well known ([7], Chapters XV, XVIII) that 7 has
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a uniquely determined resolution of the identity which commutes with
each continuous linear operator commuting with 7" and whose support is
precisely the spectrum of 7. In the locally convex setting, these questions
have been considered for continuous operators in [12] and [17], and for
unbounded operators with non-empty resolvent set in [20]. We show now
that these results permit exact extensions to locally convex setting. As in
previous sections, our approach is via order structure and this permits a
treatment which applies simultaneously to bounded and unbounded cases.
While we follow as closely as possible the arguments of [7], Chapter XV,
the main difference in the present approach is that we exploit the
algebraic structure of the algebras (), where .# is a Bade complete
Boolean algebra of projections in X.

Let T be a linear operator in X with domain 2(T). The complex
number z,, is said to belong to the resolvent set p(7T') of T if there exists
an open neighbourhood U of z, such that, for all z € U, the linear map
zI — T is injective, has dense range and (zI — T) ! extends to a continu-
ous operator R(z;T): X — X, such that R(z; T)(zI — T) is the identity
on Y(T), (zI — T)R(z;T) is the identity map of the range of zI — T
and such that the map z = R(z; T) is analytic on U. The map R(-,T) is
called the resolvent of T on p(7T). The spectrum o(7) of T is then
defined to be the complement of p(7) in C.

LEMMA 6.4. Let A be a Bade complete Boolean algebra of projections
inXandletT € (M), Let E: B—> L(X) be the equicontinuous spectral
measure on the Borel subsets % of the complex plane C generated by the
Freudenthal system of Tin M. If z € C, if § € # and if d(z,8) is the
distance of z to 8, then

|zE(8) — TE(8)|E(8) = d(z,8)E(9)
holds in { M ),

The preceding lemma may be proved by a direct application of
Proposition 6.1 above. An intrinsic proof may be based alternatively on
the properties of the Freudenthal spectral system as in [11] §§38, 56. We
omit the details.

If #, T and E are as in the statement of the preceding lemma and if
8 is a Borel subset of C, we denote by § the closure of § and by T},
the restrictions of T, ./# to E(8)( X) respectively. Note that # 5 is a Bade
complete Boolean algebra of projections in E(8)( X) and that T € (#),..
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PROPOSITION 6.5. Let # be a Bade complete Boolean algebra of
projections in X, let T € (M), and let E: B — L (X) be the equicontinu-
ous spectral measure on the Borel subsets of the complex plane C generated
by the Freudenthal system of T in M. If § is a Borel subset of C, then

(@) o(Ty) € §

(i) |R(z Ty)| < (d(z 8) ™Y,
holds in { M s, whenever z € C\ 8.

Proof. It is clear that we may assume that § is not dense in C.
Suppose then that @ # U C C is open with distance ¢ > 0 to §. From
Lemma 6.2, it follows that

|21y — Ts| = els, zeU
holds in (#), and consequently, it follows from [24], Theorem 146.3
that zI; — Ty is invertible in (), with inverse R(z;T;) € (M)
satisfying
|R(z;Ty)|<e™'l;, zeU.

Since
o0

R(w;T;) = go(—l)”(wx— 2)"(R(z; Ty))"™

holds Is-uniformly in (A ) for w,z € U, |w — z| < £/2, it follows that
the map z — R(z; Ty) is analytic in U. Further, since
R(z;Ty)(2ly — T;) = (z21; — Ty))R(2; T;) = I,

holds in { # )., it follows that

R(z; )zl - T)x=x, z€U
holds for all x € 9(T;) so that (zI; — T3) is injective for all z € Uj;
further, it follows that

(z2ly - T;)R(z; Ty)x=x, z€U

holds for all x € E(8)(X) for which R(z; T5)x € 9(Ty), so that zI; — R,
has dense range for all z € U. It follows that U C p(7;) and by this the
proposition is proved.

If T, E, A are as above, the essential step required to characterize
the range in X of each projection in the range of E is given by the
following lemma. See, for example [7] Lemma XVIII 2.3. As the proof
may be based on Proposition 6.5 above and arguments similar to those of
[7], XV 3.1, 3.2, 3.4, the details will be omitted.
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LEMMA 6.6. Let # be a Bade complete Boolean algebra of projections
inX, letT € (M), andlet E: B — L(X) be the equicontinuous spectral
measure on the Borel subsets of the complex plane generated by the Freu-
denthal system of T in M. If x € D(T), if 6 € C is compact and if f:
C\ 8 — 2(T) is an analytic map for which (zI — T)(f(z)) = x for all
z € C\ 9§, then E(o)x = x.

The preceding lemma, combined with an inspection of the proof of [7]
XV 3.7 now yields the following result. We recall first that if 4 € Z(X)
and T: 9(T) — Z(X) is a linear map, then A4 is said to commute with 7’
if and only if A(2D(T)) € 2(T) and ATx = TAx for all x € Y(T).

PROPOSITION 6.7. Let M be a Bade complete Boolean algebra of
projections in X, let T € (M), and let E: B — L(X) be the equicontinu-
ous spectral measure on the Borel subsets of the complex plane generated by
the Freudenthal system of Tin M. If A € £ (X) commutes with T, then A
commutes with E(8), for each Borel subset 8 of the complex plane.

If T is a scalar-type spectral operator in X, a resolution of the
identity for T is any equicontinuous spectral measure F: # — Z(X)
defined on the Borel subsets & of the complex plane such that [z dF is a
representation of 7 as a spectral integral. We remark that if F is a
resolution of the identity for T and if .# is the closure of the range of F
in Z(X), then it is a consequence of the uniqueness of the Freudenthal
system ([11], Theorem 40.8) that F coincides with the spectral measure on
Z# generated by the Freudenthal system of T in Z.

PrOPOSITION 6.8. If T is a scalar-type spectral operator in X then T has
a unique resolution of the identity.

Proof. Suppose E, F are resolutions of the identity for 7. By the
remark immediately preceding the proposition, it may be assumed that E,
F are generated by the Freudenthal systems of T in (&), (A")_ where
M, A denote respectively the closures of the range of E, F in Z(X). If
8 ¢ Cis compact then it follows from Proposition 6.5 that the restriction
of zI — T to F(8)(X) is invertible for z € C\ 8, with inverse R(z; T),
such that R(-, Ty) is analytic in C \ §. Here T} denotes the restriction of T
to F(8)( X). Since

(zI — T)F(8)R(z; T,) F(8)x = F(8)x
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holds for all x € X and z € C\ J, it follows from Lemma 6.6 that
E(8)F(8) = F(9). 1t follows similarly that F(8)E(8) = E(8). From Pro-
position 6.7, it follows that E(8) = F(d) for all compact 8 C C and this
clearly suffices to prove the Proposition.

LEMMA 6.9. If T is a scalar-type spectral operator in X with resolution of
the identity E and if @ # & C C is compact, then the restriction of T to
E(8)(X) has non-void spectrum, provided E(8) # {0}.

Proof. Denote by T; the restriction of T to the range of E(8). If
o(T;) = 9, it follows that the map z — R(z; Tj) is entire. From Proposi-
tion 6.5(i1), it follows that

|R(z;T;)x| <|R(2, T;) |x < (d(2,8)) "'x
holds in the Riesz space #[x] whenever z & §. Consequently R(z; Ty)x
— 0 as z = oo for each x € X, since § is compact. The result now
follows from Liouville’s theorem.
If T is a scalar-type spectral operator in X, with resolution of the

identity E, we denote by supp E the complement in C of the largest open
set V for which E(V) = 0.

PrOPOSITION 6.10. If T is a scalar-type spectral operator in X with
resolution of the identity E, then o(T) = supp E.

Proof. Since E(suppE) = I, it follows from Proposition 6.5(i) that
o(T) C supp E. To show that supp E C o(T), observe first that if 6(7) =
C, there is nothing to prove. It suffices then to show that if p(7) # & and
if 8§ € p(T) is compact, then E(8) = 0. If § C p(T) is compact, it is
simply checked that the restriction of the resolvent map R(z; T') to the
range of E(&) is the resolvent of the restriction 7T of T to the range of
E(8) so that o(T;) € o(T). By Proposition 6.5(1) o(T) < & so that
o(Ts) = . This however contradicts Lemma 6.9 and by this, the proposi-
tion is proved.

We remark that if 7 is a scalar-type spectral operator in X with
resolution of the identity E, then it follows immediately from the preced-
ing result that

o(T) =N{8: 8 Borel, E(8) =1}.

If now f is a complex-valued Borel function on C, we denote by f(7T) the
spectral integral [.fdE. Just as in [7], XVII 2.17 it follows that the
resolution of the identity of f(T') is the spectral measure E(f1(-)). It
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follows that

o(f(T)) =N{ A8): 8 Borel, E(8) =1}.
In particular, it follows that o(f(T)) C f(o(T)). Observe now that if
8 c Cis Borel and E(8) = I, then 6(T) N & = o(T). Hence, if § € C is
Borel and E(8) = I, and if f is continuous on ¢(7T), then

f(e(T)) = f(o(T) N 8) < f(a(T) N 8) C f(o)

so that f(o(T)) € o(T). These remarks constitute the proof of the
following spectral mapping theorem (cf. [17] Theorem 2).

PROPOSITION 6.11. If T is a scalar-type spectral operator in X and if f:
C — C is a complex Borel function which is continuous on o(T) then

o(f(T)) = f(s(T)).

The final result of this section may be proved by an appropriate
modification of the proof of [23], Theorem XI 7.1 and accordingly we
omit the details. Note, however, that the reasoning of the first part of the
proof of Proposition 6.1 does not apply.

PROPOSITION 6.12. If S, T are scalar-type spectral operators in X with
resolutions of the identity F, E respectively then there exists a complex Borel
function f: C — C such that S = f(T) if and only if the range of F is
contained in the range of E.

7. Concluding remarks. The results of the preceding sections, to-
gether with the main reflexivity theorem of [5], provide the key tools
necessary to extend to the locally convex setting certain theorems concern-
ing (not necessarily commutative) reflexive algebras of operators due to
Sourour [21] and Rosenthal and Sourour [19].

We begin with the following complement to, and consequence of,
Theorem 3.8 of [5]. If &/ C #(X), the double commutant of &7 is the set
of all continuous linear operators on X which commute with each
continuous operator commuting with /. If o/ is a unital subalgebra of
Z(X) then o is called reflexive if &/ contains each continuous linear
operator which leaves invariant each #invariant subspace.

PROPOSITION 7.1. Let # be a Bade complete Boolean algebra of
projections in X and let &/ be a closed unital subalgebra of { M ). If each
SLinvariant subspace is range of a continuous projection which commutes
with </ then

(1)  is equal to its double commutant.

(i) There exists a Bade complete Boolean subalgebra A" C M such that
A= (N).
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Proof. (i) It follows immediately that each element of the double
commutant of 2/ leaves invariant each “invariant subspace and hence
belongs to .7, since & is reflexive, by [5], Theorem 3.8.

(ii) From Proposition 6.7 it follows that the spectral resolution of each
element of &/ lies in the double commutant of &/ hence in &/, by (i). It
follows that the Boolean subalgebra A4, of # generated by the set of all
projections in the ranges of the spectral resolutions of all elements of . is
again contained in /. If A" is the closure of A, then 4 is Bade
complete by [4], Proposition 4.5 and it is clear that o/ = (A").

We remark that if X is Banach, then the preceding result was proved
by Sourour [21], Theorem 8, under the additional assumption that the
Boolean algebra ./ is of uniform multiplicity one (see below).

The papers [18], [19] are concerned with the extension to the Banach
space setting of reflexivity results for strongly closed algebras of operators
on, in general, non separable Hilbert spaces, which contains a maximal
abelian von Neumann algebra. If X is a Banach space, a Bade complete
Boolean algebra of projections in X is said to be of uniform multiplicity
one if the restriction of .# to E(X) has a cyclic vector whenever E € #
is countably decomposable (the projection E € ./ is said to be countably
decomposable if every family of disjoint projections in .# majorized by E
is at most countable). We observe the following simple characterization of
Boolean algebras of uniform multiplicity one.

LEMMA 7.2. Let X be a Banach space and let M be a Bade complete
Boolean algebra of projections in X. The following statements are equivalent:

(1) A is of uniform multiplicity one.

(ii) For each x € X, there exists a projection E € M such that E(X) =
M| x].

Proof. (1) = (ii). Suppose that .# is of uniform multiplicity one, let
x € X, and let E_ be the carrier of x in /. By [7], Lemma XVIII 3.5, E,
is countably decomposable so that, by (i), there exists y € X with
E_y =y such that (E . #)[y]= E (X). Without loss of generality, we
may assume that E = I and that y is cyclic for .#. From Propositions
2.1, 2.4 (ii) of [5] it follows that .#[x] is a band in the Riesz space .#[ y]
and that the corresponding band projection is given by an element of ./#.
It now follows from the fact that E_= I, that #[x] = #[y] and so the
implication (i) = (ii) follows.
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(ii) = (i). If E € A is countably decomposable, then by [7], Lemma
XVIII 3.5, it follows that E is the carrier projection E, of some element
x € X. By (i), there exists a projection F € # such that F(X) = #[x].
Necessarily F = E_= E and by this, the implication is proved.

If now X is a locally convex quasicomplete space, a Bade complete
Boolean algebra of projections in X will be called quasi-cyclic if condition
(ii) of the preceding Lemma 7.2 is valid. It follows from Propositions 2.4,
2.7 of [5] that if # is a Bade complete quasi-cyclic Boolean algebra of
projections in X, then X admits the structure of a locally solid topologi-
cally complete, Dedekind complete Riesz space with Lebesgue topology
such that the Boolean algebra of band projections coincides with the
Boolean algebra .# and such that the closed .#-invariant subspaces of X
are precisely the bands in X. If now &/ is a strongly closed subalgebra of
ZL(X) which contains a Bade complete quasi-cyclic Boolean algebra of
projections then each sfinvariant subspace, being #-invariant, is the
range of a projection in . and it follows that each .#4invariant subspace
which has an sZinvariant complement is the range of projection in #
which commutes with &/. We may now state the following extension of
[19] Theorem 5.

PROPOSITION 7.3. Let &/ be a strongly closed subalgebra of Z(X)
which contains a Bade complete quasi-cyclic Boolean algebra of projections.
If every invariant subspace of &/ has an invariant complement then

(1) & is equal to its double commutant.

(i) & is reflexive.

The proof of the preceding proposition now follows exactly as in [19],
with Theorem 7 of [19] replaced by Theorem 5.7 of the present paper. We
omit the details.

In a similar vein, we leave to the interested reader the task of checking
that the tools provided by the present paper are sufficient to extend
verbatim to the locally convex setting the proofs in [18] of the following
results for Banach spaces due to Rosenthal and Sourour. See [18], Theo-
rem 8.12.

PROPOSITION 7.4. If & is a closed subalgebra of £( X)) which contains
a Bade complete quasi-cyclic Boolean algebra of projections and if the only
S-invariant subspaces are {0} and X, then &/ = £(X).
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PROPOSITION 7.5. If & is a closed subalgebra of £ ( X) which contains
a Bade complete quasi-cyclic Boolean algebra of projections, and if the
Sinvariant subspaces of X are totally ordered, then s is reflexive.
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