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A CHARACTERIZATION OF PSEUDO-ANOSOV

FOLIATIONS

ATHANASE PAPADOPOULOS AND ROBERT C. PENNER

Let M be a closed oriented smooth surface of genus g > 2, and let
Jf ^ denote the space of equivalence classes of measured foliations on
M. The importance of measured foliations began with Thurston's work
on diffeomorphisms of surfaces: he defined the space Jt'J** and recog-
nized the natural action of the mapping class group on Jί3P as an
extension of the action of this group on the Teichmijller space of M. In
these investigations, there arose the concept of a pseudo-Anosov map
which fixes a pair of transverse projective measured foliation classes on
M, and the question evolves of recognizing the foliation classes fixed by
some pseudo-Anosov map. Our main result provides a solution to this
problem: we give a combinatorial characterization of these projective
measured foliation classes. The combinatorial formulation of this prob-
lem uses the theory of train tracks.

1. Introduction.

1.1. In §§2 and 3 of this paper, we develop a method which associates

a semi-infinite combinatorial "RLS word" to a class of measured folia-

tions. The techniques underlying these RLS words first arose in [K] (see

also [HP]) and depend on the machinery of train tracks; we recall the

necessary material in §1.2. The RLS word does not uniquely determine

the projective measured foliation class, rather it determines exactly the

subset of JίJ^ consisting of the foliations topologically equivalent to the

given foliation. (For the definitions and basic properties of measured

foliations, we refer the reader to [FLP].) Section 4 contains our main

results, and we completely characterize the classes of measured foliations

left invariant by some pseudo-Anosov map in terms of their RLS words.

Roughly, a measured foliation class is invariant under a pseudo-Anosov

map if and only if it admits a preperiodic RLS word. Part of the theorem

is in some sense constructive, and we describe how to find a pseudo-Anosov

map fixing an invariant foliation class. This allows the description of an

algorithm for producing representatives of all conjugacy classes of

pseudo-Anosov map in §4.4, wherein we also discuss some open problems

and likely applications.

359
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1.2. Train tracks. In this section, we recall the definitions and some
basic facts about train tracks that we shall make use of in this paper; for
the details, we refer the reader to [HP], [P] and [T].

A train track is a branched 1-submanifold of a surface M, i.e., a
differentiable graph embedded in M with local models at the vertices
given by Figure 1. We require furthermore that no complementary compo-
nent of the train track is an annulus without cusps on its boundary or a
disk wtih zero, one, or two cusps on its boundary.

FIGURE 1

Given a train track τ with edges al9..., aT, there is a well-defined
map φτ: E(τ) -> Jί&', where E(τ) c R7 is the convex cone of nonnega-
tive weights on the edges of r which satisfy the condition that at each
vertex as in Figure 1, the weight of bx is the sum of the weights of b2 and
b3. φτ is a homeomorphism onto its image, and we denote this image by

We shall make use of the following terminology for the edges of a
train track: an edge is large (and otherwise small) at an endpoint if each
smooth arc in the train track through the endpoint intersects the interior
of the edge. In Figure 1, b2 and b3 are small, whereas bλ is large at the
given endpoint. There are thus three kinds of edges: large at both
endpoints, small at both endpoints, and large at one and small at the other
endpoint. We shall refer to edges of the first and second kind respectively
as large and small edges.

Associated to T, there is a fibred neighborhood N(τ) c M equipped
with a retraction N(τ) \ τ. N(τ) has singular points on its boundary,
called cusps, whose local models are given by Figure 2. The set of cusps of
N(r) is in natural one-to-one correspondence with the set of vertices of T.
The fibres of the retraction N(τ) \ r form a foliation y of N(τ) by
segments called ties, and the ties that pass through the cusps are called the
singular ties of ST. N(τ) with its foliation is well-defined up to isotopy,
and T can be regarded as a quotient space of N(τ) when every fibre is
identified to a point.
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singular tie

FIGURE 2

If J^ is an element of M3£', we will usually represent & by a partial

measured foliation of the surface M. This is a foliation of a subsurface of

M having all its singular points on the boundary of the subsurface with

local models at these points given by Figure 3. If no complementary

region of a partial foliation is a disk with zero or one cusp, then this

partial foliation has a well-defined class in Jί&.

FIGURE 3

We say that #" is carried by T, and we write J^"< T, if Ĵ " can be

represented by a partial foliation which is contained in a fibred neighbor-

hood N(τ) of T and is transverse to the ties. The elements of Vτ c JίlF

are exactly the elements of JiSF that are carried by T, and a measured

foliation class #" corresponds to an element of Vr which has all of its

weights strictly positive if and only if ϊF can be represented by a partial

foliation which is transverse to the ties and whose support is equal to

N(τ).

If σ and τ are two train tracks on Λf, we say that σ is carried by τ,

and we denote this relation by σ < T, if σ is isotopic to a train track σ/

which is contained in a fibred neighborhood N(τ) of r and which is

transverse to the ties. We shall make use of three elementary moves which

produce from a train track r a train track σ which is carried by r. These

moves are depicted in Figure 4(a), (b) and (c) and are called respectively a

right split, a left split and a shift. If a train track σ arises from a train

track T by splitting and shifting, then we say that T refines to σ.
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(a) (b)

(c)

FIGURE 4

If σ < T, there is a natural linear map Ψ: E(σ) -> E(τ) which

induces the inclusion map Vσ c Fτ. The linear map Ψ can be described (in

a non-unique way) as the restriction of a linear map Ψ: RJ -» i?7, where

/?y and i?7 are respectively the vector spaces of weights (not necessarily

nonnegative) on the edges of σ and T. We describe precisely such a map Ψ

since we will make use of it.

Regard the fibred neighborhood N(τ) as a union of rectangles arising

as the inverse images of edges of r under the collapse N(τ) \ r, where

each rectangle is foliated by the ties. If av..., ar are the edges of T, we

make a choice for each edge at of a tie above an interior point of at\ this

tie is called the central tie associated to the edge ar Let bγ,...,bj be the

edges of σ, and b[,...,bj respectively the corresponding edges of σ',

where the correspondence is given by the isotopy which carries σ to σ'.

Isotope σ' slightly so that it is in general position with respect to the

central ties of N(τ) and consider the integral (/ by /)-matrix A whose

(y,/)th entry is equal to the number of times the edge b'} of σ' intersects

the central tie of N(τ) which is above the edge ax of T. This matrix A

defines a linear map Ψ: RJ -» R1 which induces the map Ψ: E(σ) -> E(τ).

We again emphasize the fact that the linear map Ψ from RJ to R1 is not

canonical, but the induced linear map on the convex cones Ψ: E(σ) ->

E(τ) is independent of the choices involved in the definition of Ψ.

2. Combinatorial words associated to foliations and train tracks.

2.1. The semi-infinite word construction. Let !F be an element of JlίF,

T a train track with fibred neighborhood N(r) and $" the foliation of

N(τ) by the ties. We say that r is suited to ^ if 3F can be represented by

a partial measured foliation F of support N(τ), which is transverse to the

ties and has no leaves connecting cusps of N(τ). We recall that this last

condition implies that each infinite half-leaf of F is dense in N(τ).
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Suppose that T is suited to !F9 and let av...,af denote the (infinite)

separatrices of F. The set {a l 9..., ar] is in natural one-to-one correspon-

dence with the set of cusps of N(τ) as well as with the set of infinite

separatrices of any measured foliation representing the class J^. Let s be

a function from the set Z + of positive integers to the set {1,...,/}.

Associated to the triple (&> 9 r, s) we wish to define:

(i) a semi-infinite word w*(!F) = wl9 w 2,... in the alphabet

( R l 9 . . . , Rn Ll9..., L7, Sl9..., Sr}.

(ii) an infinite sequence τ09τl9τ29... of train tracks so that IF is

suited to τn for each n = 0,1,2,..., whence & admits a representative Fn

whose support is a fibred neighborhood Nn of τn; in this way, each cusp of

τn gets a label from (1, . . . ,/} depending on which separatrix of Fn issues

from that cusp. Furthermore, for each n, τn+ι is obtained from τn by a

single elementary move, which is respectively a left split, right split or shift

on the cusp of τn with label i = s(n) if and only if the nth letter wn of the

word wf(^F) is Li9 Rt or St respectively.

The sequence of train tracks τ0 > τλ > τ2 > that the construction

produces will be naturally associated with a nested sequence No D NX D

iV2 D of fibred neighborhoods, so that for all n the foliation of iVw+1

by the ties will be induced by the foliation of Nn by its ties. The word

w*(^) is called the RLS sequence (or RLS word) associated to (!F9 T, S).

The construction is recursive, and we begin with τ0 = T, iV0 = N(τ)9

and Fo = F. For the recursion step, we are given the train track τn with

the bi-foliated neighborhood Nn and an order on the cusps. We examine

the separatrix a of Fn issuing from the s(n)th cusp of Nn. There are

several cases indicated in Figure 5(a). These cases are distinguished by

considering the first intersection of a with the singular ties of Nn: case (i)

(respectively (ii)) occurs when the first edge of τn that is covered by a (for

the natural colapse Nn\τn) is large (recall the definition given in §1.2),

and a travels to the left (respectively right) in Nn after this first intersec-

tion point. Otherwise case (iii) occurs. To define the bi-foliated neighbor-

hood Nn+1 c Nn9 we separate the bi-foliated neighborhood Nn along an

arc β c a whose initial point is at the cusp and whose endpoint lies

between the first and second points of intersection of the separatrix with

the singular ties. The opening operation is illustrated in Figure 5(b), and

one thinks of points of {β U the s(n)th separatrix} as giving rise to two

points of dNn+ι. Collapsing ties of Nn+ι gives the train track τn+ι. wn is

given by Ls{n)9 Rs(n) or Ss{n) if we have case (i), (ii), or (iii) respectively.

The cusps of Nn+1 inherit a natural order from the order on the cusps of
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Notice that the foliation Fn+1 induced on Nn+ι by Fn is isotopic to Fn

even though τ w + 1 is not isotopic to T. The leaves of the tie-foliation

on Nn+1 are subleaves of the tie foliation ZΓn on Nn. The train trac

n > 1, are said to arise from T by refinement along the separatrices of

2.2. Refinement of train tracks suited to foliations. We would like next

to associate a finite combinatorial word to the following situation: J^< σ

< T, and T is suited to J^. This finite word describes a finite number of

elementary moves by which T refines to σ. We require some technical

results.

2.1. LEMMA. Suppose !F< σ < T, where σ is a train track contained in

N(τ) transverse to the ties, and r is suited to J*\ There is then a fibred

neighborhood N(σ) of σ with N(σ) c ΛΓ(τ) and a family {Tι}[ of arcs

disjointly embedded in N(τ) — N(σ) transverse to the ties so that {3Γ }{

gives a pairing of cusps of N(τ) and cusps of N(σ). For a fixed N(σ) c JV(τ)

the family {Ti}[ is unique up to isotopy fixing the endpoints.

Proof. Insofar as σ c N(τ) is transverse to the ties, we may choose a

tie neighborhood N(a) with N(o) c ΛΓ(τ), where the ties of N(σ) are

subarcs of the ties of N(τ). Fix a cusp of N(τ) and consider the

corresponding singular tie t. There is a point of t Π dN(σ) on each side of

the cusp, for otherwise, as #"< σ, there would exist a representative F of

J^" contained in N(τ) transverse to the ties which does not pass through

every tie of N(τ). This would contradict the uniqueness of the system of

weights on the edges of r representing #".
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> M '

(a) (b)

FIGURE 6

Consider the edges of dN(σ) which intersect t nearest the cusp on
either side as in Figure 6(a). We claim that these edges of dN(σ) coalesce
at a cusp of N(σ) as in Figure 6(a). If not, then these edges must traverse
distinct paths and so eventually diverge as in Figure 6(b). In this case,
consider a representative jPof J^ supported in N(σ) and transverse to the
ties. From this foliation, we can construct another representative sup-
ported on N(τ) transverse to the ties which has a leaf which connects two
cusps of N(τ). This contradicts the unicity of the measure on T describing

We have shown that edges of 9iV(σ) nearest cusps of N(τ) along
singular ties coalesce at cusps of N(σ); conversely, one sees easily that
each cusp of N(σ) is associated in this way to a cusp of N(τ). There is
thus a pairing of the cusps of N(σ) and the cusps of N(τ), and each pair
in this pairing determines a region Wi9 / = 1,...,/, of N(τ) - N(σ)
bounded by subarcs of edges of dN(σ) and singular ties of N(τ) (see
Figure 7). Collapsing subties of these regions gives the required collection
of arcs. D

FIGURE 7
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FIGURE 8

If σ and r are two train tracks, recall that T refines to σ if σ can be

obtained from T by a finite sequence of splits and shifts. There is another

move, called a collision, which we might perform on a train track and

which is illustrated in Figure 8. If a train track σ arises from a train track

τ by splitting, shifting and colliding, then we say τ refines to σ with

collisions.

2.2. PROPOSITION. Suppose ^< σ < r with σ c N(τ) transverse to the

ties and with τ suited to tF. In this situation, τ refines to σ (without

collisions), σ is suited to 3P, and σ may be isotoped along the ties ofN(τ) to

a train track σ' so that σ' arises from r by refinement along the separatrices

of 3?. In fact, the refinement to σ' may be done by refining first along

separatrix one, then separatrix two,..., and finally along separatrix I.

Proof. Let Wn i = l,...,I, be the regions of N(τ) - N(σ) con-

structed in Lemma 2.1, and consider the quotient N' of N(σ) obtained by

collapsing the sub ties on each region Wr Collapsing ties of N' gives a

train track T' < r which refines (perhaps with collisions) to σ and hence

carries 3F. Furthermore, the switches of T' coincide exactly with the cusps

of N(τ) by construction.

We claim that the collapse of ties of N(τ) restricts to a homeomor-

phism of T ' to T, and it suffices to show that exactly one branch of τ r

intersects each tie of N(τ). If not, then we can find a pair of adjacent

intersections. The corresponding adjacent edges of N(τ) — τ' eventually

diverge by construction, so we can find an arc in N(τ) — τ' transverse to

the ties connecting cusps of N(τ), which is impossible as before. Thus, τ r

is homeomorphic to T, and so T itself refines to σ. Since the switches of T

and σ are in one-to-one correspondence by Lemma 2.1, this refinement

involves no collisions.

Now, consider the compatible tie neighborhood N(σ) c N(τ) of σ

with its foliation representing J*\ The collapse of subties induces a

foliation on N' which also represents 3F. Expanding N' along ties to

agree with N(τ) (without changing the topology of N') gives a new

foliaton of support N(τ) representing J*\ so this new foliation differs

from a given representative of J^ with support iV(τ) by isotopy along the

ties. It follows that σ may be isotoped along the ties of N(τ) to some σr
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so that σ' arises from τ by refinement along the separatrices of J^; it

follows easily that & is suited to σ.

Finally, rather than collapsing the regions Wi9 i = 1, . . . ,/ , all at

once, we might collapse them in reverse order: first Wj, then Wr_v...9

and finally Wv We require here that the Wt are pairwise disjoint. The last

assertion of the proposition then follows. D

2.3. The zipper construction. Let &9 τ and σ be as in §2.2; we now

associate to this triple:

(i) a finite sequence r = τ0 > τx > > τL = σ of train tracks with

each τ suited to &9 together with a sequence No> Nλ > > NL of

bi-foliated neighborhoods with an ordering on the cusps

(ii) a finite RLS-word wτ(σ) = wλ wL, where the ith letter wy

describes the carrying rι_ι > τf .

Let /?7 the subarc of the ith separatrix of the foliation on N(τ)

representing 3F along which we refine to pass from r to the train track σ'

guaranteed by Proposition 2.2. Set / = 0 and τ0 = r. Recursively, let pi+ι

be the total number of intersections of βi+1 with singular ties of N(τt)9

and let τi+ι be the refinement of τ, along the subarc βi+ι of the (/ 4- l)th

separatrix.

We generate in this way a sequence j9 1 ? . . ., Pj of nonnegative integers

and define

k-\ k

:j^k, if Σ Pi<J ^
1 1

Finally, perform the first Σ( ρt stages of the recursion in the construction

of §2.1 to generate the associated train tracks, the bi-foliated neighbor-

hoods, and finite RLS-word wτ(σ).

3. Convergent RLS sequences. Let J*", r and s be as in §2.1,

w*(^) the associated RLS-sequence, and τ 0 , τ x , . . . the associated se-

quence of train tracks. We say that the semi-infinite word w^(J^) is

convergent if it contains infinitely many R or L letters.

Choose some representative (i% μ) of & (μ being the transverse

measure on F), and let Δ ^ denote the subset of JiϊF consisting of the

classes of measured foliations which admit representatives of the form

(F, μ'), where μ' is some invariant transverse measure on F. The set ΔJΓ

does not depend on the choice of representative (F, μ) of &. This section
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is devoted to proving

3.1. THEOREM. If the wordw*(^) is convergent, then

n K, = Δ^
/ = 0

REMARK. If the word is not convergent, then it is clear that Γ\fL0Vr

strictly contains Δ^, since a shift on the train track τi does not change the
set Vτ c

For the proof of the theorem, we first remark that the construction of
the T, does not depend on the transverse measure but only on the
trajectory structure of the separatrices of ^ relative to T. It follows that
Λ r Π00 V

To prove the reverse inclusion, we require some lemmas.

3.2. LEMMA. Let 3F and & be two elements of Jί^ carried by a train

track T with corresponding systems of weights (xk) and (yk), k = 1,.. ., K,

respectively. Then we have the inequality
K

(/( , ) denotes the intersection function on Jί^Y, JίίF\ see [FLP].)

Proof. We may suppose that all the xk are strictly positive; the
general case then follows by continuity of the intersection function.
Represent ^ by a foliation F oi a fibred neighborhood N(τ) of T SO that
F is transverse to the ties. Recall that the vertices of T are in natural
one-to-one correspondence with the cusps of N(τ).

We embed T in N(τ) in such a way that:
each vertex of T is at the corresponding cusp of N(τ);
each edge of r is either in a leaf of F or transverse to F and is

embedded in N(τ) in one of the five ways indicated in Figure 9. Consider
now the system of weights (yk) on the train track T. Edge number k of T
has transverse measure (with respect to F) at most xk. The inequality

K

then follows easily from the definition of the intersection function, first by
supposing that ^ is the class of a simple closed curve, and then by
continuity. D
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FIGURE 9

3.3. PROPOSITION. With the same hypotheses as in Theorem 3.1, // & is
an element of Π ^ o Vv then i(&, 9) = 0.

Proof. For each n = 0,1,2,..., let (x£) and (y£), A: = 1,..., K, be
the systems of weights on the train track τn for !F and ̂  respectively. We
want to show that as n tends to infinity, Σf==1xkyk tends to zero. Since
each train track τn+ι is obtained from its predecessor τn by splitting or
shifting, we have

max {xn

k} < max {xk)

and

k k

for all n = 1,2, To prove the proposition, it is therefore sufficient to
prove:

3.4. LEMMA. AS n tends to infinity, we have max^jc^} tends to zero.

Proof. Recall that in the construction of the sequence τ0, τ l 5 . . . given
in §2.1, at each stage there is a foliation Fn in the class & which is
supported in a fibred neighborhood Nn of the train track τn. Fn is
obtained from Fn_λ by opening the fibred neighborhood Nn_τ along a
separatrix segment; there is also a foliation SΓn by the ties which is
transverse to Fn. We want to show that the largest transverse /^-measure
of the ties of SΓn tends to zero as n tends to infinity.

Put a Lebesgue-equivalent transverse measure v of full support on the
foliation 3Γ so that the total transverse ^-measure of a branch of T is
equal to one. In this way, the total transverse ^-measure between two
successive singular ties in a positive integer. For each n, there is an
induced transverse measure on 3Γn.

If we can show that there exists a sequence of successive separatrix
segments of F which are involved in the refining process so that the total
transverse p-measure of this sequence is infinite, then the lemma will be
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proved. Indeed, each semi-infinite separatrix of F is dense in the support

of F as well as in the support of each foliation Fn. If we now take a

segment of arbitrarily small Fn-measure ε at the center of each tie of each

central tie of Nn9 then these segments will be separated at some later stage

n' in the refining process; it follows that

{ k } { k }
k k

Thus, to prove Proposition 3.3 it remains to prove the

3.5. LEMMA. There exists a chain of separatrix segments ofFwhose total

transverse v-measure is infinite which are involved (in the sense above) in

the construction of the word w*

Proof. Recall the operation of opening the neighborhood described in

§2.1. For the purpose of the proof, choose a small number e > 0 and a

sequence of positive numbers ε/9 z = 1,2,..., satisfying ε = Σ™=0

 εr We

specify that at each stage i of the opening process, the endpoint of the

separatrix segment β involved is at some ^-distance at most ε, from the

first intersection point with a singular tie (see Figure 10). With this

convention, each separatrix segment involved in the refinement has v-

transverse measure either greater than 1 — ε or less than ε. One sees from

the construction that whenever the segment has transverse ^-measure less

than ε, the corresponding move on the train track is necessarily a shift. By

the convergence of the word wτ

J(J^), there are infinitely many splits

involved and also therefore infinitely many separatrix segments of ^-mea-

sure greater than 1 - ε. This proves Lemma 3.5 and hence Proposition

3.3. D

To finally prove Theorem 3.1, it remains to show

3.6. LEMMA. // τ is suited to & and if <S satisfies / (J^,^) = 0 with

ε,

FIGURE 10
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Proof. Suppose that ^ e Δ^. Since i(^^) = 0, each representative
of 9 has a subfoliation which is disjoint from a representative of &. As J*"
and ^ are carried by r, there exists a measured foliation H in the fibred
neighborhood JV(τ) of τ which is transverse to the ties and which is the
union of two subfoliations F and Fr which are disjoint except on the
frontier of their support and where F is in the equivalence class !F.

Since r is suited to Ĵ ", the separatrices of F are in one-to-one
correspondence with the cusps of N(r). Thus, F' has no separatrices and
is therefore a foliation by closed curves. On the other hand, the fact that r
is suited to J^ implies that the complement in N(τ) of F is a union of
annuli, each having one boundary component in dN(τ) and the other one
in the frontier of the support of F.

Now, F cannot have closed leaves, so the foliation induced on such a
complementary annulus by the ties is a standard foliation as in Figure 11.
Therefore there cannot be a smooth closed curve embedded transverse to
the ties in such an annulus. Thus follows Lemma 3.6. D

FIGURE 11

The proof of Theorem 3.1 is now complete. D

4. RLS sequences and pseudo-Anosov homeomorphisms.

4.1. Train tracks and pseudo-Anosov homeomorphisms. Recall that a
homeomoφhism Ψ of M is called pseudo-Anosov if there exist a pair of
transverse measured foliations (F w , μu) and (Fs

yμ
s), called respectively

the unstable and stable foliations of Φ, and a real number λ > 1 called the
dilatation of Ψ, so that

and

This section is intended to make explicit some well-known relations
between pseudo-Anosov homeomorphisms and train tracks. We prove the
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following

4.1. THEOREM. // Ψ is apseudo-Anosov homeomorphism and 3FU £

is the class of its unstable foliation, then there exists a train track τ suited to

Jfi" so that Ψτ < τ. Furthermore, if N(τ) is a fibred neighborhood of τ,

then Ψτ is isotopic to a train track τf in N(τ) which is transverse to the ties

so that the matrix describing the linear map from the space of weights on the

edges of τ' to the space of weights on the edges of τ is primitive irreducible

(i.e., has some iterate all of whose entries are strictly positive).

Proof. Let Fu and Fs denote the unstable and stable foliations of Ψ

respectively. For each singular point P of Fu, consider a small disk Dp

around P having as many cusps on its boundary as the number of

separatrices of i 7 " at P. DP is to be embedded in the surface as in Figure

12, where the cusps of dDp are on the F "-separatrices and the boundary of

Dp is transverse to Fs. Consider the subsurface M' = M-\JPDPoίM

with the foliation SΓ induced by Fs. By the density of the leaves of Fs,

each leaf of SΓ is homeomorphic to a segment and has its endpoints on

the boundary of M'. By general position, we can assume that there are no

leaves of 3~ connecting two singular points on 3M'. We can regard M' as

the fibred neighborhood N(τ) of a train track τ with 2Γ the foliation by

the ties; the singular ties correspond to the leaves of y which pass

through the singular points of 3 AT. By "blowing up" Fu at each singular

point and pushing Fu in N(τ) along .P-leaves (see Figure 13), we obtain

a partial foliation F in the class 3FU of Fu whose support is N(r) and

which is transverse to J . Fu has no saddle connections, and therefore F

has no leaves connecting singular points of N(τ). We conclude that r is

FIGURE 12
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FIGURE 13

suited to Fu. We represent τ as a train track embedded in the interior of

N(τ) transverse to the ties so that each edge of r contains a segment

which is in a leaf of Fu.

Consider now the image train track Ψ(τ). Insofar as Ψ preserves the

foliation F\ Ψ(τ) is transverse to this foliation and does not pass through

any singular point of Fs. In each disk Dp, we can therefore push Ψ(τ)

along the FMeaves to get a train track T', which is isotopic to Ψ(τ) and

contained in N(τ) transverse to the ties. Thus, Ψ(τ) < T.

On the other hand, by density of the leaves of Fu in M, the fact that

each edge of T contains a segment in a leaf of Fu, and by the expansion

property of F "-leaves under Φ, there exists a positive integer / so that if 77

is the train track obtained from Ψ ^ r ) by pushing it inside N(τ) as before,

then each edge of 77 intersects each tie of 2Γ. This implies that the matrix

describing the linear map from the vector space of weights on the

branches of 77 to the vector space of weights on the branches of T has all

of its entries strictly positive. We conclude that Ψ(τ) satisfies the require-

ments of the theorem. D

4.2. Foliations invariant by pseudo-Anosoυ homeomorphisms. Recall

that a foliation F is said to be arational if there is no closed curve in the

surface M which is the union of segments joining singular points of F.

(This is equivalent to the definition given in [FLP], Exposέ 9, §111.) If this

condition is satisfied by i7, then it is also satisfied by every other foliation

which is Whitehead equivalent to F. We can therefore use this terminol-

ogy for classees in Jί F.

4.2. THEOREM. Let F be an arational element of JiOF and T a train

track suited to F which admits a preperiodic and convergent RLS-sequence

w*(<F) (for some choice of function s). There then exists a pseudo-Anosov

homeomorphism Ψ of' M so that F is the class of the unstable foliation of Ψ.
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Proof. The assumption that the word wf(&F) is preperiodic means

that it admits an expression of the form w*(βr) = uvvυ , where u is a

string of k letters and υ a string of p letters from the alphabet. Let

(τ/)/>o be the sequence of train tracks associated with ws

r(^). Consider

the subsequence (τk + ίp)i>o of train tracks, for p = 1,2, Up to con-

jugacy, there exist only finitely many train tracks on M. Therefore, there

are positive integers / and / and a diffeomorphism Ψ of M so that

^(Tk + /P) = τk+(i+j)p !t follows that Φ(τk+ίp) < τk+Ip. The correspond-

ing linear map

A' E( ) ( )

induces a map on the set of rays in E(τk+ίp) which has a fixed point by

the Brouwer theorem. There thus exists an element 3?' e Vτk+ΐp so that

' = λ'J*"', where λ' is some positive real number. The measured

foliation class J*' is represented by a system of nonnegative weights on

the branches of τk+/p9 and this system of weights is identified with an

eigenvector of the matrix A with eigenvalue λ'.

We wish to prove that &' e f]^L0Vτ. The sequence of train tracks

(τk + i+ιjp)ι>o a r e a ^ topologically conjugate, and as the sequence of

elementary moves which allow one to pass from a train track in this

sequence to its successor is independent of / by preperiodicity, the

matrices which describe the sequence of carryings τk+I+(l+1)Jp < τk+ι+Up

are identical; these matrices thus have the common eigenvector which

describes the measured foliation class &'. Therefore &' e ΠjLoV +r+u,

whence J ^ e ΠfL0Vτr

By Theorem 3.1, &>' is topologically equivalent to J**, and therefore

&' is also arational. By [FLP], Expose 9, §IV and V, Ψ is isotopic to

either a pseudo-Anosov map or to a periodic map. The latter case cannot

occur since the action of Ψ on V +Ip sends this cone strictly into itself by

the convergence of the word w*(^). Thus, Ψ is isotopic to a pseudo-

Anosov map, and the theorem is proved. D

Since the unstable foliation of a pseudo-Anosov map is uniquely

ergodic ([FLP], Expose 12), we have the following

4.3. COROLLARY. // an arational measured foliation class admits a

preperiodic and convergent RLS word, then it is uniquely ergodic. D

REMARK. It is an interesting and unsolved problem to exactly char-

acterize the uniquely ergodic measured foliation classes in terms of RLS

sequences.
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We have the following converse to Theorem 4.2.

4.4. THEOREM. Let J*"e JίίF be the class of the unstable foliation of a

pseudo-Anosov map Ψ of M. There exists a train track τ suited to & and a

function s from Z+ to the ordered set of infinite separatrices of ^ so that the

word w*(^) is convergent and periodic.

Proof. By Theorem 4.1, there exists a train track r suited to J*" so that

Ψ(τ) < T. Let N(τ) be a fibred neighborhood of T and T' a train track

isotopic to Ψ(τ) contained in N(τ) transverse to the ties. By Lemma 2.1,

there is a finite set of arcs { Γ,} {, transverse to the ties which match the

vertices of r and τ'. By replacing Ψ by one of its iterates, we can suppose

that this pairing of vertices is the same as the pairing given by the map

followed by isotopy.

Consider now the finite word wτ(τ') obtained from the zipper con-

struction (of §2.3) applied to the present situation; we have the corre-

sponding finite sequence τ0 = τ1? rl9..., τL = T' of train tracks. Construct

the semi-infinite word by repeating w τ(τ'), and consider the correspond-

ing infinite sequence τ 0 , τ x , . . . , τ L , τ L + 1 , . . . of train tracks. For each

positive integer k, the train track τ ( Λ + 1 ) L is topologically conjugate to rkL

by the pseudo-Anosov map Ψ. By the dynamics of pseudo-Anosov maps

on JίJ^, the intersection of the nested sequence Fτ consists exactly of the

element J^"G Jί&.

Finally, by construction each element in this intersection admits the

semi-infinite word w τ(τ')w τ(τ') , which is periodic. That this word is

convergent follows from the fact that the nested intersection of the Vτ

consists of the singleton {& } . D

4.5. A characterization of pseudo-Anosov foliations carried by a given

track. We can in fact prove the following generalization of Theorem 4.4.

4.5. THEOREM. Let J ^ e Jί& be the equivalence class of the unstable

foliation of a pseudoΆnosov map of M. Then for every train track σ suited to

J^, there exists a function s from Z+ to the ordered set of infinite sep-

aratrices of ϊF so that the word ws

a{^) is convergent and preperiodic.

Proof. Fix a neighborhood N(σ) of σ with a foliation 3Γf by the ties,

and let F' be a representative of the class & whose support is equal to

N(σ) and which is transverse to the ties. Consider the train track T given

by Theorem 4.3 with JV(τ) its fibred neighborhood, F the foliation of
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N(τ) representing J^ and τQ,τv... the sequence of train tracks corre-

sponding to the periodic word wτ

5( J*"). As before, the fact that the two

representatives F and F' have no leaves connecting singular points

implies that these two partial foliations are isotopic. Let Φ be a diffeo-

morphism of M isotopic to the identity so that ΦF = F'.

From the construction of the infinite sequence of train tracks associ-

ated with a RLS word, it is easy to see that as i goes to infinity, the train

track T, can be embedded in N(τ) in such a way that the angles made by

the edges of τ7 with the leaves of F tend uniformly to zero. This is

essentially a consequence of the fact that the refinement operation "fol-

lows the leaves" of F.

Now, by compactness of M, Φ has bounded distortion. Therefore, for

i sufficiently large, Φ(η) makes small angles with Ff and is transverse to

2Γf. It follows that ΦT, < σ. Take such a large i and consider finally a

finite combinatorial RLS word w given by the zipper construction (§2.4),

which describes the elementary moves required to pass from σ to τf . This

finite word w followed by the semi-infinite word induced by w*( &) on τf

then defines the preperiodic semi-infinite word wj( &). D

4.6. Concluding remarks. In Theorems 4.2 and 4.4 we have given a

complete characterization of which classes of measured foliations on M

are left invariant by some pseudo-Anosov map of M. Theorem 4.5 further

characterizes the invariant foliation classes which are carried by a given

train track. Furthermore, the argument of Theorem 4.4 gives a method for

producing a pseudo-Anosov map fixing a given invariant foliation class.

Thus, our endeavors give a procedure for constructing all conjugacy

classes of pseudo-Anosov maps: enumerate representatives {τ }^, of all

the conjugacy classes of all the train tracks filling M (i.e., train tracks all

of whose complementary regions are disks); compute the symmetry groups

{(/,}*, of these tracks; enumerate all the periodic RLS sequences on each

T, so that the associated linear maps on measures are primitive irreducible,

and employ the method of Theorem 4.3 to generate a sequence of

pseudo-Anosov maps {Ψ; }/>!*, finally, consider {g°Ψ: Ψ arises from a

RLS sequence on τf. and g G Gt}.

We further remark that there is an estimate which says roughly that

the dilatation of a pseudo-Anosov map is large if the period of the RLS

word is large. This estimate is derived in our paper [PP] and allows one to

bound the Teichmύller geometry of moduli space viz. the number of

Teichmύller geodesies of moduli space of a fixed length. In this latter

regard, it would be useful (and of independent interest) to characterize the



A CHARACTERIZATION OF PSEUDO-ANOSOV FOLIATIONS 377

periods which occur for pseudo-Anosov maps (i.e., the periods which

determine primitive irreducible linear maps on measures).
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