RESTRICTION TO GL ($^{(0) \text { OF SUPERCUSPIDAL }}$ REPRESENTATIONS OF GL $2(F)$

Kristina Hansen

Let F be a p-field with ring of integers \mathcal{O} whose maximal prime ideal is $h=\omega \mathcal{O}$, and with finite residue field $k=\mathcal{O} / h$. Let $G=\mathrm{GL}_{2}(F)$ and let K be the subgroup $\mathrm{GL}_{2}(\mathcal{O})$ of G. In this paper we obtain the decomposition of the restriction to K of any irreducible supercuspidal representation of G. (The corresponding result for unitary representations, $G=\mathrm{PGL}_{2}$, and k of characteristic $\neq 2$ was found by Silberger. Here we make no assumption on the characteristic of ℓ.) It is well-known that any irreducible supercuspidal representation of G is admissible and hence decomposes as a direct sum of irreducible K-types, each of which appears with finite multiplicity. Here we show that, in fact, each of these irreducible components occurs with multiplicity one, and we give an explicit description of each component.

This work is based upon results of Kutzko, who proved that any irreducible supercuspidal representation of G is twist-equivalent to another such representation which, in turn, may be compactly induced from one of two compact-modulo-center subgroups of G.

Introduction. Let F be a p-field with ring of integers \mathcal{O} whose maximal prime ideal is $\nsim=\omega \mathcal{O}$, and with finite residue field $k=\mathcal{O} / h$. Let $G=\mathrm{GL}_{2}(F)$ and let K be the subgroup $\mathrm{GL}_{2}(\mathcal{O})$ of G. In this paper we obtain the decomposition of the restriction to K of any irreducible supercuspidal representation of G. (The corresponding result for unitary representations, $G=\mathrm{PGL}_{2}$, and k of characteristic $\neq 2$ was found by Silberger in [Si2]. Here we make no assumption on the characteristic of k.) It is well-known that any irreducible supercuspidal representation of G is admissible and hence decomposes as a direct sum of irreducible K-types, each of which appears with finite multiplicity. Here we show that, in fact, each of these irreducible components occurs with multiplicity one, and we give an explicit description of each component.

This work is based upon results of Kutzko ([K3] and [K4]), who proved that any irreducible supercuspidal representation of G is twistequivalent to another such representation which, in turn, may be compactly induced from one of two compact-modulo-center subgroups of G. I would like to thank Philip Kutzko, my thesis advisor, for his inspiration and guidance of this work. I would also like to express my appreciation to Paul Sally for his preliminary reading of and comments on this paper.

Some notation and facts. We need some notation in addition to that established above. We make the convention that for any subsets A, B, C, and $D,\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ denotes the set of elements $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a in A, b in B, c in C and d in D.

Let k be the residue field \mathcal{O} / h and let $|k|=q$. The additive group F^{+} has a filtration $\cdots \mathfrak{p}^{-1} \supset \mathcal{O}=\mathfrak{p}^{0} \supset \mathfrak{p}^{1} \supset \mathfrak{h}^{2} \supset \cdots$ with $\left[\mathfrak{p}^{s}: \not \mathfrak{h}^{t}\right]=q^{t-s}$ for $t \geq s$. If $U=\mathcal{O}-\not n$, the group of units in \mathcal{O}, then U has a corresponding filtration $U \supset U^{1} \supset U^{2} \supset \cdots$, where $U^{i}=1+p^{i}$, and we have $\left[U: U^{1}\right]=q-1$ and $\left[U^{s}: U^{t}\right]=q^{t-s}$ for $t \geq s \geq 1$.

Let P be the standard parabolic subgroup of G, and let N be its unipotent radical. (That is, $P=\left(\begin{array}{cc}F^{*} & F \\ 0 & F^{*}\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & F \\ 0 & 1\end{array}\right)$, where F^{*} denotes the group of units of F.) Then N is isomorphic to the additive group F^{+}and has a corresponding filtration $\cdots N_{-1} \supset N_{0} \supset N_{1} \supset \cdots$, where $N_{t}=\left(\begin{array}{ll}1 & \mu_{1}^{\prime} \\ 0 & 1\end{array}\right)$. Let $P_{0}=P \cap \mathrm{Gl}_{2}(\mathcal{O})=\left(\begin{array}{cc}U & 0 \\ 0 & U\end{array}\right)$; then $N_{0}=N \cap P_{0}$.

Our matrix groups have similar filtrations. If $M=M_{2}(\mathcal{O})$, then we have a filtration $M_{0}=M \supset M_{1} \supset M_{2} \cdots$, where $M_{i}=\mu^{i} M$ for each nonnegative integer i. If we let M^{\prime} be the set of matrices in M which are upper triangular modulo $\not n$, then M^{\prime} also has a filtration given by
$M_{0}^{\prime}=M^{\prime} \supset M_{1}^{\prime} \supset M_{2}^{\prime} \cdots, \quad$ where $\quad M_{i}^{\prime}=\left(\begin{array}{cc}\mathfrak{h}^{i_{2}} & \mathfrak{h}^{i_{1}} \\ \boldsymbol{h}^{i_{1}+1} & \mathfrak{h}^{i_{2}}\end{array}\right)$

$$
\text { for } i_{1}=[i / 2] \text { and } i_{2}=[(i+1) / 2]
$$

where the brackets denote the greatest-integer function. The filtration of M defines a corresponding filtration $K_{0}=K \supset K_{1} \supset K_{2} \cdots$ of $K=$ $\mathrm{Gl}_{2}(\mathcal{O})$, where $K_{i}=I+M_{i}$, for each $i \geq 1$. We note that $K / K_{1} \cong$ $\mathrm{Gl}_{2}(k)$, so that $\left[K: K_{1}\right]=(q-1)^{2} q(q+1)$, and that $\left[K_{s}: K_{t}\right]=$ $\left[M_{s}: M_{t}\right]=q^{4(t-s)}$ if $t \geq s \geq 1$. We also consider the subgroup B of K consisting of those matrices in K which are upper triangular modulo $\nsim . B$ has a filtration $B_{0}=B \supset B_{1} \supset B_{2} \cdots$ corresponding to that of M^{\prime}, where $B_{i}=I+M_{i}^{\prime}$, for each $i \geq 1$. We note that $\left[B: B_{1}\right]=\left[U: U^{1}\right]^{2}=$ $(q-1)^{2}$, and $\left[B_{s}: B_{t}\right]=[\mathcal{O}: \npreceq]^{2}=q^{2}$ for each $t \geq s \geq 1$, so this filtration of B is roughly twice as fine as that of K. Finally, we define the subgroups Z and Z^{\prime} of G to be the center $Z(G)$ of G and the subgroup $\left\{\omega^{\prime} I \mid i\right.$ an integer $\}$ of $Z(G)$, respectively, and the subgroup Z_{0} of K to be the center $Z(K)$ of K.

At times in what follows we refer to conjugate groups of various groups. If J is a subgroup of G, we define the conjugate group J^{γ} for γ in G to be $\left\{\gamma j \gamma^{-1} \mid j\right.$ in $\left.J\right\}$. In particular, we frequently refer to conjugate groups J^{w}; here w is the Weyl element $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

We also frequently use the notation $P \backslash Q / R$. If P and R are subgroups of the group Q, then $P \backslash Q / R$ refers to a complete set of (P, R) double-coset representatives in Q.

Level and twist-equivalence. Given a representation σ of K or $Z K$ (respectively, B or $Z^{\prime} B$), because σ is locally constant, there is a minimal number n such that K_{n} (respectively, B_{n}) is contained in the kernel of σ. This integer n is called the K-level (respectively, B-level) of σ. For such a representation σ, it is clear that the restriction of σ to N_{n} (respectively, $N_{n_{1}}$) decomposes as a direct sum of identity representations. σ is defined to be cuspidal if its restriction to N_{0} contains no nontrivial identity component, so that there is a minimal number m with $0<m \leq n$ (respectively, $0<m \leq n_{1}$) such that the restriction of σ to N_{m} contains a nontrivial identity component. In this case, the nonnegative integer $n-m$ (respectively, $n_{1}-m$) is called the K-defect (respectively, B defect) of σ.

Levels are defined similarly for a supercuspidal representation τ of G; however, in this case, because τ is admissible, it can contain no group K_{n} or B_{n} in its kernel. Here we define the K-level (respectively, B-level) of τ to be the minimal integer n such that the subspace of vectors fixed under τ by K_{n} (respectively, B_{n}) is nontrivial. It is a fact [$\mathbf{B o}$] that any supercuspidal representation of G has K-level at least 1 and B-level at least 2.

Let π and τ be representations of G. We say that π and τ are twist-equivalent if there is a quasicharacter χ of the multiplicative group F^{*} of F such that π is isomorphic to $\tau \otimes \chi \circ$ det. Twist-equivalence is an equivalence relation on the set of (equivalence classes) of representations of G, and if π and τ are twist-equivalent, then they share the same irreducible subspaces. Moreover, π is smooth (respectively, admissible, supercuspidal) if and only if τ is.

If π is a supercuspidal representation, we define the minimal level of π to be the minimum of the levels of all representations τ which are twist-equivalent to π. We say that π is of minimal level if its level is equal to its minimal level. In this paper, we obtain an explicit decomposition of the restriction to K of any supercuspidal representation π which is of minimal level; the remarks above show that there is no loss of generality in placing this added assumption on π.

Supercuspidal representations of $\mathrm{GL}_{2}(F)$. The results of this paper are based on work which appears in two papers of Kutzko ([K3] and [K4]). In the first, he proves that cuspidal representations of $Z K$ or $Z^{\prime} B$
compactly induce to supercuspidal representations of G, that such representations which are both irreducible and of defect 0 compactly induce irreducible representations, and finally, that each irreducible supercuspidal representation of G is induced uniquely in this fashion. In the second paper, he gives explicit descriptions of the inducing representations. The work of this paper is based upon these descriptions, and we begin with a recounting of them.

To commence, we shall, as previously indicated, fix an arbitrary irreducible supercuspidal representation (π, V), which we without loss of generality assume to be of minimal level l.

Level 1. Suppose first that $l=1$, so that the subspace V_{1} of V consisting of those vectors in V which are fixed under π by K_{1} is nontrivial. Because K_{1} is normal in K, V_{1} is a K-subspace of V; let π_{1} denote the restriction to V_{1} of $\left.\pi\right|_{K}$. If σ is any irreducible K-subrepresentation of π_{1}, then clearly $i_{N_{1}}(\sigma, 1) \neq 0$. If in addition we had $i_{N_{0}}(\sigma, 1) \neq 0$, then because $B_{1}=K_{1} N_{0}$, σ would contain a B-subrepresentation of level 1 , but this is impossible because the B-level of π is at least 2 . Thus we must have $i_{N_{0}}(\sigma, 1) \neq 0$, whence σ is a cuspidal representation of defect 0 .

Let W be a subspace of V_{1} where π_{1} acts as σ. Then since the group Z is contained in the center $Z(G), W$ is in fact a $Z K$-subrepresentation of π. Thus if τ denotes the restriction to W of $\left.\pi\right|_{Z K}, \tau$ is also irreducible and cuspidal of defect 0 , and Kutzko's first paper shows that the compactly induced representation τ^{G} is irreducible. Since, by Frobenius reciprocity (which may be proved in this case as a corollary to Kutzko's generalized Mackey's theorem, [K1]), π is a subrepresentation of τ^{G}, this irreducibility implies that these two representations are in fact isomorphic.

Now we consider the case of supercuspidal representations of minimal level $l>1$. These representations may be divided into two categories, depending upon whether they are compactly induced from a representation of $Z K$ or of $Z^{\prime} B$; those in the first category are called unramified, and those in the second, ramified (for reasons which will be seen later). Kutzko's descriptions of the inducing representations for these supercuspidal representations fall into three categories, depending upon whether the supercuspidal representation is unramified of even level, unramified of odd level, or ramified.

Level $>$ 1. Suppose that the representation π has level $l>1$. As in the case that $l=1$, the subspace V_{l} of vectors in V which are fixed under π by K_{l} is a nontrivial finite-dimensional K-subspace of V, and we let π_{l} denote the restriction to V_{l} of $\left.\pi\right|_{K}$. Let $l_{1}=[l / 2]$ and $l_{2}=[(l+1) / 2]$, as
above. Then the restriction of π_{l} is a representation of $K_{l_{2}}$ which factors through $K_{l_{2}} / K_{l}$. This quotient group is isomorphic to the abelian group $M / M_{l_{1}}$ under the mapping $\left(1+\omega^{l_{2}} A\right) / K_{l} \rightarrow A+M_{l_{1}}$. It follows that all of the irreducible subrepresentations of the restriction of π_{l} to $K_{l_{2}}$ are one-dimensional. In fact, the existence of this isomorphism implies that every irreducible $K_{l_{2}}$-subrepresentation of π_{l} is of the form ψ_{A} for some A in M, where $\psi_{A}(k)=\psi\left(\omega^{-l} \operatorname{Tr}(A(k-I))\right)$, where ψ is a fixed character of F^{+}which is trivial on \mathcal{O} but not on \mathfrak{p}^{-1}. It is easy to show that $\psi_{A}=\psi_{B}$ if and only if $A-B$ lies in $M_{l_{1}}$ and that for any k in K, the conjugate representation ψ_{A}^{k} is isomorphic to $\psi_{k A k^{-1}}$. The latter fact implies that π_{l} has an irreducible $K_{l_{2}}$-subrepresentation ψ_{A} if and only if it also contains a subrepresentation ψ_{B} for any matrix B in M which is K-similar to A.

We proceed by considering a matrix A such that ψ_{A} is a subrepresentation of the restriction of π_{l} to $K_{l_{2}}$. If \bar{A} denotes the image of A under the canonical epimorphism of M onto $M_{2}(k)$, and if \bar{A} is similar to \bar{B} in $M_{2}(k)$, then A is K-similar to a matrix B in M with image \bar{B}, and ψ_{B} is also a $K_{l_{2}}$-subrepresentation of π_{l}. This means that we may without loss of generality assume that \bar{A} is in Jordan canonical form. Let χ_{A} denote the characteristic polynomial of \bar{A} in $M_{2}(k)$. The cases that π is unramified or ramified correspond, respectively, to the cases that χ_{A} is irreducible or reducible.

Unramified case. In this case, there are \bar{s} and $\bar{\Delta}$ in k with $\chi_{A}(x)=$ $x^{2}-\bar{s} x+\bar{\Delta}$, an irreducible polynomial in $k[x]$ (so $\bar{\Delta} \neq 0$). In this case, $A=\left(\begin{array}{cc}0 & 1 \\ -\Delta & s\end{array}\right)+\omega C$, for some preimages s and Δ in \mathcal{O} of \bar{s} and $\bar{\Delta}$, and some matrix C in M. It is easily shown that A is then K-similar to a matrix $B=\left(\begin{array}{cc}0 & 1 \\ -\Delta^{\prime} & s^{\prime}\end{array}\right)$, where s^{\prime} and Δ^{\prime} are also preimages in \mathcal{O} of \bar{s} and $\bar{\Delta}$, so we without loss of generality assume that $C=0$.

It is then easy to show that the stabilizer in K of ψ_{A} is the subgroup $U_{E} K_{l_{1}}$, where U_{E} denotes the group of units in the subalgebra $\mathcal{O}_{E}=\mathcal{O}[A]$ of M generated by A. (Note that if we let E be the subalgebra $F[A]$ of $M_{2}(F)$, then because χ_{A} is irreducible, E is a p-field which is unramified of degree 2 over F (see $[\mathbf{S}]$), with ring of integers \mathcal{O}_{E}; this explains the terminology " unramified" used for this case.)

Unramified, even level case. First suppose that π has even level, so that $l=2 m(m \geq 1)$, and ψ_{A} is a representation of K_{m} factoring through $K_{m} / K_{2 m}$ with stabilizer $U_{E} K_{m}$. In this case, because $U_{E} \cap K_{m}=U_{E}^{m}$, the restriction to U_{E}^{m} of ψ_{A} has an extension ψ_{A} to U_{E}, and for each λ in
$\Lambda=\left(U_{E} / U_{E}^{m}\right)^{\wedge}$ we get a well-defined representation $\psi_{A, \lambda}$ of $U_{E} K_{m}$ by defining $\psi_{A, \lambda}(u k)=\lambda(u) \psi_{A}(u) \psi_{A}(k)$ for each u in U_{E} and k in K_{m}.

Let σ be an irreducible K-subrepresentation of π_{l} such that the restriction of σ to K_{m} contains the subrepresentation ψ_{A}. Then by Frobenius reciprocity, σ is a subrepresentation of the induced representation ψ_{A}^{K}. However, by Clifford's theorem, ψ_{A}^{K} is isomorphic to the direct sum representation $\sum_{\lambda \in \Lambda} \psi_{A, \lambda}$, , each of whose summands is an irreducible representation of K. Thus σ is isomorphic to $\psi_{A, \lambda}^{K}$ for some λ in Λ.

Let W be an irreducible subspace of V_{l} where π_{l} acts as σ. As in the level one case, W is a $Z K$-subspace of V, and if we let τ denote the restriction to W of $\left.\pi\right|_{z K}, \tau$ is irreducible. The fact that σ is isomorphic to $\psi_{A, \lambda}^{K}$ implies that τ is cuspidal, of level l and defect 0 , and as before, we find that π is isomorphic to the compactly-induced representation τ^{K}.

Unramified, odd level case. Suppose next that π has odd level, so that $l=2 m+1$ and ψ_{A} is a representation of K_{m+1} factoring through $K_{m+1} / K_{2 m+1}$. As in the case above, ψ_{A} may be extended to $U_{E} K_{m+1}$, but in this case $U_{E} K_{m}$ is the stabilizer of ψ_{A} in K. In this case we make use of the following filtration of subgroups:

We note first that there exists an extension ψ_{A}^{\prime} to $U_{F} U_{E}^{1}$ of the restriction of ψ_{A} to $U_{F} U_{E}^{1} \cap K_{m+1}=U_{E}^{m+1}$. Then as above, each representation λ^{\prime} in $\left(U_{F} U_{E}^{1} / U_{E}^{m+1}\right)^{\wedge}$ determines a representation $\psi_{A, \lambda^{\prime}}$ of $U_{F} U_{E}^{1} K_{m+1}$ which extends ψ_{A}. Each representation ψ_{A}^{\prime} has in turn an extension ψ_{A}^{-}to U_{E}, and for λ in U_{E}^{\wedge} which extend λ^{\prime}, we get representations $\psi_{A, \lambda}$ which extend $\psi_{A, \lambda^{\prime}}$ to $U_{E} K_{m+1}$. On the other hand, $K_{m+1} N_{m}^{w}=B_{l}^{w}$ is a subgroup of K_{m} for which the formula $\psi_{A}(k)=\psi\left(\omega^{-1} \operatorname{Tr} A(k-I)\right)$ defines a representation, and since $U_{F} U_{E}^{1} \cap B_{l}^{w}=U_{E}^{m+1}$, there are extensions $\psi_{A, \lambda^{\prime}, \gamma}$ of $\psi_{A, \lambda^{\prime}}$ to $U_{F} U_{E}^{1} B_{l}^{w}$ corresponding to γ in $\left(N_{m}^{w} / N_{m+1}^{w}\right)^{\wedge}$. Each of these representations induces to a unique irreducible representation $\zeta_{A, \lambda^{\prime}}$ of $U_{F} U_{E}^{1} K_{m}$ (independently of γ), and each induced representation $\zeta_{A, \lambda^{N}}{ }_{U_{K}} K_{m}$ is isomorphic to a direct sum of irreducible representations $\Sigma_{\lambda \text { extending } \lambda^{\prime}} \xi_{A, \lambda}$, each summand of which is completely determined as the complement in $\zeta_{A, \lambda^{\prime}} U_{E} K_{m}$ of the induced representation $\psi_{A, \lambda} U_{E} K_{m}$, for
some extension λ of λ^{\prime} to U_{E}, where distinct extensions λ determine nonisomorphic representations $\xi_{A, \lambda}$, and where each $\xi_{A, \lambda}$ is actually an extension of $\zeta_{A, \lambda^{\prime}}$ to $U_{E} K_{m}$. It follows from Clifford's theorem that the induced representation $\psi_{A}^{U_{E} K_{m}}$ is isomorphic to q copies of the direct sum $\sum_{\lambda^{\prime}} \Sigma_{\lambda}$ extending $\lambda^{\prime} \xi_{A, \lambda}$, and that ψ_{A}^{K} is isomorphic to q copies of $\Sigma_{\lambda}, \sum_{\lambda} \xi_{A, \lambda}^{K}$, all of whose summands are irreducible.

Now if σ is an irreducible K-subrepresentation of π_{l} such that the restriction of σ to K_{m+1} contains ψ_{A}, then by Frobenius reciprocity, σ must be isomorphic to one of the representations $\xi_{A, \lambda}^{K}$. If, as before, we let W denote a subspace of V_{l} where π_{l} acts as σ, then W is a $Z K$-subspace of V, and if τ denotes the restriction to W of $\left.\pi\right|_{Z K}$, then τ is irreducible. Because σ is isomorphic to $\xi_{A, \lambda}^{K}$ and $\xi_{A, \lambda}$ restricts to $\zeta_{A, \lambda^{\prime}}$ on $U_{F} U_{E}^{1} K_{m}, \tau$ is cuspidal, of level l and defect 0 , and as before, we find that π is isomorphic to the compactly-induced representation τ^{G}.

Ramified case. Finally, we consider the ramified case. Here, for any subrepresentation ψ_{A} of the restriction to $K_{l_{2}}$ of π_{l}, we have $\chi_{A}(x)=$ $(x-\bar{a})(x-\bar{b})$, a reducible polynomial in $k[x]$. Kutzko has shown [K2] that because π is supercuspidal, we cannot have $\bar{a} \neq \bar{b}$, so in fact, $\chi_{A}(x)$ $=(x-\bar{a})^{2}$ and we can assume that $\bar{A}=\left(\begin{array}{ll}\bar{a} & \delta \\ 0 & \bar{a}\end{array}\right)$, where δ is either 0 or 1 . Noting $\psi_{a I}=\chi_{a}{ }^{\circ}$ det, where χ_{a} is a character of $U_{l_{2}}$, we see that if $\bar{B}=$ $\left(\begin{array}{ll}0 & \delta \\ 0 & 0\end{array}\right)$ and B is any preimage of \bar{B} in M, then $\psi_{A}=\psi_{B} \otimes \chi_{a} \circ$ det. Thus if χ_{a}^{\sim} is an extension of χ_{a} to F^{*}, and $\xi=\pi \otimes \chi_{a}^{\sim}{ }^{\circ}$ det, then ξ is twist-equivalent to π and ψ_{B} is a K-subrepresentation of ξ. Since, as previously mentioned, twist-equivalent representations have corresponding irreducible subrepresentations on common subspaces, we without loss of generality assume in what follows that $\pi=\xi$ and $\bar{A}=\bar{B}$. Moreover, if $\delta=0$, then ψ_{A} is trivial on K_{l-1}, contradicting the fact that $V_{l-1} \neq 0$, so we have $\delta=1$.

The form of \bar{A} implies that A is K-similar to a matrix $\left(\begin{array}{cc}0 & 1 \\ -\Delta & s\end{array}\right)$ with Δ and s in \nsim, so we assume that A is equal to this matrix. Then ψ_{A} is trivial on the subgroup $B_{2 l-2}$ of B, and if we let W_{j} be the space of vectors in V fixed under π by B_{j}, then $W_{2 l-2} \neq 0$. (Recall that l must be at least 2.) Because B_{j} is normal in B, each space W_{j} is a B-subspace of V, and we let π_{j}^{\prime} denote the restriction to W_{j} of $\left.\pi\right|_{B}$. Then the restriction to B_{l-1} of $\pi_{2 l-2}^{\prime}$ factors through the group $B_{l-1} / B_{2 l-2}$, which is isomorphic to the abelian group $M_{l-1}^{\prime} / M_{2 l-2}^{\prime}$, and this implies that the representation decomposes as a direct sum of one-dimensional representations ψ_{D} where, as before, $\psi_{D}(b)=\psi\left(\omega^{-l} \operatorname{Tr} D(b-I)\right)$ but now D must lie in M_{1}^{\prime} and $\psi_{D_{1}}=\psi_{D_{2}}$ if and only if $D_{1}-D_{2}$ lies in M_{l}^{\prime}. Because $B_{l-1} \supset K_{l_{2}}$, there must be some D in M_{1}^{\prime} such that the restriction $\left.\psi_{D}\right|_{K_{l_{2}}}$ is equal to ψ_{A}.

This implies that $D-A \in M_{l_{1}}$, so that D is B-similar to $D^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -\Delta^{\prime} & s^{\prime}\end{array}\right)$ where Δ^{\prime} and s^{\prime} lie in \mathcal{O} and $\Delta^{\prime} \equiv \Delta$ and $s^{\prime} \equiv s\left(\operatorname{modulo} \nprec^{l_{1}}\right)$, and we can without loss of generality assume $D=D^{\prime}$. Furthermore, since $\psi_{A}=\psi_{D}$ on $K_{l,}$, we can assume that $A=D^{\prime}=D$. Suppose that $\Delta \in \not \mathfrak{h}^{2}$. Then if $g=\left(\begin{array}{cc}0^{2} & \omega^{-1} \\ 1 & 0\end{array}\right), g A g^{-1}$ lies in $\nsim M$, so that ψ_{A}^{g}, also a subrepresentation of the restriction of $\pi_{2 l-2}^{\prime}$, is trivial on K_{l-1}. But this contradicts the fact that $V_{l-1} \neq 0$, so $\Delta \in \nsim-\eta^{2}$.

This implies that the characteristic polynomial χ_{A} of \bar{A} is an Eisenstein polynomial and hence is irreducible. This in turn implies that if $E=F[A]$, the subalgebra of $M_{2}(F)$ generated by A, then E is a p-field [Se], ramified of degree 2 over F, and it is easy to show that $\not \mu_{E}^{n}=E \cap M_{n}^{\prime}$ and $U_{E}^{n}=U_{E} \cap B_{n}$. This case is similar to the unramified even-level case in that we can show that the stabilizer of ψ_{A} in B is B_{l-1}. Defining an extension ψ_{A}^{\prime} to U_{E} of the restriction of ψ_{A} to U_{E}^{l-1} as in that case, we get a representation $\psi_{A, \lambda}$ on $U_{E} B_{l-1}$ extending ψ_{A} for each representation λ in $\left(U_{E} / U_{E}^{l-1}\right)^{\wedge}$. Clifford's theorem then implies that the induced representation ψ_{A}^{B} decomposes as a direct sum of nonisomorphic irreducible representations $\sum \psi_{A, \lambda}^{B}$, and as before, $\left.\pi\right|_{B}$ must contain a subrepresentation σ isomorphic to $\psi_{A, \lambda}^{B}$ for some λ. If W is a subspace of V where $\left.\pi\right|_{B}$ acts by σ, then σ has an extension τ to $Z^{\prime} B$, and again we find that π is isomorphic to the compactly induced representation τ^{G}.

Decomposition of the representation. We can now begin to decompose the representation $\left.\pi\right|_{K}$, as desired. In each case above, π is compactly induced from an irreducible representation τ of the subgroup L of G, where $L=Z K$ in the level 1 and unramified cases, and $L=Z^{\prime} B$ in the ramified case. Using this fact we can find an initial decomposition of $\left.\pi\right|_{K}$, as follows.

Theorem 1. If π is isomorphic to the compactly induced representation τ^{G}, where τ is a cuspidal representation of L (equal to either $Z K$ or $Z^{\prime} B$), then the restriction $\left.\pi\right|_{K}$ is isomorphic to the direct sum of induced representations $\sum_{\eta \in K \backslash G / L}\left(\left.\tau^{\eta}\right|_{K \cap L} \eta\right)^{K}$.

Proof. Because π is admissible, we know [Si1] that the restriction $\left.\pi\right|_{K}$ decomposes as a direct sum of irreducible K-types, each occurring with finite multiplicity. This means that $\left.\pi\right|_{K}$ is completely determined by the intertwining numbers $i_{K}\left(\delta,\left.\pi\right|_{K}\right)$, for irreducible representations δ of K,
and it suffices to show that

$$
\begin{aligned}
i_{K}\left(\delta,\left.\pi\right|_{K}\right) & =i_{K}\left(\delta, \sum_{\eta \in K \backslash G / L}\left(\left.\tau^{\eta}\right|_{K \cap L} \eta\right)^{K}\right) \\
& =\sum_{\eta \in K \backslash G / L} i_{K}\left(\delta,\left(\left.\tau^{\eta}\right|_{K \cap L} \eta\right)^{K}\right),
\end{aligned}
$$

for each such δ. By using Kutzko's generalization of Mackey's theorem [K1], we can prove a version of Frobenius reciprocity [Ha] which implies that $i_{K}\left(\delta,\left.\pi\right|_{K}\right)=i_{K}\left(\delta,\left.\tau^{G}\right|_{K}\right)=\sum_{\eta \in K \backslash G / L} i_{K \cap L} \eta\left(\delta, \tau^{\eta}\right)$. On the other hand, using Frobenius reciprocity for compact groups, we find that $i_{K}\left(\delta,\left(\left.\tau^{\eta}\right|_{K \cap L} \eta\right)^{K}\right)=i_{K \cap L} \eta\left(\delta, \tau^{\eta}\right)$.

The next lemmas allow us to write the direct sum in Theorem 1 more explicitly. Their proofs are quite simple and are omitted. For each integer $t \geq 0$, let $\eta_{t}=\left(\begin{array}{cc}1 & 0 \\ 0 & \omega^{t}\end{array}\right)$.

Lemma 1. If $L=Z K$ or $Z^{\prime} B$, then $K \backslash G / L$ may be taken to be the set $\left\{\eta_{t} \mid t=0,1,2, \ldots\right\}$.

Lemma 2. If $L=Z K$, then $K \cap L^{\eta_{t}}=K \cap K^{\eta_{t}}$. If $L=Z^{\prime} B$, then $K \cap L^{\eta_{t}}=K \cap B^{\eta_{t}}$.

Lemma 3. If $t=0$, then $K \cap K^{\eta_{t}}=K$ and $K \cap B^{\eta_{t}}=B$. If $t \geq 1$, then $K \cap K^{\eta_{t}}=K \cap B^{\eta_{t}}=P_{0} K_{t}$, the set of matrices in K which are upper triangular modulo $\not p^{t}$.

Recall that the representation τ of L extends a representation σ of a subgroup J of L, where $J=K$ when $L=Z K$ and $J=B$ when $L=Z^{\prime} B$. This fact and the last three lemmas imply that the initial decomposition of $\left.\pi\right|_{K}$ which is given in Theorem 1 may be rewritten as a countable direct sum as follows: $\left.\pi\right|_{K} \cong \sigma^{K} \oplus \sum_{t \geq 1}\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$. The rest of this paper is devoted to proving that our decomposition of $\left.\pi\right|_{K}$ is now complete; i.e., that each summand in the direct sum above is in fact irreducible. We proceed with a case-by-case analysis.

Level 1. Assume again that $l=1$ so that, as seen above, π is compactly induced from the representation τ of $Z K$ extending the representation σ of K, where σ is irreducible and cuspidal of defect 0 . Because σ factors through K / K_{1} and this group is isomorphic to $\mathrm{GL}_{2}(k)$, σ determines an irreducible representation $\bar{\sigma}$ of the latter group. The fact
that σ is cuspidal implies that $\bar{\sigma}$ is also: i.e., if \bar{N} denotes the group of upper triangular matrices in $\mathrm{GL}_{2}(k)$, then $i_{\bar{N}}(\bar{\sigma}, 1)=0$.

The irreducible cuspidal representations of $\mathrm{GL}_{2}(k)$ are well-known, so we have explicit formulas for the action of $\bar{\sigma}$. Specifically, $\bar{\sigma}$ has dimension $q-1$ and there exists a character ρ of k^{*} such that the following formulas hold for the character $\chi(\bar{\sigma})$ of $\bar{\sigma}$:

$$
\begin{aligned}
& \chi(\bar{\sigma})\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right)=0, \quad \text { for all } c \text { in } k \text { and } a \neq d \text { in } k^{*}, \\
& \chi(\bar{\sigma})\left(\begin{array}{ll}
a & 0 \\
c & a
\end{array}\right)=-\rho(a), \text { for all } c \text { in } k^{*} \text { and } a \text { in } k^{*}, \quad \text { and } \\
& \chi(\bar{\sigma})\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)=(q-1) \rho(a), \quad \text { for all } a \text { in } k^{*} .
\end{aligned}
$$

We use these formulas below to show that each summand $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is irreducible by proving that its intertwining number with itself is 1. Applying Mackey's theorem for compact groups to this representation, we find that

$$
i_{K}\left(\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K},\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}\right)=\sum_{\alpha \in P_{0} K_{t} \backslash K / P_{0} K_{t}} i_{P_{0} K_{t} \cap\left(P_{0} K_{t}\right)^{\alpha}}\left(\sigma^{\eta_{t}},\left(\sigma^{\eta_{t}}\right)^{\alpha}\right) .
$$

The formulas above with the lemmas below allow us to compute this number. For each positive integer i, let $\alpha_{i}=\left(\begin{array}{c}1 \\ \omega^{\prime}\end{array} 1\right.$

Lemma 4. For each positive integer $t, P_{0} K_{t} \backslash K / P_{0} K_{t}$ may be taken to be the set $\{I, w\} \cup\left\{\alpha_{i} \mid 0<i<t\right\}$, where w denotes the Weyl element.

Proof. If \bar{P} denotes the set of upper triangular matrices in $\bar{G}=$ $\mathrm{GL}_{2}(k)$, then it is well-known that $\bar{P} \backslash \bar{G} / \bar{P}$ may be taken to be $\{I, w\}$. Since K_{1} is normal in K, this implies that for any k in K, there are elements p_{1} and p_{2} in P_{0} such that $p_{1} k p_{2}$ is equal to either k_{1} or $w k_{1}$, where k_{1} lies in K_{1}. Moreover, if $k_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\gamma=\left(\begin{array}{cc}1 & 0 \\ c a^{-1} & 0\end{array}\right)$, then $k_{1} \in \gamma P_{0}$, so that either γ or $w \gamma$ lies in the $P_{0} K_{t}$ double coset of k in K. In the first case, if c has valuation i in F (so $i \geq 1$), then there exists u in U such that $c a^{-1}=\omega^{i} u$, so that $\gamma=\left(\begin{array}{cc}1 & 0 \\ 0 & u\end{array}\right) \alpha_{i}\left(\begin{array}{ll}1 & 0 \\ 0 & u^{-1}\end{array}\right)$. Thus if $i<t$, then α_{i} lies in the $P_{0} K_{t}$ double coset of k in K, whereas if $i \geq t$, then I does. In the second case, since $w \gamma=\left(w \gamma w^{-1}\right) w$ and $w \gamma w^{-1}$ lies in P_{0}, we see that w lies in the double coset of k in K.

The proof of the following lemma is straightforward and is omitted.

Lemma 5. For all positive integers t and i with $i<t, P_{0} K_{t} \cap\left(P_{0} K_{t}\right)^{\alpha_{i}}$ is the set

$$
\left\{\left.\left(\begin{array}{cc}
w & x \\
\omega^{t} y & w-\omega^{i} x+\omega^{t-i} z
\end{array}\right) \right\rvert\, w \in U, x, y, z \in \mathcal{O}\right\}
$$

Also, $P_{0} K_{t} \cap\left(P_{0} K_{t}\right)^{w}$ is the set $Z_{0} K_{t}$.
Lemma 6. In the case that π has level 1 , for each positive integer t, $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is irreducible and has degree $q^{t+1}-q^{t-1}$.

Proof. As previously stated, we prove the irreducibility of $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ by computing its intertwining number with itself. Applying Lemmas 4 and 5 and the equation which precedes them, we have

$$
\begin{aligned}
i_{K}\left(\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K},\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}\right)= & i_{P_{0} K_{t}}\left(\sigma^{\eta_{t}}, \sigma^{\eta_{t}}\right)+i_{Z_{0} K_{t}}\left(\sigma^{\eta_{t}},\left(\sigma^{\eta_{t}}\right)^{w}\right) \\
& +\sum_{0<i<t} i_{P_{0} K_{t} \cap\left(P_{0} K_{t}\right)^{\alpha_{t}}}\left(\sigma^{\eta_{t}},\left(\sigma^{\eta_{t}}\right)^{\alpha_{t}}\right)
\end{aligned}
$$

We can compute the value of each summand using the character formula for $\bar{\sigma}$ given above. Specifically, if μ is a Haar measure on \mathcal{O} normalized so that $\int_{\mathcal{O}} d \mu=1$ and inducing Haar measure μ^{*} on $\mathrm{Gl}_{2}(\mathcal{O})$, then we have:

$$
\begin{aligned}
& i_{P_{0} K_{t}}\left(\sigma^{\eta_{t}}, \sigma^{\eta_{t}}\right)=\mu^{*}\left(P_{0} K_{t}\right)^{-1} \int_{P_{0} K_{t}}\left|\chi\left(\sigma^{\eta_{t}}\right)(\beta)\right|^{2} d \mu^{*}(\beta) \\
& =q^{t+2}(q-1)^{-2} \int_{U} \int_{\mu^{\prime}} \int_{\mathcal{O}} \int_{U}\left|\chi\left(\sigma^{\eta_{t}}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right|^{2} \\
& \\
& \times d \mu(a) d \mu(b) d \mu(c) d \mu(d) \\
& =q^{2}(q-1)^{-2} \int_{U} \int_{\mathcal{O}} \int_{\mathcal{O}} \int_{U}\left|\chi\left(\sigma^{\eta_{t}}\right)\left(\begin{array}{cc}
a & b \\
\omega^{t} c & d
\end{array}\right)\right|^{2} \\
& \quad \times d \mu(a) d \mu(b) d \mu(c) d \mu(d) \\
& =q^{2}(q-1)^{-2} \int_{U} \int_{\mathcal{O}} \int_{U}\left|\chi(\bar{\sigma})\left(\begin{array}{ll}
\bar{a} & 0 \\
\bar{c} & \bar{d}
\end{array}\right)\right|^{2} d \mu(a) d \mu(c) d \mu(d) \\
& =q^{2}(q-1)^{-2} \int_{U} \int_{\mathcal{O}} \int_{d+\neq}\left|\chi(\bar{\sigma})\left(\begin{array}{ll}
\bar{d} & 0 \\
\bar{c} & \bar{d}
\end{array}\right)\right|^{2} d \mu(a) d \mu(c) d \mu(d)
\end{aligned}
$$

(continued)

$$
\begin{aligned}
& =q(q-1)^{-2}\left[\int_{U} \int_{\nsim}|(q-1) \rho(\bar{d})|^{2} d \mu(c) d \mu(d)\right. \\
& \left.\quad+\int_{U} \int_{U}|\rho(\bar{d})|^{2} d \mu(c) d \mu(d)\right] \\
& =q(q-1)^{-2}\left[(q-1)^{2} q^{-1}+(q-1) q^{-1}\right] \int_{U}|\rho(\bar{d})|^{2} d \mu(d) \\
& =q(q-1)^{-1} \int_{U}|\rho(\bar{d})|^{2} d \mu(d)=\mu(U)^{-1} \int_{U}|\rho(\bar{d})|^{2} d \mu(d) \\
& =i_{U}(\rho \circ \bmod \nsim, \rho \circ \bmod \nsim)=1 .
\end{aligned}
$$

Similar arguments show that:

$$
\begin{aligned}
& i_{Z_{0} K_{t}}\left(\sigma^{\eta_{t}},\left(\sigma^{\eta_{t}}\right)^{w}\right)=0 \quad \text { and } \\
& i_{P_{0} K_{t} \cap\left(P_{0} K_{t}\right)^{\alpha_{t}}}\left(\sigma^{\eta_{t}},\left(\sigma^{\eta_{t}}\right)^{\alpha_{t}}\right)=0, \quad \text { for each } i \text { with } 0<i<t
\end{aligned}
$$

Thus $i_{K}\left(\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K},\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}\right)=1$, so that $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is irreducible, as claimed.

Finally,

$$
\begin{aligned}
\operatorname{deg}\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K} & =\left[K: P_{0} K_{t}\right] \operatorname{deg} \sigma \\
& =\left[K: K_{t}\right]\left[P_{0} K_{t}: K_{t}\right]^{-1}(q-1) \\
& =\left[(q-1)^{2} q^{4 t-3}(q+1)\right]\left[(q-1)^{2} q^{3 t-2}\right]^{-1}[q-1] \\
& =(q-1) q^{t-1}(q+1)
\end{aligned}
$$

These lemmas show that we have found the desired decomposition of $\left.\pi\right|_{K}$. (Note that $\sigma^{K}=\sigma$ in this case.) We have proved:

Theorem 2. If π has level 1 , then the sum $\sigma \oplus \sum_{t \geq 1}\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is a complete decomposition of $\left.\pi\right|_{K}$ into irreducible K-types. The summands are of degree $q-1$ and $(q-1) q^{t-1}(q+1)=q^{t+1}-q^{t-1}, t=1,2, \ldots$, respectively.

We now continue with the ramified and unramified cases.

Level $>$ 1. We return to the case that π has level $l>1$. As seen from Theorem 1 and the remarks following Lemma 3, we have $\left.\left.\pi\right|_{K} \cong \sigma^{K} \oplus \sum_{t \geq 1}\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K}\right)\right)^{K}$. When π is unramified, as in the level 1 case, σ is a representation of K, so that $\sigma^{K}=\sigma$ and is irreducible. We claim that σ^{K} is also irreducible in the ramified case. The following lemma enables us to prove this fact.

Lemma 7. Let π be ramified, and define E as above. Then $B=$ $\left(B \cap B^{n}\right) U_{E}$.

Proof. Let a and d lie in U and b and c lie in \mathcal{O}, so that $a I+b A$ lies in U_{E}. Let N be the norm $N_{E / F}(a I+b A)$, so that N lies in U_{F}. Then since

$$
\left(\begin{array}{cc}
a & b \\
\omega c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
{[\omega c(a+s b)+\Delta b d] N^{-1}} & (a d-\omega b c) N^{-1}
\end{array}\right)(a I+b A)
$$

and $B \cap B^{w}=Z_{0} K_{1}, B=\left(B \cap B^{w}\right) U_{E}$, as claimed.

Lemma 8. If π is ramified, then σ^{K} is irreducible.
Proof. Since σ is a representation of B, we apply Mackey's induction-restriction theorem for compact groups to find that $i_{K}\left(\sigma^{K}, \sigma^{K}\right)$ $=\sum_{\gamma \in B \backslash K / B} i_{B \cap B^{\gamma}}\left(\sigma, \sigma^{\gamma}\right)$. Noting that $B=P_{0} K_{1}$, we see that by Lemma 4, we may take $B \backslash K / B$ to be the set $\{I, w\}$. It follows that $i_{K}\left(\sigma^{K}, \sigma^{K}\right)$ $=i_{B}(\sigma, \sigma)+i_{B \cap B^{w}}\left(\sigma, \sigma^{w}\right)=1+i_{B \cap B^{w}}\left(\sigma, \sigma^{w}\right)$, so it suffices to show that the latter summand is equal to 0 . To prove this, we use the fact that σ is induced from the representation $\psi_{A, \lambda}$ of $U_{E} B_{l-1}$. Again applying Mackey's theorem and using the result in Lemma 7, we find that:

$$
\begin{aligned}
& i_{B \cap B^{w}}\left(\sigma, \sigma^{w}\right)=i_{B \cap B^{w}}\left(\psi_{A, \lambda}^{B},\left(\psi_{A, \lambda}^{w}\right)^{B^{w}}\right) \\
& \quad=i_{B \cap B^{w}}\left(\left[\left.\psi_{A, \lambda}\right|_{T_{l-1} \cap B^{w}}\right]^{B \cap B^{w}},\left[\left.\psi_{A, \lambda^{w}}\right|_{T_{l-1}^{w} \cap B}\right]^{B \cap B^{w}}\right) \\
& =\sum_{\gamma \in B \cap\left(T_{l-1}\right)^{w} \backslash B \cap B^{w} / T_{l-1} \cap B^{w}} i_{B \cap\left(T_{l-1}\right)^{w} \cap\left[B^{w} \cap T_{l-1}\right]^{\gamma}}\left(\psi^{\gamma}, \psi^{w}\right),
\end{aligned}
$$

where T_{l-1} denotes the set $U_{E} B_{l-1}$, and $\psi=\psi_{A, \lambda}$. Furthermore, $K_{l_{2}} \subset$ $U_{E} B_{l-1} \cap B$ and $K_{l_{2}}$ is normal in K, so $K_{l_{2}} \subset B \cap\left(U_{E} B_{l-1}\right)^{w}$ and $K_{l_{2}} \subset\left[U_{E} B_{l-1} \cap B^{w}\right]^{\gamma}$ for each γ in the index set. This and the fact that
$\left.\psi_{A, \lambda}\right|_{K_{12}}=\psi_{A}$ imply that

$$
i_{B \cap B^{w}}\left(\sigma, \sigma^{w}\right) \leq \sum_{\gamma \in B \cap\left(T_{l-1}\right)^{w} \backslash B \cap B^{w} / T_{l-1} \cap B^{w}} i_{K_{l 2}}\left(\psi_{A}^{\gamma}, \psi_{A}^{w}\right)
$$

Note that the factorization of elements of B given in Lemma 7 implies that we can take each of the indices γ to be of the form $\left(\begin{array}{cc}1 & 0 \\ \omega c & d\end{array}\right)$ for some c and d in \mathcal{O}. This implies that $\gamma A \gamma^{-1}-w A w^{-1}$ does not lie in $M_{l_{1}}$, so $\psi_{A}^{\gamma} \neq \psi_{A}^{w}$ and $i_{K_{2}}\left(\psi_{A}^{\gamma}, \psi_{A}^{w}\right)=0$ for each γ. Thus $i_{B \cap B^{w}}\left(\sigma, \sigma^{w}\right)=0$, as claimed.

It remains to investigate the summands $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ for $t \geq 1$. To continue, we use the fact that σ is a representation of J (equal to K or B) which is induced from a representation ρ of the subgroup H of J (equal to $U_{E} K_{l_{1}}$ or $U_{E} B_{l-1}$, respectively, where E varies in the two cases). Since $\sigma=\rho^{J}$, Mackey's induction-restriction theorem allows us to argue that for each $t \geq 1$,

$$
\begin{aligned}
\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K} & \cong\left(\left.\left(\rho^{\eta_{t}}\right)^{J^{\eta_{t}}}\right|_{P_{0} K_{t}}\right)^{K} \\
& \cong \sum_{\gamma \in P_{0} K_{t} \backslash J^{n_{t}} / H^{\eta_{t}}}\left(\left.\rho^{\gamma \eta_{t}}\right|_{P_{0} K_{t} \cap H^{\gamma \eta_{t}}}\right)^{K}
\end{aligned}
$$

This seems to yield a contradiction of our previous claim that each of the representations $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is irreducible. The apparent contradiction is resolved by the following lemma.

Lemma 9. Let J and H be defined as above. Then for each integer $t \geq 1$, $J^{\eta_{t}}=\left(P_{0} K_{t}\right) H^{\eta_{t}}$.

Proof. Since $P_{0} K_{t}=\left(P_{0}^{w} K_{t}\right)^{\eta_{t}}$, it is equivalent to show that $J=$ $\left(P_{0}^{w} K_{t}\right) H$. In both the ramified and unramified cases, $H \supset U_{E}$, and we prove the stronger result that $J=\left(P_{0}^{w} K_{t}\right) U_{E}$.

Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ lie in J. In the unramified case, $J=K$, and since $\operatorname{det} g \notin \nsim$, not both a and b can lie in μ_{F}. Since $\mu_{E}=\mu_{F} \mathcal{O}_{E}$ in this case, this means that $a I+b A$ lies in U_{E}. In the unramified case, $J=B$, so that a must lie in U_{F}, and again $a I+b A$ lies in U_{E}. Now define x and y in \mathcal{O} by $x I+y A=(c I+d A)(a I+b A)^{-1}$. Then $g=\left(\begin{array}{cc}1 & 0 \\ x & y\end{array}\right)(a I+b A)$, so $g \in$ $P_{0}{ }^{\prime \prime} U_{E}$, as claimed.

Applying Lemma 9 to the result which precedes it and noting that $K \cap H^{\eta_{t}}=K \cap K^{\eta_{t}} \cap H^{\eta_{t}}=P_{0} K_{t} \cap H^{\eta_{t}}$, we find that $\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K} \cong$ $\left(\left.\rho^{\eta_{t}}\right|_{P_{0} K_{t} \cap H^{\eta_{t}}}\right)^{K}=\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$, for each $t \geq 1$. Thus it remains to investigate the K-representations $\left(\left.\rho^{\eta_{t}}\right|_{\left.K \cap H^{\eta_{t}}\right)^{K} \text {. In view of the previous }}\right.$ work, it is natural to first find the level of each such representation.

Lemma 10. With H defined as above, for each $t \geq 1$, the representation $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ has level $t+l$.

Proof. Note that in both the ramified and unramified cases, if $r=t+l_{2}$, then $\left(K_{r}\right)^{\eta_{t}^{-1}} \subset K_{l_{2}} \subset H$. Thus for any γ in K, we have $K_{r}=K_{r}^{\gamma} \subset\left(K \cap K_{l_{2}}^{\eta_{t}}\right)^{\gamma} \subset\left(K \cap H^{\eta_{t}}\right)^{\gamma}$. It follows that when we apply Mackey's induction-restriction theorem, we find that

$$
\begin{aligned}
\left.\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right|_{K_{r}} & \cong \sum_{\gamma \in K_{r} \backslash K / K \cap H^{\eta_{t}}}\left(\left.\left(\rho^{\eta_{t}}\right)^{\gamma}\right|_{K_{r} \cap\left(K \cap H^{\eta_{t}}\right)^{\gamma}}\right)^{K_{r}} \\
& \cong \sum_{\gamma \in K / K \cap H^{\eta_{t}}}\left(\left.\rho^{\eta_{t}}\right|_{K_{r}}\right)^{\gamma} .
\end{aligned}
$$

If ρ is ramified or if π is unramified and l is even, then ρ restricts to ψ_{A} on $K_{l_{2}}$. If π is unramified and l is odd, then $\rho=\xi_{A, \lambda}$ on $H=U_{E} K_{l_{1}}$ and restricts to $\zeta_{A, \lambda^{\prime}}=\left(\psi_{A, \lambda^{\prime}, 1}\right)^{U_{F} U_{E}^{1} K_{l_{1}}}$ on $U_{F} U_{E}^{1} K_{l_{1}}$, and since $U_{E} K_{l_{1}}$ is the stabilizer of ψ_{A}, by Mackey's induction-restriction theorem, we have:

$$
\begin{aligned}
\left.\rho\right|_{K_{l_{2}}} & \left.\cong \sum_{\alpha \in K_{l_{2}} \backslash U_{F} U_{E}^{1} K_{l_{2}} / U_{F} U_{E}^{1} B_{l}^{w}} \psi_{A, \lambda^{\prime}, l_{1}^{\alpha}}\right|_{K_{l_{2}}} \\
& \cong \sum_{\alpha \in U_{F} U_{E}^{1} K_{l_{2}} / U_{F} U_{E}^{1} B_{l}^{w}}\left(\left.\psi_{A, \lambda^{\prime}, 1}\right|_{K_{l_{2}}}\right)^{\alpha}=q \psi_{A}
\end{aligned}
$$

Thus ρ restricts to $n \psi_{A}$ on $K_{l_{2}}$, where $n=1$ or q, and hence $\rho^{\eta_{t}}$ restricts to $n \psi_{A}^{\eta_{t}}$ on $K_{l_{2}^{\eta_{t}}}^{\eta_{t}} K_{r}$. Thus $\left.\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right|_{K_{r}} \cong \sum_{\gamma \in K / K \cap H^{\eta_{t}}} n\left(\left.\psi_{A}^{\eta_{t}}\right|_{K_{r}}\right)^{\gamma}$, so that $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ restricts to the identity on a subgroup K_{q} of K_{r} ($q \geq r$) if and only if $\left.\psi_{A}^{\eta_{i}}\right|_{K_{q}}=1$. Finally, because the level of ψ_{A} is l, a simple computation shows that $\left.\psi_{A}^{\eta_{i}}\right|_{K_{q}}=1$ if and only if $q \geq t+l \geq r$. The result follows.

Now we fix t and further consider the representation $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$. Because it restricts to copies of the identity representation on K_{t+l}, its restriction to $K_{(t+l)_{2}} \subset K_{l_{2}}$ decomposes as a direct sum $\sum \psi_{C}^{\prime}$, where for C in M, ψ_{C}^{\prime} is defined on $K_{(t+l)_{2}}$ by $\psi_{C}^{\prime}(k)=\psi\left(\omega^{-t-l} \operatorname{Tr} C(k-I)\right.$). (Note that $\psi_{C_{1}}^{\prime}=\psi_{C_{2}}^{\prime}$ if and only if $C_{1}-C_{2}$ lies in $M_{\left(t+l_{1}\right.}$.) We shall find a C in M such that ψ_{C}^{\prime} is a subrepresentation of $\left.\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right|_{K_{(t+1) 2}}$. Mackey's induction-restriction theorem implies that

$$
\begin{aligned}
\left.\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right|_{K_{(t+1)_{2}}} & \cong \sum_{\gamma \in \Gamma}\left(\left.\rho^{\gamma \eta_{t}}\right|_{K_{(t+)_{2}} \cap\left(H^{\left.\eta_{t}\right)^{\gamma}}\right.}\right)^{K_{(t+1)_{2}}} \\
& \cong \sum_{\gamma \in \Gamma}\left[\left(\left.\rho^{\eta_{t}}\right|_{K_{\left.(t+)_{2}\right)} \cap H^{\eta_{t}}}\right)^{K_{(t+)_{2}}}\right]^{\gamma},
\end{aligned}
$$

where $\Gamma=K_{(t+l)_{2}} \backslash K / K \cap H^{\eta_{t}}$, so it suffices to find a C for which ψ_{C}^{\prime} is a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{\left.K_{(t+1)} \cap H^{\eta_{t}}\right)} K_{(t+1)_{2}}\right.$. By Frobenius reciprocity, this is the case if and only if $\left.\psi_{C}^{\prime}\right|_{K_{(t+1)_{2}} \cap H^{\eta_{t}}}$ is a subrepresentation of $\left.\rho^{\eta_{t}}\right|_{K_{\left(t+l_{2}\right.} \cap H^{\eta_{t}}}$. We need the following lemma:

Lemma 11. In the case that π is ramified, so $H=U_{E} B_{l-1}$, $K_{(t+l)_{2}} \cap H^{\eta_{t}}=K_{(t+l)_{2}} \cap B_{l_{t}-1}^{\eta_{t}}$. If π is unramified, so $H=U_{E} K_{l_{1}}$, then $K_{(t+l)_{2}} \cap H^{\eta_{t}}=K_{(t+l)_{2}} \cap K_{l_{1}}^{\eta_{t}} ;$ furthermore, $K_{(t+l)_{2}} \cap K_{l_{1}}^{\eta_{t}}$ $=K_{(t+l)_{2}} \cap\left(K_{l_{2}} N_{l_{1}}^{w}\right)^{\eta_{t}}$ in this case.

Proof. We prove the second result; the first is proved similarly. Let $k \in K_{(t+1)_{2}} \cap H^{\eta_{t}}$ so that $k=\left(u k^{\prime}\right)^{\eta_{t}}$, where $u=w I+x A \in U_{E}$ and $k^{\prime} \in K_{l_{1}}$. Writing this equation with matrices makes it clear that this implies that $w \in U^{l_{1}}$ and $x \in \mathfrak{p}^{1_{1}}$, so that $u \in K_{l_{1}}$ and hence $k \in$ $K_{(t+l)_{2}} \cap K_{l_{1}}^{\eta_{t}}$, as claimed. Moreover, if $k=\left(\begin{array}{cc}1+a & b \\ c & 1^{b}+d\end{array}\right)$, then a, b and d must lie in $\mathfrak{p}^{(t+)_{2}} \subset \mathfrak{h}^{l_{2}}$ and c lies in $\not \mathfrak{p}^{t+l_{1}}$, so that $k^{\eta_{t}^{-1}}$ lies in $K_{l_{2}} N_{l_{1}}^{w}$, as claimed.

Now for each $t \geq 1$, let

$$
A_{t}=\left(\begin{array}{cc}
0 & 1 \\
-\Delta \omega^{2 t} & s \omega^{t}
\end{array}\right)=\omega^{t} \eta_{t} A_{\eta_{t}^{-1}}
$$

Then $\psi_{A_{t}}^{\prime}$ is the representation we seek:
Lemma 12. $\psi_{A_{t}}^{\prime}$ is a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{\left.K_{(t+)_{2}} \cap H^{\eta_{t}}\right)^{K_{(t+)_{2}}} \text {, in both }}\right.$ the ramified and unramified cases.

Proof. By the remarks preceding Lemma 11, we see that it is enough to show that $\left.\psi_{A_{t}}^{\prime}\right|_{K_{(t+)_{2}} \cap H^{n_{t}}}$ is a subrepresentation of the restriction $\left.\rho^{\eta_{t}}\right|_{K_{(t+)_{2}} \cap H^{n_{t}}}$. The lemma above allows us to consider the latter representation more closely. In the case that π is ramified, $\rho=\psi_{A, \lambda}$ on $H=$ $U_{E} B_{l-1}$, and ρ restricts to ψ_{A} on B_{l-1}. If π is unramified, then $H=U_{E} K_{l_{1}}$, and if l is even, $\rho=\psi_{A, \lambda}$ on H and restricts to ψ_{A} on $K_{l_{2}}=K_{l_{2}} N_{l_{1}}$. If π is unramified and l is odd, then $\rho=\xi_{A, \lambda}$ on H and restricts to $\zeta_{A, \lambda^{\prime}}=$ $\left(\psi_{A, \lambda^{\prime}, 1}\right)^{U_{F} U_{E}^{1} K_{l_{1}}}$ on $U_{F} U_{E}^{1} K_{l_{1}}$, so the restriction of ρ to $U_{F} U_{E}^{1} B_{l}^{w}$ contains $\psi_{A, \lambda^{\prime}, 1}$ as a subrepresentation. Thus the restriction of ρ to $B_{l}^{w}=K_{l_{2}} N_{l_{1}}^{w}$ again contains ψ_{A}. Applying Lemma 11 , we find that $\left.\psi_{A}\right|_{K_{(t+1)} \cap H^{n_{t}}}$ is a subrepresentation of $\left.\rho\right|_{K_{(t+)_{2}} \cap H^{n_{t}}}$ in all cases. Moreover, if $k \in$
$K_{(t+l)_{2}} \cap H^{\eta_{t}}$ then:

$$
\begin{aligned}
\psi_{A_{t}}^{\prime}(k) & =\psi\left(\omega^{-t-l} \operatorname{Tr} A_{t}(k-I)\right) \\
& =\psi\left(\omega^{-t-l} \operatorname{Tr} \omega^{t} \eta_{t} A \eta_{t}^{-1}(k-I)\right)=\psi\left(\omega^{-l} \operatorname{Tr} A \eta_{t}^{-1}(k-I) \eta_{t}\right) \\
& =\psi\left(\omega^{-l} \operatorname{Tr} A\left(\eta_{t}^{-1} k \eta_{t}-I\right)\right)=\psi_{A}^{\eta_{t}}(k)
\end{aligned}
$$

Thus $\left.\psi_{A_{t}}^{\prime}\right|_{K_{(t+1)_{2}} \cap H^{\eta_{t}}}$ is a subrepresentation of the restriction $\left.\rho^{\eta_{t}}\right|_{K_{(t+)_{2}} \cap H^{\eta_{t}}}$, as claimed.

Because $\psi_{A_{t}}^{\prime}$ is a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{\left.K_{(t+1) 2} \cap H^{\eta_{t}}\right)}\right)^{K_{(t+1) 2}}$ which is in turn a subrepresentation of $\left(\left.\left.\rho^{\eta_{t}}\right|_{\left.K \cap H^{\eta_{t}}\right)^{K}}\right|_{K_{(t+1) 2}}\right.$, by Frobenius reciprocity it follows that $\psi_{A_{t}}^{\prime K}$ and $\left(\left.\rho^{\eta_{t}}\right|_{\left.K \cap H_{t}\right)^{K}}\right.$ must intertwine. We continue by finding the decomposition into irreducible components of the representation $\psi_{A_{i}}^{\prime K}$.
$\psi_{A_{t}}^{\prime}$ is a representation of $K_{(t+l)_{2}}$ factoring through $K_{(t+l)_{2}} / K_{t+l}$, and as above, its stabilizer in K is the subgroup $U\left(A_{t}\right) K_{(t+l)}$, where $U\left(A_{t}\right)$ denotes the group of units in the subalgebra $\mathcal{O}\left(A_{t}\right)$ of $M_{2}(\mathcal{O})$ generated by A_{t}. Note that $U\left(A_{t}\right)=\left(U_{F} U_{E}^{t}\right)^{\eta_{t}}$ if the field E is ramified over F, and $U\left(A_{t}\right)=\left(U_{F} U_{E}^{2 t+1}\right)^{\eta_{t}}$ if E is unramified over F, so that $U\left(A_{t}\right) \subset\left(U_{F} U_{E}^{1}\right)^{\eta_{t}}$ $\subset U_{E}^{\eta_{t}}$ in either case. Thus if ψ_{A} denotes, as before, an extension of the restriction $\left.\psi_{A}\right|_{K_{l_{2}} \cap U_{E}}$ to U_{E}, then if $\left(\psi_{A_{t}}^{\prime}\right)^{\sim}=\left.\left(\psi_{A}^{\sim}\right)^{\eta_{t}}\right|_{U\left(A_{t}\right)},\left(\psi_{A_{t}}^{\prime}\right)^{\sim}$ extends $\psi_{A_{t}}^{\prime}$ to $U\left(A_{t}\right)$.

Thus in the case that $t+l$ is even, as before, for each representation λ in $\Lambda=\left[U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap K_{(t+l)_{2}}\right]\right]^{\wedge}$, we get a corresponding extension $\psi_{A_{t}, \lambda}^{\prime}$ of $\psi_{A_{t}}^{\prime}$ to its stabilizer in K, and Clifford's theorem implies that $\psi_{A_{t}}^{\prime K}$ is isomorphic to the direct sum of nonisomorphic irreducible representations $\sum_{\lambda \in \Lambda} \psi_{A_{t}}^{\prime}{ }_{\lambda}^{K}$.

In the case that $t+l$ is odd, the form of A_{t} implies that the formula $\psi_{A_{t}}^{\prime}(k)=\psi\left(\omega^{-t-1} \operatorname{Tr} A_{t}(k-I)\right)$ defines a representation on the group B_{t+l-1} which factors through $B_{t+l-1} / B_{2 t+2 l-2}$. The stabilizer in B of this representation is $U\left(A_{t}\right) B_{t+l-1}$, so this time, for each λ in $\Lambda=$ $\left[U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap B_{t+l-1}\right]\right]^{\wedge}$, we get an extension $\psi_{A_{t}, \lambda}^{\prime}$ of $\psi_{A_{t}}^{\prime}$ to its stabilizer in B, and we find that $\psi_{A_{t}}^{\prime B}$ is isomorphic to the direct sum of nonisomorphic irreducible representations $\sum_{\lambda \in \Lambda} \psi_{A_{t}, \lambda,}^{\prime}$. This implies that $\psi_{A_{t}}^{\prime K}$ is isomorphic to the direct sum $\sum_{\lambda \in \Lambda} \psi_{A_{t}, \lambda}^{\prime}$; we show that these summands are also irreducible and nonisomorphic. The argument is similar to the one given earlier to show that σ^{K} is irreducible in the ramified case. As in that case, we find that for any λ_{1} and λ_{2} in Λ, we have:

$$
\begin{aligned}
& i\left(\psi_{A_{t}, \lambda_{1}}^{K}, \psi_{A_{t}, \lambda_{2}}^{\prime}\right)=i_{B}\left(\psi_{A_{t}, \lambda_{1}}^{\prime}, \psi_{A_{t}, \lambda_{2}}^{B}\right)+i_{B \cap B^{w}}\left(\psi_{A_{t}, \lambda_{1}}^{B},\left(\psi_{A_{t}, \lambda_{2}}^{\prime}\right)^{w}\right) \\
& \quad=\delta_{\lambda_{1}, \lambda_{2}}+i_{B \cap B^{w}}\left(\psi_{A_{t}, \lambda_{1}}^{\prime},\left(\psi_{A_{t}, \lambda_{2}}^{\prime w}\right)^{B^{w}}\right),
\end{aligned}
$$

so it suffices to show that the latter number is always equal to 0 . We use the following lemma, which generalizes Lemma 7, and which is proved in the same way.

Lemma 13. For any integers $l \geq 1$ and $t \geq 1$ (and $t=0$, in the case that E is ramified over $F), B=\left(B \cap B^{w}\right) U\left(A_{t}\right)$.

This lemma and Mackey's induction-restriction theorem imply that

$$
\psi_{A_{t}, \lambda}^{\prime},\left.\lambda\right|_{B \cap B^{w}}=\left(\left.\psi_{A_{t}, \lambda}^{\prime}\right|_{B^{w} \cap U\left(A_{t}\right) B_{t+l-1}}\right)^{B \cap B^{w}}
$$

and since the lemma also implies that $B^{w}=\left(B \cap B^{w}\right)\left(U\left(A_{t}\right)\right)^{w}$, we also have $\left.\left(\psi_{A_{t}, \lambda}^{\prime w}\right)^{B^{w}}\right|_{B \cap B^{w}}=\left(\left.\psi_{A_{t}, \lambda}^{\prime w}\right|_{B \cap\left[U\left(A_{t}\right) B_{t+1-1}\right]^{w}}\right)^{B \cap B^{w}}$. Thus

$$
\begin{aligned}
i_{B \cap B^{w}} & \left(\psi_{A_{t}, \lambda_{1}}^{\prime},\left(\psi_{A_{t}, \lambda_{2}}^{\prime w}\right)^{B^{w}}\right) \\
& =i\left(\left(\left.\psi_{A_{t}, \lambda}^{\prime}\right|_{B^{w} \cap U\left(A_{t}\right) B_{t+l-1}}\right)^{B \cap B^{w}},\left(\left.\psi_{A_{t}, \lambda}^{\prime w}\right|_{B \cap\left[U\left(A_{t}\right) B_{t+l-1}\right]^{w}}\right)^{B \cap B^{w}}\right) \\
& =\sum_{\gamma \in \Gamma} i_{C(\gamma)}\left(\psi_{A_{t}, \lambda}^{\prime \gamma}, \psi_{A_{t}, \lambda}^{\prime w}\right)
\end{aligned}
$$

where

$$
\Gamma=B \cap\left[U\left(A_{t}\right) B_{t+l-1}\right]^{w} \backslash B \cap B^{w} /\left[B^{w} \cap U\left(A_{t}\right) B_{t+l-1}\right]
$$

and

$$
C(\gamma)=\left[B \cap\left[U\left(A_{t}\right) B_{t+l-1}\right]^{w}\right] \cap\left[B^{w} \cap U\left(A_{t}\right) B_{t+l-1}\right]^{\gamma}
$$

for each $\gamma \in \Gamma$. Since for each $\gamma, C(\gamma) \supset K_{(t+l)_{2}}$ and since $\left.\psi_{A_{t}, \lambda}^{\prime}\right|_{K_{(t+)_{2}}}=$ $\psi_{A_{i}}^{\prime}$, we see that the equations above show that

$$
i_{B \cap B^{w}}\left(\psi_{A_{t}, \lambda_{1}}^{\prime},\left(\psi_{A_{t}, \lambda_{2}}^{\prime w}\right)^{B^{w}}\right) \leq \sum_{\gamma \in \Gamma} i_{K_{\left(t+l_{2}\right.}}\left(\psi_{A_{t}}^{\prime \gamma}, \psi_{A_{t}}^{\prime w}\right) .
$$

But as in the proof of Lemma 8, we can take each index γ to be of the form $\left(\begin{array}{cc}1 & 0 \\ \omega c & d\end{array}\right)$, for some c and d in \mathcal{O}, and it is then clear that $\gamma A_{t} \gamma^{-1}-$ $w A_{t} w^{-1}$ does not lie in $M_{(t+l)_{1}}$, so that

$$
i_{K_{\left(t+l_{2}\right.}}\left(\psi_{A_{t}}^{\prime \gamma}, \psi_{A_{t}}^{\prime w}\right)=i_{K_{(t+)_{2}}}\left(\psi_{\gamma A_{t} \gamma^{-1}}^{\prime}, \psi_{w A_{t} w^{-1}}^{\prime}\right)=0
$$

for each $\gamma \in \Gamma$.
We have now proved the following lemma:
Lemma 14. $\psi_{A_{t}}^{\prime K}$ is isomorphic to the direct $\operatorname{sum} \sum_{\lambda \in \Lambda} \psi_{A_{t}, \lambda}^{\prime}$, where

$$
\Lambda=\left[U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap K_{(t+l)_{2}}\right]\right]^{\wedge} \quad \text { if } t+l \text { is even }
$$

and

$$
\Lambda=\left[U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap B_{t+l-1}\right]\right]^{\wedge} \quad \text { if } t+l \text { is odd }
$$

In either case, the summands are irreducible and nonisomorphic.
By the remarks following Lemma $12, \psi_{A_{t}}^{K}$ and $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ intertwine. The lemma above gives a decomposition of $\psi_{A_{i}}^{\prime K}$ into irreducible subrepresentations, and it follows that one of these summands must be a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$. Here we recall that the representation ρ of H is in both the unramified and ramified cases determined by a representation λ of U_{E} which factors through $U_{E} / U_{E}^{l_{2}}$ in the first case and through U_{E} / U_{E}^{l-1} in the latter. Because $U\left(A_{t}\right) \subset U_{E}^{\eta_{t}}$, if we define λ_{t} by $\lambda_{t}=\left.\lambda^{\eta_{t}}\right|_{U\left(A_{t}\right)}$, then λ_{t} defines a representation which factors through $U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap B_{t+l-1}\right]$ and so also through $U\left(A_{t}\right) /\left[U\left(A_{t}\right) \cap K_{(t+l)_{2}}\right]$, so that $\psi_{A_{t}, \lambda_{t}}^{K}$ is an irreducible component of $\psi_{A_{t}}^{K}$ in both the unramified and ramified cases. We claim that $\psi_{A_{t}, \lambda_{t}}^{K}$ is also a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$. The following lemma, which corresponds to Lemma 11 and is proved similarly, is needed to prove this fact.

Lemma 15. In the case that π is ramified, so $H=U_{E} B_{l-1}$, $B_{t+l-1} \cap H^{\eta_{t}}=B_{t+l-1} \cap B_{l-1}^{\eta_{t}}$. If π is unramified, so $H=U_{E} K_{l_{1}}$, then $B_{t+l-1} \cap H^{\eta_{t}}=B_{t+l-1} \cap K_{l_{1}}^{\eta_{t}} ;$ furthermore, $\quad B_{t+l-1} \cap K_{l_{1}}^{\eta_{t}}=B_{t+l-1} \cap$ $\left(K_{l_{2}} N_{l_{1}}^{w}\right)^{\eta_{t}}$ in this case.

The lemma above allows us to prove:
Lemma 16. In all cases, $\psi_{A_{t}}^{\prime}, \lambda_{t}^{K}$ is a subrepresentation of $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$.
Proof. Because $\psi_{A_{t}}^{\prime}{ }^{K} \lambda_{t}$ is irreducible, it suffices to show that $i_{K}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right)>0$. By Frobenius reciprocity, we know that

$$
\begin{aligned}
& i_{K}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right) \\
& \quad=\sum_{\gamma \in H_{t} \backslash K / K \cap H^{\eta_{t}}} i_{H_{t}^{\gamma} \cap P_{0} K_{t}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime \gamma}, \rho^{\eta_{t}}\right),
\end{aligned}
$$

where $H_{t}=U\left(A_{t}\right) K_{(t+l) / 2}$ if $t+l$ is even, and $H_{t}=U\left(A_{t}\right) B_{t+l-1}$ if $t+l$ is odd. Thus

$$
\begin{aligned}
& i_{K}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}\right) \\
& \quad \geq i_{H_{t} \cap\left(K \cap H^{\eta_{t}}\right)}\left(\psi_{A_{t}, \lambda_{t}}^{\prime}, \rho^{\eta_{t}}\right)=i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime}, \rho^{\eta_{t}}\right)
\end{aligned}
$$

where as before $H=U_{E} K_{l_{1}}$ if E is unramified over F and $H=U_{E} B_{l-1}$ if E is ramified over F. In the cases that E is ramified or E is unramified and l is even, we have seen that $\rho=\psi_{A, \lambda}$ on H. The proof of the result is similar in these cases; we prove it in the case that $H_{t}=U\left(A_{t}\right) K_{(t+l)_{2}}$ and
E is ramified so that $H=U_{E} B_{l-1}$. In this case, because $U\left(A_{t}\right) \subset U_{E}^{\eta_{t}}$ and by the lemma above,

$$
H_{t} \cap H^{\eta_{t}}=U\left(A_{t}\right)\left[K_{(t+)_{2}} \cap H^{\eta_{t}}\right]=U\left(A_{t}\right)\left[K_{(t+)_{2}} \cap B_{l-1}^{\eta_{t}}\right] .
$$

Because we have defined $\psi_{A_{t}^{\prime}}^{\prime}=\left.\left(\psi_{A}\right)^{n_{t}}\right|_{U\left(A_{t}\right)}, \lambda_{t}=\left.\lambda^{\eta_{t}}\right|_{U\left(A_{t}\right)}$, and because $\psi_{A_{t}}^{\prime}=\psi_{A}^{\eta_{t}}$ on $K_{(t+1)_{2}} \cap B_{l_{-1}}^{\eta_{t}}$ (as seen in the proof of Lemma 12), we see that $i_{H_{t} \cap H^{n_{t}}}\left(\psi_{A_{t}}^{\prime}, \lambda_{t}, \rho^{n_{t}}\right)=i_{H_{t} \cap H^{n_{r}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime}, \psi_{A}^{\eta_{t}}\right)=1$ in these cases.

In the case that E is unramified over F and l is odd, $\rho=\xi_{A, \lambda}$ on H and restricts to $\zeta_{A, \lambda^{\prime}}$ on $U_{F} U_{E}^{1} K_{l,}$, where $\zeta_{A, \lambda^{\prime}}=\left(\psi_{A, \lambda^{\prime}, 1}\right)^{U_{F} U_{E}^{\prime} K_{1}}$. There are two cases, depending on the definition of H_{t}; their proofs are similar and we assume that $H_{t}=U\left(A_{t}\right) B_{t+l-1}$ in what follows. Thus

$$
\begin{aligned}
& i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime}, \rho^{\eta_{t}}\right) \\
& \quad=i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left[\left(\psi_{A, \lambda^{\prime}, 1}\right)^{U_{F} U_{E}^{1} K_{l_{l}}}\right]^{\eta_{t}}\right) \\
& \quad=i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left[\left(\psi_{A, \lambda^{\prime}, 1}\right)^{\eta_{t}}\right]^{\left(U_{F} U_{E}^{1} K_{l_{1}}\right)}\right) \\
& \quad=i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime},\left(\psi_{A, \lambda^{\prime}, 1}\right)^{\eta_{t}}\right), \quad \text { where } H^{\prime}=U_{F} U_{E}^{1} K_{l_{1}} .
\end{aligned}
$$

$U\left(A_{t}\right) \subset\left(U_{F} U_{E}^{1}\right)^{\eta_{t}}$, so applying the lemma above we find that

$$
\begin{aligned}
H_{t} \cap H^{\prime \eta_{t}} & =U\left(A_{t}\right)\left[B_{t+l-1} \cap K_{l_{1}}\right] \\
& =U\left(A_{t}\right)\left[B_{t+l-1} \cap\left(K_{l_{2}} N_{l_{1}}^{w}\right)\right]=U\left(A_{t}\right)\left[B_{t+l-1} \cap B_{l}^{w}\right]
\end{aligned}
$$

As above, we see that we have constructed $\psi_{A_{t}, \lambda}^{\prime}$ in such a way that it is equal to $\left(\psi_{A, \lambda^{\prime}, 1}\right)^{\eta_{t}}$ on $H_{t} \cap H^{\prime \eta_{t}}$, so again $i_{H_{t} \cap H^{\eta_{t}}}\left(\psi_{A_{t}, \lambda_{t}}^{\prime}, \rho^{\eta_{t}}\right)=1$.

Finally, we shall prove that $\psi_{A_{t}, \lambda_{t}^{\prime}}^{K}=\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ by showing that their degrees are equal. The following lemmas imply this fact.

Lemma 17. $\psi_{A_{i}}^{\prime}, \lambda_{t}^{K}$ has degree $(q-1) q^{t+l-2}(q+1)$.
Proof. If $t+l$ is even, then $\psi_{A_{t}, \lambda_{t}}$ is a representation of $U\left(A_{t}\right) K_{(t+)_{2}}$ and $(t+l)_{2} \geq 1$. Hence since $\psi_{A_{t}, \lambda_{t}}^{\prime}$, has degree one, $\psi_{A_{t}}^{\prime}, \lambda_{t}^{K}$ has degree: $\left[K: U\left(A_{t}\right) K_{(t+1)_{2}}\right]$

$$
\begin{aligned}
& =\left[K: K_{(t+)_{2}}\right]\left[U\left(A_{t}\right) K_{(t+l)_{2}}: K_{(t+l)_{2}}\right]^{-1} \\
& =\left[K: K_{(t+l)_{2}}\right]\left[U\left(A_{t}\right): U\left(A_{t}\right) \cap K_{(t+l)_{2}}\right]^{-1} \\
& =\left[K: K_{(t+)_{2}}\right]\left[U: U^{(t+1)_{2}}\right]^{-1}\left[h: \mathfrak{h}^{(t+)_{2}}\right]^{-1} \\
& =\left[(q-1)^{2} q^{4(t+l)_{2}-3}(q+1)\right]\left[(q-1) q^{(t+1)_{2}-1}\right]^{-1}\left[q^{(t+l)_{2}}\right]^{-1} \\
& =(q-1) q^{t+l-2}(q+1) .
\end{aligned}
$$

If $t+l$ is odd, then $\psi_{A_{t}, \lambda_{t}}^{\prime}$ is a representation of $U\left(A_{t}\right) B_{t+l-1}$, and again $\psi_{A_{t}, \lambda_{t}}^{\prime}$ has degree one. Thus in this case, $\psi_{A_{t}, \lambda_{t}}^{K}$ has degree:
$[K: B]\left[B: U\left(A_{t}\right) B_{t+l-1}\right]$

$$
\begin{aligned}
& =[K: B]\left[B: B_{t+l-1}\right]\left[U\left(A_{t}\right) B_{t+l-1}: B_{t+l-1}\right]^{-1} \\
& =[K: B]\left[B: B_{t+l-1}\right]\left[U\left(A_{t}\right): U\left(A_{t}\right) \cap B_{t+l-1}\right]^{-1} \\
& =[K: B]\left[B: B_{t+l-1}\right]\left[U: U^{(t+l-1)_{2}}\right]^{-1}\left[\nsim: \not \mu^{(t+l-1)_{1}}\right]^{-1} \\
& =[q+1]\left[(q-1)^{2} q^{2(t+l-2)}\right]\left[(q-1) q^{(t+l-1)_{2}-1}\right]^{-1}\left[q^{(t+l-1)_{1}}\right]^{-1} \\
& =(q-1) q^{t+l-2}(q+1)
\end{aligned}
$$

To compute the degree of $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$, we use the following lemma, whose proof is similar to that of Lemma 11:

Lemma 18.

$$
\begin{aligned}
K \cap\left(U_{E} K_{l_{1}}\right)^{\eta_{t}} & =U\left(A_{t}\right)\left[K \cap K_{l_{1}}^{\eta_{t}}\right] \\
K \cap\left(U_{E} B_{l-1}\right)^{\eta_{t}} & =U\left(A_{t}\right)\left[K \cap B_{l-1}^{\eta_{t}}\right]
\end{aligned}
$$

Lemma 19. In both the ramified and unramified cases, and for any $t \geq 0,\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ has degree $(q-1) q^{t+l-2}(q+1)$.

Proof. In the case that E is unramified over F, we have $H=U_{E} K_{l_{1}}$, and applying the lemma above, we find that $K \cap H^{\eta_{t}}=U\left(A_{t}\right)\left[K \cap K_{l_{1}}^{\eta_{t}}\right]$. Note that

$$
K \cap K_{l_{1}}^{\eta_{t}}=\left(\begin{array}{cc}
U^{l_{1}} & \mathfrak{p}^{M} \\
\mathfrak{p}^{t+l_{1}} & U^{l_{1}}
\end{array}\right) \supset K_{t+l_{1}}
$$

where $M=M(t, l)=\max \left(0, l_{1}-t\right)$, and it follows that $U\left(A_{t}\right) \cap K_{l_{1}}^{\eta_{t}}=$ $U^{l_{1}} I+\mu^{M} A$. Thus in this case, $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ has degree:
$\left[K: K \cap H^{\eta_{t}}\right] \operatorname{deg}(\rho)$

$$
\begin{aligned}
= & {\left[K: K_{t+l_{1}}\right]\left[K \cap H^{\eta_{t}}: K_{t+l_{1}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[K: K_{t+l_{1}}\right]\left[K \cap H^{\eta_{t}}: K \cap K_{l_{1}}^{\eta_{t}}\right]^{-1}\left[K \cap K_{l_{1}}^{\eta_{t}}: K_{t+l_{1}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[K: K_{t+l_{1}}\right]\left[U\left(A_{t}\right)\left(K \cap K_{l_{1}}^{\eta_{t}}\right): K \cap K_{l_{1}}^{\eta_{t}}\right]^{-1} } \\
& \times\left[K \cap K_{l_{1}}^{\eta_{t}}: K_{t+l_{1}}\right]^{-1} \operatorname{deg}(\rho)
\end{aligned}
$$

(continued)

$$
\begin{aligned}
= & {\left[K: K_{t+l_{1}}\right]\left[U\left(A_{t}\right): U\left(A_{t}\right) \cap K_{l_{1}}^{\eta_{t}}\right]^{-1}\left[K \cap K_{l_{1}}^{\eta_{t}}: K_{t+l_{1}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[(q-1)^{2} q^{4\left(t+l_{1}\right)-3}(q+1)\right]\left[(q-1) q^{l_{1}-1+M}\right]^{-1} } \\
& \times\left[q^{3 t+l_{1}-M}\right]^{-1} \operatorname{deg}(\rho) \\
= & (q-1) q^{t+2 l_{1}-2}(q+1) \operatorname{deg}(\rho) .
\end{aligned}
$$

Recall that when l is odd, $\rho=\xi_{A, \lambda}$ and has degree q, while when l is even, $\rho=\psi_{A, \lambda}$ and has degree 1. Thus $\operatorname{deg}(\rho)=q^{l_{2}-l_{1}}$ in either case. Since $l=l_{2}+l_{1}$, we see that $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ has degree

$$
(q-1) q^{t+l-2}(q+1)
$$

as claimed.
In the case that E is ramified over F, we have $H=U_{E} B_{l-1}$, and applying the lemma above, we find that $K \cap H^{\eta_{t}}=U\left(A_{t}\right)\left[K \cap B_{l-1}^{\eta_{t}}\right]$. Note that

$$
K \cap B_{l-1}^{\eta_{t}}=\left(\begin{array}{cc}
U^{l_{1}} & \mathfrak{p}^{N} \\
\mathfrak{p}^{t+l_{2}} & U^{l_{1}}
\end{array}\right) \supset K_{t+l_{2}}
$$

where $N=N(t, l)=\max \left(0,(l-1)_{1}-t\right)$, so it follows that $U\left(A_{t}\right) \cap B_{l-1}^{\eta_{t}}$ $=U^{l_{1}} I+p^{N} A$. Thus in this case, $\left(\left.\rho^{\eta_{t}}\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ has degree:
$\left[K: K \cap H^{\eta_{t}}\right] \operatorname{deg}(\rho)$

$$
\begin{aligned}
= & {\left[K: K_{t+l_{2}}\right]\left[K \cap H^{\eta_{t}}: K_{t+l_{2}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[K: K_{t+l_{2}}\right]\left[K \cap H^{\eta_{t}}: K \cap B_{l-1}^{\eta_{t}}\right]^{-1}\left[K \cap B_{l-1}^{\eta_{t}}: K_{t+l_{2}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[K: K_{t+l_{2}}\right]\left[U\left(A_{t}\right)\left(K \cap B_{l-1}^{\eta_{t}}\right): K \cap B_{l-1}^{\eta_{t}}\right]^{-1} } \\
& \times\left[K \cap B_{l-1}^{\eta_{t}}: K_{t+l_{2}}\right]^{-1} \operatorname{deg}(\rho) \\
= & {\left[K: K_{t+l_{2}}\right]\left[U\left(A_{t}\right): U\left(A_{t}\right) \cap B_{l-1}^{\eta_{t}}\right]^{-1}\left[K \cap B_{l-1}^{\eta_{t}}: K_{t+l_{2}}\right]^{-1} \operatorname{deg}(\rho) } \\
= & {\left[(q-1)^{2} q^{4\left(t+l_{2}\right)-3}(q+1)\right]\left[(q-1) q^{l_{1}-1+N}\right]^{-1} } \\
& \times\left[q^{3\left(t+l_{2}\right)-2 l_{1}-N}\right]^{-1}[1] \\
= & (q-1) q^{t+l-2}(q+1) .
\end{aligned}
$$

We have thus found our desired decomposition of π into irreducible K-types. We recall that $\left(\left.\sigma\right|_{P_{0} K_{t}}\right)^{K} \cong\left(\left.\rho\right|_{K \cap H^{\eta_{t}}}\right)^{K}$ and can state our final
theorem:
Theorem 3. If π has level $l>1$, then the sum $\sigma^{K} \oplus \Sigma_{t \geq 1}\left(\left.\sigma^{\eta_{t}}\right|_{P_{0} K_{t}}\right)^{K}$ is a complete decomposition of $\left.\pi\right|_{K}$ into irreducible K-types. The summands are of degree $(q-1) q^{t+l-2}(q+1), t=0,1,2, \ldots$, respectively.

References

[B] A. Borel, Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math., 35 (1976), 233-259.
[H] Kristina Hansen, Restriction of the Ramified Supercuspidal Representations of $\mathrm{GL}_{2}(F)$ to $\mathrm{GL}_{2}\left(\mathcal{O}_{F}\right), F$ a p-field, thesis, The University of Iowa, 1981.
[K1] Philip Kutzko, Mackey's Theorem for Non-unitary Representations, Proc. Amer. Math. Soc., No. 64, (1977), 173-175.
[K2] On the Restriction of Supercuspidal Representations to Compact Open Subgroups, Duke Math. J., 52 No. 3, 762-763.
[K3] , On the supercuspidal representations of GL_{2}, Amer. J. Math., 100, No. 1, (1978), 43-60.
[K4] , On the supercuspidal representations of GL_{2}, II, Amer. J. Math., 100, No. 4, (1978), 705-716.
[Se] Jean-Pierre Serre, Local Fields, Springer-Verlag, (1979), 17-20.
[Si1] Allan Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Mathematical Notes, Princeton University Press, (1979), p. 36.
[Si2] , PGL_{2} Over the p-adics: Its Representations, Spherical Functions and Fourier Analysis, Lecture Notes in Mathematics, Vol. 166, Springer-Verlag, 1970.

Received November 19, 1985 and in revised form January 29, 1987.

University of Michigan
Flint, MI 48502

