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ON THE GEOMETRY OF EXTENSIONS OF
IRREDUCIBLE MODULES

FOR SIMPLE ALGEBRAIC GROUPS

STEPHEN R. DOTY AND JOHN B. SULLIVAN

Let G be a simple, simply connected affine algebraic group over an
algebraically closed field k of non-zero characteristic p. We consider the
problem of determining the extensions of irreducible modules by irre-
ducible modules. The extensions may be realized as submodules of
modules induced from characters on a Borel subgroup of G. The
geometry of the distribution of composition factors of those induced
modules is determined by an operation (namely, alcove transition) of the
Weyl group on the space of weights. Genetically in the lowest /?2-alcove,
that operation stabilizes a canonical subset of the set of highest weights
of those irreducible modules which extend the irreducible module of
some fixed highest weight. The stability leads to an upper bound on that
subset, which can be refined using the translation principle. We give a
conjecture for the generic distribution of extensions of irreducible mod-
ules by a fixed irreducible module.

Introduction. Let G be a simple, simply connected affine algebraic
group over an algebraically closed field k of non-zero characteristic p.
(B,T) is a fixed Borel subgroup and maximal torus pair, X(B) is the
character group of B, and 2?opp is the opposite Borel subgroup. Take the
positive roots of (G, T) to be the roots of ( £ o p p , T). Let Gx be the
kernel of the Frobenius morphism of G. Let {^(χ)}?!™07*
= {H^G/B, L(χ))}f%G/B be the sheaf cohomology modules of the
homogeneous space G/B at the line bundle L(χ) induced from a char-
acter χ on B.

For each dominant character λ, H°(λ) has as its socle the irreducible
module M λ of highest weight λ. The formal character of Mλ can be
computed in terms of the formal characters of the modules {Mμ \ μ Φ λ, μ
strongly linked to λ}, once the multiplicities [H°(λ): Mμ] of the Mμ as
composition factors of H°(\) are known. Let X[H°(λ)]= {(μ,«) e
X(B)XZ>Q\[H°(λ): Mμ] = n}, let λ\= {μ ^ X(B)\[H°(λ): Mμ]Φ
0), and let Xλ = {μ ^ X(B)\[H°(μ): Mλ] Φ 0). In [7], the authors
defined the W-linkage class WL λ of a character λ. They showed that
WL - λ is an upper bound for Xλ, when λ is a weight generic in the
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lowest /?2-alcove, and conjectured that WL λ = Xλ. In 1.2, we prove that
conjecture, using a Theorem of J.-c. Ye [9], In this way, we can tell when
[H°(λ): Mμ] is non-zero, although we are not in a position to give the
value of the multiplicity [H°(λ): Mμ).

Let v be a special vertex (§0). Let Wv be the subgroup of the affine
Weyl group that fixes υ. Wυ is canonically isomorphic to the Weyl group
W\ let y be the element of Wυ corresponding to an element w of W. Let
Soc7M be the yth socle term for a module M, Let λ be a weight, generic
in the lowest /?2-alcove. The W-linkage class of λ, as a bound on Xλ9

arose in [7] in connection with the bearing that the group of alcove
transition operators {Iγ}v^Wv has on the supposed structural similarity
between HI(w)(w λ) and H\y λ). In fact, the operator Iy transforms
X[Hl(w\w λ)] into X[H°(y λ)], and X[Soc\Hl(w\w λ))] into
X[Socι(H°(y - λ))]. Pursuing the theme of structural similarity fur-
ther, we show in 1.3 that Iv transforms X[Soc2(Hί(w)(w λ))] into
X[Soc2(H°(y - λ))]. As a corollary, we show that

H'^G/BG^LiSoc^Z^w λ)))) = Soc2(H'™(w λ)),

where Zλ(w λ) is the ΓG^module induced from the T!B1-module kw λ.
In Andersen's work [3], the question arises of whether the socle series of
Zλ(w λ) can be lifted to the socle series for HI(w\w λ). That Corollary
gives an affirmative answer for j = 2.

Let λ be a weight in the box Vv (see §0). Each weight μ has a unique
expression μ = μ° + pμ\ where μ° e V(p~l)p and μ1 G X{T). In this
paper, we handle extensions only between irreducible modules Mμ and
Mλ where μ° Φ λ°. (The case μ° = λ° can be studied separately using the
fact that Extι

G(Mλo+pμ\, Mλo+pλι) = Ext^μ1, λ1), for λ not on a wall of
the dominant chamber.) In [2], Andersen showed that lw stabilizes
the set m Ext(λ)0 = {(μ, n) e X(B) X Z ^ o | μ° Φ λ° and n =
dimA, Ext^(Af , Mλ)}, for λ generic in the lowest /?2-alcove. In §2, we
study the geometry of the operation of lw on the set Ext(λ)0 = {/IE
X(T) Iμ° Φ λ° and Έxtι

c(Mμ9 Mλ) Φ 0}. Ext(λ)0 is contained in the union
of Xλ and Xλ. The /^-orbits in Ext(λ)0 fall into three classes: (i) the
orbits that lie in Xλ, (ii) the orbits that lie in Xλ, (iii) the orbits that meet
both Xλ and Xλ. From each orbit, we pick out an element which is
specially situated relative to υ9 depending on the class to which the orbit
belongs. From an orbit in the third class, the element is sβ* - λ, where β is
a simple root and sβ* λ is the reflection of λ in the β affine hyperplane
which is below λ and nearest to λ. These considerations lead to the
Theorem in 2.2, which gives an upper bound on Ext(λ)0 as a union of
certain Iw-orbits in X{T).
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In §§2.3 and 2.4, we consider the question of whether sβ* λ, β
simple, lies in Ext(λ). In particular, we show that when λ lies in a
translate of the fundamental alcove, Soc2(//r°(λ))/Soc1(/Γ0(λ)) =
θ o . , M? λ.

β simple sβ*

In §3, we show that the alcoves of characters χ and λ must be
compatibly oriented in order for χ to be an element of Ext(λ). This gives
a tightening of the upper bound on the set Ext(λ)0, given in 2.2. Finally,
in §4, we give a conjectural formula for m Ext(λ)0 in terms of the second
and [dimG/B - l]st-socle layers of H°(λ).

We thank H. H. Andersen for discussing with us his work [3] during
his visit to the University of Washington in the Summer, 1985.

0. Let G be a simple, simply connected algebraic group over an
algebraically closed field of characteristic p. Let B be a Borel subgroup of
G, with maximal torus T and character group X(B) = X(T). Let 5 o p p be
the Borel subgroup opposite to 2?, R the set of roots for (<5, Γ), R+ the
set of roots for ( 5 o p p , T), S the set of simple roots in i?+, and p the half
sum of the positive roots. Let R(T) be the root lattice in X(T), and let
X(T)+ be the set of dominant weights relative to R+. W is the Weyl
group of (G, T), sy is the reflection associated to a root γ, /() the length
function on W, and w0 the longest word in W. ( ,) is a W-invariant inner
product on X(R) ® z R, and av = 2α/(α, a) is the coroot of a e R. Let
N = άimG/B = l(w0). Gλ is the kernel of the Frobenius map on G.

Notation. Much of this notation appears already in [7].
Let Tχ be the operator on X(T) which translates each weight by a

fixed weight χ.

K(pR(T)) = {Tpλ I λ e R(T)} is the root translation group.

K(pX(T)) = [Tpλ |λ e X(T)} is the weight translation group.

Wp= W K(pR(T)) is the affine Weyl group. Ĥ  K(pX(T)) aug-
ments Ŵ  by the fundamental group of G. w(χ) is the ordinary action of
w e Wp on χ £ ^(Γ), and w χ is the action w χ = w(χ 4- p) — p.
^1^2 ' X i s understood to mean {wλw2) χ, for w1? w2 e W .̂

Let α e i?+ and fl e Z. ifαfΠ/, is the affine hyperplane {χ& X(T)
<S)zR|(α%χ + p) = np). sanp, the reflection operator in Hanp, is an
element of Wp.

A special vertex υ is an element of X( T) of the form Πβ e S ; n e z Hβ .
v is a common point for TV hypeφlanes, one for each positive root.
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Wυ = {σ G Wp I σ v = v} is the Ŵ ey/ grow/? at v. W itself is the Weyl

group at -p, and W and Ŵ  are isomorphic via conjugation by Tv + p. w

and y denote elements of W and Wυ which correspond under the

isomorphism. In particular, y0 G Wυ corresponds to vv0, and yy G Wt,

corresponds to sγ.

^ X(T)\nβp < (β",χ + p),β

is t h e dominant chamber at v.

Fv=y0 ' FΌ = { χ e X(T)\nβp > (βv,χ + P),β e

is t h e negative dominant chamber at υ.

Vv = {χ e Λ-(Γ) | « ^ < (j8',χ + p)

is the upper box at υ.

V=yo Vo=

is the lower box at v.

Vv and Vv are two fundamental domains for the operation of K(pX(T))

on X(T). In particular, we may write each weight λ as λ = λ° + pλ\

where λ° G V(p'l)p and λ1 G X(T).

0.1. The extended affine Weyl group W K(pX(T)) operates on the

set of hyperplanes {Hy np \y G R+, n G Z) and on the set of special

vertices.

Let γ e i ί . The nearest lower y-hyperplane reflection sy* on X(T) is

defined by sy* λ = synp λ, where np < (y\ λ + p) < (n + 1)/?. sγJ|ί

operates trivially on the set of special vertices.

Let SL be the monoid of operators on X(T) generated by the set

{̂ Ύ*| Ύ ^ ^ + }> including the identity. For each /^-regular weight λ, let

SL λ be the set of weights into which λ can be moved by the elements of

SL. Write χ t λ (χ is strongly linked to λ) if χ G SL λ.

The nearest upper y-hyperplane reflection sy on X(T) is defined by

s* λ = synp - λ, where (n - l)p < (y\ λ + p) < np. Let SL'1 be the

monoid of operators on X(T) generated by the set {s* \y G R + ], includ-

ing the identity χ G SL λ and λ G SL"1 χ are equivalent.

0.2. Extensions. Let Mλ be the irreducible G-module of highest

(dominant) weight λ. Let [M:Mλ] be the multiplicity of M λ as a

composition factor of a module M. Let H\χ) be the /th-cohomology
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module Hι(G/B, L(χ)) for the line bundle L(χ) induced from a char-
acter χ on B. For a 5-module Ey we employ also the notation H\G/B, E)

for the cohomology module H\G/B, L(E)).

DEFINITIONS. Let λ be a dominant character.

Xλ = {χ<E X(T)+ \[H°(λ):Mχ] + (0)},

l λ and λ e l x are equivalent.

Let Ext x

G(M x, Mx) be the group of extension classes of Mχ by M λ .

DEFINITION. Ext(λ) = { χ e X(T)+ lExt^A^, Mλ) Φ (0)}.

X and λ are symmetrically related by Ext: χ G Ext(λ) and λ G Ext(χ)

are equivalent. See [6], for instance.

DEFINITION. Ext(λ) 0 = { χ G Ext(λ) | χ ° Φ λ 0}.

Let N be the set of non-negative integers. The following definitions

bring in multiplicities.

DEFINITIONS

mXλ = {(χ9n) G X(T) + xN\n = [ H ° ( \ ) : M χ ] } 9

mXλ = {(χ9n) G I ( Γ ) + X N | « = [//°(χ): Mλ]}?

mExt(λ) = {(χ,/i) G X ( Γ ) + X N | Λ = dim^Ext 1

G(M χ, M λ ) ) .

(χ ? «) G mX λ and (λ, n) G m l χ are equivalent, as are (χ ? π) G m Ext(λ)
and (λ, n) G m Ext(χ).

DEFINITION. mExt(λ) 0 = {(χ,/ι) G m E x t ( λ ) | χ ° # λ 0}.

0.3. For each y G PF, define the alcove transition operator I on

X(Γ) by letting Iy = 7 ; . ^ , on each box V°. h Wp-> Perm(X(Γ)),

y -> / , is a homomorphism of groups, since / Kϋ = K '̂17. The box Vv

is fixed pointwise by the subgroup of operators IWυ = {Iy \ y G W^}. That

definition agrees with the definition of the alcove transition operators

given in [7].
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D E F I N I T I O N S

WL λ = Π V 1 ' SL ( j ; λ ) is the W-linkage class of λ.
yelVp

WL1 - λ = Π 7"1 * SL"1 * {ly ' λ ) i s t h e inverse W-linkage class of λ.

X e WL λ and λ e WL ι χ are equivalent.

By [7], for each special vertex υ, WL λ = ΠvelVpIv-ι SL (j; λ)

and WL1 λ = Π ^ ^ " 1 SL 1 (7V λ). In particular, when λ e V\

we have WL"1 λ = Π F e H / j " 1 SL"1 λ, a ^-invariant subset of

weights.

LEMMA. Let y e ίf̂  α«rf /̂ / a be a simple root such that l(yay) = l(y)

l . / / χ e ^ , ίλeπjy χ e SL"1 (y χ).

Proof. We may take i; = -p. Since l(saw) = /(w) + 1, we have

iv"1(α) e i?+. Hence, 5ftw χ — w χ = -(α", w χ 4- ρ)a =

-(w-\ay, χ + ρ)a> 0, when χ e ^ - p .

In the same way, if χ e F ,̂ then j ^ α ^ χ G SL (y χ).

0.4. We take the following facts about infinitesimally induced mod-

ules from [5] and [2]. For λ e X(T), let Zλ(λ) be the ΓGΓmodule

induced from the character λ on TBV Zλ(\) is isomoφhic, as a ΓGΓmod-

ule, with the .SG^module induced from the character λ on B. When we

regard Zλ{\) as a 5GΓmodule in that way, we denote it by BZ^λ). Mιλ

denotes the unique simple submodule of BZλ(\). The composition factors

of BZX(\) lie in the set {Mlχ\χ ^ X(T)}. A composition series for

BZ^λ) is also a (TGX-) composition series for Zx(λ). To see that Mlχ is

irreducible as a ΓGΓmodule, we have BZλ(\) = BZ^λ0) Φ/ λ1, and

Mιλ = Mιλo 0 p}}. Mιλo is isomorphic, as a iίG^-module, with the

G-module Mλo, and Mλo remains irreducible as a GΓmodule, since λ° e
y(p-l)p

Let h be the Coxeter number of (G, T). Let Cx be the alcove in V_p

which contains -p in its closure.

DEFINITION [2]. λ = λ° + ̂ λ1 is generic if 6(/z - 1) < (a\ λ1) < p -

6(h - 1), for alia e IT.

The following information may be found in [2], for λ generic. Let

μ = μ° + pμι be a weight.

1. HXw λ) = OίoriΦ l(w)

2. If [5ZX(w λ): Mlμ] Φ 0, then μι e w Cx.
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3. If μι e w • Q, then H'^\G/BGl9 (Mhμ)) = Mμ0+/nιΓi y .
4. H/(w)(G/BGv— ) takes a composition series for 5Zx(w λ) to a

G-composition series for Hl{w)(w λ).
5. [H^\w λ): Mμ] = [BZλ(w λ): M i y + W ] , for μ e X{T)\

1.
1.1. We require the following material from [2, 3] on connections

between sheaf cohomology (G-) modules and induced modules for infini-
tesimal subgroups of G, established by Cline, Parshall, Scott, Jantzen and
Andersen.

For λ and w~ι (λ + pθ) generic weights, we have the following
equalities, by 0.4.

= {BZ1(λ+pθ):Mltμo+p(μi+θ)]

= [H'^(λ+ pθ): AfMo+/rw-i.(ίl,+

= [H°{w-ί (λ+pθ)):Mμ0+pw-1.(μl+$)].

In the following proposition, pθ is determined by requiring that
w"1 (λ + pθ) = y-1 • λ.

PROPOSITION. Let λ andy~x • λ be generic weights.
(a) [tf°(λ): MM.+,μl] = [ i / ^ j - 1 λ): M μ o + / M V - v + β ) ] .
(b) 7V-, (μ° + pμ1) = μ° + .pw"1 (μ1 + θ).

Proof, (a) is proved above.
(b) μ° + pμ1 lies in vpμl + ίp~1)p. Since Iy-ι operates on vpμl+(p~l)f> by

we have

= μ° - pp + y~ι(pμι + pp).

Beginning with the other side of equation (b), we have

μ° +p{w~ι .(/x1 + θ)) = μ° + w-ι{pμι + pθ + pp) -pp.

Hence, the equality (b) is equivalent to

y~ι{pμι + pp) = w~ι{pμι 4- pθ + pp).
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The last equation is equivalent to

wy~ι -(pμι +{p - l)p) -(pμ1 +(p - l)p) = wy~λ λ - λ,

a valid equation since wy~ι λ - λ is independent of λ. In fact, wy~ι =
wTv+pw~lT_v_p = Tw(v+p)T_υ_p is a translation operator.

As a corollary of the proposition, we get the alcove transition prop-
erty of [7]. Let IWo act on X(T) XNbyIy (χ, n) = (Iy χ, n).

COROLLARY. IV mXλ = mXy.λ.

The cohomology modules H°(λ) and Hl{w)(wy~ι λ) can be devel-
oped in stages, namely,

H°(λ) = H°(G/BGl9 H»{BGλ/B, L(λ))),

and

H'W(wy-1 - λ) = H'W(G/BGl9 H^BG^B, L(wy~ι λ))).

In [3], Andersen shows that, for λ generic,

^°(G/5G1,Soc^(Z1(λ))) = SocJ{H°(λ))

and

Z1(w λ))) c SocJ(Hί(w){w - λ)).

In those statements, it is understood that Soc^Z^λ)) is the jth ΓGΓsocle
term, which is a jδG^-submodule of 5Z1(λ), since Gλ is a normal
subgroup of BGλ and since the G -̂socle series of Zλ{λ) coincides with the
ΓG^-socle series of ZX(X).

1.2. Proof of the W-linkage conjecture. We prove the conjecture of [7],
which states that the set Xλ of highest weights of composition factors of
H°(λ) equals the WMinkage class of λ, when λ is a generic weight. At the
suggestion of J. E. Humphreys, we use a Theorem of J.-c. Ye [9] which
gives the composition factors of the infinitesimally induced ΓGΓmodules

)
Let S?IX = {μ G X(T)+ \μUw0 λ +/>ρ)}. Let λ be a ^-regular

weight in V(p~~l)f>.

THEOREM [Cor. 3.5 of [9]]. Suppose thatp > 2h - 2.

{w μ + />p |μe^ l f λ , W €Ξ W).
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Since Z x(λ') ® (-pp) = Z x(λ' - pp), we get the following shifted

version of the theorem, when we add - pp to each weight in the sets of

the Theorem, and replace λ — pp by λ.

THEOREM. Let λ be a p-regular weight in V'p. Suppose that p > 2h —

2.

{λ' e X(T) l I z Λ λ ' ) : Λ/1>λ] * θ) = { H - μ | μ £ <

P R O P O S I T I O N . / / λ e F ~ p , /ACT fFZr 1 λ = {w μ | μ G

/ = {μ e X ( Γ ) + |μ T w0 λ} . Since λ G K"*, W L 1 λ
= Π w e ^w (SL"1 λ). Let μ G &Ίiλ+pμ and let w G ϊΓ. By the lemma in

0.3, wxw μ T v̂ 0 λ for each vv1 G Ŵ ; hence, λ t WQW^ μ. In other

symbols, wowλw μ G SL"1 λ and w μ G Π^ e ^(vyoW^"1 (SL"1 λ) =

W/Z"1 λ. To get the other inclusion, it will suffice to show that F_p Π

WL-χ - λ c ^ l f λ + / , p , since W^L"1 λ and {w μ | μ G ̂ 1 Λ + j P P , W G PF} are

each W-stable. If x G F p n WLι λ, then λ T w χ f or all w G WK, and

Wô  ' X ΐ wo ' λ. In particular, χ | w0 λ.

Let p > 2h - 2.

THEOREM (ΓAe W-linkage Theorem). Let λ be a p-regular generic

weight. The set of highest weights of composition factors ofH°(λ) equals the

W-linkage class of λ.

Proof. Let ^ λ = {λ' G X{T) HZ^V): Mιλ] Φ 0} and Xx λ = {λ G

X ( Γ ) | [ Z 1 ( λ ) : M l λ / ] ^ 0 ) , for any weight λ. By the proposition and

theorem above, we have WL~ι - λ = X*9 for /^-regular weights λ in V~p;

hence, by translation by v + p, we have that equality for /?-regular weights

λ in any box Vv. Equivalently, WL λ = Xιλ for /^-regular weights. By

0.4(5), Xλ = Xιλ = WLλ, for λ generic.

DEFINITION. Let λ be a generic weight. X* is the set of generic

weights in Xλ.

THEOREM. (The inverse W-linkage Theorem.) Let λ be a p-regular

generic weight. If all the weights in WL~ι λ are generic, then X^ =

WL1 λ.

Proof. If μ G Xg\ then λ G Xμ = WL - μ, by the ̂ -linkage Theorem.

Hence, μ G WL"1 λ. Using the hypothesis, the argument may be reversed

to give the reverse containment.



262 STEPHEN R. DOTY AND JOHN B. SULLIVAN

1.3. Extensions, the second socle level, and alcove transition. For M a

G-module, set X[M] = {(χ,w) e X(T) + X N\n = [M: Mχ]}. In particu-

lar, X[H°(λ)] = mXλ. We will show that alcove transition stabilizes the

set m Ext(λ) 0 , and preserves the second socle level, i.e.,

7,-i J φ o c 2 ( i / ° ( λ ) ) ] = X[Soc2(Hι^(wy-1 λ ) ) ] .

By [7], Iy-ι X[Soc\H°(λ))] = X[Socι(Hι^\wy-1 λ))].

Define the usual ordering on the set of functions from X(T)+ to N

by: {(X, nχ) e X(T) + X N} < {(χ, mχ) e X(T) + X N} if nχ < m χ , for

each χ G l ( Γ ) + . In the following proposition, we express a part of

Andersen's results [3], quoted in 1.1, in terms of alcove transition.

PROPOSITION. Let λ andy~ι λ be generic weights. Forj > 1,

7,-1 X[SocJ{H°(λ))] < x[SocJ{Hι(w)(wy-1 λ ) ) ] .

Proof. Set pθ = wy~ι λ - λ. We have

[Soc>(/f°(λ)): Mμo+/7

Since Iv-\ - (μ° + pμι) = μ° 4- / iv"1 (μ1 + β), the proof is complete.

LEMMA. Let M be a module with irreducible socle Mλ. If M/Mλ =

X φ λ ' t h e n dim^Ext1

G(Mχ, Mλ) > m.

Proof. The exactness of the sequence

0 ^ H o m c ( M χ , M λ ) ^ H o m G ( M χ , M ) -^ H o m G ( M χ , M/Mλ)

- E x t 1

G ( M χ , M λ )

and the hypothesis that Hom G (M χ , M) = (0) imply the statement.

The following Theorem of Andersen's [2, Th. 3.6] shows that exten-

sion multiplicity is constant on alcove transition orbits.

THEOREM 1 [2]. Let λ be a generic weight in Vv. For eachy e Wυ,

REMARKS 1. To reconcile the notation in Theorem 1 with the notation

of [2, 3.6], one may use the formula

/„„ V + p"(X + μ1)) = μ° + />"(* + w(μ1)),
relative to the vertex v = p"}} 4- (pn — I)p. Here, Iyl = Iy.
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2. It is instructive to see how the Theorem follows from the previous
proposition, given sufficient genericity assumptions. Let (δ,nδ) be an
element of m Ext(λ)0, where nδ may be zero. Assume that all the weights
in Wυ Iw δ are generic. To prove the Theorem, we show that nδ = nμ,
for each μ e Iw δ. Let χ be an element of Iw δ which maximizes the
extension multiplicity relative to λ, i.e.,

nχ = max{nμ\μelw, 89(μ9nμ) e mExt(λ)°).

Let y e Wv.
(i) If x < λ, then (x, nχ) e Z[Soc2(//°(λ))], by [4]. Hence,

/, (x, nχ) = (Iy x, nχ) e /v *[Soc2(i/°(λ))]

by the proposition above. Since Mλ is the socle of HI{w \w ιy λ), the
lemma above implies that the extension multiplicity nίrχ of Iv x relative
to λ is at least nχ. By the maximality of nχ, we have nχ = nf .χ.

(ii) If x > λ, then (λ, nχ) e X[Soc2(7/°(χ))]. Hence, for λ e F1', we
have

(λ,«χ) = /, (λ,»χ) e V *[Soc2(i/°(χ))]

by the genericity assumptions. Since SOC1(#/(M;~1)(M>~1 y • χ)) = M, χ, it
follows that n v < n, v , as in (i). Hence, « v = w, v .

The following is a Corollary to [2, Th. 3.6].

COROLLARY. // λ = λ° + /jλ1 satisfies 8(A - 1) < (a°9 λ1) < p -
8(Λ — 1) for all a G R+, then all the weights in Ext(λ)0 are generic.

Proof. Let δ be an element of Ext(λ)0. If we write

for some μ e X(T)+, then we have Kα^,^1)! < 2(h - 1), by Lemma 3.5
and Theorem 3.6 of [2]. Hence, 6(h - 1) < (a\ λ1 + μι) < p - 6(h - 1).

We have the following conjecture on the transformation properties of
alcove transition. Let y e Wυ.

Conjecture. If x and y x are generic weights, then /
(H^\w x))] = X[SocJ(H°(y χ))]

The conjecture is valid for the second socle term.
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THEOREM 2. // λ andy~ι λ are generic weights, where λ G Vϋ, then

Iy-ι - X[Soc2(H°(λ))] = X[Soc2(H^iwy-1 λ))].

The statements of two corollaries precede the proof. Let M be a
G-module. Let MΠmExt(λ) denote the set {(χ, nχ) G mExt(λ) |
[M: Mχ] Φ 0}, i.e., the highest weights χ of the composition factors of M,
paired with the integer nχ = dim^ Extι

c(Mχ9 Mλ). The socle of
H(/{w)(wy"1 λ) is Afλ, since y~ι λ is a generic weight (see [2] and [7]).
Let Soc2 = SocVSoc1.

We use implicitly in the arguments below the fact that Ext(λ) Π SL
λ = Ext(λ)0 n SL λ, for λ ^-regular. To see that fact, we have
Extι

G(Mχo+pχi, Mλo+pλι) = Extι

G(Mχι, Mλi) whenever χ° = λ° and λ is

not on a wall of the dominant chamber [10]. Since λ1 G Co, we conclude
that if Ext1

G(Mχi, Mλi) Φ 0, then χ1 > λ1, by linkage. Hence χ° + pχι >

COROLLARY 1.

Hl(w)(wy-1 λ ) Π m E x t ( λ ) = x[Soc2(HKw){wy~ι λ ) ) ] .

Consequently, Soc2(///(vv)(vvy"1 λ)) realizes all extensions of Mχ by
Mλ, whenever Mχ is a composition factor of Hl(w\wy~1 λ).

COROLLARY 2.

/ί / ( w )(G/5G1,Soc2(z1(wy-1 λ))) = Soc2{Hl{w){wy-1 λ)).

Proof of the Theorem. Let (χ, mχ) G X[$oc2( Hl{w\wy~ι λ))] and let
(Jy * X?

 mτγX)
 G ^[Soc2(ί/r°(λ))]. We need to show that m χ = mr.χ. By

1.3, proposition, mz χ < mχ. mr . χ is also equal to dim^ Ext^Mλ,M r χ)
[4], and m χ is less than or equal to dimkExtι

G(Mλ, Mχ). Hence, by
Theorem 1, mχ < mf χ .

Proof of Corollary 1. Iy-i transforms the equality H°(λ) Π raExt(λ)
= X[Soc2(H°(λ))] into the equality of the Corollary.

Proof of Corollary 2. Since Hl{w)(G/BGv Soc^Z^wy"1 λ))) c
Soc2(Hl(w)(wy~1 - λ)) by 1.1, it suffices to show that the two modules
have the same number of composition factors. Let n(M) be the length of
a composition series for a module M.
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Since λ and wy'1 λ are translates of each other, we have, using

0.4(4),

^ - 1 λ)))) = n(Soc2(z1(wy-1 λ)))

= /ifSoc^ZΛλ))) = niH^G/BG

By 1.1 and the Theorem,

= n(Soc2{H°(λ)))

2. Estimates for Ext(λ) 0. Throughout this section, all the weights

considered are /^-regular.

2.1. We begin with two lemmas on the geometry of the orbits for the

operation of the alcove transition group on X(T). In the first lemma, we

show that each orbit for l w operating on the space of /^-regular weights

contains unique maximal and minimal weights relative to the strong

linkage ordering T.

Let v be the special vertex ΓiβGStnpeZHβtnfiP and let υ_λ =

Π/?es,nβ<= z Hβ,(nβ-ι)P

 L e t t h e o r b i t o f a weight x be denoted by / χ.

LEMMA 1. There are unique elements 8 and δ ' in I χ such that

I x c SL 8 and / χ c S L 1 8'. Furthermore, 8 and 8' are the only

elements ofl-χ lying in Fυ and Fv, respectively.

Proof. It is evident that there can be no more than one such element 8

and one such element δ'. Let ϋ be the vertex such that χ e Vϋ, and let y

be an element of Wυ such that y - v e Fυ. We claim that δ = /- χ

satisfies SL δ D / χ. In fact, we show that if l(yay) = /(y) + 1, then

IyIy - 8 e SL (Iy δ). By the lemma in 0.3 for Fv, if l(yay) = l{y) + 1

and μ e i^, then yay μ e SL (7 μ). Since δ = / - χ G F* > δ and Iy -

8 e F ^ ' δ , we have / ^ δ = Iy δ + yayy v - yy - v, where ^ α j j v -

yy v = m/7α > 0, by that lemma for μ = y ϋ. Hence, IyIy - 8 ^ SL -

To complete the proof of the lemma as far as it concerns δ, we show

that Fv_iΓιI χ= {8}. Let np < (β\8 + p) < (/i + 1)/?. By [7, 4.2],

S-I δ = (n + 1- nβ)pβ. Since /^ δ e SL δ, we have n > nβ - 1,

i.e. δ G FOι. Let δ be any element of FVιCλ I χ and let i;7 be

the vertex such that δ e F y ' . We have (iδ^,δ 4- p) > (Λ^ - 1)/?, and

(βv,v' + p) > ftβ/? and 1;' G i ; , A repetition of the argument given in the
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first part of the proof, with δ replaced by δ and y v by υ\ shows that
/ • χ c S L ϊ . Hence, δ = δ.

The facts about δ' are proved in the same way as those for δ, where
Fv replaces Fυ in the arguments.

In the second lemma, we show that Iw -orbits which lie totally within
SL λ also lie totally within WL λ. Let λ be a /^-regular weight in Vv.

LEMMA 2. (a) Π v e ^ Iy {WL λ) = Πγ^w Iy (SL λ).

(b )n v e ^Λ (WL-V λ) c nyeWoiy (SL-1 λ).

Proof. The left to right containments are evident. We prove the other
containment in (a). Since λ e Γ c Fυ

9 we have SL λ c SL (y1 λ)
for y e Wv9 by the lemma in 0.3. Hence

Π V ( S L λ ) c Π IySL.(

yew/ y^Wv

and

n /v (sL λ ) c n iy

y^wv y^wυ

2.2. Let λ = λ° + pλι be an element of Vυ satisfying the condition
8(Λ - 1) < (α", λ1) < p - 8(A - 1), for all a e R+. The operation of / %

on X(T) stabilizes Ext(λ)0 (1.3, Theorem 1), and the /^-orbits in Ext(λ)
may be divided into three types,

(i) the orbits within WL λ
(ii) the orbits within WL1 λ

(iii) the orbits which meet both WL λ and WL1 λ.
In fact, Ext(λ)0 c Xλ U Xg\ by [4] and the Corollary to Theorem 1 of 1.3;
and XλU X* a WL λU WL1 λ, by the H -̂linkage Theorem.

PROPOSITION 1. Let λ e Vv and let χ be a weight other than λ. If the
orbit Iw x lies in WL λ U WL~ι λ and it intersects both WL λ and
WL1 λ, then it equals Iw Sβ* λ, for some β e S.

Proof. Let χ be an element of the orbit. By the hypothesis, the orbit
contains some element δ such that δ e WL1 λ and Iy δ e WL λ,
for some J 8 E S . We will show that Iv δ = sβ* λ.

First, we show that / δ = sfa λ for some j > 1. Since / δ e SL
• λ, and λ e SL-1 δ, we have 0 < λ - IVβ δ = (δ - IVβ δ)"+ (λ - δ)
= mpβ — Σ γ e /?+0γγ9 where m G Z and αγ > 0. Hence, αγ = 0, for γ Φ β.
Since / δ e SL λ and /v δ = λ - mz7yβ + aββ, we conclude that
/v δ = sfa - λ for some j > 1.
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The stability of WL~ι λ under Wv(0.3) implies that j ^ ί ε WL1

λ. Since yβ δ = yβ 7^ ^ λ = yβsβs/f* λ = s^""1 λ, j must equal 1.

Denote Iw- χ by / χ.

PROPOSITION 2. Le/ λ /><? # weight in Vv.

( a ) Π y e i # ς ^ WL-λ = U β e i ; OSLO'S.
Γ 1 λ C U ^ n S L - L x / δ.

Proof. By Lemma 2 of 2.1, it will suffice to show that Πy e W{-ly SL

λ = U δ e F ι i Π S L . λ 7 δ andΠye]VoIy S L 1 λ = U δ e / r . n S L - i . λ 7 δ.

(i) Let δ G Fυ_χ Π SL λ. By Lemma 1 of 2.1, 7 δ c SL δ c SL •

λ; hence, 7 δ c Γ\y^Wo Iy SL λ.

(ii) Let χ G Π v e κ I y SL λ. Since 7 χ c SL λ, the element δ in

the orbit, produced in Lemma 1 of 2.1, lies in Fυ χ Π SL λ. The proof of

the second equality is similar.

As a consequence of Propositions 1 and 2, we have the following

upper bound on Ext(λ) 0.

THEOREM. Let λ be a weight in Vυ satisfying the condition S(h — 1) <

(α ϋ , λ1) < p - 8(/z - 1), for all a G i?+. Ext(λ) 0 is contained in the union

of the Iw-orbits of the sets (i) {sβ+ λ\β G 5}, (ii) /^ χ Π SL λ, (iii)

ί l oJL A.

Here, the orbits of the elements of Fυ Π SL λ lie in WL λ and those

ofFv Π SL-1 λ lie in WL1 λ.

EXAMPLES 1. For groups of type A2 and B2, (Fv Π SL λ) U

(Fv Π SL"1 λ) = Vv. Since l w operates trivially on V\ we have that

E x t ( λ ) 0 c V° U (Jβ€ΞS IWυ sβ* λ.

2. For the group of type G2, ( 7 ^ Π SL λ) U (Fv n SL"1 λ) can

exceed Vv. If λ e P lies in the alcove which contains the special vertex

v_ι in its closure, then F° Π SL"1 λ contains four weights outside Vv.

Two of those weights belong to Ext(λ) 0. If λ G Vυ lies in the alcove

which contains v in its closure, then Fυ χ Π SL λ contains four weights

outside K .̂ Again, two of those weights belong to Ext(λ) 0. This shows the

added complexity of the alcove geometry of G2 over that of A2 and B2

for the study of extensions.

2.3. The first proposition below gives grounds for believing that

ί ^ λ e Ext(λ), for β (Ξ S. See 2.4 as well.

Let λ be a generic weight. Mj . λ is the socle of Hl(w\w λ) and

[77/(vv)( w λ) : Mj .λ] = 1. See [7] and [2].



268 STEPHEN R. DOTY AND JOHN B. SULLIVAN

LEMMA. H°(λ) has exactly N + 1 socle levels <=» M5 . λ has socle level

l(w) + linH°(λ) for all w e W.

Proof. The number of socle levels of H°(λ) equals the socle level of

its top factor Mj λ . That gives the right to left implication. Now suppose

that Mj λ is at the /(w0) + 1 socle level. To show that M3• λ is at the

l(w) 4- 1-socle level, it suffices to show that the level of Mj w.λ exceeds

that of Mj . λ, whenever l(sβ w) = l(w) + 1.

MJw.χ

W (τesp. MJ$ w. λ) is the top factor of Hί(w°w)(wow λ) (resp.

H/(WQSe™\wosβ w λ)f[7]. There is the part of the loop from [7]:

Hi("°w)(wow λ) -> Hi(ww)(wosβw λ) -> -» #

PROPOSITION

HN'\wosβ • λ) -*

image.

2.
H

sβ*

°(λ)

Let ψ be the (non-zero) composite of those mappings and let φ be the

composite of the mappings between Hl(WbSf>w)(wosβw λ) and H°(λ).

Since ψ ^ 0, M3 . λ and Mj λ are both factors of Im(φ), where Af, λ is

the top factor of Im(φ). That completes the proof.

PROPOSITION 1. // H°(λ) has exactly N + 1 socle levels, then

(sβ* λ , l ) G mExt(λ).

Proof. Since M λ = M 7 λ has multiplicity one in H°(λ), we need

only show that ί^ λ e Ext(Λ). By the lemma, Mj λ has socle level 2 in

°

Ext(λ) <̂> /Λe non-zero mapping ψ:

/ze ίwo factors Mλ and M ,λ in its

Proof. The implication from right to left is evident. For the other

implication, since Ms λ is the top factor of HN~ι(wosβ λ), it is the top

factor of Imψ. By the hypothesis, Ms λ is a factor of Soc2(//°(λ)), and

so a factor of Soc2(Im(ψ)).

EXAMPLE. For groups of type A2 and 5 2 , the image of ψ has just the

two factors M λ and Ms ^.λ, by a computation in [7]; hence, sβ* λ G

Ext(λ). Taking Example 1 of 2.2 into account, in order to settle the

extension picture for A2 and 5 2 , one need only find Vv Π Ext(λ).

2.4. Let λ be a weight in Vv satisfying the condition 8(Λ — 1) <

(aι\ λ1) < p - 8(A - 1), for all a G i?+. Let Ci; { be the alcove in Vv

which has υ_x in its closure. For β G 5, we show that ŝ * λ G Ext(λ)

when λ G C£, .
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Let

v = Π Hatnβp9

a<ΞS

Ό' = Hβ,(nβ-l)p Π Π H^njn

aΦβ

for some fixed β G S.

LEMMA. // λ G Q i? ίλew ί^ λ G Kι/.

Proof. We may assume that ϋ_x = -p. In that case, υ = (p — l)p =
Π α € S ^ α t j p 5 ^ * ' λ = sβ λ, and 0 < (γ",λ 4- p) < p, for each γ G R+.
Since ^ ( α ) G Λ^ when a G S and α ¥= j8, we have that (α y, ^ λ -I- p)
- ( ^ ( α ) y , λ + p) lies between 0 and p. {β\ sβ λ + p) = (sβ(β)\ λ +
p) = ~()8y, λ 4- p) lies between -/> and 0.

PROPOSITION 1. // λ G Q I ? /ΛCT Ext(λ) n SL λ c { ^ λ | β
5}.

. By the Theorem of 2.2, it suffices to show that Fv_γ Π SL λ -
{λ} (a one element orbit) and that

SL λ n / ^ * λ = [Sβ* λ } .

The first of the two equalities is evident. To get the second equality, we
have that IwSβ* λ c SL"1 {sβ* λ), by Lemma 1 of 2.1, since sβ* λ
G Vv' c Fv. Since SL λ Π SL"1 (sβ* λ) = {λ, sβ* λ} and since {λ}
is a one element orbit, we have SL λ Π Iw ^ ^ λ = {sβ* λ}.

PROPOSITION 2. // λ G Q I ? ίA^ Soc2(^°(λ))/Soc1(^°(λ)) =

Proof. Since each Af̂  λ has multiplicity one in H°(λ), Proposition 1
implies that

for some subset S\ of 5. For each j S e S , consider a non-zero intertwining
Φβ. H°(λ) ~> H°(sβ* λ)[l]. Since Mλ is a composition factor and M5 # λ

is not a composition factor of Ker <pβ9 Γ\β€ΞSKeτφβ has zero second socle
level, i.e., Γ\β^sKerψβ = Mλ = Soc1(H°(λ)). By [6], for instance, we
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conclude that

S o c > ( / / ° ( λ ) ) = Π φ-β

ιSoc'-ι(H°(sβ* λ))9 ΐorj>l.

By that equality for j = 2, we only need to show that Ms <>λ is a
composition factor of Γ\β(=sφβ

ι(Ms^.λ), for each a e S, in order to
complete the proof. Since Ms^.λ is a composition factor of H°(λ) of
multiplicity one, Af, is a composition factor of the intersection if and
only if it is a composition factor of each term φβ

ι(Ms + λ ) . lί β = a, that is
so. If β Φ α, then M5 + λ is not a composition factor of H°(sβ* λ), since
^«* ' λ ^ sβ* λ; hence, M5 + λ is a composition factor of

3. The lower wall restriction on extensions.

3.1. Let Aχ be the alcove which contains a /^-regular weight χ. Let γ
be a positive root. The following results are based on [6].

DEFINITION. Suppose that the affine hyperplane Hynp contains a face
/ of Aχ. f is a lower face if (γ", χ + p) > /?/?.

Let [/] = H^ / be the orbit of / under Wp. Let ^ be the set of
W^-orbits of faces. J^ has Card(S) + 1 elements. Following the terminol-
ogy of [8], let

= {[/] G ^ Ί [ / ] n A

x is a lower face of ^ χ ) .

Call two alcoves adjacent if they share a face.
Suppose that /̂ -regular weights χ and λ are not in adjacent alcoves.

PROPOSITION. // χ e Ext(λ) and χ < λ, ίλew JδP(λ) c JS?(χ).

Proof. Suppose that ίίγ iΛ/, contains a lower face / of Aλ. Take the
non-zero intertwine φ from H°(λ) to H°(sy* λ) [1]. The proposition of
[6, §2] and the annihilation property of the translation functor (cited in [6,
§2]) imply that if Mχ is a composition factor of Kerφ, then [/] e i?(χ).
It only remains to show that Mχ is a composition factor of Kerφ. Since
Aλ and Aχ are not adjacent, Mχ Φ Ms ^.λ. Since Mχ is a composition
factor of Soc2(//°(λ)) and since φ(Soc2(#°(λ))) is contained in
Socl(H°(sy* - λ)) = Ms + λ, Mχ must be a composition factor of Kerφ.

The proposition, together with the Theorem of 2.2, gives the following
estimate for Ext(λ)0.
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Ext(λ)0 is contained in the union of the /^-orbits of the sets

(i) {sβ.-\\βeS},

(ii) { χ e S L λ U SL"1 λ | Aχ and Aλ are adjacent),

(iii)

(iv)

3.2. A conjectural bound for Ext(λ)0. Let d(λ, χ) count the number of
hyperplanes dividing χ from λ, where a hyperplane is counted 4-1 if χ is
on the positive side (i.e., χ is on the positive side of Hynp, γ e i?+, if
( γ ^ χ 4- p) > np), and is counted -1 if χ is on the negative side [8]. With
the work in [3] on Lusztig's conjective in mind, we add a conjectural
restriction for χ to be an element of Ext(λ)0, namely, when χ e Ext(λ)0,
d(λ,χ) is odd.

Conjectural bound on Ext(λ) 0.
Ext(λ)0 is contained in the union of the orbits of the sets (i)-(iv) in

3.1, where (iii) and (iv) are restricted further by the requirement that
J(λ,χ)beodd.

For groups of rank 2, Ext(λ)0 equals the conjectured bound (λ
generic). For groups of rank > 2, we have no information about whether
Ext(λ)0 equals the conjectured bound.

4. Further conjectures for m Ext(λ) 0.

4.1. Let Soc2 = SocVSoc1. Let λ be a /7-regular weight in V° and let
y0 be the longest word in WΌ. Assume that λ and y0 - λ are generic
weights.

DEFINITIONS.

m E x t + ( λ ) ° = { ( χ , r t ) e m E x t ( λ ) ° | χ e SL"1 λ ) ,

m E x t - ( λ ) 0 = { (χ ,n) e mExt(λ) ° | χ e SL λ } .

m E x t - ( λ ) 0 coincides with X[Soc2(H°(λ))].

Duality conjecture. y0 m Ext(λ) 0 = m Ext(y0 λ)°.

PROPOSITION. If the duality conjecture is valid, then

mExt(λ)° = *[Soc2(tf°(λ))] Uy0 • x[Soc2(H°(y0 • λ))].
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Proof. We have

mExt(λ)° = mExr(λ)° U mExt+(λ)°

= m Ext ~ (λ) U y0 - m Ext" (y0 λ) (using the hypothesis),

= X[Soc2{H°(λ))} UyQ x[Soc2{H«(y0 - λ ) ) ] .

We note that y0 carries the bound for Ext(λ) 0, given in 3.1, into the

bound for Ext(>>0 λ)°. That follows from the formulas (i)-(iii) below. Let

* = ^a^sHa,naP

 a n d 0 + i = ^a^sHa,(na+ι)P' Let y+ be the element of
Wυ corresponding to the element y of Wυ.

1 (i) 7o * IJVV ' X = Jιv0+1 " Λ * x; m o r e Precisely, j>0 ' V X = 7OWΛ)+ '

Jo* X
(ii) Λ (/; i Π SL - λ) = F°+* Π SL' 1 λ; yo (Fv Π SL"1 λ) =

Fυ Π SL λ.

(iii) >;0 sβ. λ = / ( ^ _ ^ ) ) + ^ W o ( ) 8 ) * Λ λ.
(i) may be verified at y = yβ. For (iii), we have y0sβ4t λ = sWo(β)ήι ^ 0

• λ = ^ o W -y0 λx and / U w o C Λ ) + , . ^ Λ X = J * ^ ) X, for χ e F ^ - .
Since j / 0 λ G F ϋ + 1 when λ e F ϋ , the formula is verified.

4.2. We give a conjectural formula for mExt(λ) 0 in terms of the

second and JVth socle levels of H°(λ).

We will say that the radical and socle series for H°(λ) coincide if

SocJ(H°(λ)) = R a d " + w ( i / ° ( λ ) ) for j = 1,. . . , N + 1. If M is a mod-

ule, let M t r be the transposed dual module (see [6], for instance). If Mλ is

a submodule of M, let M ^ = {/ e M t Γ | / (M x ) = 0}.

PROPOSITION. // ί/ẑ  duality conjecture for m Ext(λ) 0 is valid and if the

radical and socle series for H°(λ) coincide, then

mExt(λ)° = Jφoc2(tf°(λ))] U J£ • X[Soc^(i

Proof. In general,

H%λ)u s HN(w0 • λ)

and

[Rad^(F°(λ))] x = SocJ{HN(w0 λ)).

By the second hypothesis,

Hence,

Socι{HN(w0 • λ)) =
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and

Soc2{HN(w0 λ)) = Soc 7 V " 1 (i ί 0 (λ)) ± .

Taking quotients, we have

Soc2(HN(w0 λ)) s SocN'l{H°(X))±/SocN{H°(\))±

= [Soc^(JΪ0(λ))/SocΛ Γ-1(^°(λ))] t r = SocN(H°(λ))tr.

Hence, by the proposition in 4.1, it will suffice to show that

y 0 • X[Soc2{H°(y0 • λ ) ) ] = j£ • X\SOC2{HN{W0 • λ ) ) ] ,

since tr leaves semisimple modules unaltered. Since / y0 = I the last
equality is just the property of alcove transition.

REMARK. Let yό be the longest word in W^. On Vv\ J^1 may be
computed by: j£ = y'o.
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