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DENSITY OF THE POLYNOMIALS IN
BERGMAN SPACES

PAUL S. BOURDON

Let G be a bounded simply connected domain in the complex plane.
Using a result of Hedberg, we show that the polynomials are dense in
Bergman space L^(G) if G is the image of the unit disk U under a
weak-star generator of H°°. We also show that density of the polynomi-
als in L2

a(G) implies density of the polynomials in H2{G). As a
consequence, we obtain new examples of cyclic analytic Toeplitz opera-
tors on H2(U) and composition operators with dense range on H2(U).
As an additional consequence, we show that if the polynomials are dense
in L2

a(G) and φ maps U univalently onto G, then φ is univalent almost
everywhere on the unit circle C.

1. Introduction. Let Ω be an open, nonempty subset of the com-

plex plane, and let dA be two-dimensional Lebesgue measure. The Berg-

man space of Ω, L^(Ω), is the Hubert space of those functions / which

are analytic on Ω and which satisfy

I/I dA < oo.

Let H°° denote the algebra of functions which are bounded and analytic

on the open unit disk U.

For any domain G in the plane, define the Caratheodory hull of G,

G*, to be the complement of the closure of the unbounded component of

the complement of the closure of G. If G is a component of its

Caratheodory hull G*, then G is said to be a Caratheodory domain.

Caratheodory domains are simply connected (cf. for example [14, Lemma

2.13]). An old theorem (1934) of Farrell [6] and Markusevic [8] states that

if G is a bounded Caratheodory domain, then the polynomials are dense

in L2

a{G), In 1953, S. N. Mergeljan remarked in his survey article on

polynomial approximation that the Caratheodory domains apparently

form the largest class of domains G with a purely topological definition

such that the polynomials are dense in L2

a{G) (cf. [9, p. 121]). We show

that there is a larger class of such domains.

THEOREM 3.1. If G = φ(U) where φ is a weak-star generator of H°°,

then the polynomials are dense in L2

a(G).
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The function φ e H°° is a weak-star generator of i/0 0 provided the

polynomials in φ are weak-star dense in i/°°. Here, it will be convenient

to view H°° as the dual of a quotient space of Lι(U). (The predual of H°°

is, in fact, unique [2, Theorem 1].) In [16] Sarason characterizes the images

of weak-star generators of i/0 0 using the concept of relative hulls. Proposi-

tion 4 of [16] shows that relative hulls have a topological description based

on the notion of a crosscut. Theorem 3.1 extends the result of Farrell and

Markusevic since if φ maps U univalently onto a bounded Carathέodory

domain, then φ is a weak-star generator of H°° (of order 1) [16].

Moreover, there are many weak-star generators of H°° which map U onto

non-Caratheodory domains [16,17].

Weak-star generators of #°° are univalent on U and univalent almost

everywhere on the unit circle C [15, Propositions 2 and 3]. We show that

for the polynomials to be dense in L2

a(G), it is necessary that the

univalent map of U onto G be univalent a.e. on C. This gives another way

to see that if, for example, G contains slits (which are not too close

together) then the polynomials are not dense in L2

a(G). Here, and for the

remainder of this paper, we use the letter G to denote a bounded simply

connected domain in the plane.

2. Preliminaries. Let A2 denote the Bergman space of the unit

disk; that is, let A2 = L2

a(U). For / e H°°, define Bf: A
2 -» A2 by

(Bfg)(z)=f(z)g(z).

Similarly, define 7}: H2(U) -> H2(U) by (2}Λ)(z) = f(z)h(z); here,

H2(U) denotes the Hardy space of U. For any operator A, let Lat^ί

represent the lattice of invariant subspaces of A (subspace = closed

subspace). Lat Tφ = Lat Tz if and only if φ is a weak-star generator of H°°

[15, Proposition 1].

PROPOSITION 2.1. // φ is a weak-star generator of i/00, then Lat Bφ =

LatJS..

Proof. That Lat Bz c Lat Bφ for any φ e H°° is well known (cf. for

example [19, Theorem 12]). If φ is a weak-star generator of i/00 then there

is a net {pa) of polynomials such that pa(φ) -> z weak-star in H™. This

means that for any / e Lι(U)

{Pa(φ)-z)fdA-*0.

It follows that Bp ( φ ) -> Bz in the weak operator topology. Hence, L a t £ φ

c Lat B^.
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John Conway and Robert Olin have pointed out to the author that

the converse of Proposition 2.1 is true. If Lati?φ = L a t 5 z , then by the

reflexivity of subnormal operators, there is a net {pa} of polynomials

such that Bpa(φ) -> Bz in the weak operator topology. That pa{ψ) -» z

weak-star follows from Theorems 1 and 2 of [12].

The proof of the following theorem appears in [19, pp. 112-114].

THEOREM 2.2 (Hedberg). If R is a simply connected domain of finite

area, then i7°°(7?) is dense in L2

a(R).

Via a change of variables, Hedberg's result is equivalent to the

following (cf. [19, Proposition 41]).

COROLLARY 2.3. If f maps U uniυalently onto a domain of finite area,

then the derivative of f is cyclic for Bz.

The vector g G A2 is cyclic for Bf: A2 -> A2 provided g is not

contained in any proper invariant subspace of Bf. Alternatively, g is

cyclic for Bf if {p(f)g: p is a polynomial} is dense in A2.

3. Results. One may combine Corollary 2.3 and Proposition 2.1 to

obtain a simple proof of Theorem 3.1.

THEOREM 3.1. If G = φ(U) where φ is a weak-star generator of i/0 0,

then the polynomials are dense in L2

a(G).

Proof. Since weak-star generators are univalent, φ' is cyclic for Bz\

and since Lat Bφ = Lat B2, φ' is cyclic for Bφ.

Now, let g G L2

a(G) be arbitrary. Since g(φ)φ' G L2

a(U) = A2 and

since φ' is cyclic for Bφ, there is a sequence {pn] of polynomials such that

ί \PnWW - g(<p)<P'|' dA -*0.Ju

Changing variables, we have JG \pn — g\2 dA -> 0. Hence, the polynomials

are dense in L2

a(G).

Robert Olin has related to the author another argument which yields

Theorem 3.1. The author wishes to thank Prof. Olin for his permission to

give that argument here. Let S be a bounded open set in the plane and let

K be its Sarason hull. (K is the Sarason hull of μ where μ is two-dimen-

sional Lebesgue measure on S. See [18].) The polynomials are weak-star

dense in /ίo o(5') if and only if every function in H^iS) extends to a
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function in H°°(intK) [18, Corollary 3]. The following proposition holds

since if G is the image of a weak-star generator of i/0 0, then G is the

interior of its Sarason hull K (cf. [11, Lemma 1]).

PROPOSITION 3.2. If G = φ(U) where φ is a weak-star generator of

i/0 0, then the polynomials are weak-star dense in HCO(G).

Here, H°°(G) is viewed as the dual of a quotient space of Lι(G). If G

is the image of a weak-star generator, then it follows easily from Proposi-

tion 3.2 that H°°(G) is contained in weak closure of the polynomials in

L2

a{G). Since for a convex subset of a Banach space weak closure is

equivalent to norm closure, HCC(G) is contained in the norm closure of

the polynomials in L2

a(G). Theorem 3.1 now follows from Hedberg's

result (Theorem 2.2).

There is no problem extending Hedberg's result to a bounded open

set each of whose components is simply connected. Hence, Olin's argu-

ment provides a generalization of Theorem 3.1: If S is a bounded open

subset of the plane with Sarason hull K, then the polynomials are dense in

L2

a(S) if each / e L2

a(S) extends to a function / e L^(int K). One way to

see that the components of intK are simply connected is to combine

Lemma 7.1 of [18] with Theorem 5.1 of [7]. This generalization of

Theorem 3.1 provides an extension of a result of Sinanjan [20] who

showed that the polynomials are dense in L2

a(S) if S is a bounded

Caratheodory set. (S is a Caratheodory set provided it is the union of

some of the components of S*.) Rubel and Shields have actually shown

that for a bounded Caratheodory set S the polynomials are weak-star

sequentially dense in HCO(S); that is, each / e //^(S) is the pointwise

limit of a uniformly bounded sequence of polynomials (cf. [14, Theorem

3.2]). Note that it's a simple matter to combine the result of Rubel and

Shields with Hedberg's result to obtain Sinanjan's result.

We turn now to a proposition which yields a necessary condition for

the polynomials to be dense in L2

a(G) and which provides new examples

of cyclic analytic Toeplitz operators on H2(U) and composition operators

with dense range on H2(U). For any positive Borel measurable function

w on G, let L2

a(G,wdA) represent the weighted Bergman space consisting

of those analytic functions / on G which satisfy

PROPOSITION 3.3. Let φ map U univalently onto G. The polynomials

are dense in L2

a(G,(l - \φ~ι(z)\2) dA) if and only if the polynomials in φ

are dense in H2(U).



POLYNOMIALS IN BERGMAN SPACES 219

r2/Proof. Recall that for/= Σ^J{n)zn e #2(t/),

where for almost every 0, f(eιθ) = hmr^ιf(reιθ). By considering the
Taylor expansion of / e H2(U), one may easily verify that || H ^ ^ is
equivalent to || || where

Now if the polynomials are dense in L 2 ( ( J , ( 1 - |φ \z)\2)dA), then
{ P(φ)ψ': P ιs a polynomial) is dense in L2(t/, (1 — |z|2) dA). Integrating,
we see that {p(φ)' p is a polynomial} is dense in H2(U). The converse
follows by differentiating.

This simple proposition has several interesting consequences. The
following consequence seems to have been overlooked in the literature. It
shows that, for example, a result of Caughran (cf. [4, Theorem 1]) is
actually an easy consequence of the result of Farrell and Markusevic.
Recall that a function / belongs to the Hardy space H2(G) provided | / | 2

has a harmonic majorant on G. One defines the norm of / e H2(G) by
11/11 H2(o = tw(zo)]1/2> where z0 is a fixed point in G and u is the least
harmonic majorant of |/ | 2 . If φ maps U univalently onto G with
φ(0) = z0 then the correspondence / <-> /(φ) is an isometric isomorphism
between H2(G) and H2(U) (normed as in the proof of Proposition 3.3)
(cf. for example [5, Chapter 10]).

COROLLARY 3.4. Let φ map U univalently onto G. Density of the
polynomials in L2

a{G) {or in L2(G, (1 — \φ~ι(z)\2) dA)) implies density of
the polynomials in H2(G).

Proof. It's easy to see via a change of variables that density of
the polynomials in L2

a{G) implies density of the polynomials in
L2(G,(1 - I φ " 1 ^ ) ! 2 ) ^ ) . By Proposition 3.3, {p(φ): p is a polynomial)
is dense in H2(U), but this is equivalent to density of the polynomials in
the Hardy space H2(G).

COROLLARY 3.5. // φ maps U univalently onto G and if the polynomials
are dense in L2

a(G) (or in L2(G,(1 - \φ~\z)\2) dA)\ then φ is univalent
almost everywhere on the unit circle C.
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Proof. By Proposition 3.3, {p(φ)'. p is a polynomial} is dense in

H2(U); in particular, there is a sequence {pn} of polynomials such that

\\pn(φ) - Z\\H2{U) ""* 0 Choose a subsequence {pn} of {/?„} such that

Pn ( φ ( z ) ) "^ z a e o n C Off Λe set of measure zero on which pn (φ(z))

may not go to z, φ must be univalent.

The following two corollaries are immediate consequences of Proposi-

tion 3.3.

COROLLARY 3.6. // φ maps U uniυalently to G and if the polynomials

are dense in L^(G, (1 - \φ~ι(z)\2) dA), then the analytic Toeplitz operator

Tφ: H2(U) -> H2(U) is cyclic with cyclic vector 1.

If φ is a weak-star generator of H°°9 then it's easy to see (for example,

by using LatΓ z = LatΓφ) that Tφ is cyclic with cyclic vector 1. John

Akeroyd [1] has produced examples of cyclic analytic Toeplitz operators

whose symbols are not weak-star generators. In fact, he has shown that if

φ maps U univalently onto a crescent bounded by two internally tangent

circles, then Tφ is cyclic with cyclic vector 1. That a crescent is not the

image of a weak-star generator follows from [16, Corollary 2]. Corollary

3.6 above provides further examples of cyclic analytic Toeplitz operators.

There are bounded simply connected domains G such that the polynomi-

als are dense in L2

a(G) (hence in L2

a(G,(l - I φ " 1 ^ ) ! 2 ) dA)), but G is not

the image of a weak-star generator. For example, Mergeljan and Tamad-

jan [10] (cf. also [3]) have shown that if sufficiently many slits are put in

the unit disk, one can obtain a domain G such that the polynomials are

dense in L2

a(G). Once again, Corollary 2 of [16] shows that the disk with

these slits is not the image of a weak-star generator of H°°.

COROLLARY 3.7. Let φ map U univalently onto G c U and define Cφ:

H2(U) -* H2(U) by (Cφf)(z) = / ( φ ( z ) ) . If the polynomials are dense in

L 2 (G,(1 - I φ - ^ z ) ! 2 ) ^ ) then Cφ has dense range.

Corollary 3.7 extends a result of Roan [13] by providing additional

examples of composition operators with dense range.

REMARK. It's easy to see that if Cφ has dense range or if Tφ is cyclic,

then φ is univalent on U and univalent a.e. on C.

REFERENCES

[1] J. Akeroyd, Approximation in the mean by polynomials with respect to harmonic
measure, preprint.

[2] T. Ando, On the predual of H™, Comment. Math. Spec. Issue, 1 (1978), 33-40.



POLYNOMIALS IN BERGMAN SPACES 221

[3] J. E. Brennan, Approximation in the mean by polynomials on non-Caratheodory
domains, Ark. Mat., 15 (1977), 117-168.

[4] J. Caughran, Polynomial approximation and spectral properties of composition opera-
tors on H2, Indiana Univ. Math. J., 21 (1971), 81-84.

[5] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
[6] O. J. Farrell, On approximation to an analytic function by polynomials, Bull. Amer.

Math. Soc, 40 (1934), 908-914.
[7] T. W. Gamlin and J. Garnett, Pointwise bounded approximation in Dirichlet algebras,

J. Functional Anal., 8 (1971), 360-404.
[8] A. I. Markusevic, Conformal mapping of regions with variable boundary and applica-

tion to the approximation of analytic functions by polynomials, Dissertation, Moscow,
1934.

[9] S. N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math.
Soc. Transl., 19 (1962), 109-166; Uspekhi Mat. Nauk, 8 (1953), 3-63.

[10] S. N. Mergeljan and A. P. Talmadjan, On completeness in a class of non-Jordan
regions, Amer. Math. Soc. Transl., 35 (1964), 79-94; Izv. Akad. Nauk Armjan. SSR,
7(1954), 1-17.

[11] R. Olin and J. Thomson, Lifting the commutant of a subnormal operator, Canad. J.
Math., 31 (1979), 148-156.

[12] , Algebras of subnormal operators, J. Functional Anal., 37 (1980), 271-301.
[13] R. C. Roan, Composition operators on Hp with dense range, Indiana Univ. Math. J.,

27(1978), 159-162.
[14] L. Rubel and A. L. Shields, Bounded approximation by polynomials, Acta Math., 112

(1964), 145-162.
[15] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math., 17

(1966), 511-517.
[16] , Weak-star generators ofH00, Pacific J. Math., 17 (1966), 519-528.
[17] , On the order of a simply connected domain, Michigan Math. J., 15 (1968),

129-133.
[18] , Weak-star density of polynomials, J. Reine Angew. Math., 252 (1972), 1-15.
[19] A. L. Shields, Weighted shift operators and analytic function theory, Math. Surveys,

13: Topics in operator theory, ed. C. Pearcy, Amer. Math. Soc, Providence, R. I.,
1974, 49-128.

[20] S. O. Sinanjan, Approximation by polynomials and analytic functions in the areal
mean, Amer. Math. Soc. Transl., 74 (1968), 91-124; Mat. Sb., 69 (1966), 546-578.

Received February 24, 1986 and in revised form February 23, 1987.

MICHIGAN STATE UNIVERSITY

EAST LANSING, MI 48824






