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CURVATURE PROPERTIES OF TYPICAL CONVEX
SURFACES

TUDOR ZAMFIRESCU

Here we shall see that on typical convex surfaces the set of points
with an infinite sectional curvature in some direction and that of points
in which the lower sectional curvature in some direction equals the upper
sectional curvature in the opposite direction are dense. Also we shall see
that, in a certain sense, most convex surfaces are a.e. "very close" to
their tangent hyperplane, closer than vanishing curvature already indi-
cates.

Introduction. This paper completes the description of the curvature
behaviour of most convex surfaces, the words "most" and "typical" being
used in the sense of "all, except those in a set of first Baire category". It is
known that typical convex surfaces are smooth and strictly convex (V.
Klee [7]), but not of class C2 (P. Gruber [4]). The latter result was
strengthened by R. Schneider [10] and myself [12], [13]. Schneider proved
that for these surfaces there is a dense set of points in which, for every
tangent direction, the lower and upper curvatures are 0 and oo respec-
tively. In [12] we showed that in each point where a finite curvature exists
(and it exists almost everywhere by results of H. Busemann-W. Feller [3]
and A. D. Aleksandrov [1]), the curvature is zero. In [13] we proved that
the mentioned set in Schneider's result is not only dense, but also residual,
i.e. a set of typical points.

For a survey on the use of Baire categories in Convexity, the reader
may consult [15].

We consider the space (€n of all closed convex surfaces in R*. It is an
easy matter to verify that #w, equipped with the Hausdorff distance, is a
Baire space.

Let C be a smooth surface in # π , x e C, T be a tangent direction at
x. We denote by p](x) the lower radius of curvature at x in direction τ of
the normal section of C (or of C itself for n = 2) along r (see [2], p. 14
for a definition); analogously, the upper radius of curvature at x in
direction T is denoted by pj(x). For n = 2 there are at every point just
two (opposite) tangent directions, which we simply denote by 4- and —.
If p](x) = pT

s(x), we write pT(x) for the common value. If p + (x) = p~(x),
we denote the common value by p(x).
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The notations kit A, A, bdA, conv A will be used for the interior,

closure, boundary, and convex hull of the set A, respectively.

We shall repeatedly make use of the following, already mentioned

results:

THEOREM A (Theorem 2 in [12]). For most surfaces in *£„, the

curvature of the normal section vanishes a.e. in all tangent directions.

THEOREM B (Theorem 2 in [13]). For most C G ^ , at most points

x e C,

p](x) = 0 and pl(x) = oo

in each tangent direction r.

Many thanks are due to the referee, whose comments helped improve

this paper.

Lower and upper curvatures in opposite directions.

THEOREM 1. For most G e ^ , at each point x e C and tangent

direction r,

[p7T(x),pr(x)]n[pj(x),P;(x)]# 0.

Proof. Let ^ * be the family of all surfaces C ^ ^n (n > 3) on which

there is a smooth point x and a tangent direction τ such that

[Pr(x),Pr(x)] n[p](x),P;(x)} = 0.

For C e ^ * there are two rational numbers pc, qc and three circles I\,

Γ2, Γ3 in the normal plane at x parallel to T, of radius pc, qc, pc — qc

respectively, such that I\ and Γ2 are tangent to C at JC, Γ3 is centred in x,

C Π Γ3 has exactly two points, and one component of C Π convΓ3 - {x)

lies outside Γx and the other inside Γ2 (see Figure 1).

Let # be the family of all surfaces C in ^ * for which a smooth

point x, a tangent direction τ a t i , and corresponding numbers pc = p

and qc = q may be found. Clearly,

<^># I I ^
ε? — I I ©
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FIGURE 1

We show now that ^pq c cgpq u (^ t, where ^ is the set of all
non-smooth surfaces in #π . Let {C^=x be a sequence of surfaces in ^ ^
converging to some C G ^ . For each Ct there exists a smooth point
xt e C/9 a tangent direction τ and three circles Γlz, Γ2l , Γ3/ in the normal
plane at xi parallel to τ , of radius p, q, p — q respectively, such that Tυ

and Γ2/ are tangent to Ci at xi9 T3i is centred in xi9 Ct Π Γ3/ has exactly
two points and, within Γ3/, one component of Ci Π convΓ3z — {xt} lies
outside Γυ and the other inside Γ2/. By taking a subsequence {Ci,}JLι of
{C, } Jl l 5 we arrange that {xi }JL1 converges to a point x e C and that the
sequence {η.jJLi converges, whence {Γυ}°°=1, {T2i}JLι, {T3i}f=ι con-
verge to the circles Γ1? Γ2, Γ3. Now, if C is smooth at x9 Γ1? Γ2, Γ3 play
the roles from the definition of ^pq and C G ̂  .̂ Hence ^pq c ^ ^ U
(^?t. Observe the analogy with the proof of Theorem 1 in [12].

We show c€p is nowhere dense. It is indeed well-known that each
convex surface may be approximated by algebraic convex surfaces, which
obviously neither belong to ^pq nor to #t.

Thus ^pq is nowhere dense and #* is of first Baire category, which
concludes the proof for n > 3. The case n = 2 is similar, but simpler since
# is then easily seen to be closed.
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Infinite curvatures in the planar case. We already know that typical

convex curves have many points with vanishing curvature [12] and many

points with infinite upper curvature [13]. Do they also possess points with

infinite curvature?

Throughout all the paper λ and μ will denote linear and (n — 1)-

dimensional Lebesgue measure, respectively.

We consider here the space V2.

THEOREM 2. For each smooth, strictly convex curve C for which the

curvature is zero a.e., there is an uncountable dense set of points on C where

the curvature is infinite.

Proof. Let B be a small arc on C, and

g:[a9b] - + R

be a convex function with graph B. Since C is smooth, g is differentiable

and let / = g'. Since the existence of curvature in some point of B is

equivalent with the existence of g" in the corresponding point of [a, b]9

and the curvature equals g"(l + g'2)~3/2, we have / ' = 0 a.e.

If M is a measurable set on [a, b] such that

sup//(x) = δ < oo,

where // is the upper Dini derivative of /, then we have (see [6], p. 269)

λ ( / ( M ) ) < δ λ ( M ) .

Let

Mn= ( x e [a9b]:0<fs'(x)<n}.

Clearly, λ(Mn) = 0 for each natural number n and

f(Mj=fl\j M J = U/OtfJ;

thus

λ(/(Mj) < £ λ(f(Mn)) = 0.

Let

L o = { x < = [ a , b ] : f ' ( x ) = 0},

L'ao = {x<=[a,b]:f,'(x)=<x>},
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Then λ(L 0) = b — a, but, since f~ι is almost everywhere differentiate,

λ(/(L 0 )) = 0.

It follows that

\(f(LU))-f(b)-f(a).
Finally, since / has a derivative if and only if its inverse has one, and
since f~ι is a.e. differentiable,

λ(f(Lj)=f(b)-f(a)

too.
Hence g" is infinite at uncountably many points and the theorem

follows.
From Theorems A and 2 we derive the following result, which

provides full information about the curvature of a typical convex curve at
those points where it exists (see Theorem 1 in [12]).

THEOREM 3. On most convex curves the curvature is zero a.e. and
infinite at an uncountable dense set of points.

Infinite curvatures in higher dimensions. We shall make use here of a
topological space associated with a smooth surface, usually called sphere
bundle, consisting of all pairs (x, T), where x belongs to the surface and τ
is a unit tangent vector at x.

The next result extends Theorem 2 to higher dimensions.

THEOREM 4. For each smooth, strictly convex surface in *%„, for which
the sectional curvature in every tangent direction is zero a.e., the associated
sphere bundle includes an uncountable dense set of pairs (x, τ) with p±T(x)
= 0. Thus, most surfaces in %ln enjoy this property.

Proof. Let C e #„, x0 e C, τ0 be a tangent direction at x0, T the
tangent hyperplane at x0 and A an (n — l)-cell in C containing x0 in its
interior such that the orthogonal projection p: A -> T is injective and
p(A) is convex. Let B be the set of points in A where the sectional
curvature in every tangent direction is zero. We have

μ(p(A-B)) = 0.

Putting T = t0 X Γo? t0 being a line in direction τ0 and To an orthogonal
(n — 2)-plane, both through JC0, Fubini's theorem says that

λ(p(A-B)n{t0X{y})) = 0

for almost every y e To. Choose such an y in intp(A). (See Figure 2.)
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FIGURE 2

By Meusnier's theorem (see [2], p. 15), at each point of B Π
P~\tv x {y}) t h e curvature of Γ = A Π p~ι(t0 X {y}) vanishes. By The-
orem 2, we get in Γ an uncountable dense set S of points with infinite
curvature. For a point s ^ S close to p~ι(y), the tangent directions ± τ '
at s to Γ are close to the tangent directions at p~\y) to Γ (because Γ is
of class C1) and these are close to ±τ 0 if A is small enough (because C is
of class C1).

Finally, the curvature of Γ in s being oo, the curvature of the normal
section of C at s in both directions ± τ ' is also oo, by Meusnier's
theorem.

By Theorem A, most convex surfaces satisfy the hypotheses of Theo-
rem 4; it follows that they also enjoy the property of its conclusion.

We do not know whether on typical convex surfaces in R" (n > 3),
there must be points where the upper indicatrix reduces to a point. We
know what occurs for any differentiable, strictly convex surface: there is a
dense set of points where the upper indicatrix is bounded. For typical
surfaces this set is both of measure zero and of first category.

It is interesting to mention here a result of V. Klima and I. Netuka [8]
concerning the partial derivatives of most convex functions. On one hand
their result only implies that the upper Dini derivative of any partial
derivative must be oo at a dense set of points. But on the other it says that
this upper Dini derivative is in a certain sense " very large", in no way
"majorizable" on any open set. Observe also the relationship with Theo-
rem 12.

A technical lemma. Let C e ^ 2 be smooth and strictly convex, and
fix a direct sense on C. The set of diameters of C, i.e. chords with parallel
supporting lines at their endpoints, forms a spread in Grύnbaum's sense
(see [5], [14]).
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Let L(x) be the diameter of C with an endpoint at x and let -x be
the other endpoint of L(x). Also, let y Φ ±x be a point onC, {z} =
L(x) Π L(j>) and

) =

where d denotes Euclidean distance. Put

γ~(x) = Kminfβ(y,x),

where y converges to x in the direct sense on C. y~(x), γ,+(*), and y

are then defined in an obvious way.

The following lemma will be useful.

LEMMA. Suppose the smooth, strictly convex curve C includes the arc B

of a circle and let x e C be such that -x e int B. Then

Proof. First suppose pf(x) < p?(x). Let Γ", Γ" be two circles
tangent to C at x, of radius r\ r" respectively, such that

P;(x)<r'<r"<P;(x).

Let xl9x29x39... be points lying in this order (the indirect sense) on C,

with xn -> x, such that xl9 x3, x59... lie on Γ/r and x29 JC4, X 6, . . . lie on

Γ'. Let T2 be the smallest circle tangent to C in x and in a point x'2 of the

arc ^ ^ 3 of C. Let r2

r be the radius of Γ2'. Clearly r2 < r'. With similarly

defined rf

n9 we also have r'n < rf for all even n's. By an easy similarity

argument,

for corresponding points x^ and even /7. Thus γy

+(x) < r r /p(-x) and,

since r' was chosen arbitrarily close to pz

+(jc),

Let now Γ3

r/ be the largest circle tangent to C in x and in a point x " of

the arc JC2JC4 of C. Let r" be the radius of Γ3". Obviously r3" > r".

Continuing in the same way as before, we get

The other two inequalities are analogous.
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Suppose now ρf(x) = ρ^(x) = P+(x). Let

0 < r' < p+(x) < r" < oo

(if ρ+(x) is 0 or oo, we take just r" or r') and let Γ', Γ" be the circles
tangent to C at x and with radii r', r". There is a neighbourhood N of x,
such that the points of C Π N following x (according to the fixed sense)
form together with x itself an arc A lying between Γ' and Γ".

Suppose for each neighbourhood N' c TV of * there is a circle Γ
between Γ" and Γ", tangent to both at x, such that A Π Γ — {x} has at
least two points in N'. Then, by an argument rather similar to that used
for the case p*(x) < ps

+ (x),

Suppose now there is a neighbourhood N' c N of x9 such that each
circle Γ between Γ" and Γ", tangent to both at x, cuts A' = A C\ N' —
{x} in at most one point. Then, clearly, ^4' traverses all circles it meets.
Let r(y) be the radius of the circle T(y) tangent at x to C and passing
through y e yί'. Then r is a monotone function of j>. By definition,

p+(x) = lim r(j ).

Suppose, for example, r is decreasing when ^ moves in the direct sense
(away from x). (The other case is analogous.) Then, for each y e A\ the
acute angles ac(y) and «Γ(^) between the tangents in x and y to C and
Γ(j ) satisfy ac(y) > aτ(y). There exists a point z in the arc xy of A'
such that α c (z) = oίτ(y). Since the line through y and -z determines on
L{x) a ratio equal to r(y)/p(-x), we have jS(z, x) < r(y)/ρ(-x), whence

The line Λ^ through the point v of L(x) verifying d(υ,x)/d(υ,-x) =
r'/p(-x) and y meets L(x), Γ', 4̂ in this order. It follows that there
must exist points y ^ A' as close to x as we want, such that the acute
angle aΓ(y) between the tangents to Γ' in Λ^ Π Γ' Π N' and x satisfies
0LT>(y) > ac{y). Then L(y) Π L(x) lies in the segment with endpoints υ
and -x. Thus β(y,x) > r'/ρ(-x), whence y*(x) > r'/ρ(-x)\ from the
arbitrary choice of r' it follows that

The proof is complete.



TYPICAL CONVEX SURFACES 199

This lemma was already stated without proof and used in [14].

When lower curvature in one direction equals upper curvature in the
opposite direction. Let C be a smooth, strictly convex curve in ^ 2 and, for

each natural number n, let

An = {x G C: 3r > n with p~(x) < r < Pi+(x)},

A ' n = {x G C : 3 r > n w i t h ρ + (x) <r< ρ~(x)},

Bn = {x G C: 3r < z?"1 with p5~(x) < r < ρ?(x)}>

Bf

n = (JC G C: 3r < w"1 with p5

+(x) < r < PΓ(x)}(r e R).

THEOREM 5. For eαc/i smooth, strictly convex curve C, for which the set

of points x where p^(x) = 0 and p^(x) = oo is dense on C, the sets Λn,

A'n, Bn, Bf

n are dense too.

Proof. Let A be a small arc on C and complete A by an arc B

including a half-circle of radius c to a smooth convex curve C".

Let JC G int 4̂ be such that

pΓ(x) = p,+ (x) = 0; P;{x) = p,+ (̂ c) = oo.

By the Lemma in the preceding section, applied to C ,

ΎΓ(x) = Ύt+(x) = 0; γ7(x) = γ ; ( x ) = oo.

Then, let X 1 , J C 2 , X 3 , . . . be a sequence of points converging in the indirect

sense of C to x, such that, putting

{zn)=L(xn)nL{x),

zm "* x ' z2« + i "» --^ Since

/β(^ 2 n ,x) ->0, β(x2n+ι,x) -* co,

we find for every positive integer n0 an integer m such that

β ( x 2 n , x ) £"?, β{x2n + ι,x)>n0, β ( x 2 n + 2 , x ) <n-0\

and x,, e int ^ for all n > m.

Since j8 is a continuous function o n C x C minus the diagonal,

sup β(y,x)
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is attained in some point x^+i °f ^ e a r c x2nxin+2 °f C Of course,
β(x'2n+i>χ) ^ Λo τ h u s β(xin+vx) "* °° It follows that )8(x,X2ι,+i) "»
oo too, whence, given n0,

for a suitable n.
The definition of Jĉ n+i shows that, for y between xln and x2n+2>

L{y) does not cut L(x) between L(x) Π L(x2n+1)
 a n c^ ~~x- I* follows

that, for ^ between x2w and *2«+i> ^(jO does not cut L(x'2n+1) between
L(x2n+ι) ΠL(x) and -x^+i, and, for y between x'2n+1 and * 2 π + 2 ,
L(y) does not cut L(x2«+i) between x2n+1

 a n ^ ^(-^2«+i) n L(x).
Consequently,

In view of the Lemma, we then must have

Thus, we see that A'n is dense on C. If {xΛ}^Li converged in the
direct sense on C to JC, it would result that τ4n is dense on C. A slight
modification of the above proof yields that Bn and B'n are dense on C too.

THEOREM 6. For most C G ^ 2 αjzd ei ery number « e N , /λ

(x G C: p-(x) = 0, Λ < P j-(x) = P ί

+(x) < P;(x) = oo}

x e C: pr(χ) = 0 < p,-(x) = p +

« C. 77z£ 5αm^ w /rue if " + " w replaced by " — " and vice versa.

Proof. By results of Klee [7] and Gruber [4], most convex curves C are
smooth and strictly convex. By Schneider's theorem in [10] (or by Theo-
rem B), most curves C have also the property that the set of points x
where p*(x) = 0 and p*(x) = oo is dense on C. By Theorem 5, for these
C's the sets An and Bn are dense too.

Let Dn and En be the sets mentioned in the statement. Now, on one
hand, by Theorem 1 in [12], in each point x of most curves C, pf(x) = 0
or p*(x) = oo, on the other hand, by Theorem 1,

PΓ(χ) > PΪ(χ).

It follows that, for most curves C,

An = Dn, Bn = En

which concludes the proof.
n,
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The higher dimensional version.

THEOREM 7. For each smooth, strictly convex surface C G ^ , for

which the set of points y where p°{y) = 0 and p°{y) = oo in every tangent

direction a at y is dense in C and for each positive integer m, the sphere

bundle associated to C includes a dense set of pairs (x, τ) satisfying

with r > m. {Analogously, changing r > m into r < m~ι.)

Proof. This is similar to the proof of Theorem 4. Let C e <gn9 x0 e C,
τ0 be a tangent direction at JC0, T the tangent hyperplane at x0 and A an
(n — l)-cell in C containing x0 such that the orthogonal projection
p: C -> T is injective and p(A) is convex. Let B be the set of points y in
the statement. The proof (in [13]) of Theorem B shows that B is residual
in A. Since p is a homeomorphism, p(B) is residual in p{A). Putting
T = tox Γo, t0 being a line in direction τ0 and Γo an orthogonal
(n - 2)-plane, the Kuratowski-Ulam theorem ([9], p. 67) shows that
p(B) Π (t0 X {y}) is residual in p(A) Π (t0 X {y}) for most y e Γo.
Choose such a point j in p(A)y near JC0. By Meusnier's theorem, at each
point of B Π ρ~ι(t0 X {y}), the lower curvature of

is zero and the upper curvature of Γ is oo.
By Theorem 5, the set Am is dense on Γ. For a point x e Am near

p"\y)9 x is near JC0 and the tangent r in x to Γ is near τ0. By Meusnier's
theorem again, from

p'(x) <r' < p + (x) {r' > m)

on Γ, it follows

r*
P;T(JC) < - 1 — < P;(jc),

5 cosα | V

α being the acute angle between the normal at x to C and any 2-plane

orthogonal to To. Clearly r '/cosα > m and the theorem is proved.

THEOREM 8. For most surfaces in (€n and every positive integer m, the
associated sphere bundle includes two dense sets of pairs (x, r) and (y, σ)
respectively, such that

= 0, 0 < p;σ(y) = p°\
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We omit the proof, because it is an obvious adaptation of the proof of

Theorem 6.

Nearest and furthest points. This small section is included, since its

theorem follows directly from results on the curvature of most convex

surfaces obtained until now.

On a closed surface S, not necessarily convex, embedded in the

Euclidean space R", we always have nonempty sets N, F of points

representing the nearest, respectively furthest points of S from certain

points in R'7 — S. Sometimes these sets may equal S. If £ is of class C 2

then N = S. If, moreover, the Gauss curvature is strictly positive every-

where on S, then F = S too.

Now consider C G Ϊ 7 ^ chosen arbitrarily. Let N( (Ne) be the set of

points of C nearest to points in the interior (exterior) of C. It is easily

seen that Ne equals C and Nέ is uncountable and dense in C. In the plane,

if C is strictly convex, then F is also uncountable and dense in C. Let us

explain the last assertion. Let O be open in C. If the lower curvature at

some point x e O is positive in both directions, then x e F. If for all

x e O the lower curvature in some direction is zero, then at almost all

points of O the curvature exists in both directions and is zero [3]. A

suitable version of Theorem 2 guarantees then the existence of points in O

with infinite curvature: they belong to F. The same assertion is true in

higher dimensions and can be proved by providing locally supporting

spheres touching the surface near a given point of it.

The following theorem describes the situation for a typical convex

surface.

THEOREM 9. For most convex surfaces, Ni and F are disjoint and of first

category.

Proof. No point x with p](x) = 0 for some T belongs to Nt and no

point x with pj(x) = oo for some r belongs to F; because, by Theorem B,

at most points x, p](x) = 0 and pj(x) = oo, Nt and F are of first

category on most convex surfaces. Since, on these surfaces, by Theorem 1

in [12], at each JC, p](x) = 0 or pτ

s(x) = oo for any r, Nt Π F = 0.

Notice that R. Schneider and J. A. Wieacker [11] proved that for most

convex surfaces the Hausdorff dimension of F vanishes.

Contact properties of most convex surfaces. In this final chapter we

see by using the techniques of [12] that, for most convex surfaces, not only

the curvature vanishes, but, moreover, the order of contact with the

supporting hyperplane is, in a sense to be rendered precise, oo a.e.
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Let /, g: [-ε, ε] -> [0, oo) (ε > 0) be two convex functions with /(0) =
g(0) = {0}, g being also symmetric in the sense that g(x) = g(-x) for all
x e (0, ε). We say that the graph A of f has a g-contact at (0,0) if there is
no neighbourhood of 0 on the x-axis where

/ ( * ) > g ( x ) .

If, for some g, the derivatives of all orders of g exist and vanish at 0, then
we say that A has infinite contact order at (0,0). If C is a convex surface
in RM, we say that C has a g-contact {infinite contact order) at x e C if

each normal section at x has a g-contact (infinite contact order) there.
Let Tλ(S) be the sphere bundle associated to the (n — l)-dimensional

sphere S. Consider the space 2 of all closed convex curves in R X [0, oo)
passing through (0,0). Let w, W\ Tλ(S) -> 3 be two continuous functions
such that

(i) w(j/,τ)c [0, oo) X [0, oo), (0,1) e w(y,τ) and w(y,τ) has a
right angle at (0,0),

(ii) (-1,0) G W(y9 r), (0,0) is an extreme point of conv W(y9 τ) and
W(y, T) is smooth at (0,0). (See Figure 3.)

FIGURE 3

For let

out C = R" - convC.

Now, let x be a smooth point of C and τ be a tangent direction at x.
Consider the congruence c from R2 to the plane ΠT(JC) containing the



204 TUDOR ZAMFIRESCU

outer normal ne(x) at x and parallel to T, satisfying

Denote

v: C -> 5 being the spherical image and /c G R.
Let ^ * be the set of all surfaces C^c€n such that there exist έ e N ,

x G C and a tangent direction τ a t i satisfying

yΛ-i(jc,τ) c convC

and

FΛ(x,τ) c out C.

In [12] we already used the notions of a semidisk and a corner-disk in
case w( j , T) is a half-circle plus a diameter and W{y, τ) is a 3ττ/2-arc of a
circle plus two line-segments, tangent at its endpoints. The same argu-
ments as those used in the proof of Theorem 1 from [12] lead to the
following.

PROPOSITION. # * is of first category in # π .

Obviously, Theorem 1 of [12] is a consequence of this Proposition.

Moreover, it permits us to derive the following strengthening of Theorem

A.

Consider an arbitrary symmetric convex function g as defined at the
beginning of this chapter and the functions gk defined by gk(t) = kg(t/k)

(k e N).

THEOREM 10. Most convex surfaces have a.e. a vanishing curvature in

all tangent directions and, for any k G N, a gk-contact.

Proof. Let A be the set of points where C E ^ W has a g^-contact for
any k G N. If we take as w(y, T) a semidisk and as W(y, T) a curve
defined near (0,0) in [0, oo) X R by the function g, then c€n — <€* consists
of surfaces of (Sn such that at each point x and tangent direction T,
p](x) = 0 or the normal section of C at x in direction r has a grcontact
at x for every i E N . Since a.e. on C G ^ - ^ * , in each tangent
direction the curvature exists and is not oo, it follows that C — A has
measure zero, which together with Theorem A ends the proof.
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Taking as g a function with g(n\0) = 0 for all n e N, we get the

following.

COROLLARY. Most convex surfaces have an infinite contact order a.e.

Let us say that a convex body K contacts the surface C e ^ at
x G C i f i E ϋ : and K c conv C.

For every convex body K there are surfaces C e ^ B such that, for
every x e C, there is a translate of K contacting C at JC: take C to be
homothetic to and larger than bd K. Given K and any surface C G ^
surrounding ^Γ, there are points on C at which translates of K contact C.
Also, given K and any C e ^ , there is a dense set of points on C at
which sets homothetic to K contact C. What do such sets of contact
points look like, for typical C e #π?

THEOREM 11. Given the smooth convex body K, for most surfaces

C e <Sn the set of points at which sets congruent with K contact C is nowhere

dense in C.

Proof. This follows from the easy observation that the set of contact

points mentioned in the statement is closed, and from the next theorem.

THEOREM 12. Given the smooth convex body K, for most surfaces

C e <€n there is no {non-empty) open set of points on C at which sets
similar to K contact C.

Proof. For z e bd K and a tangent direction σ, let s(z,σ) be the
normal section of bd K at z in direction σ, completed by a segment along
the normal to give rise to a convex curve. The length of this segment
depends continuously on z and does not vanish when z describes bd K.
So its infimum ξ also does not vanish. The nature of our statement allows
us to apply an appropriate homothety on K to assure ζ > 1.

Let t be the congruence from the plane of s(z, σ) to R2 such that

/(z) = (0,0), ί ( π e ( z ) ) = { 0 } x ( - o o , 0 ] , /(z + σ) = ( l ,0).

Put

for all (y, T ) ; hence w is constant.
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Since ξ > 1, (0,1) e w(y, T). Also, it is guaranteed that w(y, τ) has a
right angle at (0,0). Indeed, let H c [0, oo) X [0, oo) be a halfline starting
at (0,0) and making the angle a < m/2 with {0} X R (see Figure 4).
Obviously, t(s(z, σ)) depends continuously on (z, σ) and so does the
length /(z, σ) of H Π convt(s(z,σ)) too. Since the sphere bundle of
bd K is compact, the function / attains its minimum at some (zo,σo).
Because /(z0, σ0) Φ 0 and

H Π conv t(s(zo,σo)) c convw(j>,τ),

the angle of w(y, T) at (0,0) is at least α. Now a being arbitrary in
[0, τr/2), that angle equals π/2.

FIGURE 4

Let IF(7, r) be a corner-disk.
By Theorems A and 4, on a typical surface C e ^ , the set <2 °f those

points x with pj(x) = oo for each tangent direction T has empty interior.
For any x e C - β, there is a tangent direction T and a natural number
k0 such that

Vk(x,τ) c out C

for all k > k0. By the Proposition, for any x ^ C — Q and for the
direction τ and numbers k> k0 we just found, the curves υk-i(x,τ) are
not included in conv C. Hence there is no similarity

w:R2-^ ΠT(JC)
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(Π τ (x) being again the plane including ne(x) and parallel to T), for
which

a(090) = ;c, u{{0] x(-oo,0]) = /iβ(x),

x, x + T and w(l, 0) are collinear, and

u(t(s(z,σ))) c convC.

Since this holds for all (z, σ) £ 7ί(bd iQ, no set similar to K contacts
C at x. The proof is complete.
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