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PRIMALITY OF THE NUMBER OF POINTS
ON AN ELLIPTIC CURVE OVER A FINITE FIELD

NEAL KOBLITZ

Given a fixed elliptic curve E defined over Q having no rational
torsion points, we discuss the probability that the number of points on E
mod p is prime as the prime p varies. We give conjectural asymptotic
formulas for the number of p < n for which this number is prime, both
in the case of a complex multiplication and a non-CM curve E. Numeri-
cal evidence is given supporting these formulas.

1. Let E be an elliptic curve defined over the field Q of rational
numbers which has no rational torsion points. Motivated by an analogy
with a classical question about finite fields (see §2) and by cryptographic
applications (where certain public key cryptosystems use an elliptic curve
whose group of points mod p has order divisible by a very large prime, see
[6]), we ask the question: As the prime p varies, what is the probability
that the number of points on E mod p is prime? After recalling analogous
questions in classical number theory, in §3 we give a conjectural answer to
this question in the case of elliptic curves without complex multiplication,
and present some numerical evidence supporting the conjecture. In §4 we
give a conjectural asymptotic formula in the case of CM curves, and
decribe some supporting evidence.

2. In Hardy and Littlewood’s paper [4] about the Goldbach conjecture
and related questions, they give a conjectural asymptotic formula for half
the number of twin primes (primes p for which p + 2 is prime) less than
n:
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The same heuristics lead to the identical asymptotic formula for a slightly
different question (not considered in the Hardy-Littlewood paper): For
how many primes 5 < p < n is (p — 1) /2 prime? It should be recalled,
by the way, that, as in the case of twin primes, no one has even been able
to prove that there are infinitely many p such that both p and (p — 1)/2
are prime.
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) = 0.660164.
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The heuristic argument for the asymptotic formula (1) for the number
of prime pairs (p, (p — 1)/2), p < n, goes as follows. By the Prime
Number Theorem, the probability that a large integer » is prime equals
1/(logn). Given that n = p is prime, if one supposed (p — 1)/2 to be
random, its chance of being prime would be 1/(log((p — 1)/2)) =
1/(log n), and so the probability of primality of both » = p and (p — 1) /2
would be (log n) 2. However, if p is prime, then for each odd prime / # p
we have (p —1)/2 # (I — 1)/2 (mod /), because / does not divide p.
Thus, (p — 1)/2 can fall in / — 1 residue classes mod /, of which / — 2 are
nonzero. So the chance that /+ (p — 1)/2 is (I — 2) /(I — 1) rather than
(I — 1)/1, as would be the case if (p — 1)/2 were random. Hence, one
would expect a correction factor giving the ratio of primality probabilities
for (p — 1)/2 and for a random integer which is equal to the product
over / of the ratio of (/ — 2)/(/ — 1) to (I — 1)/I. Since the latter ratio is
1 — (I — 1)~2, this correction factor is the constant C, in (1). (Note: The
same argument applies to the twin prime problem, except that there is an
additional correction factor of 2 because automatically p + 2 is odd,
whereas there is only a 1/2 probability of a random number being odd;
thus the formula in (1) is for half the number of twin prime pairs.)

As Hardy and Littlewood remark, one expects—and finds—that the
asymptotically equivalent formula C, [;(log¢)~2dt is in closer agreement
with numerical data. In the case of our (p — 1)/2 problem, one expects
still closer agreement if one uses

1
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And in fact, for n = 10° we find that the ratioof |5 <p < n|(p — 1)/2
is prime} | to the value predicted by (2) is 1.0043.

Letting F, denote the finite field of g = p’ elements, we can rephrase
our (p — 1)/2 question in the form: Does the multiplicative group F*
have any nontrivial subgroups besides { +1} and the subgroup of squares,
ie., is F*/{ £1} cyclic of prime order? A natural complementary question
is: For fixed p and for f> 1, how often is F* /F;* cyclic of prime order,
ie,is (p/ — 1)/(p — 1) prime? The case p = 2 is the famous Mersenne
prime problem, and other cases of this primality question have also been
investigated (see [1], [13]).

The common element in these questions is that, after dividing by a
subgroup that is trivially known to exist, one asks about the likelihood
that the quotient group is simple. Thus, an analogous question for elliptic
curves is: Given an elliptic curve defined over Q, after one divides by its
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Q-torsion subgroup, what is the probability for large p that its reduction
modulo p is of prime order?

3. Certain public key cryptographic systems, based on intractability of
the discrete logarithm problem, can be implemented using the group of
points on an elliptic curve E defined over a finite field F, (see [6], [11]). In
that case one wants the cyclic subgroup generated by certain points G to
have order divisible by a large prime. One way to accomplish this is to
choose E and F, so that the group of points has prime order; then the
desired condition holds for any point G not the identity (point at
infinity).

To find an elliptic curve defined over a finite field having a prime
number of points, one method is to choose a fixed large prime p and let
the coefficients of E vary in F,. The probability that the number of points
is prime can be estimated using results of Deuring, Waterhouse, Gold-
wasser, Killian, and Heath-Brown (for details and references, see §5 of
[10)).

We shall consider a different method. Namely, if we have a fixed
elliptic curve E defined over the rational integers Z, we might try to
choose a prime finite field F, such that |[E mod p| is prime. One can
proceed as follows. Choose a very large odd number M at random, then,
with the help of an efficient primality test, find the successive primes p
among the sequence M, M + 2, M + 4,.... In each case compute the
order of E mod p. (In principle, one can compute |E mod p| using the
deterministic polynomial time algorithm of R. Schoof [12]; however,
Schoof’s algorithm is not very practical, and so in practice one might use a
probabilistic algorithm. For more discussion of algorithms for computing
|E mod p|, see §4 of [10].) Test |E mod p| for primality, and stop when it
is prime.

For fixed E, what is the probability that N, = |E mod p| is prime? As
p varies, N, is distributed close to p in a uniform way. More precisely, it
is known that (N, —p — 1) /2p is always between —1 and 1 (Hasse’s
theorem) and its distribution there as p varies is proportional to the
measure V1 — x? dx (the Sato-Tate distribution). But it would be wrong
to think that N, behaves like a random number in that range with respect
to primality. Namely, using the Chebotarev density theorem as in [9], one
finds that the probability that N, is divisible by a fixed prime / is equal
not to 1/1 (as for a random integer) but rather, if we let G, denote the
Galois group of /-division points in GL(2,Z /IZ), to the ratio

|{ g € G,| g has eigenvalue 1} | /|G,|.
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For example, if G, is all of GL(2,Z/!Z), then this ratio is

1> -2 1 1
=—+ =+ 0(7).
(P-1)(-1) [ P ()
Thus, in that case N, has a slightly greater chance of being divisible by /.
So heuristically, in the case of the “Serre curves” in (4) below, where G, is
always equal to all of GL(2,Z/IZ), one would expect that N, has a lower
chance of being prime, by a factor of

I 1-(2=2)/(2-1)(-1) _ il 12—1-1

1- 1/1 primes/ (12 — 1)(1 - 1)2 .

We first treat curves E without complex multiplication.

primes/

Conjecture A. Let E be an elliptic curve of discriminant A defined
over Z which is not Q-isogenous to a curve with nontrivial Q-torsion and
which does not have complex multiplication. Then

|{primes p < n, p + A| | E mod p| is prime} |
is asymptotic to

(3)

n

| (logn)*”

where C is a positive constant of the form C = [la(/) which depends on
E. Here a(!/) is the ratio of 1 — |{ g € G,| g has eigenvalue 1}|/|G/| to
1 — 1//, where G, denotes the Galois group over Q of the field of
I-division points; for all but finitely many primes /

?-1-1
(=1 -1y’
We tested this conjecture numerically using the same three curves that

Lang and Trotter used to test their conjecture about primitive points in
[9], namely, the curves

(4)

of conductor 37, 43, 53, respectively. These curves have no Q-torsion, and
the Galois group of /-division points is always the full general linear group
mod /.

In the case of the curves (4), we have

a(l)=1-

A:y*+y=x>—x, B:y>+y=x*+x?
C:y’+xy+y=x>—x?

PANE
c=1]1- F-i-1 5| = 0.5052.
! (2 =1)(1-1)
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Table I shows the function of » in the conjecture

f(n) =|{primes p < n, p + A| |E mod p| is prime} |
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for n at intervals of 2000 up to 30000, for the three curves in (4). We
compare with the predicted value, where instead of (3) we use the
asymptotically equivalent formula CX res , < 0., +a(log p) 7.

TABLE I

Number of p < n such that | E mod p| is prime

predicted

n Curve A Curve B Curve C
value

2000 26 29 30 23
4000 42 43 42 38
6000 55 54 51 52
8000 68 61 62 61
10000 80 74 77 75
12000 92 84 87 86
14000 103 91 103 91
16000 114 97 113 105
18000 125 111 123 117
20000 135 121 131 125
22000 145 131 141 143
24000 155 146 156 154
26000 165 160 165 166
28000 175 169 176 181
30000 184 179 183 194

4. We now suppose that E is an elliptic curve of discriminant A
defined over Z which has trivial Q-torsion (more precisely, is not Q-isoge-
nous to a curve with nontrivial Q-torsion) and has complex multiplication
by the ring of integers O of an imaginary quadratic field K (necessarily
of class number 1). Let N, =|E mod p| for p + A. First, if p remains
prime in K, then N, = p + 1 is never prime for p > 2; but one can ask
for (p + 1) /2 to be prime. This question—and the more general question
of factorization of N,, = p/ + 1—is analogous to the (p — 1)/2 and
(p/ = 1)/(p — 1) problem mentioned in §2. The same heuristics apply,
giving the conjectural asymptotic formula (1), except that one must insert
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a factor of 3 (because we are asking only for p which remain prime in K
for which (p + 1)/2 is prime), and, in the case when K
has discriminant —/, one must also change the /-term in C, to 1 —
(I + 1)/(I — 1)%. (Note that when K = Q(y-3), this makes C, = 0, be-
cause the 3-term is zero; in addition, C, must be replaced by 0 if
K = Q(i), since in that case as well (p + 1)/2 is even whenever p
remains prime in K; thus, one should really ask about primality of
(p + 1)/w, where w is the number of roots of unity in K.) Alternately,
one has the estimate (2) with (p — 1)/2 replaced by (p + 1)/2 and the
summation taken only over p which remain prime in K.

Now we consider the primes p which split in K. In investigations of
similar questions, such as the primitive point conjecture of Lang-Trotter,
it has turned out to be natural to restrict one’s attention to the class of p
which split in K (see [3]).

Conjecture B. Let E be an elliptic curve of discriminant A defined
over Z which is not Q-isogenous to a curve with nontrivial Q-torsion and
which has complex multiplication by the ring of integers Oy of an
imaginary quadratic field K. Then

|{primes p < n, p t A, p splitsin K | | E mod p| is prime} |

is asymptotic to

(5)

_n
2(logn)®’

where C is a positive constant of the form C = I'la(/) which depends on
E. Here a(/) is again (1 — [{ g € G,| g has eigenvalue 1}|/|G,)) /(1 — 1/1),
where here G, denotes the Galois group over K of the field of /-division
points; for all but finitely many primes /

?—-1-1
(1= x()(1 - 1)

where x is the quadratic character corresponding to the field K.

(6) a(l) =1-x(I)

Note that the infinite product of the a(/) in (6) converges condition-
ally to a nonzero limit, as one can see by comparison with the Euler
product for the Dirichlet L-series value L(1,x) = I1(1 — x(1)/)~~

Since we have restricted attention to rational primes of degree 1 in K,
in applying the Chebotarev density theorem we must work with the Galois
group over K of the /-division points. Since E has complex multiplication
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by Ok, this Galois group G, € GL(2,Z/IZ) is isomorphic to a subgroup
of the group of units of O/IOx. This group of units is isomorphic as a
group to either Ff (if / remains prime) or F* & F* (if / splits) or
F* ® Z/IZ (if | ramifies). Meanwhile, the number of elements with
eigenvalue 1 equals, respectively: 1,2/ — 3, /. Thus, if G, is the largest it
can be (as is the case for all but finitely many /), the factor a(/) is
respectively:

e AR S e (B!

[-=hi-7)

This equals (6) in the first two cases, and a(/) =1 — (I — 1)~% when [
ramifies.

To test Conjecture B, we chose two families of CM-curves for which
the fields of /-division points are probably always largest possible and
linearly disjoint:

(7) Dy y*—y=x=(j+1)/4

(8) E;: y* =j(x* = x* = Tx + 41/4),

where j is a prime that remains prime in the CM-field K. The curves D;
and E; have complex multiplication by the ring of integers in Q(V/-3) and
Q(V=11), respectively; they have discriminant A = 27j% and 1212, re-
spectively. In (7) we let j run through the first 50 primes = —1 mod 12; in
(8) we let j run through the first 50 primes for which (j/11) = -1. In
each case let f;(n) denote the number of primes p < n such that(p/3) = 1
(resp. (p/11) = 1) and |D; mod p|(resp. |E; mod p) is prime. In Table II
we give the average of f,(n) for the 50 values of j for n at intervals of
2000 up to 10000. We compare with the predicted values

C )y (logp) ™",
primes p<n, x(p)=1

where

C=a(ly) TT (1-x((2-1-1)(1-x(1)(1-1)7).

x()#0

Here /, = 3 and 11, respectively, denotes the one ramified value of /; for
this value we have a(/,) =1 — (/, — 1)72 = 0.75 and 0.99, respectively.
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TaBLE I1

Average value of f;(n) in the CM-case

Curves D, Curves D, Curves E, Curves E,
n predicted actual predicted actual
2000 24.3 23.0 10.9 13.8
4000 39.8 39.8 17.9 22.4
6000 53.2 51.8 24.1 25.6
8000 65.9 67.0 30.1 28.4
10000 78.8 79.3 35.7 35.2

As in Table I, the agreement between the actual incidence of primal-
ity and the predictions of the conjecture is as good as can reasonably be
expected. (Of course, this numerical evidence supports Conjecture B only
in some ‘“average sense,” since in order to obtain a large sample we
averaged over families of curves.)

REMARK. Here are two directions relevant to cryptographic applica-
tions in which the primality question considered above can be generalized:
(1) In the case when E has a nontrivial Q-torsion subgroup E,, what is the
probability that | E mod p)/(E, mod p)|is prime?, and (2) Given E and
also a bound B (perhaps depending on the size of p), what is the
probability that £ mod p has a subgroup of prime order with index less
than B?

A third question is the analog of the (p/ —1)/(p — 1) = )5 /E¥|
problem. Namely, if E is an elliptic curve defined over F,, then, by Weil’s
theorem, there is a quadratic imaginary algebraic integer a of norm p
such that N, = |E(F,/)|is equal to p/ + 1 — o/ — @/ = N(a/ ~ 1) (where
N(x) = x - X denotes the norm). Thus, a question complementary to
primality of N, = N(a — 1) (as p and hence a varies, for fixed E defined
over Z) is the question of primality of

|E(F,/)/E(F,)| = N((«/ = 1)/(a — 1))
s f varies (for fixed E and p).
ExaMPLE. When p =2 or 3, it is possible for an elliptic curve E

defined over F, to have only one F,-point (the point at infinity). Namely,
let E be given by the equation y? + y = x> — x + 1. In that case the
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number N,, of F,~points on E is
Ny=N1+i) =1); Ny=N(1+w) -1),
V3

1 .
where w = 5 + - 1

and it makes sense to ask whether N, is prime. Clearly, this is possible
only if f is prime. The N,, are analogs of the Mersenne numbers; in [16]
the numbers (1 + i)/ — 1 are called “complex Mersenne numbers.”
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