ARITHMETIC PROPERTIES OF THIN SETS

KATHRYN E. HARE

We prove that $\Lambda(p)$ sets do not contain parallelepipeds of arbitrarily large dimension. This fact is used to show that all $\Lambda(p)$ sets satisfy the arithmetic properties which were previously known only for $\Lambda(p)$ sets with p > 2. We also obtain new arithmetic properties of $\Lambda(p)$ sets.

1. Introduction. Let G denote a compact abelian group and $\hat{G} = \Gamma$ its necessarily discrete, abelian, dual group. When E is a subset of Γ , an integrable function f on G will be called an *E*-function provided its Fourier transform, \hat{f} , vanishes on the complement of E. Similarly, an *E*-function f will be called an *E*-polynomial if the support of its Fourier transform is finite.

A subset E of Γ is said to be a $\Lambda(p)$ set, p > 0, if for some 0 < r < p there is a constant c(p, r, E) so that

(1)
$$||f||_p \le c(p,r,E) ||f||_r$$

for all *E*-polynomials *f*. An easy application of Holder's inequality shows that if p < q and *E* is a $\Lambda(q)$ set, then *E* is a $\Lambda(p)$ set. For standard results on $\Lambda(p)$ sets see [11] and [7].

A number of authors (cf. [11], [7], [2], [10] and [1]) have shown that $\Lambda(p)$ sets with p > 2 satisfy certain arithmetic properties. In [9] Miheev was able to extend some of these properties to all $\Lambda(p)$ sets in Z. In §2 we will show that generalizations of the properties attributed to $\Lambda(p)$ sets with p > 2 in the papers cited above are satisfied by all $\Lambda(p)$ sets, p > 0, in all discrete abelian groups.

One of the important open questions in the study of $\Lambda(p)$ sets is whether there are any $\Lambda(p)$ sets, with p < 4, that are not already $\Lambda(4)$. The technique used most often to show that a given set is not a $\Lambda(p)$ set, for some particular value of p, is to show that the set fails to satisfy an arithmetic property which $\Lambda(p)$ sets are known to fulfill. As a consequence of our results, it is impossible to find a $\Lambda(p)$ set with p < 2 which does not satisfy all the arithmetic properties of a $\Lambda(2)$ set which are currently known.

The proofs of these results depend upon the following theorem.

KATHRYN E. HARE

DEFINITION 1.1. A subset P of Γ is called a *parallelepiped of* dimension N if $P = \prod_{i=1}^{N} \{\chi_i, \psi_i\}$, where $\chi_i, \psi_i \in \Gamma$ for i = 1, ..., N, and $|P| = 2^N$.

THEOREM 1.2. If $E \subset \Gamma$ is a $\Lambda(p)$ set, p > 0, then there is an integer N such that E does not contain any parallelepipeds of dimension N.

We prove this result in §3. The conclusion of this theorem was previously known for $\Lambda(1)$ sets [4], and for all $\Lambda(p)$ sets in Z (for p = 2 in [8] and for p > 0 in [9].) In §4 random sequences are considered to show that parallelepipeds are not sufficient to characterize $\Lambda(4)$ sets.

2. Arithmetic properties.

DEFINITION 2.1. A subset P of Γ is called a *pseudo-parallelepiped of* dimension N if $P = \prod_{i=1}^{N} \{\chi_i, \psi_i\}$, where $\chi_i, \psi_i \in \Gamma$ for i = 1, ..., N.

REMARK. Parallelepipeds and pseudo-parallelepipeds are generalizations of arithmetic progressions, for any arithmetic progression of length 2^N is a parallelepiped of dimension N.

Our results on the arithmetic properties of $\Lambda(p)$ sets will be seen to follow from Theorem 1.2 and

PROPOSITION 2.2. For each positive integer n, there are constants c(n)and $0 < \varepsilon(n) < 1$, so that if $E \subset \Gamma$ does not contain any parallelepipeds of dimension n, then whenever P_r is a pseudo-parallelepiped of dimension r

$$|E \cap P_r| \le c(n) 2^{r_{\varepsilon}(n)}.$$

REMARK. This proposition is proved in [9] for $E \subset \mathbb{Z}$ and P_r a parallelepiped of dimension r. With appropriate modifications the same proof yields Proposition 2.2.

Combining Theorem 1.2 and Proposition 2.2 we immediately obtain

COROLLARY 2.3. Let $E \subset \Gamma$ be a $\Lambda(p)$ set for some p > 0. There are constants c and $0 < \varepsilon < 1$ so that whenever P_r is a pseudo-parallelepiped of dimension r

$$|E \cap P_r| \le c 2^{r\varepsilon}.$$

The arithmetic progression of length N, $\{\chi\psi, \ldots, \chi\psi^N\}$, is contained in the pseudo-parallelepiped $\chi\psi \cdot \prod_{i=0}^{M-1}\{1, \psi^{2^i}\}$ of dimension M provided $2^M \ge N$. By choosing M with $2^{M-1} < N \le 2^M$ we have

COROLLARY 2.4 (see [11, 3.5], [2], or [1] for p > 2, [9] for $E \subset \mathbb{Z}$). Let $E \subset \Gamma$ be a $\Lambda(p)$ set. There are constants c and $0 < \varepsilon < 1$ such that if A is any arithmetic progression of length N then

$$|E \cap A| \le 2cN^{\varepsilon}.$$

In particular, if E is a $\Lambda(p)$ set in **Z**, then any interval of length N contains at most $2cN^{\epsilon}$ points of E. Thus E has density zero. Moreover, if $E = \{n_k\}$, then $\sum_{n_k \neq 0} (1/|n_k|) < \infty$, so the set of prime numbers is not a $\Lambda(p)$ set for any p > 0 [9].

DEFINITION 2.5 [7, 6.2]. For positive integers d and N, $\chi_1, \ldots, \chi_d \in \Gamma$ and $1 \leq r < \infty$, let

$$A_r(N,\chi_1,\ldots,\chi_d) = \left\langle \prod_{j=1}^d \chi_j^{n_j} \colon \sum_{j=1}^d |n_j|^r \leq N^r \right\rangle.$$

Let

$$A_{\infty}(N,\chi_1,\ldots,\chi_d) = \left\{ \prod_{j=1}^d \chi_j^{n_j} \colon \sup_{1 \le j \le d} |n_j| \le N \right\}.$$

REMARK. These sets may also be viewed as generalized arithmetic progressions. Indeed, if $\Gamma = \mathbb{Z}$ and $b \in \mathbb{Z}$ then

$$A_r(N,b) = \{-Nb,\ldots,-b,0,b,\ldots,Nb\}$$

is an arithmetic progression of length 2N + 1 for any r.

COROLLARY 2.6 (see [7, 6.3–6.4], [1] for p > 2 and $r < \infty$). Let $E \subset \Gamma$ be a $\Lambda(p)$ set. There are constants c and $0 < \varepsilon < 1$ such that

$$|A_r(N,\chi_1,\ldots,\chi_d) \cap E| \le c(2N+1)^{d\epsilon}$$

for all $\chi_1, \ldots, \chi_d \in \Gamma$, $N \in \mathbb{Z}^+$ and $1 \le r \le \infty$.

Proof. Observe that

$$A_r(N,\chi_1,\ldots,\chi_d) \subset A_{\infty}(N,\chi_1,\ldots,\chi_d) = \prod_{i=1}^d A_{\infty}(N,\chi_i).$$

Since $A_{\infty}(N, \chi_i)$ is an arithmetic progression of length at most (2N + 1), the set $\prod_{i=1}^{d} A_{\infty}(N, \chi_i)$ is contained in a pseudo-parallelepiped of dimension Md, where $2^{M} \ge 2N + 1 > 2^{M-1}$. Now apply Proposition 2.2. \Box

DEFINITION 2.7 ([11, 1.6]). For $E \subset \mathbb{Z}$ and $n \in \mathbb{Z}$, let $r_2(E, n)$ be the number of ordered pairs $(m_1, m_2) \in E \times E$ with $m_1 + m_2 = n$.

COROLLARY 2.8 (see [10] for p > 2 and [11, 4.5] for p = 4). If $E \subset \mathbb{Z}^+$ is a $\Lambda(p)$ set there is some $q < \infty$ and constant c so that if 1/q + 1/q' = 1 then E satisfies

$$\left(\sum_{n=1}^{N} r_2(E,n)^q\right)^{1/q} \le cN^{1/q'}$$

for all positive integers N.

Proof. If $(m_1, m_2) \in E \times E$ satisfies $m_1 + m_2 = n$ then certainly m_1 , $m_2 \in (0, n]$. Thus

$$r_2(E,n) \leq |(0,n] \cap E| \leq cn^{\alpha}$$

for some constants *c* and $0 < \varepsilon < 1$.

If $q = 2/(1 - \varepsilon)$ then

$$\left(\sum_{n=1}^{N} r_2(E,n)^q\right)^{1/q} \le \left(\sum_{n=1}^{N} (cn^{\varepsilon})^q\right)^{1/q} \le cN^{\varepsilon+1/q} \le cN^{1/q'}. \quad \Box$$

DEFINITION. 2.9. Let M be a positive integer. We will say that $A \subset \Gamma$ is a weak-M-test set if $|AA^{-1}| \leq M|A|$.

REMARKS. 1. If $A = \{\chi\psi, \ldots, \chi\psi^N\}$ is an arithmetic progression of length N, then $AA^{-1} = \{\psi^k: -N + 1 \le k \le N - 1\}$, hence A is a weak-2-test set.

2. In [2] A is called a *test set of order* M if $|A^2A^{-1}| \le M|A|$. Since $|AA^{-1}| \le |A^2A^{-1}|$ any test set of order M is a weak-M-test set.

PROPOSITION 2.10 (see [2] for p > 2 and A a test set of order M). Let $E \subset \Gamma$ be a $\Lambda(p)$ set. There are constants c and $0 < \varepsilon < 1$ so that whenever M is a positive integer and A is a weak-M-test set, then

$$|E \cap A| \leq c |A|^{\epsilon}.$$

Proof. Let $t = |E \cap A|$ and choose $n \ge 1$ so that E contains no parallelepipeds of dimension n + 1. We will assume that $t \ge 4(M|A|)^{1-1/2^n}$ and derive a contradiction.

Let $AA^{-1} \setminus \{1\} = \{\chi_1, \dots, \chi_d\}$ with $\chi_i \neq \chi_j$ if $i \neq j$. Then $d \leq M|A|$. Let $E' = E \cap A$.

For each i = 1, ..., d choose a maximal collection $C_{1,i}$ of ordered sets $\{\alpha, \beta\}$ satisfying $\alpha, \beta \in E'$ and $\alpha\beta^{-1} = \chi_i$, and which are pairwise disjoint (as unordered sets). Let $C_1 = \bigcup_{i=1}^d C_{1,i}$.

Suppose $\{\alpha, \beta\} \notin C_1$ for $\alpha, \beta \in E'$ with $\alpha \neq \beta$. Since $\alpha\beta^{-1} = \chi_i$ for some *i* and $\{\alpha, \beta\} \notin C_{1,i}$ it must be that one of $\{\chi, \alpha\}$ or $\{\beta, \chi\} \in C_{1,i}$ for some $\chi \in E'$. Thus

$$|C_1| \ge \frac{1}{3} \left| \left\{ \left\{ \alpha, \beta \right\} \colon \alpha, \beta \in E', \alpha \neq \beta \right\} \right| \ge \frac{t(t-1)}{3}$$

and hence

$$\max_{1 \le i \le d} |C_{1,i}| \ge \frac{t(t-1)}{3d} \ge \frac{t(t-1)}{3M|A|}$$

If $t \le 4$ then $t \le 4(M|A|)^{1-1/2^n}$ for any $n \ge 1$, thus t > 4 and we obtain the inequality

$$|C_{1,i_1}| = \max_i |C_{1,i}| \ge \frac{t^2}{4M|A|}$$

Let D_1 denote the set of left hand terms of C_{1,i_1} . Observe that if $\psi_1, \ldots, \psi_k \in D_1$ with $\psi_i \neq \psi_j$ for $i \neq j$, then $\{\psi_j, \psi_j \chi_{i_1}^{-1}\}$, $j = 1, \ldots, k$, are distinct pairs in C_{1,i_1} , and so by the disjointness condition all the terms of $\{\psi_1, \ldots, \psi_k\} \cdot \{1, \chi_{i_1}^{-1}\}$ are distinct.

Further, if $|C_{1,i_1}| > 1$ then C_{1,i_1} contains two distinct pairs, $\{\alpha_j, \beta_j\}$, j = 1, 2. Since $\alpha_j \beta_j^{-1} = \chi_{i_1}$ these four elements of *E* form a parallelepiped of dimension 2, namely $\{\alpha_1, \alpha_2\} \cdot \{1, \chi_{i_1}^{-1}\}$. Hence if *E* contains no parallelepipeds of dimension 2 then $t \le (4M|A|)^{1/2}$ proving the proposition for n = 1.

We proceed inductively to obtain for k = 2, ..., m - 1, $k \le n$, sets C_{k,i_k} and D_k satisfying:

(i) C_{k,i_k} consists of pairwise disjoint two element sets $\{\alpha, \beta\}$ with $\alpha\beta^{-1} = \chi_{i_k}, \alpha, \beta \in D_{k-1};$

(ii) D_k consists of the left hand terms of C_{k,i_k} ;

(iii) $|C_{k,i_k}| = |D_k| \ge t^{2^k} / (4M|A|)^{2^k - 1}$; and

(iv) If $\{\hat{\psi}_1, \dots, \psi_r\}$ are distinct members of D_k then all the terms of the set $\{\psi_1, \dots, \psi_r\} \cdot \prod_{j=1}^k \{1, \chi_{i_j}^{-1}\}$ belong to E and are distinct.

KATHRYN E. HARE

In particular, (iv) implies that if ψ_1 , ψ_2 are distinct members of D_k , then *E* contains the k + 1 dimensional parallelepiped $\{\psi_1, \psi_2\} \cdot \prod_{i=1}^{k} \{1, \chi_{i_i}^{-1}\}$.

For i = 1, ..., d, let $C_{m,i}$ be a maximal set of pairwise disjoint two element sets $\{\alpha, \beta\}$ with $\alpha, \beta \in D_{m-1}$ and $\alpha\beta^{-1} = \chi_i$. In the same manner as before we see that

$$\begin{aligned} |C_{m,i_m}| &= \max_{1 \le i \le d} |C_{m,i}| \ge \frac{1}{3d} |D_{m-1}| (|D_{m-1}| - 1) \\ &\ge \frac{1}{3M|A|} \left(\frac{t^{2^{m-1}}}{(4M|A|)^{2^{m-1}-1}} \right) \left(\frac{t^{2^{m-1}}}{(4M|A|)^{2^{m-1}-1}} - 1 \right) \end{aligned}$$

and since we are assuming

$$\frac{t^{2^{m-1}}}{\left(4M|A|\right)^{2^{m-1}-1}} \ge 4,$$

we have

$$|C_{m,l_m}| \ge \frac{t^{2^m}}{(4M|A|)^{2^m-1}}.$$

Let D_m be the left hand terms of C_{m,ι_m} and suppose ψ_1, \ldots, ψ_r are distinct terms of D_m . Then $\{\psi_j, \psi_j \chi_{\iota_m}^{-1}\}$ are pairwise disjoint sets in C_{m,ι_m} , so $B = \{\psi_1, \ldots, \psi_r, \psi_1 \chi_{\iota_m}^{-1}, \ldots, \psi_r \chi_{\iota_m}^{-1}\}$ is a collection of distinct terms of D_{m-1} . By (iv) the terms of

$$\{\psi_1,\ldots,\psi_r\}\cdot\prod_{j=1}^m \langle 1,\chi_{i_j}^{-1}\rangle = B\cdot\prod_{j=1}^{m-1} \langle 1,\chi_{i_j}^{-1}\rangle$$

are distinct members of E. This completes the induction step.

Since E contains no parallelepipeds of dimension n + 1, $|D_n|$ must be at most one. This contradicts our initial assumption.

The union problem for $\Lambda(p)$ sets with $p \leq 2$ is open. However we do have

PROPOSITION 2.11 (see [9] for $E \subset \mathbb{Z}$). Let E_1 and E_2 be $\Lambda(p)$ sets. Then $E_1 \cup E_2$ does not contain parallelpipeds of arbitrarily large dimension.

Proof. Choose constants c and $0 < \varepsilon < 1$ so that whenever P_n is a parallelpiped of dimension n, $|E_i \cap P_n| \le c2^{n\varepsilon}$ for i = 1, 2. Then

$$|(E_1 \cup E_2) \cap P_n| \le 2c2^{n\varepsilon} < 2^n = |P_n|$$

for *n* sufficiently large.

Observe that all these results hold for sets which do not contain parallelepipeds of arbitrarily large dimension. In [6] we discuss additional properties of such sets.

3. Proof of Main Theorem. We turn now to proving Theorem 1.2.

Since any $\Lambda(p)$ set with $p \ge 1$ is a $\Lambda(s)$ set for any s < 1, we may without loss of generality assume p < 1.

We will show in fact that N depends only on c(p, p/2, E), as defined by (1). Since a translate of a $\Lambda(p)$ set is a $\Lambda(p)$ set with the same constant, it suffices to show that $\Lambda(p)$ sets do not contain parallelepipeds of the form $P = \prod_{i=1}^{M} \{1, \chi_i\}, |P| = 2^M$, for M > N.

The proof will result by establishing a number of lemmas. The main idea in the proof of the principal result in [9] is used in Lemma 3.4.

Let us say that $\{\chi_1, \ldots, \chi_N\} \subset \Gamma$ is *quasi-dissociate* if

$$\prod_{i=1}^{N} \chi_{i}^{\epsilon_{i}} = 1 \quad \text{for } \epsilon_{i} = 0, \pm 1, \ i = 1, \dots, N,$$

implies $\varepsilon_i = 0$ for all $i = 1, \ldots, N$.

LEMMA 3.1. Fix a positive integer N_0 and let $N_1 = 3^{N_0} + 1$. Any subset of Γ of cardinality N_1 contains a quasi-dissociate subset of cardinality N_0 .

Proof. This is essentially an application of the Pigeon Hole Principle.

Consider the subset $\{\chi_i\}_{i=1}^{N_1} \subset \Gamma$. Choose $\psi_1 \in \{\chi_1, \chi_2\}$ so that $\psi_1 \neq 1$. If $A_1 = \{\psi_1^{\epsilon_1}: \epsilon_1 = 0, \pm 1\}$ then $|A_1| \leq 3$ so it is possible to choose $\psi_2 \in \{\chi_i\}_{i=1}^4$ with $\psi_2 \notin A_1$.

Now proceed inductively. Assume ψ_1, \ldots, ψ_n have been chosen. Let

$$A_n = \left\{ \psi_1^{\epsilon_1} \psi_2^{\epsilon_2} \cdots \psi_n^{\epsilon_n} \colon \epsilon_i = 0, \pm 1, i = 1, \dots, n \right\}.$$

Since $|A_n| \leq 3^n$ we may choose $\psi_{n+1} \in \{\chi_i\}_{i=1}^{3^n+1}$ with $\psi_{n+1} \notin A_n$.

We may choose $\{\psi_i\}_{i=1}^{N_0} \subset \{\chi_i\}_{i=1}^{N_1}$ in this way since $N_1 = 3^{N_0} + 1$.

Now suppose $\prod_{i=1}^{N_0} \psi_i^{\epsilon_i} = 1$ with $\epsilon_i = 0, \pm 1, i = 1, ..., N_0$. Let k be the largest integer with $\epsilon_k \neq 0$. We cannot have k = 1 for then $\psi_1^{\epsilon_1} = 1$ and hence $\psi_1 = 1$. If k > 1 then without loss of generality, $\epsilon_k = 1$, so $\psi_k = \prod_{i=1}^{k-1} \psi_i^{-\epsilon_i}$. But this implies $\psi_k \in A_{k-1}$, contradicting its selection. Thus $\epsilon_i = 0$ for all $i = 1, 2, ..., N_0$ and hence $\{\psi_i\}_{i=1}^{N_0}$ is a quasi-dissociate set.

KATHRYN E. HARE

Let us say that the parallelepiped $P_N = \prod_{i=1}^N \{1, \chi_i\}$ is

(i) of order 2 if $\chi_i^2 = 1$ for i = 1, ..., N;

(ii) dissociate if $\prod_{i=1}^{N} \chi_i^{\epsilon_i} = 1$ with $\epsilon_i = 0, \pm 1, \pm 2$, implies $\epsilon_i = 0$ for all i = 1, ..., N; and

(iii) quasi-dissociate if $\prod_{i=1}^{N} \chi_{i}^{\varepsilon_{i}} = 1$ with $\varepsilon_{i} = 0, \pm 1$ implies $\varepsilon_{i} = 0$ for all i = 1, ..., N.

With this notation an immediate corollary of the previous lemma is

COROLLARY 3.2. If E contains $P = \prod_{i=1}^{N_1} \{1, \chi_i\}$, a parallelepiped of dimension $N_1 = 3^{N_0} + 1$, then E contains a quasi-dissociate, N_0 -dimensional parallelepiped.

Next we will prove

LEMMA 3.3. Let E be a $\Lambda(p)$ set, 0 , with constant <math>c(p, p/2, E). There is an integer N_1 depending on c(p, p/2, E) such that E does not contain any parallelepipeds of order 2 with dimension greater than N_1 .

Proof. Choose an integer N_0 so that

$$2^{N_0/p} = \frac{2^{(1-1/p)N_0}}{2^{(1-2/p)N_0}} > c(p, p/2, E)$$

and set $N_1 = 3^{N_0} + 1$. By Corollary 3.2 if *E* contains a parallelepiped of order 2 with dimension N_1 then *E* contains a quasi-dissociate parallelepiped of order 2 with dimension N_0 , say $\prod_{i=1}^{N_0} \{1, \chi_i\}$. Being quasi-dissociate and of order 2 the set $\{\chi_i\}_{i=1}^{N_0}$ is probabilistically independent. Hence

$$\left(\int \prod_{i=1}^{N_0} |1+\chi_i|^p\right)^{1/p} = \left(\prod_{i=1}^{N_0} \int |1+\chi_i|^p\right)^{1/p} = 2^{(1-1/p)N_0}.$$

Similarly

$$\left(\int \prod_{i=1}^{N_0} |1 + \chi_i|^{p/2}\right)^{2/p} = 2^{(1-2/p)N_0}.$$

Thus if $f(x) = \prod_{i=1}^{N_0} (1 + \chi_i(x))$, then $f \in \operatorname{Trig}_E(G)$ and

$$||f||_{p} = 2^{(1-1/p)N_{0}} > c(p, p/2, E)2^{(1-2/p)N_{0}} = c(p, p/2, E)||f||_{p/2}$$

contradicting the fact that E is a $\Lambda(p)$ set with constant c(p, p/2, E). \Box

LEMMA 3.4. Let E be a $\Lambda(p)$ set, 0 , with constant <math>c(p, p/2, E). There is an integer N depending on c(p, p/2, E) such that E does not contain any dissociate parallelepipeds of dimension N.

Proof. It is shown in [9] that for any fixed $r \in (0, 1)$ with $r/(1 - r)^3 < p^2/256$,

$$A = \left(1 - \frac{(p/2)(1 - p/2)r^2}{4} - \left(\frac{r}{1 - r}\right)^3\right)^{1/p}$$

> $\left(1 - \frac{(p/4)(1 - p/4)r^2}{4} + \left(\frac{r}{1 - r}\right)^3\right)^{2/p} = B$

Choose N so that $A^N > c(p, p/2, E)B^N$, and suppose E contains the dissociate parallelepiped $\prod_{i=1}^N \{1, \chi_i\}$. Let R be the least solution of $r = 2R/(1+R^2)$.

Let $f = \prod_{i=1}^{N} (1 + R\chi_i)$. Then $f \in \operatorname{Trig}_E(G)$, and

(2)
$$||f||_{p} = \left(\int \prod_{i=1}^{N} \left(|1 + R\chi_{i}|^{2}\right)^{p/2}\right)^{1/p}$$

= $(1 + R^{2})^{N/2} \left(\int \prod_{i=1}^{N} \left(1 + r\left(\frac{\chi_{i} + \overline{\chi_{i}}}{2}\right)\right)^{p/2}\right)^{1/p}$.

An application of MacLaurin's formula shows that for any $\alpha \in (0, 1)$

$$(1 + x)^{\alpha} = 1 + \alpha x - \frac{\alpha(1 - \alpha)x^2}{2} + \text{Rem}(x)$$

where $|\operatorname{Rem}(x)| \le (r/(1-r))^3$ provided $x \in [-r, r]$ and $r \in (0, 1)$.

Now $-r \le r((\chi_i x + \overline{\chi_i(x)})/2) \le r$ so applying MacLaurin's formula to (2) with $\alpha = p/2$ we obtain

$$\begin{split} \|f\|_{p} &\geq (1+R^{2})^{N/2} \left(\int \prod_{i=1}^{N} \left(1 + \frac{p}{2}r\left(\frac{X_{i} + \overline{X_{i}}}{2}\right) \right. \\ &\left. - \frac{(p/2)(1-p/2)}{2}r^{2}\left(\frac{X_{i} + \overline{X_{i}}}{2}\right)^{2} - \left(\frac{r}{1-r}\right)^{3} \right) \right)^{1/p} \\ &= (1+R^{2})^{N/2} \left(\int \prod_{i=1}^{N} \left(1 - \frac{(p/2)(1-p/2)r^{2}}{4} - \left(\frac{r}{1-r}\right)^{3} \right. \\ &\left. + \frac{p}{2}r\left(\frac{X_{i} + \overline{X_{i}}}{2}\right) - \frac{(p/2)(1-p/2)r^{2}}{2}\left(\frac{X_{i}^{2} + \overline{X_{i}^{2}}}{4}\right) \right) \right)^{1/p} \\ &= (1+R^{2})^{N/2} \prod_{i=1}^{N} \left(1 - \frac{(p/2)(1-p/2)r^{2}}{4} - \left(\frac{r}{1-r}\right)^{3} \right)^{1/p} \end{split}$$

because of the dissociateness assumption.

Similarly

$$\|f\|_{p/2} \leq (1+R^2)^{N/2} \prod_{i=1}^N \left(1-\frac{(p/4)(1-p/4)r^2}{4}+\left(\frac{r}{1-r}\right)^3\right)^{2/p}.$$

Thus

$$\|f\|_{p} \ge (1+R^{2})^{N/2}A^{N} > (1+R^{2})^{N/2}c(p,p/2,E)B^{N}$$

$$\geq c(p, p/2, E) || f ||_{p/2}$$

contradicting the fact that E is a $\Lambda(p)$ set with constant c(p, p/2, E).

LEMMA 3.5. For each positive integer N_0 there is an integer $N_2 = N_2(N_0)$ so that if $P = \prod_{i=1}^{N_2} \{1, \chi_i\}$ is a parallelepiped of dimension N_2 with the property that for each $i = 1, 2, ..., N_2$ the set $\{j \neq i: \chi_j^2 = \chi_i^2\}$ is empty, then P contains a dissociate parallelepiped of dimension N_0 .

Proof. This is another application of the Pigeon Hole Principle similar to Lemma 3.1. \Box

LEMMA 3.6. For each positive integer N_0 there is an integer $N = N(N_0)$ so that if E contains a parallelepiped of dimension N, then a translate of E contains either a dissociate parallelepiped or a parallelepiped of order 2, with dimension N_0 .

Proof. Fix N_0 . Put $N = 2N_0N_2$ with $N_2 = N_2(N_0)$ as in Lemma 3.5. Assume that a translate of *E* contains $P = \prod_{i=1}^{N} \{1, \chi_i\}$, a parallelepiped of dimension *N*.

We will say that $\chi_i \sim \chi_j$ if $\chi_i^2 = \chi_j^2$. Let S_i be the equivalence class containing χ_i . We consider two cases.

Case 1. For some $i \in \{1, 2, ..., N\}$, $|S_i| \ge 2N_0$. Without loss of generality i = 1 and $\{\chi_1, \chi_2, ..., \chi_{2N_0}\} \subset S_1$, i.e., $\chi_k^2 = \chi_1^2$ for $k = 1, 2, ..., 2N_0$. Then $\chi_1 \chi_k^{-1} \equiv \varphi_k$ satisfies $\varphi_k^2 = 1$ for $k = 1, ..., 2N_0$.

Certainly $\prod_{j=1}^{N_0} \{\chi_1 \varphi_{2j-1}, \chi_1 \varphi_{2j}\} \subset P$ and hence is a parallelepiped of dimension N_0 contained in E. A further translate of E contains the N_0 -dimensional parallelepiped $\prod_{j=1}^{N_0} \{1, \varphi_{2j} \varphi_{2j-1}^{-1}\}$ of order two.

Case 2. Otherwise $|S_i| \le 2N_0$ for all i = 1, 2, ..., N. In this case there must be at least N_2 distinct equivalence classes, say $S_1, ..., S_{N_2}$. Lemma 3.5 may be applied to $\prod_{i=1}^{N_2} \{1, \chi_i\}$ to obtain a dissociate parallelepiped of dimension N_0 in the original translate of E.

Proof of Theorem 1.2. Put together Lemmas 3.3, 3.4 and 3.6. \Box

152

4. Random sequences. If E does not contain any parallelepipeds of dimension 2 then a modification of [11, 4.5] can be used to show that E is a $\Lambda(4)$ set. Parallelepipeds are not sufficient to characterize $\Lambda(p)$ sets however. In this section we will use a method of Erdös and Rényi [3] to show that for each p > 8/3 there is a set E(p) which does not contain parallelepipeds of arbitrarily large dimension and yet is not a $\Lambda(p)$ set.

Let $0 < \alpha < 1$ and let $\{\xi_n\}_{n=1}^{\infty}$ be a sequence of independent random variables such that $P(\xi_n = 1) = p_n = 1/n^{\alpha}$ and $P(\xi_n = 0) = 1 - p_n$. Let $\{\nu_k\}$ denote the values of *n* (in increasing order) with $\xi_n = 1$. Thus p_n is the probability that *n* is contained in $\{\nu_k\}$.

If $\{v_k\}$ contains a parallelepiped of dimension d then there are integers $n, m, k_1, \ldots, k_{2^{d-2}}$, such that $\{v_k\}$ contains

$$K(k_1, \dots, k_{2^{d-2}}, n, m)$$

$$\equiv \{k_i, k_i + n, k_i + m, k_i + m + n : i = 1, \dots, 2^{d-2}\}$$

where

$$|X(k_1,\ldots,k_{2^{d-2}},n,m)| = 2^d.$$

Without loss of generality we may assume $1 \le k_i < k_i + n < k_i + m < k_i + m < k_i + m < k_i + m + n$, so $\{k_1, \ldots, k_{2^{d-2}}, n, m\} \subset \mathbb{Z}^+$. Since $\{\xi_n\}_{n=1}^{\infty}$ are independent random variables the probability that $\{v_k\}$ contains $X(k_1, \ldots, k_{2^{d-2}}, n, m)$ is

$$P(X(k_1,...,k_{2^{d-2}},n,m) \subset \{\nu_k\}) = \prod_{i=1}^{2^{d-2}} \left(\frac{1}{k_i(k_i+n)(k_i+m)(k_i+m+n)}\right)^{\alpha}.$$

Thus if $\sum_{n,m,k_1,\ldots,k_{2^{d-2}}}^{\prime}$ denotes the sum over those positive integers $n, m, k_1, \ldots, k_{2^{d-2}}$ such that $|X(k_1, \ldots, k_{2^{d-2}}, n, m)| = 2^d$, then

$$S \equiv \sum_{n,m,k_1,\dots,k_{2^{d-2}}}^{\prime} P(X(k_1,\dots,k_{2^{d-2}},n,m) \subset \{v_k\})$$

$$\leq \sum_{n,m,k_1,\dots,k_{2^{d-2}} \in \mathbb{Z}^+} \prod_{i=1}^{2^{d-2}} \left(\frac{1}{k_i(k_i+n)(k_i+m)(k_i+m+n)}\right)^{\alpha}$$

$$= \sum_{n,m} \left(\sum_k \left(\frac{1}{k(k+n)(k+m)(k+m+n)}\right)^{\alpha}\right)^{2^{d-2}}.$$

Let $t = 2^{d-2}$. By using the inequality

$$\frac{1}{k+n} \le \left(\frac{1}{k}\right)^{\sigma} \left(\frac{1}{n}\right)^{1-\sigma}$$

for $0 < \sigma < 1$, we obtain

$$S \leq \sum_{n,m} \left(\frac{1}{nm}\right)^{(1-\sigma)t\alpha} \left(\sum_{k} \left(\frac{1}{k}\right)^{2(1+\sigma)\alpha}\right)^{t}.$$

If we choose t, α and σ so that $(1 - \sigma)\alpha t > 1$ and $2(1 + \sigma)\alpha > 1$, then $S < \infty$. An application of the Borel-Cantelli Lemma shows that in this case $\{\nu_k\}$ contains only finitely many d dimensional parallelepipeds a.s.

If $\alpha > 1/4$ and $t > 1/2(\alpha - 1/4)$ we see that the inequalities $(1 - \sigma)\alpha t > 1$ and $2(1 + \sigma)\alpha > 1$, can be simultaneously satisfied for any $\sigma \in (0, 1)$ with

$$\frac{1}{2\alpha}-1<\sigma<1-\frac{1}{t\alpha}.$$

Since

$$\sum_{n} \frac{p_{n}(1-p_{n})}{(p_{1}+\cdots+p_{n})^{2}} \leq \sum_{n} \frac{1}{n^{\alpha}n^{2(1-\alpha)}} < \infty,$$

by the Strong Law of Large Numbers

$$\lim_{k\to\infty} \frac{\sum_{i\leq \nu_k} p_i}{k} = 1 \quad \text{a.s.}$$

Thus

$$\lim_{k\to\infty} \frac{\nu_k^{1-\alpha}}{(1-\alpha)k} = 1 \quad \text{a.s.}$$

and so there is a c > 0 such that for all N sufficiently large,

$$|\{\boldsymbol{\nu}_k\} \cap [1,N]| \ge cN^{1-\alpha} \quad \text{a.s.}$$

PROPOSITION 4.1. For each p > 8/3 there is an integer d = d(p) and a set E = E(d, p) which contains no parallelepipeds of dimension d but is not a $\Lambda(p)$ set.

Proof. For p > 8/3, say $p = 8/(3 - 4\varepsilon)$ with $\varepsilon > 0$, let $\alpha = 1/4 + \varepsilon/2$ and let d be any integer satisfying $t = 2^{d-2} > 1/\varepsilon$. Choose $\{\nu_k\}$ as described above so that $\{\nu_k\}$ contains only finitely many parallelepipeds of dimension d and

$$|\{\boldsymbol{\nu}_k\} \cap [1,N]| \sim cN^{3/4-\varepsilon/2}.$$

154

Let E be the set $\{v_k\}$ with the finitely many integers which form parallelepipeds of dimension d deleted. If E was a $\Lambda(p)$ set then by [11, 3.5]

$$|E \cap [1, N]| \le c N^{2/p}.$$

But *E* and $\{v_k\}$ have the same asymptotic density and $2/p < 3/4 - \epsilon/2$, thus *E* cannot be a $\Lambda(p)$ set.

Thus the notion of parallelepipeds is not strong enough to characterize $\Lambda(p)$ sets for p > 8/3. The question as to whether or not parallelepipeds characterize $\Lambda(p)$ sets for $p \le 8/3$ remains open.

References

- G. Benke, Arithmetic structure and lacunary Fourier series, Proc. Amer. Math. Soc., 34 (1972), 128–132.
- [2] R. E. Edwards, E. Hewitt, and K. Ross, Lacunarity for compact groups, I, Indiana J. Math., 21 (1972), 787–806.
- [3] P. Erdös, and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica, VI (1960), 83-110.
- J. J. F. Fournier, and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math., 105 (1983), 115–141.
- [5] D. Hajela, Construction techniques for some thin sets in duals of compact abelian groups, Ph. D. Dissertation, Ohio State University, (1983).
- [6] K. E. Hare, Strict-2-associatedness for thin sets, Colloq. Math., to appear.
- J. López, and K. Ross, Sidon Sets, Lecture notes in Pure and Applied Mathematics, 13, Marcel Dekker, Inc., New York, 1975.
- [8] I. M. Miheev, On lacunary series, Math. USSR Sbornik, 27 (1975), 481–502; translated from Mat. Sbornik 98, 140 (1975), 538–563.
- [9] ____, Trigonometric series with gaps, Anal. Math., 9 (1983), 43-55.
- [10] C. J. Neugebauer, Some properties of Fourier series with gaps, Contemporary Mathematics, 42 (1985), 169–174.
- [11] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-338.

Received September 7, 1986.

UNIVERSITY OF ALBERTA Edmonton, Canada T6G 2G1