ARITHMETIC PROPERTIES OF THIN SETS

Kathryn E. Hare

Abstract

We prove that $\Lambda(p)$ sets do not contain parallelepipeds of arbitrarily large dimension. This fact is used to show that all $\Lambda(p)$ sets satisfy the arithmetic properties which were previously known only for $\Lambda(p)$ sets with $p>2$. We also obtain new arithmetic properties of $\Lambda(p)$ sets.

1. Introduction. Let G denote a compact abelian group and $\hat{G}=\Gamma$ its necessarily discrete, abelian, dual group. When E is a subset of Γ, an integrable function f on G will be called an E-function provided its Fourier transform, \hat{f}, vanishes on the complement of E. Similarly, an E-function f will be called an E-polynomial if the support of its Fourier transform is finite.

A subset E of Γ is said to be a $\Lambda(p)$ set, $p>0$, if for some $0<r<p$ there is a constant $c(p, r, E)$ so that

$$
\begin{equation*}
\|f\|_{p} \leq c(p, r, E)\|f\|_{r} \tag{1}
\end{equation*}
$$

for all E-polynomials f. An easy application of Holder's inequality shows that if $p<q$ and E is a $\Lambda(q)$ set, then E is a $\Lambda(p)$ set. For standard results on $\Lambda(p)$ sets see [11] and [7].

A number of authors (cf. [11], [7], [2], [10] and [1]) have shown that $\Lambda(p)$ sets with $p>2$ satisfy certain arithmetic properties. In [9] Miheev was able to extend some of these properties to all $\Lambda(p)$ sets in \mathbf{Z}. In §2 we will show that generalizations of the properties attributed to $\Lambda(p)$ sets with $p>2$ in the papers cited above are satisfied by all $\Lambda(p)$ sets, $p>0$, in all discrete abelian groups.

One of the important open questions in the study of $\Lambda(p)$ sets is whether there are any $\Lambda(p)$ sets, with $p<4$, that are not already $\Lambda(4)$. The technique used most often to show that a given set is not a $\Lambda(p)$ set, for some particular value of p, is to show that the set fails to satisfy an arithmetic property which $\Lambda(p)$ sets are known to fulfill. As a consequence of our results, it is impossible to find a $\Lambda(p)$ set with $p<2$ which does not satisfy all the arithmetic properties of a $\Lambda(2)$ set which are currently known.

The proofs of these results depend upon the following theorem.

Definition 1.1. A subset P of Γ is called a parallelepiped of dimension N if $P=\prod_{i=1}^{N}\left\{\chi_{l}, \psi_{l}\right\}$, where $\chi_{l}, \psi_{l} \in \Gamma$ for $i=1, \ldots, N$, and $|P|=2^{N}$.

Theorem 1.2. If $E \subset \Gamma$ is $a \Lambda(p)$ set, $p>0$, then there is an integer N such that E does not contain any parallelepipeds of dimension N.

We prove this result in $\S 3$. The conclusion of this theorem was previously known for $\Lambda(1)$ sets [4], and for all $\Lambda(p)$ sets in \mathbf{Z} (for $p=2$ in [8] and for $p>0$ in [9].) In $\S 4$ random sequences are considered to show that parallelepipeds are not sufficient to characterize Λ (4) sets.

2. Arithmetic properties.

Definition 2.1. A subset P of Γ is called a pseudo-parallelepiped of dimension N if $P=\prod_{t=1}^{N}\left\{\chi_{l}, \psi_{l}\right\}$, where $\chi_{l}, \psi_{l} \in \Gamma$ for $i=1, \ldots, N$.

Remark. Parallelepipeds and pseudo-parallelepipeds are generalizations of arithmetic progressions, for any arithmetic progression of length 2^{N} is a parallelepiped of dimension N.

Our results on the arithmetic properties of $\Lambda(p)$ sets will be seen to follow from Theorem 1.2 and

Proposition 2.2. For each positive integer n, there are constants $c(n)$ and $0<\varepsilon(n)<1$, so that if $E \subset \Gamma$ does not contain any parallelepipeds of dimension n, then whenever P_{r} is a pseudo-parallelepiped of dimension r

$$
\left|E \cap P_{r}\right| \leq c(n) 2^{r \varepsilon(n)}
$$

Remark. This proposition is proved in [9] for $E \subset \mathbf{Z}$ and P_{r} a parallelepiped of dimension r. With appropriate modifications the same proof yields Proposition 2.2.

Combining Theorem 1.2 and Proposition 2.2 we immediately obtain

Corollary 2.3. Let $E \subset \Gamma$ be a $\Lambda(p)$ set for some $p>0$. There are constants c and $0<\varepsilon<1$ so that whenever P_{r} is a pseudo-parallelepiped of dimension r

$$
\left|E \cap P_{r}\right| \leq c 2^{r \varepsilon}
$$

The arithmetic progression of length $N,\left\{\chi \psi, \ldots, \chi \psi^{N}\right\}$, is contained in the pseudo-parallelepiped $\chi \psi \cdot \prod_{i=0}^{M-1}\left\{1, \psi^{2^{t}}\right\}$ of dimension M provided $2^{M} \geq N$. By choosing M with $2^{M-1}<N \leq 2^{M}$ we have

Corollary 2.4 (see [11, 3.5], [2], or [1] for $p>2$, [9] for $E \subset \mathbf{Z})$. Let $E \subset \Gamma$ be $a \Lambda(p)$ set. There are constants c and $0<\varepsilon<1$ such that if A is any arithmetic progression of length N then

$$
|E \cap A| \leq 2 c N^{\varepsilon}
$$

In particular, if E is a $\Lambda(p)$ set in \mathbf{Z}, then any interval of length N contains at most $2 c N^{\varepsilon}$ points of E. Thus E has density zero. Moreover, if $E=\left\{n_{k}\right\}$, then $\sum_{n_{k} \neq 0}\left(1 /\left|n_{k}\right|\right)<\infty$, so the set of prime numbers is not a $\Lambda(p)$ set for any $p>0$ [9].

Definition $2.5[7,6.2]$. For positive integers d and $N, \chi_{1}, \ldots, \chi_{d} \in \Gamma$ and $1 \leq r<\infty$, let

$$
A_{r}\left(N, \chi_{1}, \ldots, \chi_{d}\right)=\left\{\prod_{j=1}^{d} \chi_{j}^{n_{j}}: \sum_{j=1}^{d}\left|n_{j}\right|^{r} \leq N^{r}\right\}
$$

Let

$$
A_{\infty}\left(N, \chi_{1}, \ldots, \chi_{d}\right)=\left\{\prod_{j=1}^{d} \chi_{j}^{n_{j}}: \sup _{1 \leq j \leq d}\left|n_{j}\right| \leq N\right\}
$$

Remark. These sets may also be viewed as generalized arithmetic progressions. Indeed, if $\Gamma=\mathbf{Z}$ and $b \in \mathbf{Z}$ then

$$
A_{r}(N, b)=\{-N b, \ldots,-b, 0, b, \ldots, N b\}
$$

is an arithmetic progression of length $2 N+1$ for any r.
Corollary 2.6 (see [7, 6.3-6.4], [1] for $p>2$ and $r<\infty$). Let $E \subset \Gamma$ be a $\Lambda(p)$ set. There are constants c and $0<\varepsilon<1$ such that

$$
\left|A_{r}\left(N, \chi_{1}, \ldots, \chi_{d}\right) \cap E\right| \leq c(2 N+1)^{d_{\varepsilon}}
$$

for all $\chi_{1}, \ldots, \chi_{d} \in \Gamma, N \in \mathbf{Z}^{+}$and $1 \leq r \leq \infty$.
Proof. Observe that

$$
A_{r}\left(N, \chi_{1}, \ldots, \chi_{d}\right) \subset A_{\infty}\left(N, \chi_{1}, \ldots, \chi_{d}\right)=\prod_{i=1}^{d} A_{\infty}\left(N, \chi_{i}\right)
$$

Since $A_{\infty}\left(N, \chi_{i}\right)$ is an arithmetic progression of length at most $(2 N+1)$, the set $\prod_{i=1}^{d} A_{\infty}\left(N, \chi_{i}\right)$ is contained in a pseudo-parallelepiped of dimension $M d$, where $2^{M} \geq 2 N+1>2^{M-1}$. Now apply Proposition 2.2.

Definition 2.7 ([11, 1.6]). For $E \subset \mathbf{Z}$ and $n \in \mathbf{Z}$, let $r_{2}(E, n)$ be the number of ordered pairs $\left(m_{1}, m_{2}\right) \in E \times E$ with $m_{1}+m_{2}=n$.

Corollary 2.8 (see [10] for $p>2$ and [11, 4.5] for $p=4$). If $E \subset \mathbf{Z}^{+}$is a $\Lambda(p)$ set there is some $q<\infty$ and constant c so that if $1 / q+1 / q^{\prime}=1$ then E satisfies

$$
\left(\sum_{n=1}^{N} r_{2}(E, n)^{q}\right)^{1 / q} \leq c N^{1 / q^{\prime}}
$$

for all positive integers N.
Proof. If $\left(m_{1}, m_{2}\right) \in E \times E$ satisfies $m_{1}+m_{2}=n$ then certainly m_{1}, $m_{2} \in(0, n]$. Thus

$$
r_{2}(E, n) \leq|(0, n] \cap E| \leq c n^{\varepsilon}
$$

for some constants c and $0<\varepsilon<1$.
If $q=2 /(1-\varepsilon)$ then

$$
\left(\sum_{n=1}^{N} r_{2}(E, n)^{q}\right)^{1 / q} \leq\left(\sum_{n=1}^{N}\left(c n^{\varepsilon}\right)^{q}\right)^{1 / q} \leq c N^{\varepsilon+1 / q} \leq c N^{1 / q^{\prime}} .
$$

Definition. 2.9. Let M be a positive integer. We will say that $A \subset \Gamma$ is a weak-M-test set if $\left|A A^{-1}\right| \leq M|A|$.

Remarks. 1. If $A=\left\{\chi \psi, \ldots, \chi \psi^{N}\right\}$ is an arithmetic progression of length N, then $A A^{-1}=\left\{\psi^{k}:-N+1 \leq k \leq N-1\right\}$, hence A is a weak-2-test set.
2. In [2] A is called a test set of order M if $\left|A^{2} A^{-1}\right| \leq M|A|$. Since $\left|A A^{-1}\right| \leq\left|A^{2} A^{-1}\right|$ any test set of order M is a weak- M-test set.

Proposition 2.10 (see [2] for $p>2$ and A a test set of order M). Let $E \subset \Gamma$ be a $\Lambda(p)$ set. There are constants c and $0<\varepsilon<1$ so that whenever M is a positive integer and A is a weak-M-test set, then

$$
|E \cap A| \leq c|A|^{\varepsilon} .
$$

Proof. Let $t=|E \cap A|$ and choose $n \geq 1$ so that E contains no parallelepipeds of dimension $n+1$. We will assume that $t \geq$ $4(M|A|)^{1-1 / 2^{n}}$ and derive a contradiction.

Let $A A^{-1} \backslash\{1\}=\left\{\chi_{1}, \ldots, \chi_{d}\right\}$ with $\chi_{i} \neq \chi_{j}$ if $i \neq j$. Then $d \leq M|A|$. Let $E^{\prime}=E \cap A$.

For each $i=1, \ldots, d$ choose a maximal collection $C_{1, i}$ of ordered sets $\{\alpha, \beta\}$ satisfying $\alpha, \beta \in E^{\prime}$ and $\alpha \beta^{-1}=\chi_{i}$, and which are pairwise disjoint (as unordered sets). Let $C_{1}=\cup_{i=1}^{d} C_{1, i}$.

Suppose $\{\alpha, \beta\} \notin C_{1}$ for $\alpha, \beta \in E^{\prime}$ with $\alpha \neq \beta$. Since $\alpha \beta^{-1}=\chi_{i}$ for some i and $\{\alpha, \beta\} \notin C_{1, i}$ it must be that one of $\{\chi, \alpha\}$ or $\{\beta, \chi\} \in C_{1, i}$ for some $\chi \in E^{\prime}$. Thus

$$
\left|C_{1}\right| \geq \frac{1}{3}\left|\left\{\{\alpha, \beta\}: \alpha, \beta \in E^{\prime}, \alpha \neq \beta\right\}\right| \geq \frac{t(t-1)}{3}
$$

and hence

$$
\max _{1 \leq i \leq d}\left|C_{1, i}\right| \geq \frac{t(t-1)}{3 d} \geq \frac{t(t-1)}{3 M|A|}
$$

If $t \leq 4$ then $t \leq 4(M|A|)^{1-1 / 2^{n}}$ for any $n \geq 1$, thus $t>4$ and we obtain the inequality

$$
\left|C_{1, i_{1}}\right|=\max _{i}\left|C_{1, i}\right| \geq \frac{t^{2}}{4 M|A|}
$$

Let D_{1} denote the set of left hand terms of $C_{1, i_{1}}$. Observe that if $\psi_{1}, \ldots, \psi_{k} \in D_{1}$ with $\psi_{i} \neq \psi_{j}$ for $i \neq j$, then $\left\{\psi_{j}, \psi_{j} \chi_{i_{1}}^{-1}\right\}, j=1, \ldots, k$, are distinct pairs in $C_{1, i_{1}}$, and so by the disjointness condition all the terms of $\left\{\psi_{1}, \ldots, \psi_{k}\right\} \cdot\left\{1, \chi_{i_{1}}^{-1}\right\}$ are distinct.

Further, if $\left|C_{1, i_{1}}\right|>1$ then $C_{1, i_{1}}$ contains two distinct pairs, $\left\{\alpha_{j}, \beta_{j}\right\}$, $j=1,2$. Since $\alpha_{j} \beta_{j}^{-1}=\chi_{i_{1}}$ these four elements of E form a parallelepiped of dimension 2 , namely $\left\{\alpha_{1}, \alpha_{2}\right\} \cdot\left\{1, \chi_{i_{1}}^{-1}\right\}$. Hence if E contains no parallelepipeds of dimension 2 then $t \leq(4 M|A|)^{1 / 2}$ proving the proposition for $n=1$.

We proceed inductively to obtain for $k=2, \ldots, m-1, k \leq n$, sets $C_{k, i_{k}}$ and D_{k} satisfying:
(i) $C_{k, i_{k}}$ consists of pairwise disjoint two element sets $\{\alpha, \beta\}$ with $\alpha \beta^{-1}=\chi_{i_{k}}, \alpha, \beta \in D_{k-1} ;$
(ii) D_{k} consists of the left hand terms of $C_{k, i_{k}}$;
(iii) $\left|C_{k, i_{k}}\right|=\left|D_{k}\right| \geq t^{2^{k}} /(4 M|A|)^{2^{k}-1}$; and
(iv) If $\left\{\psi_{1}, \ldots, \psi_{r}\right\}$ are distinct members of D_{k} then all the terms of the set $\left\{\psi_{1}, \ldots, \psi_{r}\right\} \cdot \Pi_{j=1}^{k}\left\{1, \chi_{i}{ }^{-1}\right\}$ belong to E and are distinct.

In particular, (iv) implies that if ψ_{1}, ψ_{2} are distinct members of D_{k}, then E contains the $k+1$ dimensional parallelepiped $\left\{\psi_{1}, \psi_{2}\right\}$. $\prod_{j=1}^{k}\left\{1, \chi_{t_{j}}^{-1}\right\}$.

For $i=1, \ldots, d$, let $C_{m, i}$ be a maximal set of pairwise disjoint two element sets $\{\alpha, \beta\}$ with $\alpha, \beta \in D_{m-1}$ and $\alpha \beta^{-1}=\chi_{i}$. In the same manner as before we see that

$$
\begin{aligned}
\left|C_{m, i_{m}}\right| & =\max _{1 \leq i \leq d}\left|C_{m, l}\right| \geq \frac{1}{3 d}\left|D_{m-1}\right|\left(\left|D_{m-1}\right|-1\right) \\
& \geq \frac{1}{3 M|A|}\left(\frac{t^{2^{m-1}}}{(4 M|A|)^{2^{m-1}-1}}\right)\left(\frac{t^{2 m-1}}{(4 M|A|)^{2 m-1}-1}-1\right)
\end{aligned}
$$

and since we are assuming

$$
\frac{t^{2^{m-1}}}{(4 M|A|)^{2^{m-1}-1}} \geq 4
$$

we have

$$
\left|C_{m, l_{m}}\right| \geq \frac{t^{2^{m}}}{(4 M|A|)^{2^{m}-1}} .
$$

Let D_{m} be the left hand terms of $C_{m, t_{m}}$ and suppose $\psi_{1}, \ldots, \psi_{r}$ are distinct terms of D_{m}. Then $\left\{\psi_{j}, \psi_{,} \chi_{l_{m}}^{-1}\right\}$ are pairwise disjoint sets in $C_{m, l_{m}}$, so $B=\left\{\psi_{1}, \ldots, \psi_{r}, \psi_{1} \chi_{i_{m}}^{-1}, \ldots, \psi_{r} \chi_{I_{m}}^{-1}\right\}$ is a collection of distinct terms of D_{m-1}. By (iv) the terms of

$$
\left\{\psi_{1}, \ldots, \psi_{r}\right\} \cdot \prod_{j=1}^{m}\left\{1, \chi_{1_{j}}^{-1}\right\}=B \cdot \prod_{j=1}^{m-1}\left\{1, \chi_{i j}^{-1}\right\}
$$

are distinct members of E. This completes the induction step.
Since E contains no parallelepipeds of dimension $n+1,\left|D_{n}\right|$ must be at most one. This contradicts our initial assumption.

The union problem for $\Lambda(p)$ sets with $p \leq 2$ is open. However we do have

Proposition 2.11 (see [9] for $E \subset \mathbf{Z}$). Let E_{1} and E_{2} be $\Lambda(p)$ sets. Then $E_{1} \cup E_{2}$ does not contain parallelpipeds of arbitrarily large dimension.

Proof. Choose constants c and $0<\varepsilon<1$ so that whenever P_{n} is a parallelpiped of dimension $n,\left|E_{i} \cap P_{n}\right| \leq c 2^{n \varepsilon}$ for $i=1,2$. Then

$$
\left|\left(E_{1} \cup E_{2}\right) \cap P_{n}\right| \leq 2 c 2^{n \varepsilon}<2^{n}=\left|P_{n}\right|
$$

for n sufficiently large.

Observe that all these results hold for sets which do not contain parallelepipeds of arbitrarily large dimension. In [6] we discuss additional properties of such sets.
3. Proof of Main Theorem. We turn now to proving Theorem 1.2.

Since any $\Lambda(p)$ set with $p \geq 1$ is a $\Lambda(s)$ set for any $s<1$, we may without loss of generality assume $p<1$.

We will show in fact that N depends only on $c(p, p / 2, E)$, as defined by (1). Since a translate of a $\Lambda(p)$ set is a $\Lambda(p)$ set with the same constant, it suffices to show that $\Lambda(p)$ sets do not contain parallelepipeds of the form $P=\prod_{l=1}^{M}\left\{1, \chi_{l}\right\},|P|=2^{M}$, for $M>N$.

The proof will result by establishing a number of lemmas. The main idea in the proof of the principal result in [9] is used in Lemma 3.4.

Let us say that $\left\{\chi_{1}, \ldots, \chi_{N}\right\} \subset \Gamma$ is quasi-dissociate if

$$
\prod_{i=1}^{N} \chi_{t}^{\varepsilon_{t}}=1 \quad \text { for } \varepsilon_{t}=0, \pm 1, i=1, \ldots, N
$$

implies $\varepsilon_{i}=0$ for all $i=1, \ldots, N$.

Lemma 3.1. Fix a positive integer N_{0} and let $N_{1}=3^{N_{0}}+1$. Any subset of Γ of cardinality N_{1} contains a quasi-dissociate subset of cardinality N_{0}.

Proof. This is essentially an application of the Pigeon Hole Principle.

Consider the subset $\left\{\chi_{i}\right\}_{i=1}^{N_{1}} \subset \Gamma$. Choose $\psi_{1} \in\left\{\chi_{1}, \chi_{2}\right\}$ so that $\psi_{1} \neq 1$. If $A_{1}=\left\{\psi_{1}^{\varepsilon_{1}}: \varepsilon_{1}=0, \pm 1\right\}$ then $\left|A_{1}\right| \leq 3$ so it is possible to choose $\psi_{2} \in\left\{\chi_{l}\right\}_{l=1}^{4}$ with $\psi_{2} \notin A_{1}$.

Now proceed inductively. Assume $\psi_{1}, \ldots, \psi_{n}$ have been chosen. Let

$$
A_{n}=\left\{\psi_{1}^{\varepsilon_{1}} \psi_{2}^{\varepsilon_{2}} \cdots \psi_{n}^{\varepsilon_{n}}: \varepsilon_{l}=0, \pm 1, i=1, \ldots, n\right\}
$$

Since $\left|A_{n}\right| \leq 3^{n}$ we may choose $\psi_{n+1} \in\left\{\chi_{i}\right\}_{i=1}^{3^{n+1}}$ with $\psi_{n+1} \notin A_{n}$.
We may choose $\left\{\psi_{l}\right\}_{l=1}^{N_{0}} \subset\left\{\chi_{l}\right\}_{l}^{N_{1}}$ in this way since $N_{1}=3^{N_{0}}+1$.
Now suppose $\prod_{i=1}^{N_{0}} \psi_{t}^{\varepsilon_{i}}=1$ with $\varepsilon_{i}=0, \pm 1, i=1, \ldots, N_{0}$. Let k be the largest integer with $\varepsilon_{k} \neq 0$. We cannot have $k=1$ for then $\psi_{1}^{\varepsilon_{1}}=1$ and hence $\psi_{1}=1$. If $k>1$ then without loss of generality, $\varepsilon_{k}=1$, so $\psi_{k}=\prod_{l=1}^{k-1} \psi_{l}^{-\varepsilon_{i}}$. But this implies $\psi_{k} \in A_{k-1}$, contradicting its selection. Thus $\varepsilon_{l}=0$ for all $i=1,2, \ldots, N_{0}$ and hence $\left\{\psi_{i}\right\}_{i=1}^{N_{0}}$ is a quasi-dissociate set.

Let us say that the parallelepiped $P_{N}=\prod_{i=1}^{N}\left\{1, \chi_{i}\right\}$ is
(i) of order 2 if $\chi_{t}^{2}=1$ for $i=1, \ldots, N$;
(ii) dissociate if $\prod_{t=1}^{N} \chi_{i}^{\varepsilon_{i}}=1$ with $\varepsilon_{l}=0, \pm 1, \pm 2$, implies $\varepsilon_{l}=0$ for all $i=1, \ldots, N$; and
(iii) quasi-dissociate if $\prod_{t=1}^{N} \chi_{t}^{\varepsilon_{t}}=1$ with $\varepsilon_{t}=0, \pm 1$ implies $\varepsilon_{t}=0$ for all $i=1, \ldots, N$.

With this notation an immediate corollary of the previous lemma is

Corollary 3.2. If E contains $P=\prod_{i=1}^{N_{1}}\left\{1, \chi_{i}\right\}$, a parallelepiped of dimension $N_{1}=3^{N_{0}}+1$, then E contains a quasi-dissociate, N_{0}-dimensional parallelepiped.

Next we will prove

Lemma 3.3. Let E be $a \Lambda(p)$ set, $0<p<1$, with constant $c(p, p / 2, E)$. There is an integer N_{1} depending on $c(p, p / 2, E)$ such that E does not contain any parallelepipeds of order 2 with dimension greater than N_{1}.

Proof. Choose an integer N_{0} so that

$$
2^{N_{0} / p}=\frac{2^{(1-1 / p) N_{0}}}{2^{(1-2 / p) N_{0}}}>c(p, p / 2, E)
$$

and set $N_{1}=3^{N_{0}}+1$. By Corollary 3.2 if E contains a parallelepiped of order 2 with dimension N_{1} then E contains a quasi-dissociate parallelepiped of order 2 with dimension N_{0}, say $\prod_{l=1}^{N_{0}}\left\{1, \chi_{i}\right\}$. Being quasi-dissociate and of order 2 the set $\left\{\chi_{i}\right\}_{l}^{N_{0}}$ is probabilistically independent. Hence

$$
\left(\int \prod_{i=1}^{N_{0}}\left|1+\chi_{i}\right|^{p}\right)^{1 / p}=\left(\prod_{i=1}^{N_{0}} \int\left|1+\chi_{l}\right|^{p}\right)^{1 / p}=2^{(1-1 / p) N_{0}} .
$$

Similarly

$$
\left(\int \prod_{i=1}^{N_{0}}\left|1+\chi_{i}\right|^{p / 2}\right)^{2 / p}=2^{(1-2 / p) N_{0}} .
$$

Thus if $f(x)=\prod_{l=1}^{N_{0}}\left(1+\chi_{l}(x)\right)$, then $f \in \operatorname{Trig}_{E}(G)$ and

$$
\|f\|_{p}=2^{(1-1 / p) N_{0}}>c(p, p / 2, E) 2^{(1-2 / p) N_{0}}=c(p, p / 2, E)\|f\|_{p / 2}
$$

contradicting the fact that E is a $\Lambda(p)$ set with constant $c(p, p / 2, E)$.

Lemma 3.4. Let E be $a \Lambda(p)$ set, $0<p<1$, with constant $c(p, p / 2, E)$. There is an integer N depending on $c(p, p / 2, E)$ such that E does not contain any dissociate parallelepipeds of dimension N.

Proof. It is shown in [9] that for any fixed $r \in(0,1)$ with $r /(1-r)^{3}$ $<p^{2} / 256$,

$$
\begin{aligned}
A & =\left(1-\frac{(p / 2)(1-p / 2) r^{2}}{4}-\left(\frac{r}{1-r}\right)^{3}\right)^{1 / p} \\
& >\left(1-\frac{(p / 4)(1-p / 4) r^{2}}{4}+\left(\frac{r}{1-r}\right)^{3}\right)^{2 / p}=B
\end{aligned}
$$

Choose N so that $A^{N}>c(p, p / 2, E) B^{N}$, and suppose E contains the dissociate parallelepiped $\prod_{i=1}^{N}\left\{1, \chi_{i}\right\}$. Let R be the least solution of $r=2 R /\left(1+R^{2}\right)$.

Let $f=\prod_{i=1}^{N}\left(1+R \chi_{i}\right)$. Then $f \in \operatorname{Trig}_{E}(G)$, and

$$
\begin{align*}
\|f\|_{p} & =\left(\int \prod_{i=1}^{N}\left(\left|1+R \chi_{i}\right|^{2}\right)^{p / 2}\right)^{1 / p} \tag{2}\\
& =\left(1+R^{2}\right)^{N / 2}\left(\int \prod_{i=1}^{N}\left(1+r\left(\frac{\chi_{i}+\overline{\chi_{i}}}{2}\right)\right)^{p / 2}\right)^{1 / p}
\end{align*}
$$

An application of MacLaurin's formula shows that for any $\alpha \in(0,1)$

$$
(1+x)^{\alpha}=1+\alpha x-\frac{\alpha(1-\alpha) x^{2}}{2}+\operatorname{Rem}(x)
$$

where $|\operatorname{Rem}(x)| \leq(r /(1-r))^{3}$ provided $x \in[-r, r]$ and $r \in(0,1)$.
Now $-r \leq r\left(\left(\chi_{i} x+\overline{\chi_{i}(x)}\right) / 2\right) \leq r$ so applying MacLaurin's formula to (2) with $\alpha=p / 2$ we obtain

$$
\begin{aligned}
&\|f\|_{p} \geq\left(1+R^{2}\right)^{N / 2}\left(\int\right. \prod_{i=1}^{N}\left(1+\frac{p}{2} r\left(\frac{\chi_{i}+\overline{\chi_{i}}}{2}\right)\right. \\
&\left.\left.\quad-\frac{(p / 2)(1-p / 2)}{2} r^{2}\left(\frac{\chi_{i}+\overline{\chi_{i}}}{2}\right)^{2}-\left(\frac{r}{1-r}\right)^{3}\right)\right)^{1 / p} \\
&=\left(1+R^{2}\right)^{N / 2}\left(\int \prod _ { i = 1 } ^ { N } \left(1-\frac{(p / 2)(1-p / 2) r^{2}}{4}-\left(\frac{r}{1-r}\right)^{3}\right.\right. \\
&\left.\left.+\frac{p}{2} r\left(\frac{\chi_{i}+\overline{\chi_{i}}}{2}\right)-\frac{(p / 2)(1-p / 2) r^{2}}{2}\left(\frac{\chi_{i}^{2}+\overline{\chi_{i}^{2}}}{4}\right)\right)\right)^{1 / p} \\
&=\left(1+R^{2}\right)^{N / 2} \prod_{i=1}^{N}\left(1-\frac{(p / 2)(1-p / 2) r^{2}}{4}-\left(\frac{r}{1-r}\right)^{3}\right)^{1 / p}
\end{aligned}
$$

because of the dissociateness assumption.

Similarly

$$
\|f\|_{p / 2} \leq\left(1+R^{2}\right)^{N / 2} \prod_{i=1}^{N}\left(1-\frac{(p / 4)(1-p / 4) r^{2}}{4}+\left(\frac{r}{1-r}\right)^{3}\right)^{2 / p}
$$

Thus

$$
\begin{aligned}
\|f\|_{p} & \geq\left(1+R^{2}\right)^{N / 2} A^{N}>\left(1+R^{2}\right)^{N / 2} c(p, p / 2, E) B^{N} \\
& \geq c(p, p / 2, E)\|f\|_{p / 2}
\end{aligned}
$$

contradicting the fact that E is a $\Lambda(p)$ set with constant $c(p, p / 2, E)$.

Lemma 3.5. For each positive integer N_{0} there is an integer $N_{2}=N_{2}\left(N_{0}\right)$ so that if $P=\prod_{i=1}^{N_{2}}\left\{1, \chi_{i}\right\}$ is a parallelepiped of dimension N_{2} with the property that for each $i=1,2, \ldots, N_{2}$ the set $\left\{j \neq i: \chi_{j}^{2}=\chi_{i}^{2}\right\}$ is empty, then P contains a dissociate parallelepiped of dimension N_{0}.

Proof. This is another application of the Pigeon Hole Principle similar to Lemma 3.1.

Lemma 3.6. For each positive integer N_{0} there is an integer $N=N\left(N_{0}\right)$ so that if E contains a parallelepiped of dimension N, then a translate of E contains either a dissociate parallelepiped or a parallelepiped of order 2, with dimension N_{0}.

Proof. Fix N_{0}. Put $N=2 N_{0} N_{2}$ with $N_{2}=N_{2}\left(N_{0}\right)$ as in Lemma 3.5. Assume that a translate of E contains $P=\prod_{i=1}^{N}\left\{1, \chi_{i}\right\}$, a parallelepiped of dimension N.

We will say that $\chi_{i} \sim \chi_{j}$ if $\chi_{i}^{2}=\chi_{J}^{2}$. Let S_{i} be the equivalence class containing χ_{i}. We consider two cases.

Case 1. For some $i \in\{1,2, \ldots, N\},\left|S_{l}\right| \geq 2 N_{0}$. Without loss of generality $i=1$ and $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{2 N_{0}}\right\} \subset S_{1}$, i.e., $\chi_{k}^{2}=\chi_{1}^{2}$ for $k=$ $1,2, \ldots, 2 N_{0}$. Then $\chi_{1} \chi_{k}^{-1} \equiv \varphi_{k}$ satisfies $\varphi_{k}^{2}=1$ for $k=1, \ldots, 2 N_{0}$.

Certainly $\prod_{j=1}^{N_{0}}\left\{\chi_{1} \varphi_{2 j-1}, \chi_{1} \varphi_{2 j}\right\} \subset P$ and hence is a parallelepiped of dimension N_{0} contained in E. A further translate of E contains the N_{0}-dimensional parallelepiped $\prod_{j=1}^{N_{0}}\left\{1, \varphi_{2 j} \varphi_{2 j-1}^{-1}\right\}$ of order two.

Case 2. Otherwise $\left|S_{i}\right| \leq 2 N_{0}$ for all $i=1,2, \ldots, N$. In this case there must be at least N_{2} distinct equivalence classes, say $S_{1}, \ldots, S_{N_{2}}$ Lemma 3.5 may be applied to $\prod_{i=1}^{N_{2}}\left\{1, \chi_{i}\right\}$ to obtain a dissociate parallelepiped of dimension N_{0} in the original translate of E.

Proof of Theorem 1.2. Put together Lemmas 3.3, 3.4 and 3.6.
4. Random sequences. If E does not contain any parallelepipeds of dimension 2 then a modification of $[11,4.5]$ can be used to show that E is a $\Lambda(4)$ set. Parallelepipeds are not sufficient to characterize $\Lambda(p)$ sets however. In this section we will use a method of Erdös and Rényi [3] to show that for each $p>8 / 3$ there is a set $E(p)$ which does not contain parallelepipeds of arbitrarily large dimension and yet is not a $\Lambda(p)$ set.

Let $0<\alpha<1$ and let $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ be a sequence of independent random variables such that $P\left(\xi_{n}=1\right)=p_{n}=1 / n^{\alpha}$ and $P\left(\xi_{n}=0\right)=1-p_{n}$. Let $\left\{\nu_{k}\right\}$ denote the values of n (in increasing order) with $\xi_{n}=1$. Thus p_{n} is the probability that n is contained in $\left\{\boldsymbol{\nu}_{k}\right\}$.

If $\left\{\boldsymbol{\nu}_{k}\right\}$ contains a parallelepiped of dimension d then there are integers $n, m, k_{1}, \ldots, k_{2^{d-2}}$, such that $\left\{\nu_{k}\right\}$ contains

$$
\begin{aligned}
& X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right) \\
& \quad \equiv\left\{k_{i}, k_{i}+n, k_{i}+m, k_{i}+m+n: i=1, \ldots, 2^{d-2}\right\}
\end{aligned}
$$

where

$$
\left|X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right)\right|=2^{d}
$$

Without loss of generality we may assume $1 \leq k_{i}<k_{i}+n<k_{i}+m<$ $k_{1}+m+n$, so $\left\{k_{1}, \ldots, k_{2^{d-2}}, n, m\right\} \subset \mathbf{Z}^{+}$. Since $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ are independent random variables the probability that $\left\{\nu_{k}\right\}$ contains $X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right)$ is

$$
\begin{aligned}
& P\left(X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right) \subset\left\{\nu_{k}\right\}\right) \\
& \quad=\prod_{i=1}^{2^{d-2}}\left(\frac{1}{k_{i}\left(k_{i}+n\right)\left(k_{i}+m\right)\left(k_{i}+m+n\right)}\right)^{\alpha} .
\end{aligned}
$$

Thus if $\sum_{n, m, k_{1}, \ldots, k_{2} d-2}^{\prime}$ denotes the sum over those positive integers $n, m, k_{1}, \ldots, k_{2^{d-2}}$ such that $\left|X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right)\right|=2^{d}$, then

$$
\begin{aligned}
S & \equiv \sum_{n, m, k_{1}, \ldots, k_{2^{d-2}}^{\prime}}^{\prime} P\left(X\left(k_{1}, \ldots, k_{2^{d-2}}, n, m\right) \subset\left\{\nu_{k}\right\}\right) \\
& \leq \sum_{n, m, k_{1}, \ldots, k_{2^{d-2}} \in \mathbf{Z}^{+}} \prod_{i=1}^{2^{d-2}}\left(\frac{1}{k_{i}\left(k_{i}+n\right)\left(k_{i}+m\right)\left(k_{i}+m+n\right)}\right)^{\alpha} \\
& =\sum_{n, m}\left(\sum_{k}\left(\frac{1}{k(k+n)(k+m)(k+m+n)}\right)^{\alpha}\right)^{2^{d-2}}
\end{aligned}
$$

Let $t=2^{d-2}$. By using the inequality

$$
\frac{1}{k+n} \leq\left(\frac{1}{k}\right)^{\sigma}\left(\frac{1}{n}\right)^{1-\sigma}
$$

for $0<\sigma<1$, we obtain

$$
S \leq \sum_{n, m}\left(\frac{1}{n m}\right)^{(1-\sigma) t \alpha}\left(\sum_{k}\left(\frac{1}{k}\right)^{2(1+\sigma) \alpha}\right)^{t}
$$

If we choose t, α and σ so that $(1-\sigma) \alpha t>1$ and $2(1+\sigma) \alpha>1$, then $S<\infty$. An application of the Borel-Cantelli Lemma shows that in this case $\left\{\boldsymbol{\nu}_{k}\right\}$ contains only finitely many d dimensional parallelepipeds a.s.

If $\alpha>1 / 4$ and $t>1 / 2(\alpha-1 / 4)$ we see that the inequalities $(1-\sigma) \alpha t>1$ and $2(1+\sigma) \alpha>1$, can be simultaneously satisfied for any $\sigma \in(0,1)$ with

$$
\frac{1}{2 \alpha}-1<\sigma<1-\frac{1}{t \alpha}
$$

Since

$$
\sum_{n} \frac{p_{n}\left(1-p_{n}\right)}{\left(p_{1}+\cdots+p_{n}\right)^{2}} \leq \sum_{n} \frac{1}{n^{\alpha} n^{2(1-\alpha)}}<\infty
$$

by the Strong Law of Large Numbers

$$
\lim _{k \rightarrow \infty} \frac{\sum_{l \leq \nu_{k}} p_{i}}{k}=1 \quad \text { a.s. }
$$

Thus

$$
\lim _{k \rightarrow \infty} \frac{\nu_{k}^{1-\alpha}}{(1-\alpha) k}=1 \quad \text { a.s. }
$$

and so there is a $c>0$ such that for all N sufficiently large,

$$
\left|\left\{\nu_{k}\right\} \cap[1, N]\right| \geq c N^{1-\alpha} \quad \text { a.s. }
$$

Proposition 4.1. For each $p>8 / 3$ there is an integer $d=d(p)$ and a set $E=E(d, p)$ which contains no parallelepipeds of dimension d but is not $a \Lambda(p)$ set.

Proof. For $p>8 / 3$, say $p=8 /(3-4 \varepsilon)$ with $\varepsilon>0$, let $\alpha=1 / 4+$ $\varepsilon / 2$ and let d be any integer satisfying $t=2^{d-2}>1 / \varepsilon$. Choose $\left\{\nu_{k}\right\}$ as described above so that $\left\{\nu_{k}\right\}$ contains only finitely many parallelepipeds of dimension d and

$$
\left|\left\{\nu_{k}\right\} \cap[1, N]\right| \sim c N^{3 / 4-\varepsilon / 2}
$$

Let E be the set $\left\{\nu_{k}\right\}$ with the finitely many integers which form parallelepipeds of dimension d deleted. If E was a $\Lambda(p)$ set then by [11, 3.5]

$$
|E \cap[1, N]| \leq c N^{2 / p}
$$

But E and $\left\{\nu_{k}\right\}$ have the same asymptotic density and $2 / p<3 / 4-\varepsilon / 2$, thus E cannot be a $\Lambda(p)$ set.

Thus the notion of parallelepipeds is not strong enough to characterize $\Lambda(p)$ sets for $p>8 / 3$. The question as to whether or not parallelepipeds characterize $\Lambda(p)$ sets for $p \leq 8 / 3$ remains open.

References

[1] G. Benke, Arithmetic structure and lacunary Fourier series, Proc. Amer. Math. Soc., 34 (1972), 128-132.
[2] R. E. Edwards, E. Hewitt, and K. Ross, Lacunarity for compact groups, I, Indiana J. Math., 21 (1972), 787-806.
[3] P. Erdös, and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica, VI (1960), 83-110.
[4] J. J. F. Fournier, and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math., 105 (1983), 115-141.
[5] D. Hajela, Construction techniques for some thin sets in duals of compact abelian groups, Ph. D. Dissertation, Ohio State University, (1983).
[6] K. E. Hare, Strict-2-associatedness for thin sets, Colloq. Math., to appear.
[7] J. López, and K. Ross, Sidon Sets, Lecture notes in Pure and Applied Mathematics, 13, Marcel Dekker, Inc., New York, 1975.
[8] I. M. Miheev, On lacunary series, Math. USSR Sbornik, 27 (1975), 481-502; translated from Mat. Sbornik 98, 140 (1975), 538-563.
[9] _, Trigonometric series with gaps, Anal. Math., 9 (1983), 43-55.
[10] C. J. Neugebauer, Some properties of Fourier series with gaps, Contemporary Mathematics, 42 (1985), 169-174.
[11] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-338.
Received September 7, 1986.

