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APPROXIMATION PROPERTIES
FOR SOME NON-NOETHERIAN LOCAL RINGS

H. SCHOUTENS

In this paper we study Artin approximation in power series rings in
several variables over complete rank-one valuation rings. In particular we
prove that the completion of the algebraic elements has the approxima-
tion property over the ring of algebraic power series.

Moreover, for an important class of complete rank-one valuation
rings, e.g. the ring of complex p-adic integers, we prove that the ring of
algebraic power series is equal to the henselisation of the polynomial ring
and that each algebraic power series has coefficients lying in a finitely
generated R-algebra, where R is discrete valuation rings.

1.1. Let R C R be a pair of rings (always commutative, with unity).
We'll consider topologies on R which stem from a filtration of ideals
ag D @y D a, D --- which tends to zero, i.e. NY_, 2, = 0. Two examples
we will use are given by

(1) an ideal & of R with N%_, 2" = 0 and where a, = &"; thus we get
the @-adic topology,

(2) a rank-one valuation on R (i.e. a valuation with value group in the
positive real numbers) and @, = {x € R|v(x) > n).

DEFINITION. R/R has A. P. ((Artin)-approximation property) when
the following holds: For every system of polynomial equations f = 0 over
R,ie f=(f;...,],) with f, € R[Y},..., Yy] which has a solution y in
RN , we can find for each n in N a solution y in RY such that y =y
mod a,,.

REMARK. Often, one can express congruence conditions such as
“y =y mod «,” appearing in the definition, by polynomial conditions.
More exp1101t1y, let 1 be a finitely generated ideal of R, such that R is
dense in R with respect to the IR-adic topology. Let f € R[Y]Y,
(Y,,...,Y,) and y € R" s. t. f(¥) = 0. We look for a solution y € RN
such that y = y mod I™, for a chosen m € N. Let I"™ = (q,,...,q,) with
g, € R, and since R C R is dense, we can find j € R", @,,...,a, € R"
st.y=yp+aq, +--- +tagq,.
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Consider the polynomial system over R given by
P(Y)=0,
Y-(J+qZ,+ - +4,Z)=0

in the variables Y, Z, = (Z,1,..., Ziy),---» Z, = (Zg, ..., Z ) which has
a solution (7,&,...,&) € R"**D, By AP. we find a solution
(ysap,...,a,) € RV6*D hence y =y + Xi_,q,a;, so y =3 mod I™, so
y=ymodI™and f(y)=0.

1.2. A particularly interesting situation for A.P. is when we take for 4
a local ring, R = A[[X]] and R = A[[ X]}", where X = (X,,..., X,) are
several variables and “h” denotes the henselisation of A[X] y, at the
maximal ideal. So, one can ask whether the following holds

(1) A[[X]]/A[[ X]]" has A.P.

Artin has proven (1) for 4 a field or an excellent discrete valuation
ring (D.V.R\) [Ar].

But for A a non-Noetherian excellent (or even complete) rank-one
valuation ring the answer is still not known. A typical complete rank-one
valuation ring we will be concerned with is 0. the ring of complex
integers, i.e. the integral elements of C,, where C, is the p-adic closure of
the algebraic closure of the p-adic numbers Q, ( p being a rational prime).
The problem in proving (1) for the non-Noetherian situation is the
absence of a good desingularisation theorem. A consequence of (1) for 4 a
domain is

(2) A[[x]]" = A[[ x]]*

where A[[ X]]*¢ is the ring of algebraic power series, i.e. the power series
which are algebraic over Frac A[ X]. Property (2) is well-known for 4 an
excellent domain, but for non-Noetherian rings again this is not known in
general.

We will be able to prove (2) for a special kind of complete rank-one
valuation rings, including the case of 0, see 4.4.2. At the same time, we
will prove for this kind of rings a genepralisation in more variables of a
result of Christol [Chr; Prop. 7.2.]. (See Theorem 4.2.2.) As a result we
obtain for instance

every algebraic power series of O [[ X]] has coefficients
(3) .. . Az

lying in a finitely generated Z ,-algebra,
where Z, is the ring of p-adic integers in Q, and X = (Xj,..., X,) are
several variables, see Thm. 4.4.2.
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1.3. Another interesting case of A.P. arises when one takes a complete
rank-one valuation ring 4 and for R = A[[ X]]®%, the ring of algebraic
power series in X = (X,,..., X,) and for R the completion of R in
A[[ X]) with respect to the valuation. We will denote this by R = A[[ X]]*.

We will prove:
(4) A[[ X]]™8/A[[ X]]™ has A.P. in ( X)-topology.

Robba has proven the same statement in characteristic zero only, but
with respect to the Gaussnorm [Ro]. (When v is the valuation on A, then
we mean by the Gaussnorm on A[[X]]: v(X;cn-a;X") = inf{v(a;)|i €
N"}, X = (X,,..., X,).) But by the remark in 1.1 his statement is actually
equivalent with ours, by taking for I = (7)A[[X]]®¢, with # € 4 and
v(m) > 0.

1.4. Because we need several A.P. theorems of the same type (R is the
completion of R with respect to a rank-one valuation, e.g. (4)), we prove
A.P. in a more general situation for systems of subrings of A[[X]] and
their completions, called pseudo-power series; this is done in Theorem
24.1.

1.5. In the last paragraph we have brought together all Weierstrass
Preparation Theorems (W.P.T.) we will need. For lack of good reference,
we have estimated it opportune to write out these theorems in a rather
detailed way.

1.6. We would like to thank Dr. J. Denef for presenting these
problems and for his suggestion to use 4.3.4 in order to obtain result (2).

2. Approximation property.

2.1.1. DErFINITION. Let A4 be an arbitrary domain with fraction field
F. We'll say that A is completely integrally closed (C1.C)) if for x € F
with d € A4,d # 0 so that Vn € N:dx"” € A implies that x € 4 (also
called completely normal). In [Ma; (17.B)] one proves that when A is
C.I.C., so are A[ X] and A[[ X]].

2.1.2. THEOREM ( Fatou-property) When A is C.1.C., T one variable and
S =1+ T- A[[T]] then A[[T]] N Frac(A[T]) = S~4[T].
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Proof. Cf. [Ch; §3]. O

2.2.1. Let A be an arbitrary ring, ¢ an ideal of 4, with & C rad 4
(Jacobson radical of A).
We call (A4, @) a Henselian pair, if

Vf= (fl,--wf}v)’ / EA[X], X = (XI""’XN)
and x € A", x = (xy,..., xy) such that
f(x)=0 modae
and det(df,/dX)) |, is invertible, then
% € AV,
such that
f(x)=0 and x=x mod «.

This is just a generalisation of Henselian local rings and analogous
properties hold. See [Ra]. Especially we’ll use:

22.2. LEMMA (Tougéron). Let (A,a) be a Henselian pair, f[=
(frooo s ) [, €AYLY = (Yy,...,Yy). Let J=(3f/0X,) be the
Jacobian and 8 a h X h-minor of J. Suppose there is an x € A" such that
f(x) = 0mod 8(x)%. Then 3x € A" such that

f(x)=0 and x= xmodd&(x)a.

Proof. See [Ar; 11 §4.1]. O
2.3.1. Let A4 be a ring, then we shall mean by a pseudo-power

series-system (PP-system) a system of rings W,, n = 0,1,2, ..., such that
(1) Wy = 4,

Q) W, [[X]Jc W, c W, [[X]forn=12...,

(3)(Xy,...,X,)CcradW, forn=12,...,

@ If o,...,9,€(X,...., X)A[X,,..., X,] and A(X,..., X,) €
W, then A(@,,...,p,) € W,. Note that then A[X,,...,X,]C W, C
Al X}, ..., X,]]. Clearly the powers series form a PP-system.

2.3.2. In this paragraph we’ll work from now on with a valuation ring
O which is complete with respect to its valuation ord. Let .# be the
maximal ideal and K = Frac @ the fraction field. We can extend ord to a
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valuation on O[[ X]] also written ord by setting
ord(z a,X') = inf{ord(a,)}

with i = (i},...,i,), X=(X,..., X,) and X' = X{1 --- X}i --- X». We
call f=2XYa,X' € O[[X]] separable when 3i,: ord(f) = ord(a; ,)> i.e. the
infimum actually is a minimum. E.g. polynomials are separable Let W,
be a PP-system over ¢ and denote by W, the completion of W, in
O[[ X, ..., X,]]. Then W, also forms a PP-system.

We will call an fe 0[[X,,..., X,]] regular of degree k in X,
when f= X*u mod(, X’) with u unit in O[[X],..., X,]] and X’ =
(X, X,_1) (cf. §5). )

By saying that the PP-system W, has a Weierstrass preparation
theorem (W.P.T.) we shall mean that for each f € Wn which is regular in
X, of degree k and

Vg€ W,:Junique g € W,, re W, [X,]
such that
g=gq-f+r with degy(r)<k.

2.4.1. THEOREM (Approximation property, A.P.). Set X =
(X,,...,X,). Let W, be a PP-system over O, W, its completion. Suppose
that the following conditions hold Vn:

(a) Vo € M:7O[[ X]) O W, = oW,

(b) W, hasa W.P.T.,

(c) Vf € W,:fis separable,

(d)w,isC.I.C,

(e) (W;, X) is a Henselian pair,

(f) FracW, is separable over FracW,.

Then W,/ Wn has the A.P. with respect to polynomial equations, i.e. with

Y =(Y,...,Yy)
Vi=(fi--nf))  f€0[X][Y]
VeeN, and y=(5y,...,In), V€W,

so that f(X, y) =
Then 39 = (yy,---, ¥n), ¥; € W, so that

f(X,9)=0 and y=jpmod(X)°.
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Proof. We'll write W for W, and W for W,. We will do induction on
n, n = 0 being trivial.

Let y: W[Y] = W: a(Y) = a(F) so s = kery is a prime ideal and
we have

L =FracWcE= Frac(@) C L = FracW.

By (f) L/L is separable, so E /L is.

Call m = trdeg; E (transcendence degree), and after a transforma-
tion we may suppose that

E is algebraic separable over L(Y,,...,7,,)

where “~” denotes residues mod 4.
So, there exist ¢,(T) € W[Y,,..., Y, ][T]
T one variable, i = m + 1,..., N, minimal polynomials of the Y,
so that
h;=9,(Y,) € 4

and
oh, ,
a5 = #(Y) €4

Let 6§ =TI, ,.(0h,/3Y,) & £, so § is a (N — m) X (N — m) minor of
the Jacobian (dA,/3Y)).

Assertion1.30 € W[Y],0 & # so that
Vi=1,...,q:0f, € (h,.q1,.-., hy).

We claim that it is sufficient to prove the theorem for the system of
equations A, ,,,...,hy. For let y € WV be a solution with y =
ymod(X)“and h,(y)=0. Since 8 & s, we have 6(y) # 0, choose ¢ big
enough so that 6(y) & (X)¢, therefore 6(y) & (X)¢, so () # 0, but
0f, € (hyyrs--- hy) by ass. 150 (Bf,)(§) = 0 = f($) = 0.

This proves the claim, and we therefore may suppose that we have a

polynomial system of equations F,,..., F, with 8§ a (maximal) & X h
minor out of the Jacobian
oF, . _
J = 37 with§(y) #0, and h =N — m.
Ji=1,...,h/y=1,....N
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Suppose
oF,
8 = det| = andlet &= ordé(y).
3y, |
i,j=1,...,h
3h X h matrix Q over W([Y] with detQ = 8"~ so that
(1) 0-J = (8E, K)

where E, is the identity-matrix and K an & X m matrix. Since W is the
completion of W

(2) Iy, r€0, ac WY, 7€ WV sothat
y=a+7*yz withord 7 =eandord y > 0.
Set Z = (Z,,...,Zy) and define, in vector-notation,
a
G(Z) = ———Q;Z)

-F(oz1 + 72yt T2y 0+ T, ey F szN)
_ Q(a) . F(a) + Q(“) '2-](0‘)
T

(7Zyye o 72y T2y s 12 Zy) + p(2)
with p(Z) in (Z)*W[Z].
Since ord(a — J) > 2¢ we have
0= F(y)= F(a) mod7?, soordF(a)> 2e
ord8(y) = ord8(a) = e.
So by Property (a), F(a)/72,8(a)/m € W and

(3) ord(s(:)) 0.
So by (1) we get
6(2)= 0(a)- 112 L 2 7 7,

+K(a) '(Zh+1""’ZN) + :U‘(Z)
lies in W[Z].
Letw = (7yZ),...,TYZ,, YZp115---» YZx), SO Ord W > 0 and by (2)

G(w) = &?F(a + 72yz) = 0.

w
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Suppose we can solve the theorem for the system G = 0 with solution
w in W, and a h X h minor of the Jacobian in w of G which is equal to
(8(a)/m)" mod A i.e. of valuation equal to zero by (3). Then we can also
solve it for our original system F; indeed, let W be in W so that G(W) = 0
and w=w mod(X)¢ then, if we put p = (a; + 7W,...,a, + 7W,,
0y + T, ay + b)),

And since det Q(a) = 8(a)" ™! # 0, we get F($) =0 and clearly is y =
ymod(X)“and p liesin W.

So we may suppose that ¢ = ord§(y) = 0 from the start. Since
8(y) € W, by property (c) we know then that §( 7) is separable and that
it is regular in X, after a transformation of the form X, —» X, + X,*,
=1,...,n—1 and X, = X, (see for instance [Z-S; VII §1]) which
keeps W, invariant by (4) of PP-systems. Applying the W.P.T. (property
(b)) for g(y) XS = §*(y) X<, which is regular in X, of, say, degree s, we
get:

y=u-g(y)X;+7y
withu € W,and y € W,_,[X,]C W, so
(4) 0=F(y)=F(y)modg(p)X;, g(y)=g(y)modg(y)X;

INe W,:8(7) = g(§) —Ag(7) X5 = (1 + AX7)g(5) = g(5)

and since ( X) C rad W, we have that g(y) and g( 7) are associated in W,
So by (4)

F(3)=0 modg(y)X;
SO
3z € W,:F(y) = z3(5) X;.

Call W,_, = W,_,[X,]C W,, and since j € W,_, also F(j) and
gNX;EW, .

Let S=1+ X, - W,_,, we have then by property (d) and Theorem
2.1.2 that, since W, C W, _,[[X,]]

£ =F(5)/8(3) X; € Frac(W,_,) n W,_[[ X,]] = S7'W,_,.
Set a = g(Y)X:Z — F(Y) € W,[Y, Z] then
a(y,2) = g(7) X2 — F(y) = 0.
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Assertion 2.3, ¢ in W, so that a(, £) = 0.

Therefore F(p) = g()2X¢ = 8*(p)2X;, and, since by property (e)
(W,, X) is a Henselian pair, we can apply Tougéron’s Lemma (2.2.2) in
order to get x in W, with F(x) = 0 and y = X mod é( ) X,, O

2.42. Proof of Assertion 1. Write E, ,, = L(Y,,...,Y,); then Y, | is
algebraic over E,,,; with minimal polynomial ¢, (7). Write

v Em+1 Ym+1
By = BT = (ks
call
Ym+1 = ‘Pm+1(Ym+1) =hpirs
SO Vi1 € fo-
Then Y, ,, is algebraic over E,_ ,, with minimal polynomial

Ym+2(Ym+2); write

a = Em+2(}_’m+2) Em+2[Ym+2] ~ Em+l[Ym+l’ Ym+2]

E =
(Ym+2) ('Ym+1’7m+2)

I

since, by construction v,,,,(Y,,,,) = 0in E we have v,,,,|®,+2(¥,.2)
= hm+2in Em+2[Ym+2]’ S0

38m+2 = W[Y] Ym+2 6m+2 = hm+2 mOde+1'

Since E /L is separable, Y, , , is a simple root of ¢, , ,; we therefore have
8,.2(Y,,,)#0,ie. 0, , &4
So by induction we find the following data for j = 1,...,N — m

Ym+j = Em+j[Ym+j] 8m+j € I/i/[),]

so that
(5) Epijir = Eppe(Tns) = E—"‘(%l
(6) Yovss Oy = Py MOA( Vs3> Yyt
(7) By & 4
Therefore, by (5),
E=E, (Y, 1....Y) =L(Y,...,Y,) RASSTRE 1]

(Ym+1""’YN) .
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Now,forj=1,...,q,fj€ﬁ,sofj=0in E, so
N—m

A -
fj = Z #Ym%—i
i=1 1

with a,, € W[Y] and B, € W[Y,,...,Y,] but W[Yl,... Y,]
L(Yl,.. Y,)CE, sop,; GEﬁ Call finally 6 = IT4_ Bij0nsi E 4
by (7).

But by (6)

9 -(Y"‘”) =0 mod(h, .1..shs )
Bij

SO
8f,=0 mod(h,, ..., hy). O

2.4.3. Proof of Assertion 2. Let’s rewrite the statement: We know by
induction that W,_, has A.P. over W,_,
Y(T)=(vp>--->¥x), T=(Ty,...,Ty),
v(T) € 0[ X][T], X=(X,...,X,),
u=(u,...,u), u, € (W, [ X.]),
where S=1+ X, - W,_,[X,], such that y(u)=0. We have to find
u=(ty,...,u)0 € Wn so that y(&t) =
Since u, € S™Y(W,_,[X,]) we can write it in the form

U, = ( i ‘-"ieri)/ 1+ X, ( Xt: esz;;))
i=0

i=0
k=1,...,\, withw,,0, € W,

n—1

Set w = (w;), 0 = (0,,),2 = (£;,) and © = (0,,); write

1+ X, ( Zt: @,kX,i))

i=0

U.(2,0,X,) = ( 5 sz,.kx:;)/

i=0

so U, (2,0, X,) € Q(0, X,)[Q].
Let U = (U,,...,U,) and call

p = maximum of deg,y, for/=1,... K.

Finally, for/ = 1,..., K, set

2,(2,0, X) (]i[(l +Xx,-(Xe, n)))p-y,(U)
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so that, by choice of p,a, € 0[Q,0, X]. Since u, = U (w,0, X,) and
¥,(u) = 0 we have o/(w, 0, X) =

Write a, = X5 _oay X5, with a, € 0[Q,0, X'] where X' =
(X, ..., X,_1), s0 a;,(w,8, X’) = 0 because w and 6 do not depend on
X,. By the A.P. of W,_,/W,_, we can find &, in W,_,, such that
a,k(wé X’) = 0.So0 a,(&,8, X) = 0, and putting

u, = Uk(‘:’,é)
= (T auXi)/(1+ X,(Z 5’,~an"))

€ (1+ X, W, [X,])' W, .[X,]

and since W, forms a PP system, &, € W, and y(it) = 0. O

2.5. In this point, we will show that the C.I.C.-condition (condition
(d) of 2.4.1.) automatically holds for complete rank-one valuation rings.

2.5.1. PROPOSITION. If R is a valuation ring, then R is C.I.C. < R is
rank-one.

Proof. If R is rank-one, i.e. value-group C R, x € FracR,d € R so
that d- x9€ R for g =1,2,... then is ord(d) + gord(x) > 0, Vg € N,
proving that ord(x) > 0.

If R is not rank-one then is the value-group I' non-archimedian (see
[Ba]). So we can find a, 8 € R with @ = ord(a), b = ord(B),b > 0,a >0
andVge€ N:a>gb.Setx=1/B & Rbut ax? € R,Vg € N. a

2.5.2. PROPOSITION. Let O be a complete rank-one valuation ring and
W, a PP-system over 0. If W, has properties (a), (b) and (c) of 2.4.1 then
W, is C.1.C. (i.e. property (d) holds).

Proof. Let x = a/b € FracW (W = W,,W = W,) with a,b € W,b
# O andlet d € WsuchthatVg € N:dx?e€ W.
Since W C O[[ X]] and this is C.I.C. by 2.5.1. and 2.1.1. we have

(1) x € 0[[x]].

Set ord(b) = ¢, by property (a) (which automatically holds also for
W.) we can find # € 0 and b € W so that ord(7) = eand b = 7 - b.

Since orda — ord b = ord x > 0 by (1), also ord a > ¢, and therefore
34 € W:a = 7a and thus x = d/b with ordb = 0.
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By (c) and early remark we may suppose b is regular. Therefore, by
(b), we find unique g € Wand r € W,_,[ X, ] so that

&=q-l~)+r.

But & = bx and by uniqueness of the W.P.T. in O[[ X]] (see §5), we find
r=0and g=x,s0x € W. a

3. Algebraic elements.

3.1.1. We will call a valuation ring A4 separative when every f &
A[[ X1 is separable. For example D.V.R. are separative, and by consid-
ering Newton-polygons one also can prove rank-one valuation rings are,
see for instance [Ro].

3.1.2. Take O a complete rank-one valuation ring, with valuation ord,
maximal ideal .# and fraction field K. Set X = (X,,..., X,). Now take
as a PP-system

W, = o[[X]]*,

i.e. the ring of power series in O[] X]] which are algebraic over K(X) =
Frac(0[ X]). It’s easy to see it’s a PP-system. Call W, = O[[ X1]¥¢ = the
closure of O[[ X]]® in O[[X]] with respect to the valuation, the ring of
what is called algebraic elements.

Robba proves the A.P. for W, /W, under the condition that char K =
0. We will prove it for general characteristic.

Therefore, we have to verify the conditions of Theorem 2.4.1. Prop-
erty (a) holds trivially. In §5 we will show that O[[ X]]*¢ has a W.P.T.
(5.3.6.) and that therefore also its completion W, has a W.P.T. (5.5
Property (c) holds, since it holds in Wn as stated in 3.1.1. By Proposition
2.5.2. condition (d) automatically holds.

We have that (O[[ X]],(X)) forms a Henselian pair (because it is
complete), and by using [La; X.§7, Proposition 8] we find property (e).

So the only thing left to do is the case that charK = p # 0, and to
prove that Frac W, /FracW, is separable. We will prove a stronger result,
namely Frac(O[[ X]]8) c Frac(0O[[ X])) is separable.

3.2.1. LeMMA. Let K/k be algebraic, then K'/7" = K - k'/7".

REMARK. By K7 we mean {a € K |3n:a?" € K} where K is an
algebraic closure of K.
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Proof.

K - ki/r”
K= T~ pur.
~—

Since K/k is algebraic, we have K - kY7 /k'/?” is algebraic, but
k'/P" is perfect, so K - k/7" is perfect, see for instance [La; VII §7].
Therefore, since K is a subfield, K'/?* c K - k'/?", the other inclusion
being trivial. a

3.2.2. PROPOSITION. Let k C K C L be field extensions such that K/k
is algebraic and L /k is separable. Then L /K is separable.

Proof. Let {u,},,; be a base of k7" over k. Since L/k is
separable, we know by Mac Lane’s criterion (cf. [La]) that L and k'/7"
are linearly disjoint over k, ie. {u,},., are free over L. By 3.2.1.
{u,} e, generate K'/7° over K, so 3J C I such that {u,},., form a
base of K'/7” /K, still free over L, so by Mac Lane’s criterion again, we
find L/K is separable. O

3.2.3. COROLLARY. Let A be a domain; then, with X = (X,,..., X)),
Frac( A[[ X)) /Frac( A[[ X1]*®) is separable.

Proof. Put K = FracA. Then K(X) C K((X)) = FracK[[ X]] is sep-
arable and since FracA[[ X]] € K(( X)), we find Frac A[ X] € FracA[[ X]]
is separable. Applying 3.2.2. gives us the desired result. O

We can prove easily full A.P., i.e. for arbitrary equations:

3.3. THEOREM. Let O be a complete rank-one valuation ring. And
f=(fros £ £, € OUXTE[Y]
X=(X,...,X,), Y=(Y,....,Y,), ceN

and y = (yy,..., Yx), J, € Ol X1|™ such that f(7) = 0. Then there exist
J=(s.- Py) in O[[X]1*® 5.t. f(X, §) = 0 and j = ymod( X)*.

Proof. Write f, = ¥, &, Y/ with a,, € O[[ X]]*# and J a finite set of
multi-indices j = (jy,.--, jy)- So there exist v, (X, T;)) € O[X][T;)] for
i=1,...,q,j €J such that v,,(X,a;) = 0. Take ¢ big enough so that
the distinct roots in O[[ X]] of each v,, (considered as equation in 7)) are
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not congruent mod( X)¢. Call

F,=Y T,Y, F=(F,...,F)

jeJ

and vy =(v,li=1,...,¢9,j€J), T=(T,;|i=1,...,q,j €J). Consider
the system of polynomiAal equations (F,y) in (Y,T) over O[X] and
solution (J,a;;) in O[[X ]1%2. By the A.P. already proved, there exists
P, &;; in O[[X]]* so that they are roots of (F,y) and a, =
&;; mod(X)¢, y = ymod(X)“. Since v, (&) =0 we get by choice of ¢
that actually &,, = e, ;. Therefore

O=F(&ijaj’)=F(aija)°’)=f(j’)~ O
4. Henselian elements.

41.1. Let 4 be an arbitrary domain, X = (X,..., X,,) and Y one
variable. We will define a sort of diagonalisation operator 2 by

2:4[[X,Y]] - A[[ X]],
Zainin'—) E aini,

iyt e Hiy=)
where for i = (i,...,i,) amulti-index we mean by X' = X - X% -+« X/,
Clearly 2 is A-linear.

4.1.2. THEOREM [ Lipshitz, Denef]. Let A be an excellent local integral
domain, f € A[[ X]], then

feAllx]]™
< 3R € A[[X,Y]] N Frac(A[ X, Y])s.t. f= 2(R).

In words, f is algebraic if and only if it is the diagonal of a rational
power series.

Proof. See [L.D.; Thm. 6.2].

4.2.1. In this paragraph we will restrict ourselves to a special type of
rank-one valuation rings. Start with a complete D.V.R. @, with local
parameter 7 and residue field k, fraction field K = Frac@. Let K be an
algebraic extension of K; then the discrete valuation extends in K
uniquely to a rank-one valuation, ord. Let K be the completion of K with
respect to this valuation and @ the ring of integers in K. So @ is a
complete rank-one valuation ring, with valuation ord. Let k be the residue
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field. By the theory of Witt-rings (see [Se]) we know that there is a
complete D.V.R. W(k) in O, which contains @, so we could have started
with this D.V.R. to obtain @, and therefore we may suppose as well that
the residue field of @ is equal to k from the start but we only will need
this in char > 0. We make one final restriction on @: we demand that K
be perfect. So, for char K = p, we need that ¢ = ¢0'/?. Remark that in this
case k also is perfect (this is not necessary though when char K = 0). Note
also that the value-group of K is a subgroup of Q,+, so ¢ might be
non-Noetherian. Example of a 0: 0= 0Cp, the ring of integers in the
p-adic closure of the algebraic closure of Q,,.

4.2.2. THEOREM. Let O be as above (the restriction on the perfectness is
not needed) and f € O[[ X1|™8. Then 3f, € O[[ X]|*, f, integral coeffi-
cients in a finite extension of K such that

f= 1

Since by 4.1.2 3z, € O[[ X, Y]] N FracO[ X, Y] such that f, = 2(¢,),
the above theorem is a generalisation of a result of Christol in one
variable: “f is a uniform limit of ‘fonctions algébrique réguliéres™ see
[Chr].

Proof. Since f is algebraic over FracO[X]= K(X) we know by
Theorem 4.1.2
da,B€K[X,Y], 8=a/BeK[[X,Y]]
such that f = 2(0).
Since K[[X]] is faithfully flat over K[X] y,, we even may suppose
that 8(0) = 1.
Let’s write Z = (X,,..., X, Y) and write
a=) aZ,
iel
B=Y bZ,
iel
Write A = (A;|i € I)and B = (B,|;.,i € I) and
a(A4,Z2)=) AZ,
iel
B(B,Z)= ) BZ'+1,
el
i#0

and 6(A, B, Z) = a/B € Z][ A, B, Z]] since B(0) = 1.

I finite, a,, b, € K.

&,BeZ[A4,B,27],
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Even more, we can write
(1) 6=36(4,B)Z' € Z[ 4, B][[Z]]
J

where 0 € Z[ A4, B] with total degree in 4 and B less
than or equal to 1 + || j|I.

Now, write a = (a;|i € I)and b = (b,|i € I,i # 0) so
a(a,Z)=a, B(b,Z)=p8, b6(a,b,Z)=0.

By the construction of @, we can find for each n € N, a field K™,
finite over K and Vi € I:a™, b € K™ with b{™ = 1, such that

ord(a; — a{™), ord(b, — b™) > n.

()

Call
an(Z) = &(al(n)’z)’
B.(Z) = B(b", Z),

So a, = a, B, = B for n > oo.
Finally, call

& feK™[z].

1,(2) = 0(a". b, Z) € K™ [[Z]] = a,/8B,
so t, is a rational power series and one may check that
(3) 1, = 0.

Let us call f, = 9(t,), so f, € K™[[X]], and by 4.1.2 we know that
it is algebraic.
Since f = 2(0) and (3) we get
L=
So, for n big enough, f, € O[[ X]] since f is.
Call 0™ the ring of integers in K. This is a D.V.R. and hence
KMo = 0™, and so

fo € 0 X]]". o

4.2.3. COROLLARY. When O denotes the ring of integers in K we get:
Ox[[X1]™ = o[[ X]]"™=.
REMARK. We also have proved explicitly that @ is separative.

4.3.1. Let’s write
/= {Aring|0 C A C 0 and A4 finitely generated (-algebra).
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We define now

Rix. xp= U 4[[X,....x]];

""" A

we will mostly abbreviate this as R, or R. Denote by R ) the comple-
tion of Ry, oin O] X]] with respect to ord.

Again, R, forms a PP-system. We now verify the conditions of
Theorem 2.4.1 in order to get A.P. Since each A € &7 is noetherian, each
element of R is separable, and therefore, also of R, which proves (c).
Property (b) will be postponed to §5 (5.4.2.); (d) already is dealt with by
2.5.2. Also, each (A[[X]],(X)) for A € &/ is a Henselian pair, and
therefore also the direct limit (R, ( X)), proving (e).

4.32.LEMMA. VY7 € 0, ord(w) > 0: 7O[[X]] N R = =R.

Proof. Choose y € 7mO[[ X]] N Rand 4 € o s.t. y € A[[X]] and let
(1) a,,...,a,begeneratorsof A over @, sod = 0[a,,...,a,].
Therefore
Ic,,...,c, € O (integers of K)
id,,...,d, €0
S.t.
(2) a,=c +ud,.
Let F = K(c,,...,c,) C K, so F is a finite extension of K. Let 0, be
the ring of integers then we have, see [Ma; (31.C)]
3) Or i§ a} D.V.R. )
O, finite, and therefore free (-module.
Let e, ..., e, be a basis of 0, over @ and set
A=0]e,...,e,.dy,....,d, 7]

so 0 C 4 and by (2) also Ac A.
We claim that y/7 € A[[ X]], so is in R. Indeed, let ¢ be a coefficient
of y,50 ¢ € A4, and ¢ = 0 mod 7 and by (1)
c=play,...,a,)
with p(Y,,...,Y,) € 0[Y].
By (2) we can write

c=nple,...,c,) +aXley,...,c.,dy,....d,,7)
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where A(Y,...,Y,Z,...,Z,T)e 0[Y,Z,T] so XA =
A(cpy-.vscydyy...,d,m) € A and
(4) £=—-———”("1"“’cs)+>\eco,

™ ™

O p(cy,...,¢)/m € 0 and p(cy,...,¢) € Or, which by (3) is a D.V.R,,
therefore u(cy,...,c,)/m € O C A and therefore by (4) finally,
c/m € A. O

43.3. LEMMA. Call L = FracO[[X]] and K = FracR then L/K is
separable.

Proof. Suppose charK = p # 0.

We have to prove that L and K7 are linearly disjoint. Let
{e,...,e,} be free over K, e; € L. We have to show that they remain free
over K'/7. So, suppose 3a, € K'/7

(1) Y ae, =0.
i=1

We may assume that e, € O[[X]] and «, € RV/?. Let p,=a? € R
and 4 € « s.t. p; € A[[ X]]. Write out

p=Y P X, p; €A
Let v, = p;/” € A"/ and call §, = L»,, X’. So we find that
(8:(X))” = ar(X?).
Therefore, 8,( X) = a,( X?) € AY?[[ X]).

Assertion. AV? € .

Therefore 8, = a,(X?) € R and from (1) we get
(2) 2 8,(X) - e(X?)=0.
Write out §; in p-basis, i.e.
8, = Z 8ij(Xp)Xj
where j = (j;,...,j,) varies within the range 0 <j, < p — 1 and the

S R since the 8, are.
Substituting this in (2) gives

Z 8ij(Xp)ei(Xp)Xj =0,
i’j
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so
Vj: ) 8,(X?)e (X?) =0,
sO
vi:y 6,e,=0
and {e,} free over K, so 8;; = 0, hence §, = 0, hence a, = 0. O

Proof of the assertion. Since k = k is perfect, and @ is complete, we
get by Cohen’s structure theorem [Co] that @ = k[[T]], T one variable
(corresponding to the local parameter 7); therefore, since (k[[T]])/? =
k[[TTT"/?] since k perfect we find that 07 = @[r/?] c 0, since O
perfect. Let A €/ be generated over & by u,,...,u,. Then AY? =
O[(rY/7,ul/?, ..., ul?]c 0so A7 € o. a

Since Lemma 4.3.2 is nothing but property (a) of Theorem 2.4.1 and
Lemma 4.3.3 implies property (f), we may conclude:

4.3.4. THEOREM. Let O, R and R be as described above, then R has
A.P. over R with respect to polynomial equations.

4.4.1. THEOREM. Let O be as before, denote with O[[ X" the henselisa-
tion of O] X] in O] X]] with respect to ( X). Then we have

ol[[x]]" = o[[x]]"™.

Proof. O[[ X]]" C O[[ X]]*® is clear by an already stated proposition
of Lang ([La; X, §7, Prop. 8]). Let y € O[[ X]]®¢; then by Theorem 4.2.2.
y belongs to R = Ry .

Let P(X,T) € O[ X][T] be a polynomial in one variable such that
P(X,y)=0.

Choose ¢ big enough so that the distinct roots of P(X,T) are not
congruent mod( X)“.

Applying the A.P. for R/R we geta € R s.t.

P(X,7)=0Ay=yp mod(X)°".

By the choice of ¢ we need to have y = y, so actually y € I°{.~Suppose
therefore that y € A[[ X]] with 4 € &, i.e. finitely generated (-algebra.



350 H. SCHOUTENS

Take A big enough so that P(X,T) € A[ X, T]; then y € A[[ X]]*¢. Since
0 is excellent, so is A and by a well-known fact for excellent domains
[Ra]: A[[ X]]*8 = A[[X]]" and since by the universal property A[[ X]]" C
O[[ X1)", we find

y € o[[x]]" O

4.4.2. COROLLARY. O[[ X]]* C R.

So, each algebraic element has coefficients which lie in a finitely
generated (-algebra.

5. Weierstrass preparation theorems.

5.1.1. Let A be aring, 2 an ideal in A. Assume that 4 is Hausdorff
in its a-topology, i.e. NY_,2" = 0. We shall in the sequel write X =
(Xy,..., X,)and X' = (X,,..., X,_,). When f € A[[ X]] we call f a-regu-
lar in X, of degree k if there is a term cX* of f with ¢ a unit mod z and k
minimal with this property. Or equivalently if f = v(X,) - X* mod(z, X’)
with v( X,,) € A[[ X,]] and a unit mod &, i.e. a unit in (4 /2)[[ X, ]].

We call P € A[[X']l[X,] a distinguished polynomial (DP) in X, of
degree k if P is of the form

k-1
P=X:+ 2 piX,
i=0

with p, € (a, X')A[[X"]).

Recall that we shall mean by saying that a PP-system Wn has a
W.P.T. with respect to < if the following holds:

Vf e W, which is zregular in X, of degree k and
Vg € W, there are unique g € W,, r€ W,_,[X,] s.t.
g=¢q-f+randdegyr <k

5.1.2. LEMMA. Suppose f € A[[ X]] is a-regular in X, of degree k and
that there are B € A[[X]), B, € Al[ X']] such that Bf = L2} B, X} mod( X”).
Then B = B, = 0 mod( X’).

Proof. We can write f= ¢ + X* mod(X’) where v € A[[X,]] is a
unit mod 2 and ¢ € A[X,] with ¢ = 0 mod 2 and deg ¢ < k. So, putting
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X/

If
L

k-1
B(0, X,) '(*P + X*) =Y B,(0)X!, thus
i=0

k-1

B0, X)X =) B(0)X moda, so
i=0

B;(0) = 0 = B(0, X,) - v mod =,

but v unit mod &, so 8(0, X,) = 0 mod a.
Substituting in (1) gives

(1)

() B0, X,) Xjv = 3. B;(0) X; mod &’
which again implies 8(0, X,) = B8,(0) mod <?, and by induction B(0, X,),
B.(0) € NZ_gak = 0. O

5.2.1. THEOREM. Let A be a ring, a an ideal in A and suppose A is
complete and Hausdorff in its a-topology. Then A[[ X]] hasa W.P.T.

Proof. Given f € A[[X]], aregular in X, of degree k, g € A[[ X]].
Write f = ¢ + X*v mod X’ where ¢ polynomial in X, of degree less than
k, coefficients in « and v a unit in A[[ X, ]]. Set E = A[[X]]/(f). We will
show that E is finitely generated as an A[[X’]]-moduleby 1, X,,..., X*~1

Set /= (@, X’), so A[[X']] is complete and Hausdorff with respect
to A,

Assertion. E is Hausdorff in the A~topology.

Since

E _ 4Allxl] __4llx]] _ (4/9)[[X]]
AE  (f,2,X") (a9 + Xjv) (X;v)

with v unit mod 2 we find that E/AF is finitely generated as an 4 /a
(= A[[X'])/A")-module by 1, X,,..., X*~1. By the generator-lemma (see
[Z-S; VIII Thm. 7, Cor. 2]) E is finitely generated over A[[X’]] by
1,X,,..., X! as module. So, we know that Vg € A[[ X]] there exist
g€ A[[X]], r € A[[X'N[X,], degx r <k st g=f-qg+r.

We have to show finally that ¢ and r are unique. Suppose we have
alsog’and r'st. g=f-q¢'+r.Cala=q—q and B=r"—r,s0

k-1
) fa=B= 1 pX, AeAllx]].

By Lemma 5.1.2. we get a, 8 = O mod X".
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We will prove by induction that a, 8 = 0 mod(X’)’, so are zero by
the Hausdorffness.

Let {p j}};l be all monomials in X’ of degree ¢ and suppose a,
B =0mod(X")’, so 3K, € A[[X]] and 3K,, € A[X']| s.t. a = T)_, K,
and g, = Z?=1Kijl“'j~ By (2),

(Z anu'j)f= Z(Z Kijp‘j)XtI; = Z(Z Kinri)P'j, SO
i J Jj i
k-1
Vj:K,f= ) K, X, modX’
i=0

and by 5.1.2. again K, K, € (X"), 50 a, B = 0 mod( X")"**. o

Proof of the assertion. Let u € N2 NE, u € A[[X]]. So
o, € A[[X]], 0. €N u=0a,f+0,.
For j > i we have («, — a;)f € A4, but one can easily show that f is a
non-zerodivisor mod 4/, since f is regular, so a;, — a; € A"". Therefore
the (a;); form a Cauchy-sequence in the A“topology in A[[X]]. By
completeness, 3a € A[[X]]:a; = «, and since §, » 0, we find u = af
(remark that A[[ X]]is Hausdorff in the A“topology, so ‘ — ’ makes sense)
andsou = 0in E. a

5.2.2. COROLLARY. With the assumptions and notations of 5.2.1. and
moreover, o C 1ad A, then 3 unique P, and u in A[[ X]] s.t.

f=u-P
with P, a DP of degree k in X,, and u a unit in A[[ X]].

Proof. Apply W.P.T. to X*. O

5.3.1. Let A be a domain, < an ideal in 4, 2 C rad A and suppose
A[[X]] has a W.P.T. with respect to «. We want to study W.P.T. for
A[[ X]]¥¢, extending methods of Coste-Roy [C-R] and Lafon [Laf]. Take P
a DP of degree k in X, and y € F = algebraic closure of FracA[[ X']],
s.t. P(X’,y)=0. By the W.P.T. Vg € 4[[X]]:3 unique g € A[[ X]],
r € A[[ X' X,] (degxr < k) s.t.

g=qP +r.
Define a A-algebra morphism from A[[ X]] to F by substitution defined
as

def
(X', y)=r(X,y).
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If moreover, g € A[[ X]]1*® and g(X’, y) = 0 then one checks that y is
algebraic over FracA[ X']. Write P = X* + Y%~ ! p,X! and suppose 3h €
A[[X]] s.t. hP € A[[ X])™e. Then Vi:p, € A[[ X’ ]]alg, so h, P € A[[ X])%e.
This is because each root of P is a root of AP, so is algebraic over
FracA[ X’], but the p; are symmetric functions in the roots. Therefore,
using this on 5.2.2 we get when f € A[[ X]]®8 of that corollary, then also
u, P, € A[[ X%

5.3.2. Let 4 be a domain of char4 = p # 0 and T be one variable.
When we put ¢ = p” (r € N,) we can expand each f € A[[T]] in g-base
uniquely as follows

q—1
f= __Y.Oﬁ(T")T".

Define A(f) = La?T" where f = L a,T’, so
f(T)" = A(F)(T?).

One easily checks that A is an injective ring morphism and that
f € AT iff A(f) € A[[T])*.

5.3.3. PROPOSITION. Let f € A[[T])*8, and f = XP-3 f,(TP)T". Then
f(T) € A[[T])*™.

Proof. Call E = FracA[T)]. Then E(f)/E is finite so there exist
a,(T) € A[T]:

Y o(T)f"=0, @« #0.
j=r
Set & = —a,; then
(1) af’ = 3 af”.
Jj=r+1
Call g = p"*! and multiply (1) by a?!
(2) al - fF =Y a""lajfpj.

j=r+1
Let f= A"*Yf, s0 f4 =f(T~") and & = A"*'a, so a? = &(T7) and also
7 =X f(TP)PT? set f =Af, so f(T?)? = f(T9). Develop
a?la, = Z"'l (THT' so substituting this all in (2) we get

Z (T =T ¥ a (TOF(T)"77 - T,

i=0 i=0 j=r+1
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By unicity of the expansion we find

Vi= 0,. N/ 1 :&(Tq) ﬁ(Tq) = i aj,ip’(Tq) 'f(Tq)pj/q

j=r+1
SO,
&f:‘ = i Q .f"p’/q'
j=r+1
Since f= A""'f € A[[X]]™ and & # 0, &, a,, € A[T] we get that f, =
Af, € A[[ X]|% = f, € A[[ X]]*™=. O

5.3.4. Suppose from now on that we have a valuation ord on a field X
with A4 as its valuation ring and & the maximal ideal. We need not have
that N?_, 2" = 0. But this problem can be solved by remarking that, when
f is aregular, so f = @ + X* mod X’ with v unit and ¢ = 0 mod & we
always can find an ideal 2 C 2z s.t. Na” = 0 and ¢ = 0 mod &, and if 4 is
complete with the valuation ord, then also in the a-topology. Therefore
when A is complete, we have a W.P.T. We can extend ord to A[[ X]] by
letting ord(Xa,X’) = inf{ord(a,)} (Gauss-norm). Recall that Y a, X' is
called separable if the infimum actually is reached. Therefore, it f is
separable, we can write it always, after a transformation as

(1) f=a-g withord(w) = ord(f).
7 € A and g «regular (or shortly, regular) in X,,. See for instance [Z-S].

We call A separative when every f € A[[ X]]®® is separable. E.g.
rank-one valuation rings.

5.3.5. LeMMA. A as above, A separative, P a DP of degree k in X,,
P € A[[X])¥. Suppose P is irreducible in A[[ X]]; then it is irreducible in
(Frac(A[[ X']]**))[ X, ].

Proof. Suppose not, so P = a -  where a, 8 € (FracA[[ X']]*¢)[ X, ]
and degy «, degy B < k. (We will write deg for deg, in the sequel) So
dc € A[[ X']]%, &, B € A[[X']]*¢[ X,] s.t.

cP=a&-B
with deg &, deg 8 < k. But A is separative, so by (1) of 5.3.4 we may as
well assume that &, B are regular in X,. By the W.P.T. in A[[ X]] we get
P=g-a+p
with degp < dega, g € A[[ X]], p € A[[ X']][ X,]; therefore
cP =cqa + cp = &B,
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so @|cp but degp < dega so p =0, so P = q - & with dega < k, which
contradicts the irreducibility of P in A[[ X]]. a

5.3.6. THEOREM. Let A be a valuation ring, A separative and suppose
A[[X]] has a W.P.T.; then A[[ X]]*® also has a W.P.T.

Proof. Take f € A[[ X]]™, f regular (= a-regular) in X, of degree k.
Let g € A[[ X]]1*e. By the W.P.T. of A[[X]]: 3 unique g € A[[X]], p, €
A[[ X'], such that
k=1
(1) g=q-f+ ZO pi X,

Since f is regular, we know by the discussion of 5.3.1 that f can be
written in the form f= u - P, where u is a unit in A[[X 1% and P is a
DP of degree k in X,, P,€ A[[X]]*. So we can find a “minimal”
decomposition

@) f=u- 112

with # unit in A[[X]]*® and P, algebraic DP’s in X, such that their
degrees are minimal.

Suppose one of the P, is not irreducible in A[[ X]], so P,= af3 a,f
non-units in A[[ X]]. '

One easily sees that «, B need to be regular in X,, so can be written
as, with u,, ug units and P,, P; DP’s

a=ul, and B=uh

so P, = u,upP, Py is algebraic. From 5.3.1 we get u,ug, P, and P, are
algebraic, contradicting the minimality of decomposition (2). One checks
that, when we can prove (1) for two DP’s, then we also have (1) for their
product.

So it is sufficient to prove (1) for the irreducible P,’s so we may
suppose that f is a DP of degree k in X, and f irreducible in A[[ X]], so
in (Frac A[[ X']]1*¢)[ X, ] by 5.3.5.

Let y,,..., y, € F be the roots of f. Suppose first of all that the y,
are all distinct. This is certainly the case if char 4 = 0 since f is irreduci-
ble over the field FracA[[ X’]]®8. Substituting in (1) gives us for j =
1,...,k

k—1 '
8(X.») =X e
Jj=0
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Consider this as linear system over F with roots p, and determinant
IT, . ,(y; — y;) # 0 (Vandermonde-type).

So, by Cramer’s rule, p,(X’) are rational expressions in y; and
g(X’, y;) and since the y; are algebraic over FracA[ X] (for f is) and also
g is, one easily verifies that g(X’, y;) are algebraic too, so the p; are, and
hence also g € A[[ X]]%.

Suppose now that char4 = p # 0 and that f has multiple roots.
Then there exist an h € A[[X']][X,] and m € N, so that, where g = p™,
f=h(X7) and h is irreducible and has no multiple roots. Since f €
A[[X]]*, hence f< A[[X']]*[X,] (see 5.3.1), we also get that h €
A[[X'11¥¢[ X, ]. Let s = degy h, so degX f=q-s.Expand g in g-base

(3) = Z (X0 X5

then we know from 5.3.3 that g,(X) € A[[ X]]®¢. Apply now the W.P.T.
for the DP A, which has no multiple roots, so 3 unique g, € A[[ X]]*# and
p;, € A[[X'|"¥[X,], degx p, < s — 1s.t. g, = g, - h + p,. Using expansion
(3)

-1

=‘f§0 g(X9)X 2 L(XDR(XDX+ T p (X)X,

i=0
Call
q-1 ‘
p= Pi(XZ)XrI:
i=0
withdegy p<g—1+¢g(s—1)=¢gs—1=degf— 1
hence g = (Zg(X))X,) - f+ p. O

5.4.1. Let’s now work in the special type of complete rank-one
valuation-rings, defined in 4.2.1 and the PP-system R, of 4.3.1. If T is a
finite subset of R, then we denote by

dy={Adest|TcAl[X]]};

then (&7, C (inclusion)) forms a direct system with hm A[[X 1=
R i x7- One checks that, for T a finite subset of R,
R ALK

(MR = 2 () AlXTT

T
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5.4.2. THEOREM. The PP-system Ry, = R, hasa W.P.T.

Proof. Suppose f is regular in X, of degree k, so we can write f as
f=e(X,) +v(X,)- Xy mod(X’)

with ¢(X),) € 0[X,], degp < k and ord(¢) >0 and v(X,) unit in
O[[ X,]]; moreover v € Ry .

Call E =(R,/(f)R,) where R, = R;y;. Take 7 € 0, s.t. ord(7) =
ord(¢) > 0. Replacing A[[X]] in 5.2.1 by R, which is complete in the
w-topology, we can prove analogously that E is Hausdorff in the #-topol-
ogy. By the remark in 5.3.4. we have a W.P.T. for O[[ X]], which proves
the uniqueness in division by f.

So we need only to prove that E is finitely-generated as a R, _;-mod-
ule by 1, X,,..., X¥~1. By the generator-lemma this amounts in proving
the same for E/7E over R, /7R, _,.

Since R/m = R/m, we can find 5,f€ R (v € o[ X1, with & =
f=f modx (so o still a unit) and f = 5X* mod(=, X).

So
E_ R, _ R, _ hm(_fl__[__){]l)
mE (7,f)  (7,]) 4 (f)
‘Mﬂfv
and
Rn—l ~
WRn——l = hm( )[[X]]
‘wav
So, when we can prove that for 4 € 7, fv, (A/m [ XN/(f) is
finitely generated as a A /7A [[ X']]-module by 1, .., X* we are done.

But (A/7A) [[X']] is complete and Hausdorff with respect to the (X')-
topology because A4 is noetherian and (X’) C rad(4/7A4) [[X']], so
(A/7mA) [[X']] is a Zariski-ring. By applying the generator-lemma once
again we obtain

(- 18

with § unit, and this is a finite (A/7A)[X']]/(X’) = A/wA-module
generated by 1,..., X< 1, O

5.5. PROPOSITION. Let A be a ring, a an ideal in A, A complete and
Hausdorff in the a-topology.
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Let W, be a PP-system over A and W, the a-adic closure of W, in
A[XTL.
If W, has a W.P.T., then also W,

Proof. Let f € W, be aregular in X, of degree k, and g € W,. So
there exist f,,, g,, € W, such that
fn—>f and g,-g.

Therefore, for m big enough the f,, must be z-regular of degree k in X,
t00. So, by the W.P.T. in W, 3 unique ¢,, € W,, p,,, € W,_

k—1

gm = qm 'fm + Z pierll.
i=0

Vt:AN:f—f,, 8, — & € o' if m,s > N, hence in 4 /2'A[[ X]] we get:
Guf + X PinXy = 4. + X 0, X,
But by the W.P.T. in 4 /&’A[[ X]], such an expansion is unique, so
q,,=q, modad,
Pim = p;; mod a';

thus the (qg,,),, and the (p;,,) . are Cauchy-sequences in A[[ X]]. Therefore
ge W,,p,€ W, ' 4, > q and p;,, = p; and so

k-1 ‘
=qf + Z P X,
i=0
The uniqueness of g and p, follows from the W.P.T. in A[[ X]]. a

5.5.2. The same proposition holds for 4 a complete valuation ring,
since A[[ X]] has a W.P.T. by the remark of 5.3.4.

REFERENCES

[Ar] M. Artin, Algebraic approximation of structures over complete local rings, Inst.
Hautes Etudes, Sci. Publ. Math., 36 (1968), 23-58.

[Ba] G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic
Press, New York (1964).

[Ch] J. L. Chabert, Anneaux de Fatou, Enseign. Math., (1972), 141-144.

[Chr] G. Christol, Limites uniformes p-adiques de fonctions algébriques, These Sc.
Math. Univ. Paris, 6 (1977).

[Co] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans.

Amer. Math. Soc., 59 (1946), 54-106.
[C-R] Coste-Roy, Book on semi-algebraic geometry (in preparation).



[La]
[Laf]

[L.D]

[Ma]
[Ra]

[Ro]

[Se]
[Z-S]

APPROXIMATION PROPERTIES 359

S. Lang, Algebra, Addison-Wesley (1965).

J. P. Lafon, Séries formelles algébriques, C. R. Acad. Sci. Paris, 20 (1965),
3238-3241.

L. Lipshitz and J. Denef, Algebraic power series and diagonals, J. Number
Theory, to appear.

H. Matsumura, Commutative Algebra, Benjamin (1970).

M. Raynaud, Anneaux Locaux Henséliens, Lect. Notes in Mathematics 169,
Springer Verlag (1970).

P. Robba, Proprieté d’approximation pour les éléments algébriques, (Composi-
tion Math.)

J. P. Serre, Corps Locaux, Hermann Paris (1968).

O. Zariski and P. Samuel, Commutative Algebra, Van Nostrand Princeton
(1967).

Received September 9, 1986.

ASS. ALGEBRA-TOPOLOGIE
CELESTIJNENLAAN 200B
B-3030 LEUVEN, BELGIUM








