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SEMIGROUPS GENERATED BY CERTAIN
OPERATORS ON VARIETIES OF
COMPLETELY REGULAR SEMIGROUPS

MARI10 PETRICH AND NORMAN R. REILLY

The operators C,K,L,T,T, and T, on the lattice L(%¥Z) of
varieties of completely regular semigroups have played an important role
in recent studies of £ (¥%). Although each of these operators is
idempotent, when applied in various combinations to the trivial variety
they yield varieties for which the only upper bound is ¥%. The semi-
groups generated by various subsets of {C,K,L,T,T,,T,} are de-
termined here in terms of generators and relations.

1. Introduction and summary. Completely regular semigroups (unions
of groups) may be regarded as algebras with the operations of (binary)
multiplication and (unary) inversion. As such they form a variety %
defined by the identities

(1)  (ab)c=(ab)e, a=aa'a, aa'=a"a, (a)'=a.

The lattice L (€ %) of all subvarieties of ¥% turns out to be amenable to
a thorough analysis both globally and locally. The former includes various
(complete) congruences that emerge naturally in the study either of the
varieties themselves or of the corresponding fully invariant congruences
on a free completely regular semigroup FZ on a countably infinite set.
Local studies of the lattice (% %) usually amount to rather complete
descriptions of relatively small intervals in £ (¢%) modulo £(9), the
lattice of group varieties, starting from the bottom of the lattice.

In the local approach, a number of operators make their appearance
in the description of certain varieties in terms of some of their proper
subvarieties. But these operators may be defined on all of £ (%) thereby
providing a certain amount of information for varieties scattered
throughout #(¥%) and hence may be used for a global study of this
lattice. Another source of operators on £ (%) are the kernel and trace
relations on the lattice of fully invariant congruences on FE% now
translated into relations on £ (¢ %).

Of the considerable literature on varieties of completely regular
semigroups, we mention only the following ones because they are directly
related to our object of study. We thus cite Jones [6], [7], Kadourek [8],
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Pastijn-Trotter [10] and Reilly [13] for various results concerning the
operators under study.

In order to explain briefly what the subject of the paper is, we need
some notation. For any § € ¥Z, let E(S) be the set of idempotents of S
and C(S) be the core of S, that is the subsemigroup of S generated by
E(S). We define operators C and L on Z(¥Z) by

¥C={Se%R|C(S)e "),
¥'L={Sec éR|eSec ¥ forall e € E(S)}.

Note that ¥"C (respectively ¥"L) consists of all S in ¥ all of whose
idempotent generated subsemigroups (respectively submonoids) are con-
tained in ¥".

For a fully invariant congruence p on F&Z (see above), let [p] be the
corresponding variety. Let py (respectively pz, p7, pr) denote the least
(automatically fully invariant) congruence on F&% with the same kernel
(respectively trace, left trace, right trace) as p. We now define operators
K, T,T,,T, on L (¥Z) by the requirement:

[e]P =1[ps] (P {K,T,T,T}).

These operators admit the following interpretations: for any ¥'€ £ (¥ %),
and with & denoting the variety of semilattices,

YK={Se€¥2|S/re¥VVL},
¥T={Se¥bR|S/ne7),
YT,={S€ $R|S/L v},

in the usual notation with #° the greatest congruence contained in %
and a symmetric expression for ¥'T,.

The principal results of the paper consist of complete descriptions of
semigroups generated by certain subsets of {C, L, K,T,T,,T,}. In order
to roughly state these descriptions, let M, , (respectively N, ,) be the
monoid generated by C, L, P and Q (respectively P and Q) where { P, Q }
is any 2-element subset of { K,T,T,,7,} and R be the monoid generated
by C and L. We prove that

My o=RX Ny,
that N, , is a free monoid on two idempotent generators (except when

{P,Q}={T,T,} or {T,T,}), and give the multiplication table for the
5-element monoid R.

Section 2 contains the needed notation. The semigroup generated by
C and L is described in §3. Properties of the operators K, T, T, and T, are
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discussed in §4. That C (respectively L) commutes with K, T, T, and T, is
proved in §5 (respectively §6). The semigroups generated by pairs of these
operators are determined in §7, whereas the semigroup generated by
C,L,K and T is described in §3. A diagram of values of some of the
elements of the semigroups of operators at the trivial variety is presented
in §9.

2. Preliminaries. A semigroup which is a union of groups is said to be
a completely regular semigroup. Basic information about such semigroups
can be found in Howie [5]). The fundamental structure theorem for
completely regular semigroups, due to Clifford, states that a semigroup S
is completely regular if and only if S is a semilattice of completely simple
semigroups. We will denote this by S = U,y S,, where Y is a semilattice,
and refer to the completely simple subsemigroups S, as the components of
S.

In a completely regular semigroup S, we use the following notation. If
x € S, then x7' is the inverse of x in the maximal subgroup of S
containing x. In addition, let x° = xx~. Also, E(S) denotes the set of
idempotents of S and Con S denotes the lattice of congruences on S.

Certain congruences on a completely regular semigroup are particu-
larly important. Let p € Con S, S € €Z. Then p is said to be idempotent
separating if e, f € E(S) and epf imply e = f, while p is idempotent pure
if e € E(S) and epa imply a € E(S). We will denote by p = p ¢ (respec-
tively 7 = 75) the maximum idempotent separating (respectively idempo-
tent pure congruence) on S. Also, for any equivalence relation A on S, we
denote by A° the largest congruence on S contained in A. It is sometimes
useful to remember that p = H#°.

The term variety means variety of completely regular semigroups as
algebras with multiplication and inversion. We use the following notation
for various varieties:

J — one element semigroups,
L% — left zero semigroups,
RZ — right zero semigroups,
R# — rectangular bands,

& — semilattices,

A% — normal bands,

% — bands,

¢g — groups,

LY — left groups,
RY — right groups,
¥%¥ — completely simple semigroups,



154 MARIO PETRICH AND NORMAN R. REILLY

N %Y — normal bands of groups,
Re¥ — rectangular groups,

0 — orthodox completely regular semigroups,

ER2 — completely regular semigroups.

Moreover,

ZL(7) — thelattice of subvarieties of ¥~,

F¥~ — the (relatively) free completely regular semigroup
on a countably infinite set in a variety ¥~,
F = F¥%2,
F, — the free completely regular semigroup on a set of n elements,
% — the lattice of fully invariant congruences on F.

For a set A of operators on £ (¥ %), we denote by [ A] the subsemi-
group of the full transformation semigroup on Z(¥%) generated by A.
The free semigroup on a nonempty set X is denoted by X*. A semigroup
given by generators G and relations R is denoted by (G|R). For a
semigroup S, S* (respectively S°) stands for S with an identity (respec-
tively zero) adjoined. On any set X, & denotes the equality relation. Proper
inclusion of sets is denoted by C . The notation |X| stands for the
cardinality of a set X, |w|stands for the length of the word w, and |n| also
denotes the usual absolute value of an integer n.

Undefined terminology and notation can be found in [5] and [11].

3. The operators C and L. In this section we introduce two operators
on £ (%) and describe the semigroup that they generate.

For any S € L(¥ %), let C(S) denote the subsemigroup of S gener-
ated by the idempotents of S. Then C(S) is a completely regular subsemi-
group of S called the core of S. The operator C is defined in £(¥ %) by:

¥C={Se¥R|C(S)e V).

It is routine to verify that ¥"C is closed under products, homomorphic
images and (completely regular) subsemigroups and is, therefore, a variety.
Clearly (¥"C)C = #°C so that C? = C. The operator C appeared in a
special case in ([13], Proposition 3.5).

The operator L is defined on £ (¥ Z) as follows:

¥'L={S € ¥R|eSec ¥ foralle € E(S)}.
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This operator was introduced in [3]; see ([3], Proposition 4.1) where it is
shown that ¥'L € £(¥%) and that (¥'"L)L = ¥'L or L* = L. Its restric-
tion to £ (%% ) was considered in ([12], §4).

The calculation of the semigroup generated by C and L is quite
simple as we shall now see.

LemMma 3.1. LCL = CL.

Proof. For v'€ L(¥2#) and S € ¥ LCL, we successively obtain

eSee ¥ LC foralle <€ E(S),
C(eSe) € ¥'L forall e € E(S),

fC(eSe)fe v forall e € E(S) and f € E(eSe),
eC(eSe)e € v forall e € E(S),
C(eSe) € v for all e € E(S),
eSe € v C forall e € E(S),
S e vCL,

so that ¥"LCL C ¥"CL; the opposite inclusion being trivial, we obtain the
desired equality.

The next lemma is valid in any regular semigroup.

LEMMA 3.2. Ife € E(S) and S is a regular semigroup, then C(eSe) =
C(eC(S)e).

Proof. Let x € C(eSe). Then x = e, --- e, for some e, €
E(eC(S)e) so that x € C(eC(S)e). This proves that C(eSe) C
C(eC(S8)e); the opposite inclusion is obvious.

LemMma 3.3. CLC = CL.

Proof. For 7€ L(¥X) and S € ¥"CLC, we successively obtain

c(S) e vCL
eC(S)ee ¥ C forall e € E(S),
C(eC(S)e) e ¥ foralle € E(S),
C(eSe) e v forall e € E(S) by Lemma 3.2,
eSee v C forall e € E(S),
SevyCL,

so that ¥"CLC C ¥"CL; the opposite inclusion being trivial, the desired
equality follows.
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Applying C, L, LC and CL to the trivial variety J, we see that they
are all distinct. Then Lemmas 3.1 and 3.3 imply that [C,L]=
{C, L, LC,CL} with the multiplication table

C L LC CL

C C CL CL CL
L LC L LC CL
LC LC CL CL CL
CL CL CL CL CL

As a particular case of ([3], Theorem 2), we have the following useful
observation.

LEMMA 3.4. For S € ¥, we have C(S) = U, . sC(D,).

4. The kernel and trace operators. Of considerable importance in what
follows is the anti-isomorphism from the lattice £ (% %) of subvarieties of
%% to the lattice € of fully invariant congruences on the free completely
regular semigroup F on a countably infinite set of generators. We denote
this correspondence by

For any congruence p on S in ¢%,
kerp = {x € S|xpx°},

trp = p| E(S)?
0
ltrp = (p V&) | gesyo

rtrp = (p V -@)Ol E(S)?
and are called, respectively, the kernel, trace, left trace and right trace of
p. Each of these objects determines an equivalence relation on the lattice
Con S:

AKp < ker A = kerp,

ATp & trA = trp,
AT,p & litr A = ltrp,
ATp < rtrA = rtrp.

The last two relations were introduced in ([9], §6).
Two fundamental observations on these relations are:
(1) ([1}, Theorem 4.1). K N T = &,
(11) ([9], Theorem 6.12). T,N T, = T.
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In what follows we will only be interested in the restrictions of these
relations to €. We will denote these restrictions by the same symbols
K,T,T,and T,.

LEMMA 4.1. The relations K, T, T, and T, are complete congruences on
%.

Proof. See ([8], Theorem 11), ([9], Theorem 6.6).

If p € €, then it follows from Lemma 4.1 that each of the classes
pK,pT, pT, and pT, has a minimum member which we shall denote by
Px>P7s P, and pr, respectively. We can repeat this process to obtain a
network of congruences pgr, pxrx, Pxr> P17, €tC

In combination with the duality between varieties and fully invariant
congruences, this enables us to introduce four operators on L(F%)
defined as follows: for any p € €,

[o]K = [pk], [0]T=1[07]. [p1T,=[05]. [o]T, = [ps].
Clearly K, T, T, and T, are closure operators. In particular,

K=K, T*=T, T>=T, T>=T.

r

In order to work with these operators effectively, it is necessary to
have alternative descriptions of ¥'K, ¥'T etc. Toward this end, the
following concept will prove useful.

Let %, v € L(€R). The Mal'cev product % ¥ of % and ¥  is
defined by

Uo V= {S € %2| there exists p € Con S such that (i) if (xp)’ = xp,
then xp € % and (ii) S/p € ¥ }.

In general % o ¥" need not be a variety ([7], Theorem 3.1).

LEMMA 4.2. ([7], Theorems 4.1 and 5.1).
Q) If U,vVeEL(CSL), then U oV E L(EFL).
() If € L(RBN b)) and STV, then U oV € L(CR).

LEMMA 4.3. Let V'€ L(CR).

(i) YK
=RB(VNVFL)=RBo(VVSL)
={S€ebR|S/reVV L)
={Se¥2|S/(tND)eVVL}.



158 MARIO PETRICH AND NORMAN R. REILLY

(i) ¥T=9o¥=(S€ER|S/peE V).
(iii) ¥’ T, = LG ¥'= (S € €R|S/L° € v').
(V) ¥'T,= RG o ¥'= (S € 4R|S/R° € V).

Proof. See ([7], Proposition 6.1 and Lemma 3.2) and ([9], Theorem
6.3).

THEOREM 4.4. In F, we have
r=pu=L"=R=-¢

Proof. It was established in ([10]), Lemma 5.11) that 7 = p = &. Now
suppose that a,b € F and a#%. Let T = {x,|s € F'} and define a
multiplicationon § = F U T by

w ifu,veEF,
w=1{x, fv=x,€T,
X ifu=x,€T,veF.

sU

Then S € ¥%. Since S is countably infinite, it follows that there exists an
epimorphism 6: F — S. Moreover, 6 can be chosen to map the variables
in a and b identically so that, in particular, af = a, b@ = b. Since S is a
homomorphic image of F, we have a.#° in S. Hence

X, =X, = xa€xb = x;, = x,.

a

But T is a right zero semigroup. Therefore x, = x, and a = b. Thus
&% = ¢ on F and, by duality, 2° = e.

COROLLARY 4.5. If ¥ is a proper subvariety of €%, then so are
YK, ¥T,YT,and V'T,.

Proof. For example, consider ¥'7T,. If ¥'T, = ¥, then F € ¥'T, and
so, by Lemma 4.3(iv), F/#° € ¥". By Theorem 4.4, %#° is the identity
congruence. Thus F € ¥ and ¥'= ¥%.

The next result explains the local and global behaviour of these
operators.

THEOREM 4.6. Let V'€ L(CR), V' + €A.
(1) Y€ ¥KT c ¥(KT)*C --- C R and NV (KT)" = ¢%.
(i) ¥'€ ¥'KT,C ¥ (KT)*C --- C €R and V¥ (KT))" = €%.
(i) If ¥, then ¥c ¥'TT,c ¥ (T,T)*C --- C R and
V¥ (T)T)" = ¢X.

Proof. It follows immediately from Corollary 4.5 that ¥ (KT)",
¥ (KT,)" and ¥ (T,T,)" are proper subvarieties of ¥# for all positive
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integers n. The remainder of part (i) can be found in ([10]), Corollary 5.9).
From Lemma 4.3(ii) and (iii), it is clear that ¥"(KT)" C ¥ (KT,)" for all
positive integers n, and so it follows from (i) that ¥2 = V¥"(KT,)". Now,
if ¥ (KT)™= ¥ (KT)™*' for some m, then clearly 7' (KT)™ =
¥ (KT))* for all k > m. But this would imply that % = V¥'(KT,)" =
¥ (KT,)™, which would contradict the fact that ¥"(KT,)” is a proper
subvariety of €2 for all n. Thus (ii) also holds. Now consider (iii).

Let C ¥ . In order to establish the last assertion, it suffices to show
that F, € #(T,T,)* for all positive integers k, where F, is the free
completely regular semigroup on k generators.

It is clear from Lemma 4.3(iii) that

GC LYo S=FT,CcSTT,

so that F, € #(T,T.)* holds for k = 1. Now suppose that F, € #(T,T,)*
and consider F, _ ;.
Let K be the minimum component of F, ,; and define p on F, ,; by

a,b e K and a#b

apbh = {a = b otherwise.

Then p is a congruence on F,,; and p C %£. Now let o be the Rees
congruence on F, ,/p determined by the ideal K/p of F,,,/p. Since
K/p is a single Zclass of F, ,/p, we have 0 C #. But (F,_,/p)/0o =
F, . ,/K, the Rees quotient for F, ,, determined by the ideal K.

For each component D of F, ,,/K covering the zero component, let
D be the union of all components above it. On F,,,/K define a relation
pp by

appb = a=>b or a,b& D.

Then p,, is a congruence on F,,,/K and (F,,,/K)/pp = F_.

In addition, the intersection of all congruences p, is the equality
relation. We conclude that F, , , /K is a subdirect product of copies of F.
Since F,, and therefore F?, lies in #(T,T,), it follows that F,,,/K €
S(TTY*. Thus Fp,\/p € S(TT)T, and F,,, € L(TT)TT, =
P(T,T,)<*1, as required. Hence V¥ (T,T,)" = € %. It now follows, as in
part (ii), that ¥*(T,T,)" € ¥"(T,T,)"*! for all positive integers n.

In Theorem 4.6, it is shown that €% is the join of an infinite family
of proper subvarieties. In contrast, we have the following result.

THEOREM 4.7. The variety €2 is finitely join irreducible.

Proof. Let %,V € L(CR), U+ CR,V + €. Then there must exist
a positive integer n such that F, & % U ¥". Suppose that F, € %V ¥ .
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Then there exist A € %, B € ¥, a subdirect product R of 4 and B and
an epimorphism 6: R — F,. Since F, is the free completely regular semi-
group on n generators, there exists a homomorphism ¢: F, — R such that
¢ = @6, where . is the identity mapping on F:

F ¢

n

R<AXB

It follows that ¢ is a monomorphism and we may consider F, as a
subsemigroup of 4 X B. Let 7, and 7, denote the projections of 4 X B
onto A and B, respectively, and let p = m o m;', 0 = myom;'. Then
pNo=ceSince F, &€ U ¥, p and o are both non-trivial congruences.

Let K be the minimum component of F, and k be the Rees
congruence on F, determined by the ideal K. By the remark prior to
Theorem 5.12 in [9], there are no idempotent pure congruences in F,.

Hence, there exists x € F,\ E(F,) such that xpx°. We prove next
that there exists k € K such that xk # x%. If x € K, take k = x°. It
remains to consider the case x € K. To this end, it suffices to construct a
completely regular semigroup S with an epimorphism 6: F, — S such that
(xk)8 # (x°k)6. For this, let S = F,_; U { y,|r € F}} with the multipli-
cation

ab ifa,b€EF,_,,
ab={y, ifa=y,

Yor Hb=y,.
Then S € €2 and
(2) XYL =V = Ve F Va0 = Yooy = Xy
Let x,, x,, ..., x, be the free generators of F,. Define a mapping 8 by
0:x,»>x; fori=1,2,....,.n-1, x,-y,

and extend it to a homomorphism of F, into S. Letting
0
k= xn(xl T xn—l) >

we obtain k € K and kf# = y,(x, -+ x,_,)° = y;. Consequently, (2)
gives (xk)@ # (x°k)6 and thus xk # x°k. Since xkpx°k, it follows that
p; = p N k is not the equality relation. Again by [9], p, is not idempotent
pure. Therefore, there must be an element a € K\ E(K) with ap,a®.

Let o, be similarly derived from o. Then there is an element
b € K\ E(K) with bo,b°. Since K is completely simple, we may assume
that as#b. The restrictions of p, and o, to H,, say p, and o,, are then
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both non-trivial. But H is a free group ([2], Theorem 5.7) and so p, N o,
is also non-trivial. Hence p; N o, is non-trivial and so also p N o, which is
a contradiction.

5. C commutes with K, T, T, and 7,. In order to prove the statement in
the title, we first consider how idempotent pure congruences restrict to the
core.

LEMMA 5.1. Let S € €% and C = C(S). Then
(1N D) |c=1-N9.

Proof. Let 7= (1,,N D) | and o = 1. N D. Clearly 7 C 0. Since o
and 7 are idempotent pure, it suffices to show that they have the same
trace. So let e,f€ E(S)=E and eof. Let x,y € S' be such that
xey € E. Then

(epx)’ = ep(xey)x = ep(xey)’x = (eyx)’

so that, since eyx lies in a subgroup, eyx € E. Thus e(eyx) € E and so,
since eof and eyx € C, we must have f(eyx) € E. Hence

(yxfe)’ = yx(feyx)( feyx) fe = yx(feyx) fe = (yxfe)’

and yxfe € E. Thus ( yxfe)e € E and, again since eof and yxfe € C, we
obtain yxfef € E. But e2f so that f5#fef. Since e7.f and 7. restricted to
any J#class is trivial we get fef = f. Therefore yxf € E and

(xfr)’ = xf(yxf ) yxf )y = xf(yxf)y = (xpp)*.

Thus xfy € E. By symmetry, we have that, for all x, y € S*,
xey € EexfyeE

and therefore erf. Hence 6 = 7, as required.
LEMMA 5.2. Let v € L(ER). Then (V'V L)C=¥YCV &L.

Proof. The claim is trivial if £ C ¥". So suppose that ¢ ¥~ so that
V< 8L

We clearly have ¥"'C V£ C (7'V #)C. So now let § € (¥'V &)C.
Then C(S) € ¥V % and thus C(S) is a normal band of groups. By ([11],
IV.4.3), normal bands of groups can be characterized by the behaviour of
their idempotents relative to their components. Since this pertains only to
idempotents, it follows that S itself is a normal band of groups. If D is a
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component of S, then by Lemma 3.4 and ([6], Theorem 3.3), we obtain

C(D)=C(S)NDe(¥VL)NEL=(¥yYNEL)V(FLNEL)="7".
Therefore D € ¥°C for each component D of S which together with S
being a normal band of groups and the proof of ([11], IV.4.3), yields that
S is a subdirect product of its components with a zero possibly adjoined.

Since each of these, by the above, is contained in ¥'C V %, we conclude
that S ¥ C Vv &.

We can now show that C commutes with K.
LeMmMA 5.3. KC = CK.

Proof. Firstlet S € ¥# and define a mapping x by
x:c(1sN D) > c(isNnD)NC(S)  (ce C(S)).

Lemma 5.1 asserts that (73N D) |5y = Te(sy N2 which then implies
that x is a bijection of C(S/(73N Z)) onto C(S)/(7¢s5) N Z) since
every homomorphism maps the core onto the core. It now follows by
Lemma 5.1 that x is also a homomorphism. Therefore

(3) C(S/("'sm@))E C(S)/(TC(S)m‘@)'
For v"'€ £ (¥ %), we obtain
Se¥KCe C(S)e VK

= C(8)/(105yN2) € ¥VS byLemmad.3
e C(S/(xn2)e¥yVvF  by(3)

e S/(1sN92)e (¥VVF)C
eS/(sNP)e¥yCVS by Lemma 5.2
e S e ¥vCK by Lemma 4.3.

Thus ¥’ KC = ¥"CK, as required.
LEMMA 5.4. Let S € €% and C = C(S). Then
0
£° lc= (gc)o’ ‘@()'C: (gc) s M= pe-

Proof. Consider £°. Clearly £° |- C (£.)% So let a,b € C, a % b
and x, y € S*. Then x%ay°%,.x°by° since a.£2b, and x°ayLx by since &£
is a right congruence. But clearly

xay¥x ay, xbyLx°by

so that xay.#xby. Thus a(£° | )b and L° | = (Z.)°. Similarly for 2
and u=#°=2°Nn L.
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LEMMA 5.5. TC = CT, T,.C = CT,, T.C = CT.,.
Proof. Consider T,. From Lemma 5.4, it follows that

C(S/£°) = C(S)/Lis)-
For any '€ Z(€¢%), we then obtain

SEVTCe C(S)e VT, o C(S)/Lys €V
o C(§/¥) eve S/P°e¥CsSe v,
Similarly for 7, and T.

6. L commutes with K, 7,7, and 7,. In order to prove the statement
in the title, we require information on the restriction of congruences to
certain submonoids.

LEMMA 6.1. Forany S € €2, 15| .5 = T.s. for alle € E(S).

Proof. Let e € E(S), 0 = 7g| 5, and 7 = 71,5,. Clearly ¢ C 7. For the
opposite inclusion, it suffices to show that tr7 C tro. Hence let f,g € E
= E(eSe) with frg. Let x, y € S* and assume that xfy € E(S). Then

[f(eyxe)]’ = fey(xefey)’xe = fey(xfy)*xe
= fey(xfy) xe = ( feyxe)’

which implies that f(eyxe) € E, since f(eyxe) is contained in a subgroup
of eSe. The hypothesis implies that g(eyxe) € E(S) whence

(xgy)’ = x(geyxe)’gy = x(geyxe) gy = (xgy)’
so that xgy € E(S). By symmetry, we deduce that fog. Consequently
6 = 1, as required.

LEMMA 6.2. Let ¥'€ L(€R). Then (¥'N )L = ¥'LV &.

Proof. The claim is trivial if C 7#”. So suppose that ¥'C €. It is
clear that 'L V ¥ C (¥V'V £)L.

Let S € (¥'V &)L. Then, for all e € E(S), eSe € ¥V &. It follows
that eSe is a normal band of groups. By ([11], IV.4.3), normal bands of
groups can be characterized by the behaviour of their idempotents relative
to the subsets eSe as e runs over all idempotents of S. It follows from this
reference that since eSe is a normal band of groups for all e € E(S), we
have that S itself is a normal band of groups. Moreover, for any
e € E(S), using ([6], Theorem 3.3), we obtain

eDec (¥YVFL)NEF=(¥yNEFL)V(LNECL) =7,
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and thus D, € ¥'L. The proof of ([11], IV.4.3) implies that S is a
subdirect product of the semigroups D, with a zero possibly adjoined.
Since each of these, by the above, is contained in ¥'L V &, we conclude
that S € ¥'L v &.

LemMA 6.3. KL = LK.

Proof. Firstlet S € €2 and e € E(S). Define a mapping x by
x:ar = at N eSe (a € eSe).

Lemma 6.1 asserts that 7| ,g, = 7,5, Which implies that x is a bijection of
(eT)(S/7)(er) onto (eSe)/,s,. It now follows, by Lemma 6.1, that x is
also a homomorphism. Therefore

(4) (er)(S/7)(eT) = (eSe) /s,
For v"'€ L (¥ %), we obtain

SEV¥KL < eSe € ¥'K forall e € E(S)
e (eSe) /1,5, € V'V & forall e € E(S)
by Lemma 4.3(i)
o (er)(S/7)(er) € ¥V & foralle € E(S) by (4)
o S/re (¥VL)L
e S/re¥yYLVvys by Lemma 6.2
o Se¥vIK by Lemma 4.3(i).

Thus ¥ KL = ¥"LK and the proof is complete.
We now consider the interaction of L and T, T, and T,.

LEMMA 64. Let S € % and e € E(S). Then
P ‘ eSe 'J'eSe? go ‘eSe = ("?eSe)O’ ‘@O |eSe = (‘%eSe)O‘

Proof. Consider #°. Clearly #° | s, C (Z.s,)°. So let a,b € eSe,

a(%,s,)% and x, y € S. First note that, for any w € S,

(exe)’(xe)’(exe)w = (exe) '(exe)(xe)’exew

= (exe) ' (exe)(exe)w = (exe)w
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so that (exe)w.L(xe)(exe)w. Also
a(L,5.)’b = (exe)a(eye) L, (exe)b(epe)
= (xe)’(exe)a(eye) L (xe)’(exe)b(eye) by the above remarks
= (xe)"(exe)a(eye)(ey)" L (xe)’(exe)b(eye)(ey)’
since & is a right congruence
= (xe)’xeaey(ey)’L(xe) xebey(ey)’
= xeaey L xebey
= xay¥xby.

Thus a.#°. The case of # is symmetric and the case of p follows from
these two cases.

Lemma 6.5. TL = LT, T,L = LT,, T,L = LT,.
Proof. Consider T,. From Lemma 6.4 it follows that
(e£°)(S/L°)(eL°) = (eSe) /L.
Hence for any 7€ £ (¥ %), we obtain

Se¥T,L < eSec ¥T, forall e € E(S)
o eSe/FLL €V forall e € E(S)
= (e2£°)(S/%°)(eL ) € ¥ foralle € E(S)
o S/Pe¥VLeSe VLT,

Thus T,L = LT,. That T.L = LT, and TL = LT follows similarly.

7. Semigroups generated by any two of K, 7,7, T,. In this section we
deal with some technical preparations for the determination of various
semigroups of operators in terms of generators and relations. We shall
require some additional notation.

For reasons that will soon be apparent, we will be interested mostly in
the free semigroup on { ¢, /, k,¢,1,,¢,}. Anelement w = g,a, --- a, € A™
will be called distinguished if a, # a,,, for i=1,...,n — 1. The set of
distinguished elements in { a, b, c,...} " will be denoted by A . ...

If v € A" and we wish to emphasize the variables x,,..., x, € 4 that
appear in w, that we shall write v(x,,...,x,). If S is a semigroup and
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$y,...,5, € S, then we shall denote by v(s,,...,s,) the element obtained
from v by substituting s, for x,,i =1,...,n.

In keeping with the notation p; and p, already introduced for the
minimum congruence in the kernel and trace class of any congruence p on
a completely regular semigroup S, we will now denote by pX the maxi-
mum congruence in the kernel class of p; that is, pX denotes the largest
congruence on S with the same kernel as p. That pX exists follows from
Lemma 4.1 and basic information about pX can be found in [9). (Of
course there is the dual concept of the maximum congruence p’ in the
trace class of p, but we shall not require that here.)

The variety #¢% of regular bands, that is, the variety of bands
defined by the identity axya = axaya, has a role to play in the next two
results.

PROPOSITION 7.1 (Kadourek [8], Proposition 8.2). For any p € €,
with p C Py, 4, (or)* = o7

LEMMA 72. Let %, V'€ L(YR), RgB <V and V'L %. Then
YT ¢ UK, ¥V'T, ¢ UK and ¥'T, ¢ UK.

Proof. Let U, v € XL (¥R) be such that #gBC ¥, ¥'¢ % and
suppose that ¥"T C %K. Let p = p, and o = p,. Then ¢ C Pz, and
px C o,. By ([10], Theorem 4.5) the mapping p — p* (p € €) is order
preserving. Hence

pxCor = pX = (PK)KQ (or)"
= p¥ c (0,)* = 6, by Proposition 7.1
=pcp¥corCo
=>v7vCuU

a contradiction. This establishes the first claim. The claims that ¥"T, ¢ %K
and ¥'T, € %K now follow from the fact that ¥"T = ¥'T, N ¥'T..

LEMMA 7.3. Let U, V'€ L(4R) and S V', 7' U. Then VK ¢
UT,¥K ¢ UT,and V'K ¢ UT.

Proof. Let S € ¥\ %. Then S° € ¥\ % since ¥C ¥". Let X =
{x,|s € S'} and define a multiplication * on R = S U X by

ab ifa,beSs,
axb=1{x, ifb=x€X,
x, ifa=x,€X.
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Then R is an ideal extension of the right zero semigroup X by S°.
Therefore R € YK\ %.

However, suppose that a,b € S and a.#%. Then x, = x,a¥x,b =
X,. But X is a right zero subsemigroup of R. Therefore x, = x, and
a = b. Similarly £° must be the equality on X and therefore on R. Thus
R/¥%°=R & % so that R & %T,. Hence ¥'K & UT,. Since 4T C UT,,
it follows that ¥’ K ¢ % T and, by duality, V' K ¢ %T,.

LEMMA 74. Let %€ L(CR), %+ CR,v,w e A, V=0(KT),W
= w(K,T) and UV = UW. Then either (1) v = w or (ii) v and w end in
the same letter and differ in length by at most one.

Proof. Let W= %V = UW. By Corollary 4.5, #"+ €%. Since v,w €
A,,, v and w are both of length at least one. First suppose that v and w
end in different letters. Without loss of generality, we can assume that
v = vt and w = w,k for some v, w; € A,, U {J}. Letting V; = v,(K,T)
and W, = wy(K, T), we have

WT=UVT = UV,TT = UV\T = UV =W,
WK =UWK = UW,KK = UW,K = UW =W,

which, since % # €%, contradicts Theorem 4.6(i). Therefore v and w
must end in the same letter. If |v| = |w|, then since v and w are both
distinguished elements (so that occurrences of ¢ and k alternate) we must
have v = w.

So suppose that |v| # |w| and that v and w both end in k (a similar
argument will handle the case where both end in ¢). Without loss of
generality, we may assume that v is the shorter word. Suppose that
|v] + 2 < |w|. Since v and w both end in k and are both distinguished
elements of {k, ¢}, there must exist an element u € A,, U { &} such
that w = uvtk. Thus

WCHWTK =UVIK C Uu(K,T)VIK = UW =W
so that W= #"TK. Since W # €%, this contradicts Theorem 4.6(i). Thus

v and w can differ in length by at most one.

LEMMA 7.5. Let %€ L(CR), N B U, U+ CR, U+ UK, U +
UT,v,w e A, U {D} and Uv(K,T)= UwW(K,T). Thenv = w.

Proof. By the hypothesis that % # %T, % # %K, we cannot have one
of v,w equal to &, but not the other. Therefore we may assume that
v,w € A,,.
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Suppose that v # w. By Lemma 7.4, we may assume that |w| = |v| + 1
and that v and w end in the same letter. Without loss of generality, let v
and w end in k. We may also assume that v has been chosen to have the
smallest length of any element in A,, for which there exists w € A,, with
Iw| = |v| + 1 and %v(K,T) = Uw(K,T).

Let v = v,k and w = w;k, where v, w; € A,,. Let V=0v(K,T),V;
=v(K,T),W=w(K,T) and W, =w,(K,T). By the minimality of
|v], %V, # %W,. Since v, v;, w, w; are distinguished, v, and w; must both
end in z. Also, occurrences of k£ and ¢ alternate in distinguished words
and |w| = |v;| + 1. Hence, we must have w, = v, or w, = kv,. Thus
either %V, C ATV, = UW, or 4V, C UKV, = %W,. In both cases we
conclude that #V, C %W, so that %W, & UV,.

Since w; ends in ¢, w,;(K,T)T = wi(K,T) and so W,T = %W,. But
UW, & UV, implies #W,T ¢ %V,K by Lemma 7.2, so that

UW, = UW,T ¢ UV,K = UV = UW = UW,K

which is a clear contradiction.

LEMMA 7.6. Let % € L(CR).
W) T, N B=LX (UN B).
(1) ZT. N B =RZ o (U N B).

Proof. By duality it suffices to prove (i). By Lemma 4.3(iii), we have
LPEAUNRB)C LG oU= UT, while clearly L& o(% N %) C %. Thus
LE(UNBYCUT,NB.Solet S UT,N %. Then S/ ¥’ «,S €
B and e#L° € £ for all e € E(S). Hence eZL° € 9N B =LZ for
all e € E(S),and S/¥° € %N B. Thus S € LZ o(U N B), as required
and the equality in (i) holds.

LeMMA 7.7. TT,= T,T = T, TT,= T.T = T.

Proof. 1t suffices to consider T,. Let % € L(¥%). Clearly %T, C
UTT,. So let S € %TT, Then R=S/¥° € %T and R/uy € %. But
&, is the equality congruence on R and, therefore, so also is p . Hence

S/%’=R=R/pr €U

and so S € %T,. Thus %TT, = %T, and therefore TT, = T.

It is also clear that %T, C #T,T. So let S € #T,T. Then R = S/pg
€ T, and R/¥Q € 4. Since pg C %Y, it is easily seen that ZQ =
L/ ug. Thus S/ LY = R/LL € U and S € UT,. Hence %T,T = T, so
that 7,7 = T,, as required.
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We are finally ready for the main result of this section.

THEOREM 7.8. (i) [K, T] = (k, t|k2 k,t* =t).

(i) (K, T)] = (k)| k? =k, 1} = 1).

(i) [K, T = {k,t,|k* =k, t} = t,).

(V) [T, T1 = (1, 1,|1} = t/’ 1 =1,.

WIT,T)={t |t =10} =1, u,= 1t = 1;) = (1)
M) [T, T)={t,t,|t2=t,t2=t,t,=tt=1) = (1)

Proof. Let ¢:{k,t}*— [K, T] be the epimorphism defined by k¢ =
K,tp=T.Let p=¢eo @' and o be the congruence on { k, ¢} * generated
by the relation {(k? k),(¢%¢)}. Since K? = K and T? = T, it follows
that o C p. To establish the reverse inclusion, let p,q € {k,¢} " and ppgq.
Using the relation defining o, there exist v,w € A, such that pov and
qow. Since ¢ C p, we have vow. Thus v(K,T) = vp = wep = w(K,T),
and in particular /" Bv(K,T) = N Bw(K,T). But NS'BK = B+ N B
and N/ BT = N BY + N%B. Hence, by Lemma 7.5, v = w. Thus pov =
woq, so that poq and p C o. Therefore p = o and (1) follows.

The proofs of parts (ii) and (iii) are similar to that of (1). Lemmas 7.4
and 7.5 were derived from Lemmas 7.2 and 7.3. These latter lemmas hold
equally well for T, and T, as for T. Therefore, throughout Lemmas 7.4
and 7.5 we may replace T consistently by 7, or by 7, to obtain analogous
results for K combined with 7, and *for K combined with T,. The final
parts of the proofs of (ii) and (iii) are then similar to that of (i) above.

We now prove part (iv). Let ¢: {¢,,¢,} *— [T}, T,] be the epimorphism
defined by 7,0 = T),t,p = T.. Let p = po ¢! and o be the congruence
on {t,t,}" defined by the relation {(¢% ¢t,), (¢2,¢,)}. Since T;> = T, and
T? =T, it follows that ¢ C p. To establish the reverse inclusion, let
p.q € {t,t,} " and ppgq. Using the relation defining o, there exist v,w €
A, such that pov and gow. Since o C p, we have vpw. Thus (7}, T)) =
ve = wp = w(T,, T). Now let T,*, T.* be the operators defined on £ (%)
by

UTH =LZE U, UT*=RZ U.
By repeated application of Lemma 7.6, we have that for all % € # (%),

Uo(T*,T*) = %u(T,T,) N &
=aw(T,,T,)NB=Uw(T* T*).

r

By ([8], Example 10), this implies that v = w. Thus pov = wag so that
poq and o C p. Thus o0 = p and (iv) holds.
Parts (v) and (vi) follow directly from Lemma 7.7.
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8. The semigroup generated by C, L, K and 7. In §§3 and 4 we have
considered the semigroups [C, L] and [K, T] and in §§5 and 6 we have
shown that the operators C and L commute with the operators K, T, T,
and 7. In this section we will show that the relations between C, L, K
and T already introduced are sufficient to describe [C, L, K, T'].

We require three technical preliminary lemmas.

LeEMMA 8.1. Let %, v € L(6R), S U, N BV ,UC ¥V andw €
A,,. If either ) ¥"T =¥ andw = kw, for some w, € A, U { D} or (ii)
YK =79 and w=tw, for some w € A, ,U (D}, then UwW(K,T) C
Y w(K,T).

Proof. The assumption that % C ¥~ implies that w(K,T) C
¥ w(K,T) for all w € A,,. So the objective is to show that under certain
circumstances, inequality is preserved. We will only consider case (i), since
case (ii) will follow in a similar manner using Lemma 7.3. We will argue
by induction on the length of w;,.

First suppose that w, = @. Since ¥"¢ %, it follows from Lemma 7.2
that ¥'T ¢ %K so that ¥'= ¥'T ¢ %K and therefore

Yw(K,T)=9%K¢ UK = Uw(K,T).

Now suppose that |w;| > 1 and that the desired inequality holds for
any words of the form kw, € A,,, where |w]| < |w,|. We have two cases.

Case 1. wy = wyk for some w, € A,, U { @}. In fact, we must have
w, # & since otherwise we obtain w = kw, = kw,k = k@k = kk which is
not distinguished. Thus |w,| > 1 and, since w, = w,k,w, must end in ¢.
Hence w,(K,T)T = w,(K, T). By the induction hypothesis, ZKw,(K,T)
C ¥ Kw,(K,T). In particular, ¥ Kw,(K,T) ¢ %Kw,(K,T). Therefore,
by Lemma 7.2,
¥ Kw,(K,T)T & %Kw,(K,T)K = %w(K,T)
so that
¥ Kw,(K,T)=7Kw, (K, T)T ¢ Uw(K,T)
and
Yw(K,T)=¥Kw,(K,T)K ¢ Uw(K,T).

Case 2. w; = w,t for some w, € A, U {&}. The proof in this case is
similar to that of Case 1.

LEMMA 82. Let r,s€ A, and v,w €A, U {D} be such that
r(C,LYv(K,T) = s(C,L)YW(K,T). Thenv = w.
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Proof. Let R=r(C,L),S =s(C,L),V=v(K,T),W=w(K,T)
and % = O BY. Then #C = UL = % so that %R = US = %. Hence
UV = %W. By Lemma 7.4, either (i) v = w, as claimed, or (ii) |v| = |w| + 1
and v and w end in the same letter. So let (ii) hold. Since occurrences of k
and ¢ alternate in v and w and they end in the same letter, we must have
v=kworv=1tw.

Let v=kw. If w= &, then %V =UK =0+ ONBYG= UW, a
contradiction. Hence w # @ and, since v is distinguished, w must begin
with ¢. Let ¥'= K = O0. Then ¥’ K = ¥",% C ¥ and w = tw, for some
w, € A, U {@}. By Lemma 8.1(ii),

ww(K,T)c ¥w(K,T) = UKw(K,T) = %v(K,T)

which is a contradiction. Thus v = w.
The case when v = tw is treated similarly.

LemMma 8.3. For distinct A,B € {&,C,L,CL,LC}, there exist U =
U,V =",pEL(CR) such that
G NBCUN Y,
(ii) for € {(U,V"}, either FA C ZBor B C Z A,
(iii) #AK = UA,U%BK = UB,
(iv) YAT = v'A,¥ BT = ¥'B.

Proof. For all choices of distinct elements 4, B, € {J,C, L,CL, LC},
we display in the table below suitable choices for %. The square in the
row labelled with 4 and the column labelled with B has the form

Y

*@LQ where # = %A and 2 = %B.

In all cases % is either # or O so that % satisfies the requirement (i). In
addition, in all cases either  C 2 or 2 C & so that % also satisfies the
requirement (ii).

A Bl ¢ L CL LC
2 7 0 7 B
2lo loloL | s|loL | |0

c B B 0
ol# [ 0JoL | 0 JoL

I B 2

B OL | #] 0

Y
cL oLT o
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By Lemmas 5.3 and 6.3, K commutes with C and L and therefore
also with 4 and B. It is easily seen that ZK = % and 0K = . Conse-
quently, since in all cases % is either # or 0, we have that K = %.
Hence

UAK = UKA = UA, UBK = %KB = UB

and (iii) holds.

For each choice of A and B, we now take ¥'= %T. Then /"B C U
C %T = ¥ so that ¥ satisfies (i). By (ii), either 4 C %B or B C %A.
First suppose that %A C %B. By (iii) we have that (#A)K = %A and
(ZB)K = %B and hence, by Lemma 8.1(i1), AT C %BT. By Lemmas
5.5 and 6.5, T commutes with C and L and therefore with 4 and B.
Hence

YA =UTA = UAT C %BT = 4TB = ¥'B.

Similarly, if B C %A we obtain ¥ B C ¥'A so that ¥ satisfies (ii).
Finally, again since T commutes with 4 and B and also since T? = T,

VAT = V'TA = UTTA = UTA = VA,
¥'BT = ¥'TB = UTTB = %TB = ¥'B.

Thus 7~ satisfies (iv).

LEMMA 84. Letw € A, U (@} and W = w(K,T). Then the follow-
ing are distinct: W,CW, LW,CLW, LCW.

Proof. If w= @, then the result follows from the description of the
semigroup [C, L] in §3. Now let 4,B € {&,C, L,CL, LC} and suppose
first that w begins with the letter . By Lemma 8.3, there exists a variety
U= U, p, satisfying Lemma 8.3(1)—(iii). By Lemma 8.1(ii), we must have
UAW + UBW so that AW + BW. Suppose, on the other hand, that w
begins with the letter k. Let ¥'= ¥, ; € L(¥X) satisfy Lemma 8.3(i), (ii)
and (iv). By Lemma 8.1(i), we must have ¥’ AW # ¥ 'BW so that again
AW #+ BW.

We now apply these observations to the semigroup [C, L, K, T].

THEOREM 8.5.
[C,L,K,T)=(c, Lk, t|jc*=c,1*=1,k*=k,

t?=1t, clc=lcl=cl, ck = ke,
ct =tc, Ik =kl It =tl).
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Proof. Let N be the semigroup on the right hand side of the
statement of the theorem. Let M = {¢,l,k,t}" and ¢: M — [C,L,K,T]
be the epimorphism defined by cp = C,lo = L, ko = K,tp = T. Let
p=¢ecp ' and o be the congruence on M generated by the defining
relations for N.

It follows from the fact that the operators C,L, K and T are all
idempotent and from Lemmas 3.1, 3.3, 5.3, 5.5, 6.3 and 6.5 that o C p.
Now suppose that ppg. Using the relations defining o, there exist
r,s € A, and v,w € A,, such that porv and gosw. Since o C p, this
implies that rvpsw. Hence (rv)e = (sw)g so that r(C,L)v(K,T) =
s(C, L)Yw(K,T). By Lemma 8.2, v = w and, by Lemma 8.4, r = 5. Thus
porv = swoq. Hence p C g, as required.

COROLLARY 8.6.[C, L, K, T]' = [C,L]' X [K, T]
Proof. This is immediate from Theorem 8.5.

Similar descriptions to that of [C, L, K,T] in Theorem 8.5 can be
obtained for [C, L, K, T,),[C, L, K, T,] and [C, L, T,, T,] by substituting 7,
for T etc. in all arguments. The nature of the semigroup generated by
C,L,K,T,T,and T, is left open.

9. Evaluation at the trivial variety. The diagram below presents a few
varieties obtained by repeated application of the operators C, L, K, T, T,
and 7, to the trivial variety . In order to save writing  in the
expressions of the form JC,J7T,Z7CT, etc., we have written only
C,T,CT,, etc. For example, the vertex labelled ¥ = C = T stands for the
variety of groups; this variety can also be described as JC or JT. The
following legend is used to denote the classes induced by these operators:

We omit the proofs of the statements implicit in the diagram.
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TKT = T,KT = T.KT = CKT = LCKT

T,T.K = T.T,K = CLK

= LTK = LT,K = LT.K =4 @Y= LKT = KT

CK=TK=TK
= T.K=CT,K = CT.K =4

€%=TT =TT, =CL=LT=LT=LT,

~ 4 Re¥=LC

Acknowledgment. The authors are indebted to J. Kadourek for detect-
ing an error in an earlier version of the paper.
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