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SEMIGROUPS GENERATED BY CERTAIN
OPERATORS ON VARIETIES OF

COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH AND NORMAN R. REILLY

The operators C,K,L,T,T( and Tr on the lattice Se(^0t) of
varieties of completely regular semigroups have played an important role
in recent studies of S^(^9t\ Although each of these operators is
idempotent, when applied in various combinations to the trivial variety
they yield varieties for which the only upper bound is ^ ^ . The semi-
groups generated by various subsets of (C, K, L, T, Tr, T{) are de-
termined here in terms of generators and relations.

1. Introduction and summary. Completely regular semigroups (unions
of groups) may be regarded as algebras with the operations of (binary)
multiplication and (unary) inversion. As such they form a variety <&{%
defined by the identities

(1) (ab)c = (ab)c, a = aa~ιa, aa'1 = a~ιa, (a~ι)~ = a.

The lattice ££{^01) of all subvarieties of <£!% turns out to be amenable to
a thorough analysis both globally and locally. The former includes various
(complete) congruences that emerge naturally in the study either of the
varieties themselves or of the corresponding fully invariant congruences
on a free completely regular semigroup FΉffl on a countably infinite set.
Local studies of the lattice SP^Si) usually amount to rather complete
descriptions of relatively small intervals in JS?(^^) modulo «S?(^), the
lattice of group varieties, starting from the bottom of the lattice.

In the local approach, a number of operators make their appearance
in the description of certain varieties in terms of some of their proper
subvarieties. But these operators may be defined on all of «£?(^^) thereby
providing a certain amount of information for varieties scattered
throughout S^{^0i) and hence may be used for a global study of this
lattice. Another source of operators on ^(Ήέft) are the kernel and trace
relations on the lattice of fully invariant congruences on FΉffl now
translated into relations on JS?(^^).

Of the considerable literature on varieties of completely regular
semigroups, we mention only the following ones because they are directly
related to our object of study. We thus cite Jones [6], [7], Kadourek [8],
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Pastijn-Trotter [10] and Reilly [13] for various results concerning the
operators under study.

In order to explain briefly what the subject of the paper is, we need
some notation. For any S e < ^ , let E(S) be the set of idempotents of S
and C(S) be the core of S, that is the subsemigroup of S generated by
E(S). We define operators C and L on Set^Θl) by

= ( S G V9l\eSee r for all e e £ ( 5 ) } .

Note that ^ C (respectively TΓL) consists of all S in # ^ all of whose
idempotent generated subsemigroups (respectively submonoids) are con-
tained in i^.

For a fully invariant congruence p on FΉSi (see above), let [p] be the
corresponding variety. Let ρκ (respectively pτ,ρτ,ρτ) denote the least
(automatically fully invariant) congruence on FΉέk with the same kernel
(respectively trace, left trace, right trace) as p. We now define operators
K, T9 7), Tr on Set^gi) by the requirement:

[p]P=[pP] (Pe{K9T,Tl9T,}).

These operators admit the following interpretations: for any
and with S? denoting the variety of semilattices,

= {s

in the usual notation with o5?° the greatest congruence contained in 3?
and a symmetric expression for y^Γr.

The principal results of the paper consist of complete descriptions of
semigroups generated by certain subsets of {C, L, K, Γ, Th Tr). In order
to roughly state these descriptions, let Mp Q (respectively NP Q) be the
monoid generated by C, L, P and Q (respectively P and Q) where {P, β )
is any 2-element subset of {K, T, Th Tr) and R be the monoid generated
by C and L. We prove that

MPQ = RX NPQ,

that Np Q is a free monoid on two idempotent generators (except when
{P,Q} = {T, Tf} or {T, Tr}), and give the multiplication table for the
5-element monoid R.

Section 2 contains the needed notation. The semigroup generated by
C and L is described in §3. Properties of the operators K, Γ, Tι and Tr are
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discussed in §4. That C (respectively L) commutes with K, T, Tι and Tr is
proved in §5 (respectively §6). The semigroups generated by pairs of these
operators are determined in §7, whereas the semigroup generated by
C, L, K and T is described in §8. A diagram of values of some of the
elements of the semigroups of operators at the trivial variety is presented
in §9.

2. Preliminaries. A semigroup which is a union of groups is said to be
a completely regular semigroup. Basic information about such semigroups
can be found in Howie [5]. The fundamental structure theorem for
completely regular semigroups, due to Clifford, states that a semigroup S
is completely regular if and only if S is a semilattice of completely simple
semigroups. We will denote this by S = U ^ y ^ , where 7 is a semilattice,
and refer to the completely simple subsemigroups Sa as the components of
S.

In a completely regular semigroup S, we use the following notation. If
X G S , then x~ι is the inverse of x in the maximal subgroup of S
containing x. In addition, let JC° = xx~ι. Also, E(S) denotes the set of
idempotents of S and Con S denotes the lattice of congruences on S.

Certain congruences on a completely regular semigroup are particu-
larly important. Let p e Con 5, S e <€(%. Then p is said to be idempotent
separating if e, f e E(S) and epf imply e = / , while p is idempotent pure
if e e E(S) and epa imply a ^ E(S). We will denote by μ = μs (respec-
tively T = τs) the maximum idempotent separating (respectively idempo-
tent pure congruence) on S. Also, for any equivalence relation λ on S, we
denote by λ° the largest congruence on S contained in λ. It is sometimes
useful to remember that μ = Jίf°.

The term variety means variety of completely regular semigroups as
algebras with multiplication and inversion. We use the following notation
for various varieties:

&~ — one element semigroups,
— left zero semigroups,
— right zero semigroups,
— rectangular bands,
— semilattices,
— normal bands,
— bands,
— groups,
— left groups,
— right groups,
— completely simple semigroups,
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— normal bands of groups,

— rectangular groups,

— orthodox completely regular semigroups,

— completely regular semigroups.

Moreover,

Se ( i r) — the lattice of subvarieties of V,
Fi^ — the (relatively) free completely regular semigroup

on a countably infinite set in a variety ^ ,
F = F<g®,

Fn — the free completely regular semigroup on a set of n elements,

^ — the lattice of fully invariant congruences on F.

For a set A of operators on JS?(^), we denote by [A] the subsemi-
group of the full transformation semigroup on ££{%>&) generated by A.
The free semigroup on a nonempty set X is denoted by X+. A semigroup
given by generators G and relations R is denoted by (G\R). For a
semigroup S, Sι (respectively 5°) stands for S with an identity (respec-
tively zero) adjoined. On any set X, ε denotes the equality relation. Proper
inclusion of sets is denoted by c . The notation \X\ stands for the
cardinality of a set X, \w\ stands for the length of the word w, and \n\ also
denotes the usual absolute value of an integer n.

Undefined terminology and notation can be found in [5] and [11].

3. The operators C and L. In this section we introduce two operators
on JS?(Wβt) and describe the semigroup that they generate.

For any S e &(<&&), let C(S) denote the subsemigroup of S gener-
ated by the idempotents of S. Then C(S) is a completely regular subsemi-
group of S called the core of S. The operator C is defined in Se{^^) by:

irc= {S e <e&\C(S) e TT}.

It is routine to verify that Ψ*C is closed under products, homomorphic
images and (completely regular) subsemigroups and is, therefore, a variety.
Clearly ('TC)C = re so that C2 = C. The operator C appeared in a
special case in ([13], Proposition 3.5).

The operator L is defined on &(%><%) as follows:

r for sale e E(S)}.
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This operator was introduced in [3]; see ([3], Proposition 4.1) where it is
shown that Y*L e J2?(<ίf#) and that (fL)L = TL or L2 = L. Its restric-
tion to JS?(«^) was considered in ([12], §4).

The calculation of the semigroup generated by C and L is quite
simple as we shall now see.

LEMMA 3.1. LCL =

Proof. For f e i ? ( l

eSe G y

C(έ>Sέ?) G y

fC(eSe)fer
ί?C(ί?Se)έ? G y

C(e5e) G ^

eSe G -^

CL.

ί?Λ) and 5 G

XC for all

X for all

for all

for all

for all

C for all

fLCL, we successively obtain

eeE(S),

e<Ξ E(S),

e G EίS1) and / <= £(e5e),

e e £(S),

e G £(5),

so that i^LCL c Ψ*CL\ the opposite inclusion being trivial, we obtain the
desired equality.

The next lemma is valid in any regular semigroup.

LEMMA 3.2. If e e £(£) aurf 5 w α regular semigroup, then C(eSe) =

. Let JC G C(eSe). Then Λ: = eτe2 - en for some et G
so that x e C(eC(5)β). This proves that C(eSe) c

; the opposite inclusion is obvious.

LEMMA 3.3. CLC = CL.

Proof. For ^ e j£?(^?) and 5 e iΓCLC, we successively obtain

C(S) e ^ C L

eC(S)^ G r c for all β e E{S),

C(eC(S)e) e ^ foraUβe£(5),

C(eSe) e -^ for all e e £(5) by Lemma 3.2,

for all e <Ξ E(S),

so that i^CLC c TΓCL; the opposite inclusion being trivial, the desired
equality follows.
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Applying C, L, LC and CL to the trivial variety 3Γ, we see that they
are all distinct. Then Lemmas 3.1 and 3.3 imply that [C, L] =
{C, L, LC, CL} with the multiplication table

c
L

LC

CL

C

C

LC

LC

CL

L

CL

L

CL

CL

LC

CL

LC

CL

CL

CL

CL

CL

CL

CL

As a particular case of ([3], Theorem 2), we have the following useful
observation.

LEMMA 3.4. For S e <€9t, we have C(S) = U i e 5 C ( I ) J .

4. The kernel and trace operators. Of considerable importance in what
follows is the anti-isomorphism from the lattice &{*€&) of sub varieties of
Ή® to the lattice # of fully invariant congruences on the free completely
regular semigroup F on a countably infinite set of generators. We denote
this correspondence by

For any congruence p on S in

kerp = [x e S\xpx0},

and are called, respectively, the kernel, trace, left trace and right trace of
p. Each of these objects determines an equivalence relation on the lattice
Con S:

λKp <=> kerλ = kerp,

λTp <=> trλ = trp,

=> ltrλ = ltrp,

XTrp <* rtrλ = rtrp.

The last two relations were introduced in ([9], §6).
Two fundamental observations on these relations are:

(i) ([1], Theorem 4.1). K Π T = ε;
(ii) ([9], Theorem 6.12). Tt Π Tr = T.
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In what follows we will only be interested in the restrictions of these
relations to <€. We will denote these restrictions by the same symbols
K, T9 T} and Tr.

LEMMA 4.1. The relations K, T, Tι and Tr are complete congruences on

Proof. See ([8], Theorem 11), ([9], Theorem 6.6).

If p e ^, then it follows from Lemma 4.1 that each of the classes
pK,pT,ρTr and pTt has a minimum member which we shall denote by
Pκ>Pτ>Pτ a n d Pr> respectively. We can repeat this process to obtain a
network of congruences pκτ, pκτκ, pKT(, pT/Tr etc.

In combination with the duality between varieties and fully invariant
congruences, this enables us to introduce four operators on JP^Sί)
defined as follows: for any p e ? ,

[p]K=[pκ], [ p ] Γ = [ p τ ] , [p]Γ,= [pΓ |], [p]Tr=[pτ].

Clearly K, T, T, and Tr are closure operators. In particular,

K2 = K, T2 = T, T,2 = Tt, Tr

2 = Tr.

In order to work with these operators effectively, it is necessary to
have alternative descriptions of Ψ~K, VT etc. Toward this end, the
following concept will prove useful.

Let ^ o ^ e ^ C ^ ) . The Mai'ceo product <%°f of <% and "T is
defined by

Φ « f = ( S e f f | there exists p e Con S such that (i) if (xp)2 = xp,

then xp e % and (ii) S/p

In general % ° Ψ~ need not be a variety ([7], Theorem 3.1).

LEMMA 4.2. ([7], Theorems 4.1 and 5.1).
(i) // W, i r e jSfίίf^), ίΛen «r ° ^ e ^ ( ^ ^ ) .

(ii) // Φ e Jέfί^J1 V S?) αn</ y c r , /Ae« <̂  ° f e

LEMMA 4.3. Le/ f e
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(ii)
(iii)
(iv)

Proof. See ([7], Proposition 6.1 and Lemma 3.2) and ([9], Theorem
6.3).

THEOREM 4.4. In F, we have

Proof. It was established in ([10]), Lemma 5.11) that T = μ = ε. Now
suppose that α, ft e F and aJ?ob. Let Γ = { X J ^ G F 1 } and define a
multiplication on S = ί1 U Γ by

if w, 0 G i7,

if w = x5 G Γ, y G F.

Then 5 G ^ ^ . Since £ is countably infinite, it follows that there exists an
epimorphism θ: F -» S. Moreover, ^ can be chosen to map the variables
in a and ft identically so that, in particular, aθ = a, bθ = b. Since S is a
homomorphic image of i% we have aJ?°b in S. Hence

But T is a right zero semigroup. Therefore xa = xh and ^ = ft. Thus
= ε on JF and, by duality, ^° = ε.

COROLLARY 4.5. // Ψ* is a proper subυariety of %£%, then so are

Proof. For example, consider i^Tr If TTr = <«&, then F G IT Tr and
so, by Lemma 4.3(iv), F/^° G iTm By Theorem 4.4, ^° is the identity
congruence. Thus F G ̂  and 0^=

The next result explains the local and global behaviour of these
operators.

THEOREM 4.6. Let

(i) y^c ^r^Γ c r(KT)1 c - a^® and
(ii) ^ c ^ ^ c r{KTtf- c d^^ and

(iii) // 5^c ^ , /ten >^c ̂ Γ/Γ, c ^(TtTr)
2 <z - - c: tf@ and

Proof. It follows immediately from Corollary 4.5 that Ϋ"(KT)n,
y and rr(TiΓr)

n are proper subvarieties of ^0ί for all positive
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integers n. The remainder of part (i) can be found in ([10]), Corollary 5.9).
From Lemma 4.3(ii) and (Hi), it is clear that r(KT)n c ^(JΏΓ,)11 for all
positive integers n, and so it follows from (i) that # ^ = WX-ίΠ})'1. Now,
if r(KT^m = riKT^1 for some m, then clearly ^(ϋΓΓ/)

m =
^{KTjΫ for all k > m. But this would imply that %0t = W^/ΏΓ,)" =
ir(KTι)

m, which would contradict the fact that T{KT^)n is a proper
sub variety of ^0i for all «. Thus (ii) also holds. Now consider (iii).

Let SfQ y . In order to establish the last assertion, it suffices to show
that Fk^ί/>{TιTr)

k for all positive integers k, where Fk is the free
completely regular semigroup on k generators.

It is clear from Lemma 4.3(iii) that

9 c

so that F^ e &{??,)* holds for fc = 1. Now suppose that Fk e
and consider i^+ x .

Let ĴΓ be the minimum component of i^ + 1 and define p on Fk+ι by

^ (^,Z>€Ξ#and
a = b otherwise.

Then p is a congruence on Fk+ι and p c ^ , Now let σ be the Rees
congruence on Fk + ι/p determined by the ideal K/p of Fk+1/p. Since
K/p is a single oŜ class of Fk+1/p, we have σ c JSP. But (F£+ 1/p)/σ =
Fk + 1/K, the Rees quotient for i^ + 1 determined by the ideal K.

For each component D of Fk+1/K covering the zero component, let
D be the union of all components above it. On Fk+ι/K define a relation

apDb <=* a = b or a,b £ D.

Then ρD is a congruence on Fk+ι/K and(Fk+ι/K)/ρD = Fk.

In addition, the intersection of all congruences ρD is the equality
relation. We conclude that Fk+1/K is a subdirect product of copies of Fk.
Since F , and therefore F,°, lies in ^{T,Tr)

k, it follows that Fk+ι/K e
^{T^Ϋ. Thus F A + 1 /p G &?(TιTr)

kTι and F^ + 1 e ί/?{TιTγ)
kTιTr =

y?(T/Tr)
k + \ as required. Hence Wi^iT^y = ̂ ^ . It now follows, as in

part (ii), that ^{T^Y c ir(TιTr)
nJtl for all positive integers >z.

In Theorem 4.6, it is shown that #^? is the join of an infinite family
of proper subvarieties. In contrast, we have the following result.

THEOREM 4.7. 77*e variety ^91 is finitely join irreducible.

Proof. Let °U, ^ G Jδ?(^^), ^ * # # , ^ # ^ ^ . Then there must exist
a positive integer n such that Fn £ ^ U ̂ \ Suppose that F w e t V f .
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Then there exist ^ E * , ΰ e f , a subdirect product R of A and B and
an epimorphism Θ:R -> Fn. Since Fn is the free completely regular semi-
group on n generators, there exists a homomorphism φ:Fn -* R such that
i = φθ, where i is the identity mapping on Fn\

R <A X B

It follows that φ is a monomorphism and we may consider Fn as a
subsemigroup of A X B. Let πA and τr5 denote the projections of A X B
onto 4̂ and 5, respectively, and let p = πA ° TΓ^1, σ = τrβ o π^1. Then
p Π σ = ε. Since Frt £ Φ U ^ , p and σ are both non-trivial congruences.

Let ίΓ be the minimum component of Fn and_jc be the Rees
congruence on Fn determined by the ideal K. By the remark prior to
Theorem 5.12 in [9], there are no idempotent pure congruences in Fn.

Hence, there exists x e Fn\E(Fn) such that xρx°. We prove next
that there exists k e K such that xk Φ x°k. If x e K, take k = x°. It
remains to consider the case x ί ί . To this end, it suffices to construct a
completely regular semigroup S with an epimorphism θ:Fn-+ S such that
(jcλ:)0 Φ (x°k)θ. For this, let S = l ^ U {jμr| r e f;1} with the multipli-
cation

ab if a, beFn_l9

ab=lyr iίa=yr,

Then S G ^ and

(2) χyx = Λi = Λ # Λ° = Λ°i = ^°Λ

Let jc 1 ? jc 2 , . . . ,x w be the free generators of FΛ. Define a mapping ^ by

0 : x / - > x / for / = l , 2 , . . . , n - 1, x n - » ^ 1 ?

and extend it to a homomorphism of Fn into S. Letting

k = ^^v ^i ' ' ' xn-i) ->

we obtain k G K and kθ = yx{xι - xn-ι)° = yv Consequently, (2)
gives (xk)θ Φ (x°k)θ and thus xk Φ x°k. Since xkpx°k, it follows that
pλ = p Π /c is not the equality relation. Again by [9], pλ is not idempotent
pure. Therefore, there must be an element a e K\E(K) with apλa

0.
Let σλ be similarly derived from σ. Then there is an element

b e K\E(K) with Z?σ1Z?°. Since ΛΓ is completely simple, we may assume
that aJίfb. The restrictions of px and σx to /fΛ, say p2 and σ2, are then
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both non-trivial. But Hx is a free group ([2], Theorem 5.7) and so p2 Π σ2

is also non-trivial. Hence pλ Π σx is non-trivial and so also p Π σ, which is
a contradiction.

5. C commutes with K, Γ, Tι and Tr. In order to prove the statement in
the title, we first consider how idempotent pure congruences restrict to the
core.

LEMMA 5.1. Let S G <€9t andC= C(S). Then

Proof. Let T = (τs Π 2) \ c and σ = τ c Π S. Clearly τ c σ. Since σ
and T are idempotent pure, it suffices to show that they have the same
trace. So let e,f^E(S) = E and eσf. Let X J G S 1 be such that
xey G £. Then

(eyx) = ey(xey)x = ey(xey) x = (eyx)

so that, since eyx lies in a subgroup, eyx e £. Thus e(eyx) e £ and so,
since eσ/ and eyx e C, we must have f(eyx) e JE. Hence

and ^ c/e G £. Thus ( ĵc/e)e G £ and, again since eσ/ and yxfe G C, we
obtain ĵ jc/e/ G £. But eS)f so that fJFfef. Since eτ c / and τ c restricted to
any J^class is trivial we get fef = /. Therefore yxf G £ and

(x/j)3 = χf(yχf){yχf)y = χf(yχf)y = (xfy)2.

Thus x/y G £. By symmetry, we have that, for all JC, j G S1,

jcey G £" <=» x ^ ; G j?

and therefore er/. Hence σ = r, as required.

LEMMA 5.2. Lέ?/ ^ e &(<€&). Then (irV ^ ) C = ^ C V ̂ .

. The claim is trivial if ^ c ^ . So suppose that ^ ^ T so that

We clearly have ^ C V ̂ c ( ^ v ^ ) C . So now let S G (T^V
Then C(5) G ̂ "V ̂  and thus C(S) is a normal band of groups. By ([11],
IV.4.3), normal bands of groups can be characterized by the behaviour of
their idempotents relative to their components. Since this pertains only to
idempotents, it follows that S itself is a normal band of groups. If D is a
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component of S, then by Lemma 3.4 and ([6], Theorem 3.3), we obtain

C(D) = C(S)ΠD G (rv y) n «^= (^n «^) v(^n ί? )̂ = ir.

Therefore D e y^C for each component D of S which together with S
being a normal band of groups and the proof of ([11], IV.4.3), yields that
S is a subdirect product of its components with a zero possibly adjoined.
Since each of these, by the above, is contained in i^C V Sf, we conclude
that S

We can now show that C commutes with K.

LEMMA 5.3. KC = CK.

Proof. First let S e ^0t and define a mapping χ by

χ : c{τs n Q) -> c(τ5 Π 0 ) Π C(S) (c e C(S)).

Lemma 5.1 asserts that (τs Γ) 2) | C ( 5 ) = τ C ( 5 ) Π <® which then implies
that x is a bijection of C(S/(τsΠ Q))) onto C(S)/(τc(S) Π 3) since
every homomorphism maps the core onto the core. It now follows by
Lemma 5.1 that χ is also a homomorphism. Therefore

(3) C(S/(τs Π 9)) = C(S)/{τC(S) Π 9).

For >^e se{^0t), we obtain

** C(S)/(τC(S) f lS)6fvy by Lemma 4.3

** C{S/{τsCλ3>)) e f v y by (3)

« 5/(τs n 0) e (TTV y )C

»S/(τjΠ^)efCV^ by Lemma 5.2

» S E Ί^CΛ: by Lemma 4.3.

Thus ^ϋ:C = -TCK, as required.

LEMMA 5.4. Let S & %& and C = C(S). Then

r I c rc

Proof. Consider J^°. Clearly i f 0 | c c (J2?C)°. So let a,b & C,
and JC, j e 5 1 . Then x°ayo&cx°byo since α^c°Z), and x°ayάCx°by since i f
is a right congruence. But clearly

xaySex^ay, xby£>xoby

so that xay<£xby. Thus a(£?° |c)fe and ̂ ° | c = {^c)°. Similarly for 9t
and μ = J?° = ̂ ° Π if0.
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LEMMA 5.5. TC = CT, TJC = CTh TrC = CTr.

Proof. Consider Tt. From Lemma 5.4, it follows that

For any oΓe &(<<gdt\ we then obtain

Similarly for ΓΓ and T.

6. L commutes with K, T, Tt and Γr. In order to prove the statement
in the title, we require information on the restriction of congruences to
certain submonoids.

LEMMA 6.1. For any S e <€&, τs \ eSe = τeSe for all e e E(S).

Proof. Let e ^ E(S), σ = τs\eSe and r = reSe. Clearly σ c T. For the
opposite inclusion, it suffices to show that trT c t rσ . Hence let / , g ε £

= E(eSe) with frg. Let JC, y e 5 1 and assume that xj^ e £ ( 5 ) . Then

[f(eyxe)]3 = fey{xefeyfxe = fey(xfyfxe

= fey(xfy)xe = {feyxef

which implies that f(eyxe) e £", since f(eyxe) is contained in a subgroup
of eSe. The hypothesis implies that g(eyxe) e E(S) whence

(xgyf = x(geyxe)2gy = x(geyxe)gy = (xgyf

so that xgy ^ E(S). By symmetry, we deduce that fog. Consequently
σ = T, as required.

LEMMA 6.2. Let ^ G &(V9ΐ). Then (Ϋ~V S?)L = Π V ST.

Proof. The claim is trivial if ^ c IT. So suppose that ^ c <£&>. It is
clear that rh V ̂ c (oTv ^ ) L .

Let S e (7^V ̂ ) L . Then, for all e G £(5), eSe e ^ V ^ . It follows
that ^5^ is a normal band of groups. By ([11], IV.4.3), normal bands of
groups can be characterized by the behaviour of their idempotents relative
to the subsets eSe as e runs over all idempotents of S. It follows from this
reference that since eSe is a normal band of groups for all e e E(S), we
have that S itself is a normal band of groups. Moreover, for any
e G E(S), using ([6], Theorem 3.3), we obtain

eDee G ( i T V ^ ) Π
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and thus De e Ψ'L. The proof of ([11], IV.4.3) implies that S is a

subdirect product of the semigroups De with a zero possibly adjoined.

Since each of these, by the above, is contained in i^L V «$*, we conclude

that S <= 'TL V ST.

LEMMA 6.3. KL = LK.

Proof. First let S e #5? and e G 2S(S). Define a mapping χ by

χ:aτ -> aτ Π eSe (a

Lemma 6.1 asserts that T | eSe = τeSe which implies that χ is a bijection of

(eτ)(S/τ)(eτ) onto (eSe)/τeSe. It now follows, by Lemma 6.1, that χ is

also a homomorphism. Therefore

(4) (eτ)(S/τ)(βτ) = (eSe)/τeSe.

For ^ e <e(<e9iχ we obtain

S e iTAL «* e5^ e TTU: for all e e E(S)

» (e5e)/τ,Se E f v y for all e

by Lemma 4.3(i)

<=» (eτ)(S/τ)(eτ) e ^"V y for all e e ^ίS1) by (4)

S/τ e iTL V y by Lemma 6.2

by Lemma 4.3(i).

Thus y"A:L = Ϋ~LK and the proof is complete.

We now consider the interaction of L and T, T, and Γr.

LEMMA 6.4. Lei S e <$θt ande & E(S). Then

Proof. Consider JS?°. Clearly i ^ 0 | ί S ί c (JS?βΛ)°. So let a, b

<a(J5P,St)°6 and x j e S . First note that, for any w e S,

(exe)°(xe)°(exe)w =

)~= (exe)~ (exe)(exe)w =
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so that (exe)wJ?(xeγ(exe)w. Also

a(#ese)°b - (exe)a(eye)&eSe(exe)b(eye)

=> (xe)°(exe)a(eye)<Sf(xe)°(exe)b(eye) by the above remarks

=> (xe) (exe)a(eye)(ey) J?(xe) (exe)b(eye)(ey)

since JS? is a right congruence

=> (xe) xeaey(ey) J?(xe) xebey(ey)

=> xeaeyS£xebey

=> xayJPxby.

Thus aJ?°b. The case of 8% is symmetric and the case of μ follows from
these two cases.

LEMMA 6.5. TL = LT, TtL = LTh TrL = LTr.

Proof. Consider Tt. From Lemma 6.4 it follows that

(eJ?°)(S/JP°)(e&0) s (eSe)/J??S€.

Hence for any ^ e jg?(^^), we obtain

ΓZL «* eSe e f ^ for all β ( )

e ^ fOΓ all β

0)(S/JS?°)(eJ8?0) e ^ for all e

Thus Γ7L = L7}. That ΓrL = LΓr and TL = LΓ follows similarly.

7. Semigroups generated by any two of K, T9 Th Tr. In this section we
deal with some technical preparations for the determination of various
semigroups of operators in terms of generators and relations. We shall
require some additional notation.

For reasons that will soon be apparent, we will be interested mostly in
the free semigroup on {c, /, k, t, th tr). An element w = a1a2 an e A +

will be called distinguished if atΦ ai+ι for i = 1,. . . , n — 1. The set of
distinguished elements in {a, b, c,...}+ will be denoted by Δabc....

If v G A + and we wish to emphasize the variables xl9..., xn G A that
appear in w, that we shall write υ(xl9...,xn). If 5 is a semigroup and
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sl9..., sn e S, then we shall denote by v(sv ...,sn) the element obtained

from v by substituting sιfor x., i = 1,...,«.

In keeping with the notation p^ and ρ Γ already introduced for the

minimum congruence in the kernel and trace class of any congruence p on

a completely regular semigroup S, we will now denote by ρκ the maxi-

mum congruence in the kernel class of ρ; that is, ρκ denotes the largest

congruence on S with the same kernel as p. That ρκ exists follows from

Lemma 4.1 and basic information about pκ can be found in [9]. (Of

course there is the dual concept of the maximum congruence pτ in the

trace class of p, but we shall not require that here.)

The variety 0t#9ί of regular bands, that is, the variety of bands

defined by the identity axya = axaya, has a role to play in the next two

results.

PROPOSITION 7.1 (Kadourek [8], Proposition 8.2). For any p e # ,

withp c pa^ΛPτ)K= PT-

LEMMA 7.2. Let ^ , ^ e se{V9t\ % ^ c ^ and r%<%. Then
WKand

Proof. Let ^ , ^ G j S f ( ^ ^ ) be such that 9t#Si c ^ , ^ ^ Φ and

suppose that f Γ c ^AΓ. Let p = ρ<% and σ = p^. Then σ c p^ ^ and

ρκ c σΓ. By ([10], Theorem 4.5) the mapping p -> p^ (p e ^ ) is order

preserving. Hence

τ=^ pκ = (pκ)
K c ( σ Γ ) ^

=> p^ c ( σ r ) = σΓ by Proposition 7.1

=> P c p^ c σ r c σ

a contradiction. This establishes the first claim. The claims that irTι <£ °UK

and i^Tr % QlK now follow from the fact that i^T = 'TTι Π

LEMMA 7.3.

<%T,-rK<£ ^Ttand

Proof. Let S e f \ i Then 5 ° e f \ ^ since ^ c 1T. Let X =
{xs \s EL Sλ) and define a multiplication * on R = S U X by

a * 6 = < χ

s iί b = xs ^ X,

\xsb ιΐ a = xs G: X.
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Then R is an ideal extension of the right zero semigroup X by S°.
Therefore/? e rκ\W.

However, suppose that a,b e S and a<SP°b. Then xa = xλa^xλb =
xh. But I is a right zero subsemigroup of R. Therefore xa = xh and
a = b. Similarly JS?° must be the equality on X and therefore on R. Thus
Λ/oS?° = R £ <V so that i? <£ Φ7). Hence Y*K <£ ΦΓ7. Since ^ Γ c Φ7),
it follows that Ϋ~K £ <%T and, by duality, iΓK £ <&Tr.

LEMMA 7.4. Le/ Φ e J2?(<ίf#), Φ # ^Λ, u, w e Δ*,, F = ι;( A", T), W
= w( A, Γ) and °UV = °UW. Then either (i) v = w or (ii) v and w end in
the same letter and differ in length by at most one.

Proof. Let iΓ= <%V = °UW. By Corollary 4.5, Ψ*Φ <€&. Since v, w e
Δ^, y and w are both of length at least one. First suppose that v and w
end in different letters. Without loss of generality, we can assume that
v = υxt and w = wxk for some vv wx G ΔΛ/ U { 0} . Letting Fx = ̂ (A, T)
and H^ = w^AΓ, Γ), we have

= or,
which, since °UΦ ΉSft, contradicts Theorem 4.6(i). Therefore v and w
must end in the same letter. If \υ\ = |w|, then since v and w are both
distinguished elements (so that occurrences of / and k alternate) we must
have v = w.

So suppose that \υ\ Φ |w| and that v and w both end in k (a similar
argument will handle the case where both end in /). Without loss of
generality, we may assume that υ is the shorter word. Suppose that
\v\ + 2 < \w\. Since v and w both end in k and are both distinguished
elements of {k, /}+, there must exist an element ί /eA j t / U{0} such
that w = uυtk. Thus

f c iΓTK= WVTKQ WU(K,T)VTK= WW= Hr

so that W= 1VTK. Since Ψ*Φ <€&, this contradicts Theorem 4.6(i). Thus
υ and w can differ in length by at most one.

LEMMA 7.5. Let Φ G JS?(ίfΛ), ^ Γ ^ c Φ, Φ Φ <β&, <% Φ <VK, <W Φ

v,w G Λ ^ U { 0 } and <%υ(K,T) = <%w(K9T). Thenv = w.

Proof. By the hypothesis that °lί Φ <tίT9 °ίl Φ °UK, we cannot have one
of y,w equal to 0, but not the other. Therefore we may assume that
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Suppose that υ Φ w. By Lemma 7.4, we may assume that |w| = \υ\ + 1
and that υ and w end in the same letter. Without loss of generality, let υ
and w end in k. We may also assume that v has been chosen to have the
smallest length of any element in Δkt for which there exists w e Δ^ with
\w\ = M + ! and <&Ό(K9 T) = <%w(K, T).

Let v = υxk and w = wλk, where vl9wx e Δ^r Let V = υ(K9T)9Vι

= v1(K,T),W=w(K,T) and Wi = wλ(K, T). By the minimality of
\v\9

(9(Vι Φ °UWV Since v,vvw,w1 are distinguished, ^ and wλ must both
end in /. Also, occurrences of k and t alternate in distinguished words
and \wλ\ = 1̂ 1 + 1. Hence, we must have wλ = tυx or wλ = fcϋ!. Thus
either <&Vι c ^ Γ ^ = ^ H ^ or ^ F x c ^ ί : ^ = QlWx. In both cases we
conclude that <%VX c ^ H ^ so that ΦJFi $2 ̂ F ^

Since wλ ends in /, wx(K9 T)T = wλ(K9 T) and so <%WλT = <%WV But

% °ίlVλ implies WW^T % ̂ VλK by Lemma 7.2, so that

which is a clear contradiction.

LEMMA 7.6. Le/

(i)
(ϋ)

Proof. By duality it suffices to prove (i). By Lemma 4.3(iii), we have
( ^ Π 36) c JS?^ O ^ = ^ r / 9 while clearly J5?<̂  o ( ^ n ^ ) c 36. Thus

O(Φ n 36) c ΦΓ, Π ̂ . So let 5 e ^Γ z n ^ . Then S/S?° G * , S G

# and e^° e £><$ for all e e E(S). Hence eJ5?° e ?̂S? Π ̂  = Jδ?^ for
all e e £(5), and S/SP0 e Φ Π ̂ . Thus 5 e oS?^ o(^r Π ̂ ) , as required
and the equality in (i) holds.

LEMMA 7.7. TT( = T[Γ = Th TTr = ΓrΓ = Tr.

Proof. It suffices to consider Γ7. Let ^' e &(%&). Clearly ^7) c
So let 5 e ^TTt. Then i? = 5/oS?0 e ^ Γ and i?/μΛ e Φ. But

is the equality congruence on it and, therefore, so also is μR. Hence

= R = R/μR e *

and so 5 e ΦJ). Thus Φ77) = ΦΓ7 and therefore 7T7 = Γ.
It is also clear that °UTι c ^ j Γ. SO let 5 e ^7)Γ. Then i? =

e 4r7) and i?/J^° G Φ. Since μ5 c JS?S°, it is easily seen that Jg?Λ° =
oS^/μ^ Thus S/JSf̂ ° = R/&% e Φ and 5 e ΦΓΛ Hence ΦΓ7Γ = ^T) so
that 7)Γ = Th as required.
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We are finally ready for the main result of this section.

T H E O R E M 7.8. (i) [K9 T] s (k,t\k2 = k,t2 = t).

(v) [Γ, Tt] = </, t^t2 = t, /2 = /„ rt, = ttt = t,) = (ti)1

(vi) [Γ, ΓΓ] = (Utr\t2 = ί, ί2 = /„ «Γ = /,/ = tr) ^ (tr)\

Proof. Let φ : {k, t) +-> [ # , Γ] be the epimoφhism defined by kφ =

# , ίφ = T. Let p = φ ° φ" 1 and σ be the congruence on {k, t}+ generated

by the relation {(k2, k\{t2, t)}. Since K2 = K and Γ 2 = Γ, it follows

that σ c p. To establish the reverse inclusion, let /?, q Ξ {k, t]+ and ppq.

Using the relation defining σ, there exist v,w e Δ ^ such that /?σι? and

qσw. Since σ c p, we have ypw. Thus υ(K, T) = υψ = wφ = w(iΓ, Γ),

and in particular ^ΓΛι;(X, Γ) = JfdSw{K, T). But ^ Γ ^ i ί = a Φ JΓ&

and ^ Γ ^ Γ = Jf3$<&ΦJf3$. Hence, by Lemma 7.5, υ = w. Thus pσv =

wσq, so that pσq and p C σ . Therefore p = σ and (i) follows.

The proofs of parts (ii) and (iii) are similar to that of (i). Lemmas 7.4

and 7.5 were derived from Lemmas 7.2 and 7.3. These latter lemmas hold

equally well for Γ7 and Tr as for T. Therefore, throughout Lemmas 7.4

and 7.5 we may replace T consistently |>y T{ or by Tr to obtain analogous

results for K combined with Γ, and for K combined with Tr. The final

parts of the proofs of (ii) and (iii) are then similar to that of (i) above.

We now prove part (iv). Let φ : {th tr)
 +-> [Th Tr] be the epimorphism

defined by /,φ = Th trφ = Tr. Let p = φ ° φ" 1 and σ be the congruence

on {thίr}
+ defined by the relation {(//,//), (ίr

2, tr)}. Since 7)2 = Γz and

T2 = Tn it follows that σ C p . To establish the reverse inclusion, let

p,q ^ {thtr}
+ and ppq. Using the relation defining σ, there exist v,w e

Δ,, such that /?σy and ^σw. Since σ c p, we have vpw. Thus ί;( J}, Γr) =

vφr= wφ = w(Γ;, Γr). Now let 7)*, Γr* be the operators defined on

by

By repeated application of Lemma 7.6, we have that for all

By ([8], Example 10), this implies that u = w. Thus /?σϋ = wσ̂ f so that

pσq and σ c p. Thus σ = p and (iv) holds.

Parts (v) and (vi) follow directly from Lemma 7.7.
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8. The semigroup generated by C,L,K and T. In §§3 and 4 we have
considered the semigroups [C, L] and [K, T] and in §§5 and 6 we have
shown that the operators C and L commute with the operators K, T, Tt

and Tr. In this section we will show that the relations between C, L, K
and T already introduced are sufficient to describe [C, L, K, T].

We require three technical preliminary lemmas.

LEMMA 8.1. Let °ll, r^ £{<€&), 6?<z Φ, JT8 c Ψ~ ,°ll c ^r α«J w e
Δ * r // ez/Zzer (i) ̂ Γ = y and w = A:wx / o r ί o w e w 1 e A i - / U { 0 } o r (ii)

y and w = twλ for some wx G A ^ U { 0 } , then °Uw{K, T) c

Proof. The assumption that 0/Q Ψ~ implies that ^w(i£, Γ) c

, T) for all w G Δ Λ r So the objective is to show that under certain

circumstances, inequality is preserved. We will only consider case (i), since

case (ii) will follow in a similar manner using Lemma 7.3. We will argue

by induction on the length of wv

First suppose that wλ = 0. Since ^$£ ̂ , it follows from Lemma 7.2

that -TT % fyK so that τT= Ψ*T % ^K and therefore

, T).

Now suppose that |wx| > 1 and that the desired inequality holds for
any words of the form kw[ e ΔΛ/, where |w{| < 1^1. We have two cases.

Case 1. wλ = w2k for some w2 e ΔΛ/ U { 0 } . In fact, we must have
w2 ¥= 0 since otherwise we obtain w = kwλ = /cw2/c = /c0/: = kk which is
not distinguished. Thus \w2\ > 1 and, since wx = w2k,w2 must end in t.

Hence w2(K, T)T = w2(K9 T). By the induction hypothesis, <%Kw2(K, T)

c rKw2{K,T). In particular, rKw2{K,T) £ WKw2(K,T). Therefore,
by Lemma 7.2,

yKw2(K, T)T £ WKw2(K, T)K = <&w(K, T)

so that

rκw2{κ, T) = rκw2{κ, τ)τ % <t/w(κ, T)

and

:, Γ) = t~κw2(κ, τ)κ % <&w(κ, T).

Case 2. wx = w2/ for some w2 G ΔΛ ί U { 0 } . The proof in this case is
similar to that of Case 1.

L E M M A 8.2. Let r,s G Δ C / « « J U , W G Δ k t U { 0 } &e ^wc/z that

r(C, L)υ(K, T) = s(C, L)w(K, T). Then v = w.
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Proof. Let R = r(C, L), S = s(C, L), F = Ό(K9 T), W = w(#, Γ)
and Φ = ΘJfββy. Then ^ C = ΦL = Φ so that <̂ i? = °US = °ll. Hence
<%V = WW.By Lemma 7.4, either (i) i; = w, as claimed, or (ii) \υ\ = \w\ + 1
and y and w end in the same letter. So let (ii) hold. Since occurrences of k
and t alternate in v and w and they end in the same letter, we must have
v = kw or υ = tw.

Let ϋ = kw. If w = 0, then *UV = <%K = Φ Φ ΘJf@<$= <&W, a
contradiction. Hence w Φ 0 and, since v is distinguished, w must begin
with t. Let τΓ= ΦΛΓ = C?. Then ^ ^ = f , f c f andw = ^ for some
w 1 E Δ ^ ί U { 0 } . B y Lemma 8.1(ii),

<&w(K,T) c rw(K,T) = <%Kw(K,T) = <Vυ(K,T)

which is a contradiction. Thus v = w.
The case when v = tw is treated similarly.

LEMMA 8.3. For distinct A, B e { 0, C, L, CL, LC), exwί Φ =

(ii) /or
(iii)
(iv)

{φ, or

Pr<96>/. For all choices of distinct elements Λ, 5, G { 0, C, L, CL, LC},
we display in the table below suitable choices for °U. The square in the
row labelled with A and the column labelled with B has the form

where & = and SI =

In all cases °U is either ^ or 0 so that Φ satisfies the requirement (i). In
addition, in all cases either ^ c i o r i c ^ s o that °U also satisfies the
requirement (ii).

0

C

L

CL

C
38

38 Θ

L

Θ
Θ \ΘL

38
Θ | SI

CL

38
38 | ΘL

SI
& | ΘL

38

38 \ ΘL

LC
38

38\ Θ
Θ

Θ \ΘL
38

3δ\ Θ
38

ΘL Θ
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By Lemmas 5.3 and 6.3, K commutes with C and L and therefore
also with A and B. It is easily seen that 8§K = 38 and ΦK = Θ. Conse-
quently, since in all cases ^ is either Si or 0, we have that °UK = ^ .
Hence

and (iii) holds.
For each choice of A and B, we now take τT= ΦΓ. Then Λ ^ c

c ^TΓ = ^ so that Ϋ~ satisfies (i). By (ii), either <%A c ^ £ or <%B c
First suppose that ^ c ^ 5 . By (iii) we have that (<^4)ϋ: = °UA and
(4TJ?)A' = ®B and hence, by Lemma 8.1(ϋ), W Γ c ^5Γ. By Lemmas
5.5 and 6.5, T commutes with C and L and therefore with A and J5.
Hence

= WAT c

Similarly, if QlB c <̂ 4 we obtain ^ 5 c iTA so that ^ satisfies (ii).
Finally, again since T commutes with A and B and also since T2 = T9

= WTTA =

= WTTB =

Thus if satisfies (iv).

LEMMA 8.4. Let w (Ξ Δktu {0} and W = w(K, T). Then the follow-

ing are distinct: W, CW, LW, CLW, LCW.

Proof. If w = 0, then the result follows from the description of the
semigroup [C, L] in §3. Now let A, B e { 0, C, L, CL, LC} and suppose
first that w begins with the letter t. By Lemma 8.3, there exists a variety
Φ = #4 t£, satisfying Lemma 8.3(i)-(iii). By Lemma 8.1(ii), we must have
VAWΦ QlBW so that AWΦ BW. Suppose, on the other hand, that w
begins with the letter k. Let o^= ^ B e JgP(^^) satisfy Lemma 8.3(i), (ii)
and (iv). By Lemma 8.1(i), we must have 0^4 IF # ^jffίF so that again
AW Φ BW.

We now apply these observations to the semigroup [C, L, A, T\

THEOREM 8.5.

t2 = r, c/c = Id = c/, cA: = kc,

ct = tc, Ik = kl, It = tl).
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Proof. Let N be the semigroup on the right hand side of the
statement of the theorem. Let M = {c, /, k, t}+ and φ: M -> [C, L, K, T]
be the epimorphism defined by cφ = C, /φ = L, A:φ = K,tφ = T. Let
p = φ o φ-1 and σ be the congruence on M generated by the defining
relations for N.

It follows from the fact that the operators C, L, K and T are all
idempotent and from Lemmas 3.1, 3.3, 5.3, 5.5, 6.3 and 6.5 that σ c p.
Now suppose that ppq. Using the relations defining σ, there exist
/% 5 e Δc/ and ϋ,w e ΔΛ/ such that pσrv and σ̂Λ vv. Since σ c p, this
implies that rί pΛ w. Hence (rϋ)φ = (sw)φ so that r(C, L)υ(K,T) =
Λ ( C , L)w(i<:, Γ). By Lemma 8.2, ϋ = w and, by Lemma 8.4, r = s. Thus

. Hence p c σ, as required.

COROLLARY 8.6. [C, L, K, T]1 s [C, L] 1 x [#, Γ]1.

Proof. This is immediate from Theorem 8.5.

Similar descriptions to that of [C, L, Γ̂, Γ] in Theorem 8.5 can be
obtained for [C, L, #, ΓJ, [C, L, i^, Γr] and [C, L, Γ/9 ΓΓ] by substituting Tt

for Γ etc. in all arguments. The nature of the semigroup generated by
C, L, i^, Γ, Γ7 and Tr is left open.

9. Evaluation at the trivial variety. The diagram below presents a few
varieties obtained by repeated application of the operators C, L? K, T, Tι

and Tr to the trivial variety y . In order to save writing S' in the
expressions of the form 3~C,3"T,3ΓCTr, etc., we have written only
C, Γ,CΓr, etc. For example, the vertex labelled &= C = T stands for the
variety of groups; this variety can also be described as 2ΓC or 3ΓT. The
following legend is used to denote the classes induced by these operators:

C

L

K

T

We omit the proofs of the statements implicit in the diagram.
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T,TrK= TrT,K= CLK
= LTK= LT,K= LTrK

CK= TK = T,K
= TrK= CT,K= CTrK

LK= K

TKT =T/KT= TrKT = CKT = LCKT

LKT = KT

T,T, = TrT, = CL= LT= LT, = LTr

Acknowledgment. The authors are indebted to J. Kadourek for detect-
ing an error in an earlier version of the paper.
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