ON DEFORMING G-MAPS TO BE FIXED POINT FREE

Edward Fadell and Peter Wong

When $f: M \to M$ is a self-map of a compact manifold and dim M \geq 3, a classical theorem of Wecken states that f is homotopic to a fixed point free map if, and only if, the Nielsen number n(f) of f is zero. When M is simply connected, and dim M > 3 the NASC becomes L(f) = 0, where L(f) is the Lefschetz number of f. An equivariant version of the latter result for G-maps $f: M \to M$, where M is a compact G-manifold, is due to D. Wilczyński, under the assumption that M^H is simply connected of dimension ≥ 3 for any isotropy subgroup H with finite Weyl group WH. Under these assumptions, f is G-homotopic to a fixed point free map if, and only if, $L(f^H) = 0$ for any isotropy subgroup H (WH finite), where $f^{H} = f | M^{H}$ and M^H represents those elements of M fixed by H. A special case of this result was also obtained independently by A. Vidal via equivariant obstruction theory. In this note we prove the analogous equivariant result without assuming that the M^H are simply connected, assuming that $n(f^H) = 0$, for all H with WH finite. There is also a codimension condition. Here is the main result.

THEOREM. Let G denote a compact Lie group and M a compact, smooth G-manifold. Let $(H_1), \ldots, (H_k)$ denote an admissible ordering of the isotropy types of M, $M_i = \{x \in M : (G_x) = (H_j), j \leq i\}$ the associated filtration. Also, let \mathscr{F} denote the set of integers $i, 1 \leq i \leq k$, such that the Weyl group $WH_i = NH_i/H_i$ is finite. Suppose that for each $i \in \mathscr{F}$, dim $M^{H_i} \geq 3$ and the codimension of $M_{i-1} \cap M^{H_i}$ in M^{H_i} is at least 2. Then, a G-map $f : M \to M$ is G-homotopic to a fixed point free G-map $f' : M \to M$ if, and only if, the Nielsen number $n(f^{H_i}) = 0$ for each $i \in \mathscr{F}$.

1. Preliminaries. Throughout this note G will denote a compact Lie group and M will denote a compact, smooth G-manifold. For any closed subgroup H in G, we denote by NH the normalizer of H in G and by WH = NH/H, the Weyl group of H in G. The conjugacy class of H, denoted by (H), is called the orbit type of H. If $x \in M$ then G_x denotes the isotropy subgroup of x, i.e. $G_x = \{g \in G | gx = x\}$. For each subgroup H of G, $M^H = \{x \in M | hx = x \text{ for all } h \in H\}$ and $M_H = \{x \in M | G_x = H\}$. Let $\{(H_j)\}$ denote the (finite) set of isotropy types of M. If (H_j) is subconjugate to (H_i) , we write $(H_j) \leq (H_i)$. We can choose an *admissible* ordering on $\{(H_j)\}$ so that $(H_j) \leq (H_i)$ implies $i \leq j$ (see [1]). Then we have a filtration of G-subspaces $M_1 \subset M_2 \subset \cdots \subset M_k = M$, where $M_i = \{x \in M : (G_x) = (H_j), j \leq i\}$.

We now recall the definition of the *local* Nielsen number. If U is an open subset of M and $f: U \to M$ is a compactly fixed map (not necessarily a G-map), then the Nielsen number n(f, U) is defined [3] using the equivalence relation on the fixed point set Fix f as follows. Two fixed points x and y in U are equivalent if there is a path α in U such that $f(\alpha)$ and α are endpoint homotopic in M. The remainder of the local theory proceeds along the lines of the global theory. Note that if dim M > 3, the path α above may be taken as a simple path in U and assuming (as we may) that Fix f is finite, α may be chosen to avoid all fixed points different from x and y. Then in a small closed tubular nieghborhood $T \subset U$ of α f may be altered in the interior T^0 of T (via the Wecken method [1] or the "Whitney trick" see [4]) to obtain a map $f': U \to M$ so that f' is an extension of $f|U - T^0$, $f' \sim f$ and f' has only one fixed point in U. This is the technique of coalescing fixed points. Note that T is a closed n-ball. If this remaining fixed point has index 0, f' may be altered within T^0 to remove it, thus obtaining $f'' \sim f$ such that $f''|U - T^0 = f|U - T^0$ and f'' has no fixed points in T. A key point here is that f is altered in the interior of a closed *contractible* neighborhood of α .

2. The Proof of Main Theorem. We first note that the G-map $f: M \to M$ preserves the filtration $M_1 \subset \cdots \subset M_k$, i.e., $f(M_i) \subset M_i$. Also, $W_i = WH_i$ acts on M^{H_i} and freely on $M^{H_i} - M_{i-1}$. Furthermore $f^{H_i} = f|M^{H_i}: M^{H_i} \to M^{H_i}$ is a W_i -map. We will set $f_i = f|M_i$. We then let \mathscr{F} denote the indices $i, 1 \leq i \leq k$, such that W_i is finite. Whenever A is a G-set, \tilde{A} will denote the corresponding set of orbits, i.e., $\tilde{A} = A/G$. Similarly $\tilde{f}: \tilde{A} \to \tilde{B}$, will denote the map induced by a G-map $f: A \to B$. Finally, Fix f is a G-set, and each orbit in Fix f will be referred to as a fixed orbit.

2.1. LEMMA. (Controlled Homotopy Extension). Let (X, A) denote a G-pair such that all orbits in X - A have the same orbit type G/Hand $f: (X, A) \to (X, A)$ a G-map (of pairs). Let V denote a closed G-neighborhood of A and $f^H: X^H \to X^H$ the restriction of f to X^H . Then, any (NH/H)-homotopy f_t^H , relative to V^H , with $f_0^H = f^H$ extends to a G-homotopy f_t , relative to V, with $f_0 = f$. Furthermore if f_1^H is fixed point free on $(X - A)^H$, then so is f_1 on X - A. *Proof.* The proof is an easy consequence of II.5.12 in Bredon [1]. Let W = NH/H and Y = X - A. The homotopy f_t is defined on Y by setting

$$f_t(y) = gf_t^H(g^{-1}y), \qquad G_y = gHg^{-1}.$$

Then, f_t is defined on Y and on $V \cap Y$, $f_t = f_0$, $0 \le t \le 1$. Thus, setting $f_t = f$ on V extends f_t to all of X. Note that

$$gf_1^H(g^{-1}y) = y \Leftrightarrow f_1^H(g^{-1}y) = g^{-1}y, \qquad y \in Y,$$

which verifies the last assertion of the lemma.

2.2. PROPOSITION (Inductive Step when W_i is finite). Let $f: M \to M$ denote a G-map such that

(1) $f_{i-1}: M_{i-1} \rightarrow M_{i-1}$ is fixed point free,

(2) $W_i = NH_i/H_i$ is finite,

(3) f_i has a finite number of fixed orbits on $U_i = M_i - M_{i-1}$,

(4) $n(f_i^H, U_i^H) = 0.$

Then, f is G-homotopic to $f': M \to M$, relative to M_{i-1} so that f'_i is fixed point free.

Proof. Consider the map $f_i: M_i \to M_i$ and let $H = H_i$ and $W = W_i$ for notational convenience. Now focus attention on $f_i^H: M_i^H \to M_i^H$ and let \mathscr{O}_1 and \mathscr{O}_2 denote two fixed W-orbits in U_i^H . Call the fixed orbits \mathcal{O}_1 and \mathcal{O}_2 Nielsen equivalent if for some $x \in \mathcal{O}_1$ and $y \in \mathcal{O}_2$, x and y are Nielsen equivalent in U_i^H (see [2]). We will coalesce two Nielsen equivalent orbits into one fixed orbit as follows. Suppose $\mathscr{O}_1 = Wx$ and $\mathscr{O}_2 = Wy$ with x and y Nielsen equivalent in U_i^H , i.e., there is a path α from x to y in U_i^H so that $f\alpha \sim \alpha$ (in M_i^H and with ends fixed). Because of assumption (3) we may assume that α avoids all other points of Fix f_i other than x and y. Project α to $\tilde{\alpha}$ in U_i^H/W by the orbit map $\eta: U_i^H \to U_i^H/W$ and let $\tilde{\beta}$ denote a simple path homotopic (relative to end points) to $\tilde{\alpha}$. Then $\tilde{\beta}$ lifts to a simple path β from x to y. If $N(\tilde{\beta})$ is a closed ball neighborhood of $\tilde{\beta}$ in U_i^H/W , then, since $N(\tilde{\beta})$ is contractible, $\eta^{-1}(N(\tilde{\beta})) = WN(\beta)$, where $N(\beta)$ is the corresponding ball neighborhood of β . Thus, $\eta^{-1}(N(\tilde{\beta}))$ consists of disjoint translates of $N(\beta)$ by W. The local Nielsen number $n(f_i^H, N(\beta))$ is at most one (see [3]). Applying the local Wecken theorem or the "Whitney trick" in $N(\beta)$ (see [3] or [4]), we can obtain a homotopy $H: N(\beta) \times I \to M_i^H$ such that $H_i | \partial N(\beta) = f_i$ for all t, $0 \le t \le 1, H_0 = f_i | N(\beta)$ and H_1 has at most one fixed point in the interior of $N(\beta)$. H has the extension H(wx, t) = wH(x, t) to

 $(WN(\beta)) \times I$ and to all of $M_i^H \times I$ by using f_i outside of $WN(\beta) \times I$. Then $H: M_i^H \times I \to M_i$ is a *W*-homotopy, with $H_1 = \varphi_i: M_i^H \to M_i^H$ having one less or two less fixed orbits. Continuing in this manner we obtain a W-map $\varphi'_i: M^H_i \to M^H_i$, W-homotopic to f_i with finitely many fixed orbits no two of which are Nielsen equivalent. If x belongs to one of the remaining orbits Wx and D is a sufficiently small neighborhood of x, then the local indices $i(\varphi'_i, D)$ and $i(\varphi'_i, wD)$, $w \in W$, are the same and $i(\varphi'_i, WD) = |W|i(\varphi'_i, D)$. Since $n(f_i^H, U_i^H) = 0$, we must have $i(\varphi'_i, D) = 0$, since Wx is the union of Nielsen classes. We can now remove x as a fixed point via a homotopy relative to ∂D and extend (as above) to a W-map $\varphi_i'': M_i^H \to M_i^H, W$ -homotopic to φ_i' , with Wx eliminated as a fixed orbit. Continuing in this manner we arrive at a W-map $\psi_i \colon M_i^H \to M_i^H$ which is fixed point free and W-homotopic to f_i relative to some closed neighborhood of M_{i-1}^H . By Lemma 2.1 this map ψ_i extends to a fixed point free G-map $f'_i: M_i \to M_i, G$ homotopic to f_i (relative to M_{i-1}) and the G-homotopy extension theorem provides the required extension f' of f'_i .

2.3. PROPOSITION (Inductive Step when dim $W_i > 0$). Let $f_i: M_i \rightarrow M_i$ denote a G-map such that

(1) f_i^H is fixed point free on M_{i-1}^H ,

(2) dim $W_i > 0$, $W_i = NH_i/H_i$.

Then, f_i is G-homotopic relative to A to a G-map $f'_i: M_i \to M_i$ such that f'_i is fixed point free.

Proof. This proposition follows from Lemma 3.3 in [6].

Proof of Theorem. We assume (inductively) that $f: M \to M$ is a G-map such that $f_{i-1}: M_{i-1} \to M_{i-1}$ if fixed point free. As a first step, choose a closed G-neighborhood V of M_{i-1} in M_i so that M_{i-1} is a G-deformation retract of V. Then, f is G-homotopic, relative to M_{i-1} , to a map f' such that $f'_i: M_i \to M_i$ has no fixed points in V_i . Thus, we may assume that f itself has this property so that f_i is compactly fixed on $U_i = M_i - M_{i-1}$. In particular f^H_i is compactly fixed on U^H_i and the local Nielsen number $n(f^H_i, U^H_i)$ is defined. We consider two cases.

Case 1. $W_i = NH_i/N_i$ is finite, i.e., $i \in \mathcal{F}$.

In this case, the codimension condition applies to yield $n(f_i^H, U_i^H) = n(f_i^H) = 0$. This is because any path in M_i^H from x to y, $x \cup y \in U_i^H$ may be deformed (ends fixed) to a path in U_i^H , i.e., to one avoiding the submanifold M_{i-1}^H . Let V' denote a closed G-neighborhood of M_{i-1}^H

in M_i^H so that the fixed points Fix f_i^H of f_i^H are in $M_i^H - V'$. Choose a closed G-neighborhood $Q \subset U_i^H$ of Fix f_i so that $f_i^H(Q) \subset U_i^H$. Working in the orbit space U_i^H/W_i , we deform $\tilde{f}_i|\tilde{Q}$, relative $\partial \tilde{Q}$, to a map \tilde{f}_i' with finitely many fixed points. Since W_i acts freely on U_i^H we may apply the covering homotopy theorem to conclude that f_i^H is homotopic relative to V' to $\varphi: M_i^H \to M_i^H$ where φ has finitely many fixed W_i -orbits and the homotopy is compactly fixed. Thus, $n(\varphi, U_i^H) = 0$ and we may apply Proposition 2.2 to conclude that f is G-homotopic, relative to M_{i-1} , to a map $f': M \to M$ with $f_i': M_i \to M_i$ fixed point free.

Case 2. dim $W_i > 0$. We apply Proposition 2.3 and then the G-homotopy extension theorem to conclude that f is G-homotopic, relative to M_{i-1} , to a map $f': M \to M$ with $f'_i: M_i \to M_i$ fixed point free.

Applying induction completes the proof of the sufficiency. The necessity is clear.

References

- [1] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York 1972.
- [2] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman 1971.
- [3] E. Fadell and S. Husseini, Local fixed point index theory for non-simply connected manifolds, Illinois J. Math., 25 (1981), 673-699.
- [4] Boju Jiang, *Fixed Point Classes From a Differential Viewpoint*, Lecture Notes #886, Springer-Verlag 1981, 163-170.
- [5] A. Vidal, *Equivariant Obstruction Theory for G-Deformations* (in German), Dissertation 1985, Universität Heidelberg.
- [6] D. Wilczyński, Fixed point free equivariant homotopy classes, Fund. Math., 123 (1984), 47-60.

Received April 6, 1987. The first author was supported in part by the National Science Foundation under Grant No. DMS-8320099.

University of Wisconsin Madison, WI 53706