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POSITIVE ANALYTIC CAPACITY
BUT ZERO BUFFON NEEDLE PROBABILITY

PETER W. JONES AND TAKAFUMI MURAI

There exists a compact set of positive analytic capacity but zero
Buffon needle probability.

1. Introduction. For a compact set E in the complex plane C,
H*(E*) denotes the Banach space of bounded analytic functions out-
side E with supremum norm || - || g (gc). The analytic capacity of E is
defined by

y(E) = sup{|f(c0)|; f € H*(E®), |fllme=(&) < 1},

where f"(co0) = lim;_ z(f(z) — f(00)) [1, p. 6]. Let £(r0) (r >
0, —m < 6 < =) denote the straight line defined by the equation
x cos @ + ysin @ = r. The Buffon length of E is defined by

Bu(E) = // drdo.
{(r0);:Z(r0)NE#2}

Vitushkin [7] asked whether two classes of null-sets concerning y(-) and
Bu(-) are same or not (cf. [2], [3]). Mattila [4] showed that these two
classes are different. (He showed that the class of null-sets concerning
Bu(-) is not conformal invariant. Hence his method does not give the
information about the implication between these two classes.) The
second author [5] showed that, for any 0 < & < 1, there exists a
compact set E; such that y(E;) = 1, Bu(E;) < ¢. The purpose of this
note is to show

THEOREM. There exists a compact set Ey such that y(Ey) = 1,
Bu(Ey) = 0.

2. Cranks. To construct Ejp, we begin by defining cranks. The 1-
dimension Lebesgue measure is denoted by | - |. For a finite union E
of segments in C, its length is also denoted by |E|. For p > 0,z € C
andaset E C C,we write [pE+z]={p{+z;{ € E}. With0<g¢p < 1
and a segment J C C parallel to the x-axis, we associate the closed
segment J (@) of the same midpoint as J, parallel to the x-axis and of
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100 PETER W. JONES AND TAKAFUMI MURAI

length (1 + ¢)|J|. With a positive integer ¢,0 < ¢ < 1 and a segment
J parallel to the x-axis, we associate

201 2071
J(a9) = JWa-1(9) + 279110 | Jax(9).
k=1 k=1

where {Jk},zc"= , are mutually non-overlapping segments on J of length
279]J|; they are ordered from left to right. The set J(g, ¢) is a union
of 29 closed segments of length 279(1 + ¢)|J|. The segment I'j =
{x;0 < x <1} c C is called a crank of type 0. For a finite sequence
{o j};¥=o, @o = 0 (n > 1) of non-negative numbers less than 1, a finite
union I of closed segments is called a crank of type {¢ j};!=0 if there

exists a crank I = Ufc=1 Ji ({Jk}f<=1 are components of I"”) of type
{p;}1Zg such that

l
T = J(g 9n)
k=1
for some /-tuple (q,,...,q;) of positive integers larger than or equal
to go = 100. We write I'[,, I". For a sequence {¢ j}cj’.‘_’:o, po = 0 of
non-negative numbers less than 1, a set I' is called a crank of type
{0;3%0 if there exists a sequence {I',}3° , of cranks such that

(1) Iy is of type {p;}]_

(2) l_‘0 [(a. I [¢z T

(3) r=UYr,.
n=0 j=n

We write by O, the finite sequence of n zeros (n > 1). For a finite
union I of segments, L?(I") (1 < p < oo) denotes the L? space on I
with respect to the length element |dz|. We define an operator /4 on
LP(T) by

_ f(§)
T 2mi zl»:l—rvl(j)/|g_z|>g,§el“ {—- Z]dCl'

The following fact is already known.

#1(2) = gz, [ L1
|
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LEMMA 1 ([5]). For any positive integer m, there exist a crank T},
of type O, and a non-negative function gy, on I';, such that g}, is a
constant on each component of T,

lgmlloes) =1L llgmlliem:) < Ci [IReH gmllLo(rs) < Civm,
Bu(F ) < Cy/m°/10,
where Re ( is the real part of { and C, is an absolute constant.

Our method is as follows. We define a sequence {n(k)},c("’= o of non-
negative integers with large gaps. Choosing {oj }10” suitably, we de-
fine a crank T'yg,(1) of type {p;}}%"). Then |Tjgp(1)| = 10” (1+¢#)
Replacing each component of l" 10n(1) by a crank 51m11ar to F —10n(1)

in Lemma 1, we construct a crank 1" n(2) of type {;}" @, where 9;=0
(10n(1) + 1 < j < n(2)). Then we see that

10n(1)
1/7(Tn@2y) < 1/7(Cron(1y) + Const(n(2) — 10n(1))2/ T (1+9)),
j=1
On(1)
Bu(T'y(2)) H +9,)(n(2) - 10n(1)) /1.

Our sequence {¢ j}}g’(’) is chosen so that

10n(1) 4/3
n(2) — 10n(1 II a+epny -

Jj=1
Hence
1/7(Tn(2)) < 1/7(Tion(1)) + Const(n(2) — 10n(1))~1/4,

Bu(Ty2)) < Ci(n(2) — 10n(1))73/2.
Replacing each component of F (2) by a suitable crank, we construct a
crank I'jg,y) of type {¢ ,}10” Replacmg each component of I'jo,(2)
by a crank s1m11ar to F —10n(z)> We construct a crank I3 of type
{9;}1C), where ¢; = O (lOn( )+ 1 < j < n(3)). The sequence
{;}12® | is chosen so that |(n(3) - 10n(2)) — (TT}2{? (1 + ¢,))*|
is small We see that

1/7(Ty3) < 1/7(Tion(1)) + Const(n(2) — 10n(1))~"/4
+ Const(n(3) — 10n(2))~'/4 + (negligible quantity),
Bu(Ty3)) < Ci(n(3) — 10n(2)) 3%,
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Repeating this argument, we define a sequence {I',)}72, of cranks
such that
limsup 1/y(Fy)) < 0o, hm Bu(T'yy) = 0.
k—o0 k—oo
Then the analytic capacity of the limit crank is positive and its Buffon
length is zero.

3. Lemmas.

LEMMA 2. Let T'y, be a crank of type {¢ j};!=0, gn be a non-negative
Sfunction on Iy, such that g, is a constant on each component of T,
and let {9;} 1", | be non-negative numbers less than 1. Then there
exist a crank Ty, of type {¢ j}SF;“{)" and a non-negative function gy+m

on I'pom such that

(4) &n+m IS a constant on each component of T pim,
(5) | &n+mllLi(Tpm) = I1&nllLi(T,)
n+m
(6) Insnllzott.n) < Weallzwy / TT (14020
u=n+1

(7) IRe A, ., &n+mllLe(T,..)

n+m
< |Re A, gnllL(r,) + 1 &nllL>(r,) { / H (1+9u) }

j=n+1 u=n+1

We can write [, = Ufg=l J{™ with its components {J,ﬁ")}fgzl. We

put
Iy

T = UJk (Gn+1> Pn+t1)s
k=1

where ¢,.1 (= go = 100) is determined later. Suppose that {Fﬂ} ya——

have been defined. We can write I'; = (J” 7_, JY) with its components
{Jéj)}fé:l. We put

(8) J+1 UJ (q1+1 ¢j+l)
k=1
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Thus {I';}7+7 | are defined; {q;}71)", are determined later. Let n +

1 < j < n+ m. We define a non-negative function g; on I'; as fol-
lows. Each component J{") of I', generates 2%+ ++4 components of
I'j. On these components, we put

gl {u(" / gn(CIdCI}/ I (1 +00.

u=n+1

Since the total length of these 2%+**4 components is

j
I TT (14 9u),

u=n+1

the integration of g; over these components is equal to [ o gn(O)|dL|.

Hence ||gjllir;) = ll&nllzi(r,)- Evidently, g; is a constant on each
component of I';. We have

185l eer < gl onr /H (1+0,).

u=n+1

In particular, (4)-(6) hold. To prove (7), we estimate

IReZt,,,&j+1llL(r,..)-

Recall (8). We have

0,41 ‘
JIEJ)(qu’ Pjr1) = U[Jli,jz)u(¢j+l) + iz—qj+|'J]£J)|]
u=1
0,41 )
v JIE,JZ);J—I((ojH) (0j+1 =291 1<k <)),
u=1

where {JIS,Q }i‘;’{ ' are mutually non-overlapping segments on J,fj ) of
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length 2~ 9+ IJ,Ej )|; they are ordered from left to right. Let

O)+1

Zy € U[ o2 ¢]+1 +12 q/+le(J |

and let zjj be the nearest point on J,ﬁoj ) to zo. Then

L = [Re-lpwv. / 81 4
2mi 3 G0m) & 20
1
~ R
aj+l g (C)
Re— p.v / SIS ge
Z Jk(”u |(‘/’J+|) C— 20 I '
1 00 2—qj+l|J1£0j)|

S 2n ] g oo 1 dx
27 oo (x —Re 20)2 + (2—q,+,‘JIEOJ)|)2“ }+1”L T)41)

j+1
S“gn“Lw(l‘,,)/{z 1T (1+¢u)}-

u=n+1

Let

- D . —gw — 2= ()
Pj 1311331 dis(J,".T'; = L"), 1(qj41) =2 [max 1771,

where dis(-, -) is the distance. We choose, for a while, g;,; (> gp) so
that 7(gq;4;) < p;/10. Since

/ n ooy Si+1(E)1AE] = / . &0,
[ka2”(¢1+1)+12 ‘Jk l] szﬂ

/ grn@ldcl= [ el
J(]) J(J)

kop—11@j+1 K2p—1

(1<k<li1<p<297 (=054)),
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we have

L,= Re—L / ng(C) ldCI
27 T, I—JU]((I,H @) C

1
Rez_m/r ) C—ZOI Cl'
> | £01(0) 4
[ kzu(("1+1)+l2 "J+|,_](/)|] C_. Zp
_ / gJ(C) £i8%) e
Jk‘” - 23

8j+1(£) 8;(%)
/J() (@541) C_ZOI Cl /,Zu—l C_ZaldCI‘}

k2p—1

u=

29;+1

< Const 7(gj41)p;> Y Z/ g;(0)d¢]

k#ky n=1
< Const7(g;41)p; &gl r)
= Const r(qj+1)/7]2||gn||Ll(rn)

Thus

(9) IRe#t, gi+1(20)| < |IReAt,g(25)| + Ly + L,

Jj+1
5HRe/‘?i-,gjlle(r,)+|IgnllL°°(rn)/{2 II t+o0 }

u=n+1
+ Const 7(g41) 27 | &nll L r,)-

In the same manner, we have (9) for any point z, in

0)+1

U Jli,{)zﬂ_l(%H)-
u=1
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Since ko (1 < ko < /) is arbitrary, |[ReZf,, gji1ll~(r,,,) is dominated
by the summation of the last three quantities in (9). Consequently,

(10) ||ReA,,, 8n+mllLoo(T,. )
S ”Re%nwn—l g’H'm—l ”L°°(rn+m—l)

n+m
+”gn”L°°(l“,,)/{2 I1 (1+¢II)}

u=n+1

+ Const 7(gn+m) P i1 &8l < -+ < IReH, gnll=(r)

n+m J
+llgnllz=ry Y 1/{2 I1 (1+¢u)}

Jj=n+1 pu=n+1
n+m
+ Const||gnllzyr,) D ©(a))P72)
Jj=n+l

Since limy.o 7(g) = 0, we can inductively define {g,}71,| so that
(7) holds. This completes the proof of Lemma 2.

LemMA 3. Let Ty, be a crank of type {¢ j}7=0, gn be a non-negative
Sfunction on T',, such that g, is a constant on each component of I'y,
and let m be a positive integer. Then there exist a crank 'y, of type
{q)j};?:g’ with 9; =0 (n+1 < j < n+ m) and a non-negative function
&n+m on Ty, such that

(11) 8n+m 1S a constant on each component of Ty m,
(12) | &n+mll L@,y = &0l L1,

(13) | 8n+mllLe(Trsm) £ C1ll&nllLoo(r,)s

(14) ||Re%‘n+mgn+m”L°°(l“,,+m)

< |IRe#, gnllL(r,) + CovV'mil| gull Lo (T,

(15) Bu(Tpim) < Ci|Tyl/m®/*0,

where C, is the constant in Lemma 1 and C, is an absolute constant.

We can write I, = Uf(=l Ji with its components Uk}i:l- Let z; be
the left endpoint of J;, (1 < k </). We put

!
Toim=J Ak Ak =TI + 2],
k=1
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gntm(2) = &m((z — zik) /i) gn(2k) (2 € A, 1<k <),

where I}, g, are the crank and the function in Lemma 1, respectively.
Then I'y1m is a crank of type {;}71f". Evidently, (11) and (12) hold.
Lemma 1 immediately yields (13) and (15). Let zg € Ay, and let z;
be the projection of zy to Ji,. Then Lemma 1 shows that

|Re#,,, &n+m(20) — Re#t, &n(2p)]

n+m

gn+m(C) 1 &n({)
<R 2m/ Tz, 961~ Re Z—/Jko ¢ -z

— 1 gn+m(C)
= |Re m C

= |Re(#r: gm) ('—I—j'—‘)
< CivAlgaliry + 5L

w- 3| St [ #25]

k#ko
Let {I';}_, be cranks such that

ro [¢| rl [¢2 te [% rn-

For 1 <k <[ 0<j<n, y/(j)denotes the component of I'; gener-
ating Jy. In particular, yk(n) =J; (1 <k <I). We put

kew 1M C—

1 0

1
&n(zk) + ELO

where

where

Fi={1<k <Lk#koy(j—1)= v, = 1), 7)) # 76,(J)}-
Then

= Zn: L‘}.
J=1

Since I}, is a crank of type O,,,, a geometric observation shows that,
forany ze Ay (1 <k <),

dis(z, Ji) < 2T [{27% + 2720 4 ... 4 2-m@0} < %6|Jk|.
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Hence Ay is contained in the square Q) = {z +is;z € J;, 0 <5 <
|7k|/100} (1 < k < 1). Since |yk(n)| = |y, (n)| (kK € F), we have, for
k € Fn,

dis(Qu Qi) > dis(7 (1), 74 (1) — o5 17 ()] + 172, ()]}
= dis(7e(n). 7, () ~ 5172 ()]

Forany 1 < j<n-1z€(,

dis(z ()< 3 { B ol | + 151

u= j+1

<2 S /) + s )
u=j+1

<2 (D272 (1 + @j41) + 27201+ 9 j41) (1 + 9 52)
4 1 .
o+ 2714 ) (4 on)} + 5517 ()]

< 2pe (2@ + 27200 4y 4 ()] S 5l
Since |yx (/)| = vk, (J)| (k € F;), we have, fork € 7;,1 < j<n-1,
(16)  dis(Qx, Qk,) = dis(vk(J), 7k, () — g‘ﬁ{b’k(m + |7k, (D)1}

. . . 1 .
= dis(7 (7). 7k, (/) = 53178, (S
Thus (16) holds for any k € 7,1 < j < n. Let 1 < j < n. Since

/ Zuim()]dC] = / (Ol (1<k<D),
A Jk

[ e 5= sentla

+/Jk{zkiz5‘c—1 6}gn el
>

< Const 3 (il + 1 Dais(@s Q1) 2 [ (e

ke,

< Const||gullze(ry) Y (Wil + 1k )|k dis( Q. Ok,) 2
keg,

ke,
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The segment y; (j — 1) generates 24 components {/1,,},2/";1 of I'; of
length |y, (J)I, where g; = log{(1+¢ )|, (J—1)|/|7%(J)[}/ 1082 (= o).
We may assume that A; =y (j). Let

Fiw={k € F =n(j)} (2<v<29)

2  Fiv. We have, for 2 <v < 2%,

F =
> (Wl + Wi D |
ke,

<27 e TT (T4 0) D 1l

Jj<usn ke,

2
= |,11|22—qo(n—j) { H 1+ (p,,)} < MIIZZ—(qo—Z)(n—j),

J<usgn

Then

where [, ,<,(1 + ¢,) denotes 1 if j = n.
Hence a geometric observation and (16) show that the last quantity
in (17) is dominated by
2%
Constl|gallz=(r,) D D (il + o)) Vildis(Qr, Ox,)

v=2kes,
29j
< Const||gullze(ry) Y dis(Av, 472 Y (Wil + i DIV
v=2 kes,
29
< Const||gnll = (r,) 41227 @= D=1 Y " dis(4,, ;)

v=2

o0

< Const||gnll oo (r, |1 227 @200 3 (14, |u) =2
u=1

< Const||g,,||Lw(r”)2—(qo—2)(n—j).

Thus
|Re #,., 8n+m(20)| < |[ReZt, gn(2p)|

1 n
+ C \/ﬁllg,,llLoo(rn) + 7 ZL?
=1
< |[Re#, gnll(r,) + Ci1vVml| gnll L=,

n
+ Const||gn || (T, Z 2~ (@=2)(n=J),
j=1
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which shows that
IRe .., 8n+m(20)| < [Re A, &nll L= (r,) + C2vVM| &nllL(r,)
for some absolute constant C,. Since z, € I',,,, is arbitrary, this gives

(14). This completes the proof of Lemma 3.

LeMMA 4. Let T be a crank of type {9;}%2,, and let {I'n}32, be a
sequence of cranks satisfying (1)-(3). If liminf,_ ., Bu(I'y) = 0, then
Bu(I') = 0.

Let 29 (-n/2 < 6 < mn/2) denote the straight line defined by the
equation xsinf — ycos@ = 0. For a set E C C, projy(E) denotes the
projection of E to %%, We have

n/2
Bu(E) = /  Iproig ()] .

bt/

We can write T', = Js_, J{" with its components {J{}-_ . In the
same manner as in the proof of (14), we have

I, I
I c |J{zdis(z J) < 1771} | = J R, say |-
k=1 k=1

Hence, for any —n/2 < 6 < 7/2,

projg ( LIJ R}c"))

k=1

Iproje(I)| <

We can decompose {k;1 < k < [,} into a finite number of mutually
disjoint sets {&? },1 so that projo(UkE?f J{™) is connected. Then a
geometric observation shows that

projg U R}c") projg ( U Jlgn)
keg? keg?

+ Const (E - IBI)—l max |projg (J{™)]
2 kez? o0\“k

projg U Jm
kezs

<

-1
< Const (5 —161) (1 <pu<up),
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and hence

Vg

. T -1
[projy(I)| < Const (5 ~ 6])

projg U J
keg?

n -1 .
= Const (5 ~161) " Iprojo(I')}.

u=1

We have, for any 0 < ¢ < 7/2,

(m/2)—¢

(n/2)—e i n -1 .
/ |proje(I)| dO < Const/ (5 - |0|) [projg(Iy)| d6
—(n/2)+e —(n/2)+¢

< Conste~ ! Bu(T,).

Since liminf, ., Bu(I'y,) = 0, this shows that the first quantity equals
zero. Since 0 < ¢ < m/2 is arbitrary, Bu(I') = 0. This completes the
proof of Lemma 4.

4. Construction of Ey. Let p, be the integral part of (3/2)*"/3
(n > 1). We define a sequence {n(k)}2, of positive integers by
n(1) =10,

n(k +1) = 10n(k) + pionk) (k>1).
We define a sequence {¢; }°° ° o of non-negative numbers by ¢o = 0,
9;= (1 <j<n(1)),

Qj= (n(k) < j < 10n(k), k> 1),
9; =0 (10n(k) < j < n(k+1), k> 1).

We use Lemma 2 with I, go = 1 and {¢,}'%(!). There exist a crank

Tion(1) of type {9 ; }1 (1) and a non-negative functlon 81on(1) 00 I'1on(1)
such that gion(1) 1s 2 constant on each component of TI'jg,),

_.Np—

10n(1)
lgonlle @y =1 18100yl (Tiona)) £ 1/ IT 1+ 9w,

IRe #,q,,, &10n(1) | Lo (T0n1))
10n(1)

< IRe %, goll oy + Z / H(l +0.)

n(1) J IOn(l)
T

Jj=n(1)+1
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Using Lemma 3 with n = 10n(1), m = pgn(1), we obtain a crank I',
of type {¢ j};?(jg and a non-negative function g, on I';(;) such that
&n(2) is a constant on each component of I',,)

lgn2)llLi (Toe) = 1&10n() L1 Tiony) = L

10n(1)
|8n2)ll L (o) £ Coll&10n(1) |l (Ty0niy) < Co/ II (1 +0w.

|IRe 2 8n(2) [l e (Th)
S ||RC/%“|O,,“)g10n(l)”L°°(r|0n(l) + CO\/ plOn 1)“g10n ||L°°(r10n(l))

n(1) J 10n J
< 1 (1+o4) 1+ o¢,)
{Z /U ’ } j=n(1)+1 /H ’

=1
lOn
+ COVPIOn / 1+ ¢;t)r

10n(1)
Bu(Ty2)) < ColT1onyl/P3atsy = Co [T (1+ 04)/ 03600,

u=1
where Cy = max{Cy, C,}. Using Lemma 2 with n = n(2), m = 9n(2),
we obtain a crank I'jg,(;) and a non-negative function g9,z Using
Lemma 3 with n = 10n(1) m = Djon(2), WE Obtain a crank I', ;) and
a non-negative function g, ;). Repeating this argument, we obtain a
crank Ty (k > 2) of type {,;}") and a non-negative function g,
on I, such that g, is a constant on each component of I',),

| 8niiyllr T = L

lOn(k 1)
&l < CE°° / (1+ 90,

”Re% k)gn k ”L°° Fn<k)

10n(v)
Z{Co\/.l’mn /H +¢/¢}

U—_’
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10n(k—1)
Bu(Tou) < Co [T (1 +0u)/Pibnlery:
u=1
LetT'= N7, Uz Tnk)- ThenT is a crank of type {p;}%,. We have
10n(k—1)
Bu(rn(k)) < C() H (1 + ¢ﬂ)p109n/(lko 1)
u=1

3\ 10n(k=1) 73 —(4/3)(9/10)10n(k~1)
< Const (5) (-2->

3\ ~2n(k=1)
= Const (:2-) ,

which shows that limy_,,, Bu(I';x)) = 0. Hence Lemma 4 gives that
Bu(l') =
We now show that p(I') > 0. Let kK > 1. Then

/ Zao (O] = 1.
|

Since n(v) > 10n(v — 1) (v > 2),n(1) = 10, we have n(v) > 10" (v >
1), and hence

73\ ~9nlk-1)
Nl &nie)ll oo (T < €5 (—) < Const.

2
Since
10n(v - 3\ ~9n()
PlOn H (1+o,u) < VPionw) (i‘)
3\ @/3)(1/10n() /3N ~9n(v)
< bt 2
< Const (2) <2)
3\ ~(7/3nw)
= Const (—2-> (v 2>1),
we have

IRe #t,, &n(k)ll Lo () < Comst.
Hence we can define a non-negative function 4 on I' ) so that

/ (Ol = 10 llzmqre) < 1/2,

n(k)
”Re%n(k)hk”L“’ ) S 1/2’
hi(¢) = 0 at endpoints of each component of '),

hy is differentiable along I",,(k),
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where 7, is an absolute constant. Let

2oy 1 hi (€)
hk(z) - 271 T C— Z|dC|’

ur(z) = Rehg(z), vi(z) = (the imaginary part of A (z)),
fi(2) = {1 ~ exp(ihy(2))}/{1 + exp(ihi(2)} (2 & o))
(cf. [1, p. 30]). We see easily that f; is analytic outside I,y and

fi(o0) = 1/ I (L] = no/ 4.

n(k)
The non-tangential limit of |u (z)| to each point on I, is dominated
by
1Psell Loo (1) + IRE il oo () < 1.
Since |u;| is sub-harmonic in I'¢ n(k and continuous in C U {oo}, we
have SUPzer, luk(z)] <l. Hence t)or any z & T,

If (Z)|2 1+ exD( 2vk(Z)) - 2exp( vk(z)) cos(uk(z)) <1,

1 4+ exp(—2vi(z)) + 2exp(—vi(2)) cos(ux(z)) —
which shows that || fi || geo rs,) < 1. Since k > 1 is arbitrary, using
an argument of normal famlhes we obtain f € H(I*) satisfying
f'(00) = no/4m, || fllge(r-y < 1. This shows that y(I') > ny/4n. Nor-
malizing I, we obtain the required set Ej.
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