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POSITIVE ANALYTIC CAPACITY
BUT ZERO BUFFON NEEDLE PROBABILITY

PETER W. JONES AND TAKAFUMI MURAI

There exists a compact set of positive analytic capacity but zero
Buffon needle probability.

1. Introduction. For a compact set E in the complex plane C,
H°°(EC) denotes the Banach space of bounded analytic functions out-
side E with supremum norm || \\H°°(EC)- The analytic capacity of E is
defined by

γ(E) = sup{|/'(oo)|;/e H">{EC), \\f\\H~m < V*

where /'(oo) = lim*-*, z(f(z) - /(oo)) [1, P 6]. Let ^ ( r , θ) (r >
0, -π < θ < π) denote the straight line defined by the equation
x cos θ + y sin θ = r. The Buffon length of E is defined by

Bu{E)= if drdθ.
JJ{(r,θ)\&(r,θ)ΠEφ<Z>}

Vitushkin [7] asked whether two classes of null-sets concerning γ( ) and
Bu(') are same or not (cf. [2], [3]). Mattila [4] showed that these two
classes are different. (He showed that the class of null-sets concerning
Bu(') is not conformal invariant. Hence his method does not give the
information about the implication between these two classes.) The
second author [5] showed that, for any 0 < ε < 1, there exists a
compact set Eε such that γ(Eε) = I, Bu(E€) < ε. The purpose of this
note is to show

THEOREM. There exists a compact set Eo such that γ{Eo) = 1,
Bu(E0) = 0.

2. Cranks. To construct Eo, we begin by defining cranks. The 1-
dimension Lebesgue measure is denoted by | |. For a finite union E
of segments in C, its length is also denoted by \E\. For p > 0, z e C
and a set E c C, we write [pE + z] = {pζ + z ζe E). With 0 < φ < 1
and a segment J c C parallel to the x-axis, we associate the closed
segment J(φ) of the same midpoint as /, parallel to the x-axis and of
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length (1 + φ)\J\- With a positive integer q, 0 < φ < 1 and a segment
/ parallel to the x-axis, we associate

2<7-i 2q~{

J(«> 9)=\J Uik-xiφ) + i2-g\J\] U U J2k{φ),
k=l k=\

where {ΛI^Li a r e mutually non-overlapping segments on / of length
2~g\J\; they are ordered from left to right. The set J(g, φ) is a union
of 2q closed segments of length 2~q{\ + φ)\J\. The segment Γo =
{x O < x < 1} c C is called a crank of type 0. For a finite sequence
{ψj}nj=Q, Ψo = 0 (n > 1) of non-negative numbers less than 1, a finite
union Γ of closed segments is called a crank of type {^y}"=0 if there

exists a crank Γ' = (JjLi h ({«4}jUi a r e components of Γ) of type

{ψjVjZo such that

for some /-tuple (q\,..., q{) of positive integers larger than or equal
to q0 = 100. We write V[φnT. For a sequence {^}yl0, <Po = 0 of
non-negative numbers less than 1, a set Γ is called a crank of type
{ψj}°jLo> if there exists a sequence {Γn}™=0 of cranks such that

(1) Γ π i so

(2) Γ o [φι Tι [ψ2

(3) Γ = Π U ΓJ
«=0 j=n

We write by O,, the finite sequence of n zeros (n > 1). For a finite
union Γ of segments, Lp(Γ) (I < p < oo) denotes the Lp space on Γ
with respect to the length element \dz\. We define an operator ̂ f ° n

LP(T) by

l i m / ^
2πi ε-+0j\ζ_φεζeΓζ - Z

The following fact is already known.
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LEMMA 1 ([5]). For any positive integer m, there exist a crank T*m

of type Om+\ and a non-negative function g^ on Γ*m such that g^ is a
constant on each component of T*m,

Bu(Γm) <

where Re ζ is the real part ofζ and C\ is an absolute constant.

Our method is as follows. We define a sequence {n(k)}^=0 of non-

negative integers with large gaps. Choosing {φM^1^ suitably, we de-

fine a crank Γl0n{ι) of type {φj})%W. Then \ΓιOn{ι)\ = Πi=i ( 1 ) 0 + ̂ ) .

Replacing each component of ΓχOn^ by a crank similar to ̂ *nn)-\θn(\)

in Lemma 1, we construct a crank Tn{2) of type {φj}"^, where ψj = 0

(10Λ(1) + 1 < j < n(2)). Then we see that

7=1

Bu(Γn{2)) < d Π ί1 + VjW1) ~ 10«(l))-9/10.
7=1

Our sequence {ψj}^P^ is chosen so that

n(2) - lθn(l) =

Hence

l/7(Γn ( 2 )) < l/7(Γ 1 0 n ( 1 )) + Const(«(2) -

Bu{Tn{1))<Cx{n{2)-\0n{\))-V2().

Replacing each component of Tn(i) by a suitable crank, we construct a
crank Γ1On(2) of type {ψj}ιβP^. Replacing each component of Γio«(2)
by a crank similar to Γ*(3>_10 <2>, we construct a crank Γn(3) of type
{φ]}"£&, where ψj = 0 (10n(2) + 1 < j < «(3)). The sequence

{^>}2§)+1 is chosen so that |(Λ(3) - 10n(2)) - (Π}S(2)(1 + <Pj)Ϋβ\
is small. We see that

l/y(ΓB(3)) < l/y(ΓiθΛ(i)) + Const(»(2) -

+ Const(n(3) - 10«(2))~1/4 + (negligible quantity),
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Repeating this argument, we define a sequence { Γ ^ } ^ °f c r a n k s
such that

limsup l/γ(Γn(k)) < oo, lim Bu{Tn[k)) = 0.

Then the analytic capacity of the limit crank is positive and its Buffon
length is zero.

3. Lemmas.

LEMMA 2. Let Γn be a crank of type {φj}n

j=0, gn be a non-negative
function on Tn such that gn is a constant on each component of Γn,
and let {ψj^tϋΐ+x be non-negative numbers less than 1. Then there
exist a crank Γn+m of type {̂ y}"!™ and a non-negative function gn+m

on Tn+m such that

(4) gn+m is a constant on each component of Γn+m,

(5) \\gn+m\\u{Tn+m) = II&*IIL>(I>

/

n+m

Π (1

μ=n+\

We can write Γn = ULi t / i" ) w i t h i t s components {J^n)}l^v We
put

In

k=\

where qn+\ (> q^ = 100) is determined later. Suppose that

have been denned. We can write Γ, = |J^=1 J^ with its components

Vk'Vk-v W e P u t

h
(8) Γ + ^ U ^

k=\
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Thus {Γj}njt™+\ a r e defined; {tf/}£±™+1 are determined later. Let n +
I < j < n + m. We define a non-negative function gj on Γ, as fol-
lows. Each component Jjp oΐTn generates 2q*+ι+"m+q' components of
Γ7. On these components, we put

Since the total length of these 2qn+ι+"'+gj components is

\4n)\ Π
μ=n+l

the integration of gj over these components is equal to JJM gn(ζ)\dζ\.

Hence ||£/||L'(Γ,) = II£«IIL'(Γ,,) Evidently, gj is a constant on each
component of Γy. We have

Γ,) < Un\\L°°(Γn)/ Π
' μ=n+l

In particular, (4)-(6) hold. To prove (7), we estimate

Recall (8). We have

μ=\

u U

where {«^^}^=ί' a r e Mutually non-overlapping segments on J^ of
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; they are ordered from left to right. Let

and let ZQ be the nearest point on jj^ to ZQ. Then

L\ = Re^τp.v.

*0

Re

-oo X —

7+1

Let

where dis( , •) is the distance. We choose, for a while, qj+\ (> q$) so
that τ(^ ; +i) < Pj/10. Since

ί gj+ι(ζ)\dζ\= f gj(ζ)\dζ\
JjW (ψj+l) ^ 2 -

(l<k<lj,\<μ<2^>-1 (=σJ+ι)),
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we have

R e ^ 7 ί

+Σ
μ=\

< Const τ(qj+ι)Pj

= Const τ ( ^ +1)/>J

Thus

(9)

- R e
_jω ζ-z* \dζ\

"\JίJ)\
\dζ\

gj(Q
\dζ\

gj(O
C-z*

\dζ\

< ConsU(qj+ι)p-2 ^ Σ jjU) Sj(O\dζ\

*0)\ + Lx + L
x + L2

7+1

μ=n+\

+ Const

In the same manner, we have (9) for any point ZQ in

μ=\
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Since ko (I <ko< lj) is arbitrary, | |Re^7 + 1g7 +i| |Loo(ry + 1) is dominated
by the summation of the last three quantities in (9). Consequently,

n+m

2 [](1-
μ=n+\

+ Constτ{gn+m)p;lm_ι\\gn\\D{Γn) <•••< | | R e ^ n £ n | | L ~ ( r v

n+m I { j

+ 11^,,, Σ 1/ U Π (
j=n+\ ' \ μ=n+\

n+m

+ Const||^Λ||Lι(r.) Σ τ^j">Pj-
j=n+l

Since lim _̂̂ oo τ{q) = 0, we can inductively define {q^t^+i s o

(7) holds. This completes the proof of Lemma 2.

LEMMA 3. Let Γn be a crank of type {<Pj}n

j=Q, gn be a non-negative
function on Γn such that gn is a constant on each component ofTn,
and let m be a positive integer. Then there exist a crank Tn+m of type
{ψj}%^ with <Pj = 0 {n + l < j < n + m) and a non-negative function
gn+m on Yn+m such that

(11) gn+m is a constant on each component of Tn+m,

\\gn+m\\v(Γn+m) = I|£«I

(13)

(14)

(15)

where C\ is the constant in Lemma 1 and Cι is an absolute constant

We can write Γn = (JJUJ Λ w ^ ^ t s components {Λ}jUi
the left endpoint of Jk (1 < k < I). We put

A*, Λ^ = [\Jk\Γ*m + Zk\

k=\
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g n + m ( z ) = g*m{{z - z k ) / \ J k \ ) g n { z k ) ( z e A k , l < k < I),

where Γ^, g^ are the crank and the function in Lemma 1, respectively.
Then Tn+m is a crank of type {<PJ}"±Q. Evidently, (11) and (12) hold.
Lemma 1 immediately yields (13) and (15). Let ZQ € Λ^ and let ZQ
be the projection of ZQ to J^. Then Lemma 1 shows that

| R e JirΓιi+

Re

Re

- R e ^

gn+m{ζ)

gn+m(C)

\dζ\-Rc

\dζ\

X f Sn(ζ)
\dζ\

where

L° = UΠ

Let {Γj}y=0 be cranks such that

F r F r r F

For 1 < k <l 0 < j < n, y^U) denotes the component of Γy gener-
ating Jk. In particular, γk(n) = Jk (1 < k < I). We put

gn(ζ)

where

Then

ko,γk(j - 1) =
YkόU)}

Since Γ̂ , is a crank of type O w + i , a geometric observation shows that,
for any z e Ak (I < k < I),

dis(z, Jk) < 2|Λ|{2-
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Hence Λ^ is contained in the square Qk — {z + is; z € Jk, 0 < s <
17*1/100} (1 < k < I). Since \γk{n)\ = \γ^{n)\ (k e %), we have, for

For any 1 < 7 < n - 1, z e Qk,

dis(z,

φj+ι)

) _L O-2(0o-l) i \

Since \γk{j)\ = |jχ(7')l {ke^j), we have, for k eSη, 1 < j < n - 1,

1
= dis(y^(j), yjcnU)) — TΓF

25

Thus (16) holds for any ke&},l < j < n. Let 1 < j < n. Since

/ gn+m(ζ)\dζ\= ί gn(ζ)\dζ\ (1 < k < /),

we have

< Const y ] (|4| + IΛJJdistβ*, Q^)~2 / ^(OI^CI
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The segment γ^j - 1) generates 2q' components {A,}2!^ of Γ ; of
length \γko(j)\, where q} = Iog{(l+^)|^(y-l)|/|^(./)|}/log2 (> q0).
We may assume that λ\ = γ^U)- Let

^ = {k €Pj λu = γk(j)} (2 < v <

Then ^ = U?=2^/.«" W e h a v e ' for 2 < z/ < 2*,

Σ (1̂*1

where Y[j<μ<n(1 + ̂ ) denotes 1 if j = «.
Hence a geometric observation and (16) show that the last quantity

in (17) is dominated by

2qJ

2qi

2qJ

i/=2

oo

Thus

,)| < \Re^Γngn(4)

1 "

7=1

7=1
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which shows that

for some absolute constant C2. Since z 0 E Tn+m is arbitrary, this gives
(14). This completes the proof of Lemma 3.

LEMMA 4. Let Γ be a crank of type {<Pj}JL0, and let {ΓW}£LO be a
sequence of cranks satisfying (l)-(3). Iflimmin^ooBuζΓn) = 0, then
Bu{Y) = 0.

Let &>θ {-π/2 < θ < π/2) denote the straight line defined by the
equation x sin θ - y cos θ = 0. For a set E c C, proJ0(£) denotes the
projection of E to 3°θ. We have

Bu(E)= Γ \proiθ(E)\dθ.
J-π/2

We can write Tn = |JJ£=1 Jj,n) with its components
same manner as in the proof of (14), we have

^=v In the

k=l k=l

Hence, for any - π / 2 < θ < π/2,

|P«>Jβ(Γ)l <

We can decompose {k\ 1 < k < ln} into a finite number of mutually
disjoint sets {^?}^=1 so that pτojθ(\Jk&ΘJ^) is connected. Then a
geometric observation shows that

< Const
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and hence

|projβ(Γ)l< Const ( | - | 0 | ) " /ί">'k
μ=ϊ

= Const ( - - \θ\j |projβ(ΓΛ)|.

We have, for any 0 < ε < π/2,

f(π/2)-ε r(*β)-e ,- λ_i

/ \pro}θ(Γ)\dθ< Const/ (— - |^|) \pτojθ{Γn)\dθ
J-(π/2)+ε J-(π/2)+ε v / 7

< Const e~ιBu(Γn).

Since liminfn-^oo Bu(Γn) = 0, this shows that the first quantity equals
zero. Since 0 < ε < π/2 is arbitrary, Bu (Γ) = 0. This completes the
proof of Lemma 4.

4. Construction of Eo. Let pn be the integral part of (3/2)4"/3

(n > 1). We define a sequence {n{k)}™=χ of positive integers by
n(l) = 10,

We define a sequence {$»J}£10 of non-negative numbers by φ^ = 0,

Ψj = \ (1 <><«(!)),
p, = \ (n(k) <j< lθn(fc), Λ: > 1),

7 ), k> 1).

We use Lemma 2 with Γo, £ 0 = 1 a n d {̂ y}}=of̂  There exist a crank

Γioκ(i) of type {<Pj})%{l) and a non-negative function £ l θ B ( 1 ) on Γ1On(i)

such that g\on(\) is a constant on each component of T

(l +Ψμ)>
μ=l

10n(l)

Σ
«(!) / J ) 10Λ(1)

Σflί1+*/•)}+ Σ
' μ=\ I y
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Using Lemma 3 with n — 10«(l), m = P\on{\)i w e obtain a crank ΓΠ(2)
of type {ψj}^ and a non-negative function gn(2) on Γn(2) such that

is a constant on each component of Γn(2),

ftι(2) L~(Γn{2)) 0 glθn(l) L-(Γ l 0. ( 1 )) θ/ ^

where CQ = max{Ci, C2}. Using Lemma 2 with n = n(2)f m = 9n(2),
we obtain a crank Γ10w(2) and a non-negative function £IOH(2) Using
Lemma 3 with n = 10^(1), m = P\on(2)> w e obtain a crank ΓΛ(3) and
a non-negative function gv^). Repeating this argument, we obtain a
crank Tφ) (k > 2) of type {ψj}^ and a non-negative function gφ^
on Γrt(^) such that gφ^ is a constant on each component of ΓΛ^),

II^ΠWIILHΓ^,) = !>

/ lθΛ(fc-l)

ll^wlk-ir^) < c^-1 / Yl (l + ̂ ) ,
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iθn(k-l)

Π UBu(Tn(k))<C0

Let r=Πyii O S S ) * τ h e n Γ i s a c r a n k o f ιype {^ }̂ =o W e h a v e

lθn(k-l)

Bu{Tn{k))<C0 Π

n χ lθπ(fc-l) / * x -(4/3)(9/10)10n(*-l)

< Const (§) Q)

= Const s

which shows that lim^_^oojBM(ΓΛ^)) = 0. Hence Lemma 4 gives that
Bu(Γ) = 0.

We now show that γ(Γ) > 0. Let k > 1. Then

/ gn{k)(ζ)\dζ\ = I.

Since n(ι/) > 10n(ί/ - 1) (i/ > 2), /i(l) = 10, we have n(u) > 10" (i/ >
1), and hence

" (J -Const
(2J

Since

(lθn(v) j , 3

P\Qn{y) \ Π ( 1 + ^ ί - y/PiOn{u) ί jj

I ^=1 J V

< Const ( I

= Const U

we have

IIRe^^^wllL-ίΓ^,) < Const

Hence we can define a non-negative function hk on Tn^ so that

hk(ζ)\dζ\ = η0,

^ o ^ ) < 1/2.

f) = 0 at endpoints of each component of ΓΛ(^),

is diίferentiable along ΓΛ(^),
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where ηo is an absolute constant. Let

uk(z) = Rehk(z), vk(z) = (the imaginary part of hk{z)),

Λ(z) = {1 -exp(%(z))}/{l +exp(%(z))} (z*ΓH(k))

(cf. [1, p. 30]). We see easily that fk is analytic outside Γ^) and

The non-tangential limit of |w&(z)l t 0 e a c h point on Tn^ is dominated
by

Since \uk\ is sub-harmonic in Γ£ ( - and continuous in C U {oc}, we
have supz e Γc \uk(z)\ < I. Hence, tor any z <£ Γn(k),

I f (z)\2 = 1 + e χ P ( ^ 2 v ^ ( z ) ) - 2 e χ P ( - ^ ( ^ ) ) c o s ( ^ ( z ) )
UkK )] 1 + ( 2 ( ) ) 2 ( ( ) ) ( ( ) ) ''

which shows that HAII/Z^Γ^) < l Since A: > 1 is arbitrary, using
an argument of normal families, we obtain / e H°°(ΓC) satisfying
/'(oo) = ηo/4π, ||/||jyoβ(Γr) < 1. This shows that γ(Γ) > ηo/4π. Nor-
malizing Γ, we obtain the required set JEQ
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