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ON AN EXTENSION OF THE IKEHARA
TAUBERIAN THEOREM

JUNICHI ARAMAKI

A specific example of the Ikehara Tauberian theorem is extended
to the case where the zeta function has a pole of order p > 1 at the
first singularity. And we have an application to asymptotic behavior
of eigenvalues for some partial differential operator.

0. Introduction. In order to study the asymptotic behavior of eigen-
values for some differential or pseudodifferential operators, one fre-
quently uses a specific example of Ikehara's Tauberian theorem. To
be more precise, let P be a positive definite self-adjoint operator on a
separable Hubert space H with the domain of definition K which is
dense in H. If we denote the spectral resolution associated to P by
{E(λ)}9 we can define complex powers of P:

(0.1) Pz= / λzdE{λ)
Jo

where λz for λ > 0 take the principal values. If we assume that the
canonical injection from K which is equipped with the graph norm
to H is compact, it is well known that the spectrum σ(P) of P is
discrete. This enables one to write the sequence of eigenvalues by
0 < λ\ < λι < ••*, λ/c —> oo (k —• oo) with repetition according
to multiplicity and let N(λ) be the counting function of eigenvalues:
N(λ) = #{j;λj < λ}. If Σ%\ tf is convergent for some a < 0, Pz is
of trace class and for Re z < α,

Then a specific example of Ikehara's Tauberian theorem says:

PROPOSITION 1. (Wiener [13] and Donoghue [5].) Let Tr Pz be holo-
morphίcfor Re z < a (< 0). Assume that there exists a constant A such
that

z - a

13
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is continuous for Re z < a. Then we have

λ~a(l+(+{)) as

For realization P in H = L2(Rn) of elliptic differential or pseudo-
differential operators, ΎτPz has a simple pole at the first singularity.
Applying this proposition, we could obtain the asymptotic behavior of
N(λ). (See, for example, Seeley [11].) But there are some hypoelliptic
operators where Tr Pz has a pole of order p > 1 at the first singularity
s = a. We refer the reader to, for example, Aramaki [1], [2], Mohamed
[9] and Menikoff-Sjόstrand [8]. To get the first term for such operators
we extended Proposition 1 as follows:

PROPOSITION 2. ([1; Proposition 5.3].) Let TτPz be holomorphic
for R e z < a ( < 0). Assume that there exist constants AQ9A\>.-*,AP

such that

is continuous for Re z < a. Then we have

(0.2) N(λ) = ^ ^ ^ ( l o g ^ - U - ^ l +o(l)) as λ-+oo.

By this proposition, we could get the first term of N(λ). However,
we cannot find the coefficients of the term (\ogλ)J'λ"a(j < p - 1).

The purpose of this paper is to determine the coefficients C, of the
asymptotic behavior of the form:

(0.3) N(λ) =
7=0

for some δ > 0 as λ —• oo. The proof is more complicated than that of
Proposition 2 and essentially due to the inverse Mellin transformation.
(cf. Duistermaat-Guillemin [6].)

The plan of this paper is as follows. In § 1, we give the main theorem.
Section 2 is devoted to the proof of the main theorem. Section 3 gives
an example to illustrate our theory. Finally in Appendix, we shall
discuss analytic continuation of a zeta function which is used in §3.

1. Statement. Let H be a separable Hubert space and P a densely
defined positive self-adjoint operator on H with the domain of def-
inition K. We regard K equipped with the graph norm as a Hubert
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space. We assume:
(H) The canonical injection from K to H is compact.
Since the domain of definition K of P is imbedded compactly to

H, the spectrum σ(P) of P is discrete, i.e., both the following hold:

(1.1) λ e σ(P) is an isolated point of σ{P).

(1.2) λ € σ(P) is an eigenvalue of finite multiplicity.

Thus we can denote the sequence of eigenvalues by 0 < λ\ < λι <
• , λk —> oo (k —> oc) with repetition according to multiplicity.

Since complex powers of P is defined by (0.1), we can define ΎτP~s

which denotes the trace of P~s if P~s is of trace class.
Then we have:

THEOREM. Let P be a positive self-adjoint operator on H satisfying
(H). Assume that

(i) P~s is of trace class for large Res > 0 and ΊrP~s has a mero-
morphic extension ZP(s) in the complex plane C whose poles are dis-
tributed on the real line.

(ii) Zp(s) has the first singularity at s = a (> 0) and

I \ . / —' / " X w»—• j **• \Ar

j~ι
1

is holomorphic in {s e C; Res > a - δ} for some δ > 0.
(iii) Zp(s) is of polynomial order with respect to Ims in all vertical

strips, excluding neighborhoods of the poles.
Then we have for some δ$ > 0,

O(λa-d°)

7=1 "

as λ—> +oc.

Here it is said that s = a is the first singularity of ZP(s) if ZP(s) is
holomorphic in {s e C; Res > a - δ} for some δ > 0, except a pole at
s = a.

2. Proof of Theorem. First of all, define Q = P2a, then the eigen-
values of Q are μ7 = Xja. It easily follows that ZQ(S) = ZP(2as) has
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the first singularity at s = 1/2 and

is holomorphic for Res > 1/2 - <J/2α where 2?y = Aj/(2a)j. Here
we note that by Proposition 2, NQ(μ) = #{j;βj < μ) is of at most
polynomial growth in μ. This enables one to define, for Re z > 0,

(2.2) ΘQ{z) = Tre~zQ = ] Γ «?-*"'.

In fact, since

J =

there exists a constant C such that Cj < βj for large j . Thus it is
clear that (2.2) is well defined by noting the following inequality: for
some C > 0

By the inverse Mellin transformation, ΘQ(Z) and ZQ(S) can be re-
lated to each other: For Re z > 0,

(2.3) ΘQ{z) = y^r / z-sZQ{s)Γ(s) ds

where Γ(s) is the Γ-function:

and c > 0 is sufficiently large (cf. [6]).
Since Γ(s) is exponentially decreasing as Ims —• +00 in all verti-

cal strips, excluding neighborhoods of the poles, it follows from (iii)
that ZQ(S)Γ(S) is also exponentially decreasing in all vertical strips,
excluding neighborhoods of the poles of ZQ(S) and Γ(s). This al-
lows one to shift the path of integration in (2.3) by c \ c0 where
1/2 - δ/4a < CQ < 1/2. Thus we can rewrite θβ(z) into the form:

(2.4)
7=1
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where

3 Z 2πί J\s-ι/2\=e {s - 1/2);
1 f

Here ε satisfies 0 < ε < δ/2a. We see from the Cauchy theorem that

. , x 1 £) {z-*Γ(s)}

Consequently ΘQ(Z) is reformed in the form

5=1/2

Now we choose p e S(R) so that Fp is an even function with com-
pact support and (Fp)(0) = 1, p{0) > 0, p > 0 where S(R) is the
Schwartz space of smooth rapidly decreasing functions on R and Fp
means the Fourier transformation of p:

roo

(Fp)(t)= e-itτp{τ)dτ.
J — oo

By the Lebesgue theorem and the definition of NQ(T), we have

roo roo

(2.6) I(μ) = p(μ- τ) dNQ{τ) = lim / e~"p{μ - τ) dNQ{τ)
J -oo εiv J-oo

^

°° z oo

π ) - 1 Σ / e-le+Wμ>(Fp)(t)eiμtdt
7-00

roo

π ) - ' / ΘQ(ε + it)(Fp){t)eiμtdt
J_oo

7=1

where

5=1/2

(Fp)(t)eiμt dt
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and
roo

R°Co(μ) = l i m ^ π ) - 1 / RCo(ε + it)(Fp)(t)e^ dt.
e l " «/ — oo

In the sequel, we shall study the asymptotic behavior of Ij{μ) and

Rco{μ) as μ —• +00. In order to do so, we prove the following four

lemmas.

LEMMA 2.1. Lets e Br{\/2) = {s e C;\s- 1/2| < r}. Then for every
integer j > 0 0m/ 0 < r < 1/2,

<2 7» s ? £ ( I ) <e+ί""Se'" * - £ ( έ ) w " " *•
Moreover the integral in the right-hand side is uniformly convergent on

Br(l/2).

Proof Since {d/ds)J(ε + it)~s = {ε + it)~s"(-log(e + it))J, it suffices
to prove that:

roo /»oo

(2.8) lim / (e+/0"5(log(e+i0)V"tΛ= /

and the integral in the right-hand side in (2.8) is uniformly convergent
on Br(l/2). By virtue of the mean value theorem, there exists θ e
(0,1) such that

(ε + it)~s(log{ε + it))j

= (itΓs(log(it))j

ε f
Jo
ί (εθ + it)~s-ι{-s{\og(εθ + it)y + j{\og(εθ + it)y-χ}dθ.

Jo

If we choose δ > 0 so that r + δ < 1/2, there exists a constant C
independent of ε and s e Br{\/2) such that

it)-s~ι(log(eθ + it))k\ <

(k = j or k = j-I)

for all \t\ > 1. So we have

./o

<εC ί \t\-3'2+r+δ dt -+ 0
J\t\>\

dθ dt
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as ε i 0. On the other hand, if we choose δ so that 0 < 2δ < 1/2- r,
then

ε ί ί (εθ + it)-s~ι{log{εθ + it))kά
J\t\<\ h

<ε [ ί {εθ + \t\)δ-χ{εθ + \t\)-r-2δ-χl2dθdt
J\t\<\ Jo

< ε ί (εθ)s-{ dθ ί \t\-r-2δ-χl2dt -> 0
^o J\ί\<\

as ε i 0. This completes the proof.

REMARK 2.2. By the above lemma, we have 0 < b < 1 and every

<2 9'
5 = 6

LEMMA 2.3. Let 0 < b < 1. Then we have the following:

(2 1 0>
s=b

Proof. Since

is a linear combination of

(ε + /ί)~*(log(β + /ί))Λ, (0 < k < j - 1),

it suffices to prove:

roo

(2.11) lim / (ε + ιί)-*(log(β + it))k{Fp){t)eiμt dt

/»CX5

= / (lO-^OogίiO)*^^ dt + O{μ~ι) as /
J —OO

+00.
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The integration by parts leads to
/»oo

(2.12) Ifrμ ε) = (β + /7)-*(log(β + it))k{Fp){t)e^dt
J — oo

= -J7, Γ 4:{(s + itrb(^(ε + iή)k(Fp)(t)}e
*ft J—oo t**'

= - Γ (ε + it)-b-ι(\og{ε + it))k{Fp){t)e^ dt
ft J — OO

- - / (ε + iή-b~ι(log{ε + it))k-ι{Fp)(t)e^
ft J-00

1 POO

-4- (ε + /ί)-*(log(β + it))k(Fp)'(t)ei'a dt.
ιft J -oo

Here (Fp)r denotes the derivative of Fp. We first estimate the third
term of (2.12). Noting that for arbitrary δ (0 < δ < 1 - b) there exists
a constant C > 0 independent of ε such that

|(ε + ιί)-*(log(e + iή^FpYiήe^l < C\t\-b~δ in supp {Fp)1,

it is easily seen that the third term is of O(μ~ι) as μ —• +oc uniformly
when ε [ 0.

Next, we consider the first and second terms of (2.12). Since we
may suppose supρ(iτ?) c {—N, N) for some N> 0, we can write

/»oo

(2.13) / (ε + it)-b-lQog(e + it))k{Fp){t)e^ dt
J — OO

(ε + it)-b-χ (log(ε + it))keiμt dt

OO

Γ=
J --oo

f (ε + iή-b-ι(log{ε + it))k(
J-

(ε + it)-ΰ-ι(\og(ε + it))k((Fp)(t) - \)eιμt dt
f-N

- ί {ε + it)~b~ι (log{ε + it))keiμί dt.
J\t\>N

Since (Fp)(O) = 1, \{Fp)(t) - 1| < M\t\ for some M> 0. Thus, taking
£ > 0 small enough, there exist constants C and C independent of ε
such that

t)-b-χ{\og{ε + iή)k{{Fp){t) - l)eiμt\ dt
-N '

<c
J-l

\t\-b~δ dt < C\
-N

Similarly taking δ > 0 small enough shows that we also have

\{ε + it)-b-{{\og(ε + it))keiμί\dt < C f \t\-b~ι+δ dt < C'.
J\t\>N

\ f
\ί\>N J\t\>N
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Hence we see that the second and third terms in the right-hand side in
(2.13) are of 0(1) as μ —> +00 uniformly in ε. Now, the integration
by parts yields that

roo

Kk(μ;ε) = / {ε + it)'1"1 {log(ε + iή^e^'dt
J — OO

1 rOO

= yj (β + iί)-*^{(log(e + it))ke*"}dt

where
roo

Mk(μ; ε)= (ε + ιί)-*(log(e + Htfe** dt.
J—00

Since K0(μ;ε) = (μ/b)M0(μ;ε), we have, by induction,

Therefore, taking (2.12) and (2.13) into consideration, we have

(2.14) Ij>(μ;ε) = ^Kk{μ;ε) - ^ _ i ( μ ; β ) = i l / ^ β)

r+oo
— I (p JL. it\~ (\c\o(p 4- itW plflt /if

J —oo

modulo O(μ~ι) uniformly when ε | 0. Finally it only remains to apply
Lemma 2.1 (cf. (2.8)). This completes the proof.

LEMMA 2.4. Let s be a complex number so that 0 < Res < 1 and μ
a positive real number. Then we have

(2.15) Γ (it)~seiμίdt = 2sinsπΓ{l -s)μs~ι.
J -oo

Proof. We first consider the integral
roo

7+(j)= / {iή-'e^dt.
Jo

The change of variable μt -* t leads to
/•oo

/+(s) = r y - ' / rseudt.
Jo

If we put z = re'θ, 0 < θ < π/2, we have
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Since sin θ > 0 in (0, π/2] and z~seiz is holomorphic function of
z = reiθ in 0 < θ < π/2, we can deform the integral as follows:

roo

= Γsμs~ι (it)-se-'idt
Jo

V" 1 Γ rse-<dt = Γ2s+ιμs-ιΓ(l -s).
Jo

_ , -2ί+l ,,5-

If we put z = reιθ, -π/2 < θ < 0, it follows from the same argument
that

Γ(s) = f {it)-se^dt = {-i)-2s+ιμs-ιΓ{l -s).
J-oo

Therefore

I+(s) + I-(s) = i{Γ2s - {-i)-2s}μs~xT{\ - s)

= 2smsπΓ(l-s)μs~ι.

This completes the proof.

Finally we consider the asymptotic behavior of the remainder term

LEMMA 2.5. There exists δ > 0 such that R%{μ) = 0{μ-χl2~δ) as
μ —• o o .

Proof. If ZQ(S)Γ(S) has a pole at s = SQ such that 0 < s0 < c0 < 1/2,
the above lemmas show that there exist some δ > 0 and c\ (0 < c\ < SQ)
such that Rl(μ) = ϋ ^ (//j + O^- 1 / 2 -^) . Thus in the definition (2.4) of
RCo(z) we may assume that CQ > 0 is arbitrary. Moreover, if ZQ(S)Γ(S)

has a pole at s = 0, there exist some d < 0 and sufficiently small e > 0
such that i?co(*) = # ( * ) + Λ</(*) where

l π ι J\s\=

We show that there exists δ > 0 such that
POO

R'0(μ) = lim / R'{ε + it)(Fp)(t)eiμt dt =
ε | 0 J—oo

as μ -» oo. In fact, by the preceding arguments, it suffices to prove
that

rN

(log t)j{Fp)(t)eiμtdt = 0{μ-χ'2-δ)
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as μ —> oc. For brevity we only consider the integral

Jj(μ)= Γ (log ty(Fp)(t)e*tdt = JJ
J o

where

= f
Jo

\\logty(Fp)(t)e^dt and

J}(μ)=J (log*)J

Since (Fp)(t) = (Fp)(O) + t(Fp)'(θt), 0 < θ < 1, we have

' ( l o g ί V ί l + ί ί W ί β ί ) ) ^ * -

For any α £ (0,1), there exist constants C and C > 0 such that

/ μ(logt)jeiμtdt <C ί μradt<Cμa~\
Jo Jo

= ίl

Jo

And

ί μ (log ty't(Fpy(θήeiμtdt <C f ^ dt < C μ~\
Jo Jo

Thus we see that J}(μ) = O(μ δ 1 / 2 ) . Next, by the integration by
parts, we have

(2.16)
/μ

jr\logty-\Fp)(t)eiμtdt

J\lii
(log ty(Fp)\t)eiμtdt

For any a > 0, we have with a constant C > 0,

rN

/
•Ί/

jΓx(logty-χ(Fp)(t)eiμtdt

<C Γι~adt =
Jl/μ

as μ —• oo.

It is clear that the second term in the parenthesis of (2.16) is of 0(1).
Thus for some δ > 0, Jj(μ) = O(μ~δ~χl2) as μ —> oo. Consequently
it follows that for some δ > 0, i?o(μ) = Oί//"^"1/2) as // -> oo. Thus
we are reduced to prove that for some d < 0, i?^(//) = O(μ~ι/2~δ) as
// ~> oo. But this fact follows from the same arguments in [3] (cf. [6]).
This completes the proof.
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End of the proof of Theorem.

By virtue of the above lemmas, we have, modulo O{μ~χ/2~δ) for
some δ > 0 as μ —• +oc,

= / p{μ-τ)dNQ(τ)
J — OO

• I v./ -/• «/— υυ \ — / 5=1/2

Here, taking Remark 2.2 and Lemma 2.4 into consideration,

5=1/2

5=1/2

By the well known equation: sinsπΓ(s)Γ(l - s) = π, we have

_ _ ^ Bj (d\j~x

 s_x _ι/2_δ

j=ι U - ! ) ! \dsj s=iβ

Now it follows from Helίfer [7] that there exists a constant C such
that

/•I z +oo

/ / p(μ-τ)dNQ(τ)dμ<C

Thus we have

— oo

P
Bj

0-1) ! 5=1/2

Noting that NP(λ) = iVβ(A2α) and 5 S = As/{2a)s we have for some

a-δo\

7=1
s

This completes the proof of Theorem.



AN EXTENSION OF THE IKEHARA THEOREM 25

3. Example. In this section we shall give an example. Let

By the celebrated Kato theorem, it follows that A is an essentially
self-adjoint operator on L2(R2), i.e., A has a unique self-adjoint ex-
tension P of A as unbounded operator on L 2(R 2). Moreover P is
semi-bounded from below. By Robert [10] (cf. [4]), we can regard P
as a L2(R)-valued operator as follows. If we define

K = {ueL2{R);(-^ + yAueL2{R)} and H = L2{R),

we see that

where L(K, H) denotes the Banach space of all bounded linear opera-
tors from K to H. Thus we can regard A as a L2(R)-valued operator
with the Weyl symbol

ξ2 + Q(x)eL(K,H).

Since -d2/dy2+y2 has the complete set of the eigenvalues μy = 2y-1
(j = 1,2,...) of multiplicity one, ones of σw(A) are given by

It follows from [4] that

ΊτP's - (2π)-{ //Tr(£ 2 + Q{x)Ysdxdξ

is holomorphic for Res > 3/2-δ for some δ > 0. Thus we are reduced
to study

+ Q(x))~sdxdξ

The change of variable: ί —* // j/2c^ leads to

oo f r

π)-χ {ξ2 + {
j=ι
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Moreover changing the variable ζ —• (1 + x2)ι/4ξ, we have

0 0 roo POO

I(s)=Σt*]s+l/2(2πΓl / (1 +x2Γs/2+1/4dx / (ί+ξ2rsdξ.

In combination with the well known equation

,00 χa _ Γ((g+l)/2)Γ(t-(fl-l)/2)

Λ ( l + x 2 ) 1 ^ 2Γ(1+Z>)

when Reα, Reέ > -1 and ReZ? > Re (α - l)/2, we have

_ Γ ( J / 2 - 3 / 4 ) Γ ( J - 1 / 2 ) ^ 2

ifRe^>3/2.
Since Γ(z) = \/z - γ + 0(z) as z -> 0 where y is the Euler number,

we have

Γ(J/2 - 3/4) = ^ - 7 + 0{s - 3/2) as s - 3/2.

Since

Λ ^ _ Π ί - l / 2 )
" v ^ Γ ( J / 2 -

is holomorphic for Res > 1/2 and (7(3/2) = 2π - 1, we see that G(s) =
2π- ! + (s - 3/2)G'(3/2) + 0((j - 3/2)2) as s -* 3/2. Therefore it
follows that

Γ(V2-3/4)Γ(,-l/2)_ 4π-' ,
Γ(J/2-1/4)Γ(J) j - ϊ / ' ϊ + t ' " 7 ^ / ^ z y π > + t y ^ ί / / ' )

Using the fact which shall be proved in Appendix:

1/2 , „

Mi S i l L

where

C=\ lim 2Y"(2A:-l)-1-log(2«-l) =(y + log2)/2,
L jt=i J

we have

(s - 3/2)2
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where Ro(s) is holomorphic for Res > 1/2. In combination with well
known equations

/2 and

it follows that we have

G'(3/2) = 2Γ(l)τr-1 - Γ(l/2)π- 3/ 2 - 4Γ(3/2)π"3/2

= (7 + 61og2-4)π-1.

Hence it turns out that

Thus by our Theorem, we have

N Λ λ ) = l.λV2 l o g A

as λ -> +oo.

Appendix. In this appendix we shall consider the analytic continu-
ation of

oo

- I ) " 5 , 5 = σ + /ί

where σ and t are real numbers. It is well known that Z(s) is absolutely
convergent for σ > 1 and uniformly convergent for σ > 1 + e for any
ε > 0. Then we shall give a proposition whose proof is essentially due
to Siegel [12]

PROPOSITION. Z(S) can be continued analytically into the half plane
σ > 0 and the continuation is holomorphic for σ > 0, except for a simple
pole s = 1 with residue 1/2. Further, Z(s) has the expansion at s— 1:

where

= - hm 2 > (2k - 1) [ - \og(2n - 1) = (γ + log2)/2.
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Before the proof of this proposition, we give

LEMMA. Let f be a complex valued function belonging to
Cι[l, 2n - 1]. Then we have

* = 1

Proof. Let g be a complex valued function belonging to Cι[0,2],
Then, the integration by parts leads to

ί2 g\x){x -\)dx = g(0) + g(2) - ί2 g(χ) dx.
Jo Jo

Letting g(x) = f{x + 2k - 1), k = 1,2,..., n - 1, it easily follows that

/ f(χ + 2k-\){x-\)dx = f{2k-\)+f{2k+\)- / f(x)dx.
Jθ Jlk-\
This completes the proof of Lemma.

Proof of Proposition. Let f(x) = x~s = e~sXo%x where logx takes
the principal value. Then it follows from the above lemma that

(A) sΣ f

Here we easily see that

-l

and

n

k=\

and therefore, it follows that Fn(s) is an entire function of s. If σ > 1,
it follows that

/

2/1-1 i n

x~s dx —• and /J(2/: - 1)~5 —* Z(ί) as « —> oo.
S ~ l k=ι
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Thus we see that Fn(s) converges to 2Z(s) - l/(s - 1). On the other
hand, if σ > ε > 0, it follows that the left-hand side in the above
equality (A) converges to a holomorphic function for σ > 0. Thus we
see that 2Z(s) — 1/(5—1) has the analytic continuation for σ > 0. Let

Then it is easily seen that

a0 = lim
n-+oo

Finally a simple computation leads to

In ,

)fc=i

Noting that

r ί " 1 , 1 fu c ,
lim <> 7--logn> = y (the Euler constant),

U=i )
we see that

This completes the proof.

Acknowledgments. The author is indebted to the referee for a valu-
able suggestion, which led to a simpler reformulation of the main
theorem.
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